Minimum Cost Flow by Successive Shortest Paths

- Initialize to the 0 flow
- Repeat
 - Send flow along a shortest path in G_f

Comments:

- Correctly computes a minimum-cost flow
- Not polynomial time.
- Simple bound of O(nmCU) time.

Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying $0 \le f(v, w) \le u(v, w) \ \forall (v, w) \in E$

• Given a pseduflow f, we define the "excess" at v as

$$e(v) = b(v) + \sum_{w \in V} f(w, v) - \sum_{w \in V} f(v, w).$$

- If $e(v) = 0 \quad \forall v \in V$, then a pseudoflow is a flow.
- We define reduced cost optimality of a pseudoflow f as

$$\exists \pi \mathbf{s.t.} c^{\pi}(v, w) \ge 0 \forall (v, w) \in G_f$$

Strategy: Maintain an f and π such that f is a pseudoflow satisfying reduced cost optimality. Work to make f a flow. When f is a flow, you know it is optimal.

How do you initialize?

- \bullet You can assume that $\ c(v,w) \geq 0 \forall (v,w) \in E$. Then the 0-flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?

How do you initialize?

- \bullet You can assume that $\ c(v,w) \geq 0 \forall (v,w) \in E$. Then the 0-flow satisfies reduced cost optimality.
- But what if the assumption doesn't hold?
- Set f(v,w) = u(v,w) for all edges with c(v,w) < 0.
- Now, all edges in G_f , satisfy $c^{\pi}(v, w) \ge 0$.
- Update e(v) accordingly.

Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

$$\begin{array}{ll} 1 & f=0; \ \Pi=0 \\ 2 & e(v)=b(v) \ \forall v \in V \\ 3 & \mbox{Initialize } E=\{v:e(v)>0\} \ \mbox{and } D=\{v:e(v)<0\} \\ 4 & \mbox{while } E\neq 0 \\ 5 & \mbox{Pick a node } k\in E \ \mbox{and } \ell\in D \\ 6 & \mbox{Compute } d(v), \ \mbox{shortest path distances from } k \ \mbox{in } G_f \\ & \ \mbox{w.r.t. edge distances } c^{\pi}. \\ 7 & \mbox{Let } P \ \mbox{be a shortest path from } k \ \mbox{to } \ell. \\ 8 & \ \mbox{Set } \pi=\pi-d \\ 9 & \ \mbox{Let } \delta=\min\{e(k),-e(\ell),\min\{u_f(v,w):(v,w)\in P\}\} \\ 10 & \ \mbox{Send } \delta \ \mbox{units of flow on the path } P \\ 11 & \ \mbox{Update } f, \ G_f, \ E, \ D \ \mbox{and } c^{\pi}. \end{array}$$

Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with respect to π . Let d(v) be the shortest path distance from some node sto v in G_f with respect to c^{π} . Then

- f satisfies reduced cost optimality with respect to $\pi' = \pi d$.
- $c^{\pi'}(v, w) = 0$ if (v, w) is on a shortest path from *s* to some other node.

Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm, f satisfies reduced cost optimality.

But still not necessarily polynomial.

Use Capacity Scaling on top of shortest path algorithm

Def:

 $G_f(\Delta) = \{(v,w) \in G_f : u_f(v,w) \ge \Delta\}$

Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

1	$f = 0; \pi = 0$
2	$e(v) = b(v) \; \forall v \in V$
3	$\Delta = 2^{\lfloor U \rfloor}$
4	while $\Delta \geq 1$
5	$(\Delta \text{ scaling phase })$
6	for every edge $(v, w) \in G_f$
7	if $u_f(v,w) \ge \Delta$ and $c^{\pi}(v,w) < 0$
8	Send $u_f(v,w)$ units of flow on (v,w) ; update f, e
9	$S(\Delta) = \{ v \in V : e(v) \ge \Delta \}$
10	$T(\Delta) = \{ v \in V : e(v) \le -\Delta \}$
11	while $S(\Delta) \neq 0$ and $T(\Delta) \neq 0$
12	$\textbf{Pick a node } k \in \boldsymbol{S}(\Delta) \textbf{ and } \ell \in \boldsymbol{T}(\Delta)$
13	Compute $d(v)$, shortest path distances from k in $G_f(\Delta$
	w.r.t. edge distances c^{π} .
14	Let P be a shortest path from k to ℓ .
15	Set $\pi = \pi - d$
16	Let $\delta = \min\{e(k), -e(\ell), \min\{u_f(v, w) : (v, w) \in P\}\}$
17	Send δ units of flow on the path P
18	$\textbf{Update } f, \ G_f(\Delta), \ \boldsymbol{S}(\Delta), \ \boldsymbol{T}(\Delta) \ \textbf{and} \ c^{\pi}.$
19	$\Delta = \Delta/2$

Analysis of Running Time