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The Visual System Does
2 Crude Fourier Analysis
of Patterns

NORMA GRAHAM

Introduction. About a dozen years ago in the Joumnal of Physiclogy, John
Robson and Fergus Campbell introduced the notion that the human visual
system contains multiple spatial-frequency channels—that is, multiple subsystems
working in parallel, each of which is sensitive to a different range of spatial
frequencies in visual patterns, _ '

At about the same time, in Psychological Review, Jim Thomas made the
closely related point that the existence of visual neurons with different sizes of
receptive fields has important implications for pattern vision, and, in Science,
Allan Pantle and Bob Sekuler suggested the existence of multiple size-selective
channels. Since that time, a tremendous amount of psychophysical and physio-
logical work has been inspired by this thearetical notion that there are multiple
channeis working in parallel to process visual patterns and that each of these
channels is sensitive to a different, narrow band of spatial frequencies, Some
people have gone so far as to say that the human visyal system does a Fourier
analysis of the visual scene.

What I do here is review the history of this multiple-channels model of pattern
vision and comment on its current status. Some references will be given here,
and the reader can find a more extensive bibliography in Graham [1981). Some
of the material here is explained more fully at an intnitive level in Graham
{1980]. in

First let me point out that in discussing pattern vision, we ignore many
dimensions important to vision—color, time, depth~discussing only monochrow
matic, unmoving, unchanging, flat patterns. We discuss only the initial visual
processing, ignoring the higher-order perceptual or cognitive processes that
oceur, for example, in reading z pattern of letters on 2 page. In spite of this
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exireme limitation, there would still be too much to cover, so I will further limit
it by concentrating on places where mathematics has entered into the develop-
ment of the multiple-channels model of pattern vision and on places where more
mathematics might be useful. (The formal mathematics, which is not presented
here in general, can be found in the references.)

Early history. The multiple spatial-frequency chanmnels model developed rather
naturally from an earlier model of pattern vision, a single-channel model. Ia the
single-channel model, the important stage of the visuai system is a linear system
with a two-dimensional input representing the visual stimulus and a two-dimen-
sional output Tepresenting the response of the vispal system. This model was
attractive both because it seemed consistent with known neurophysiology and
because it was a very simple model. (People seem implicitly to assume finearity
unti] they have evidence to the contrary.)

Physiological receptive fields. As was discovered a few decades ago, vertebrate
retinal ganghon cells, which are the neurons in the retina that send their axons
up to the brain, do not respond to single points of light. They respond instead to
light in a rather broad area of the visual field. This area is called the “receptive
field” of the neuron. Further, a neuron responds differently depending on where
in its receptive field the light falls, For example, if light falls in the center of the
receptive field, the neuron might respond with increased firing—that is, the
neuron is excited. If light falls in an annulus surrounding the center of the field,
the neuron responds with decreased firing, that is, the neuron is inhibited. (Some
aeurons have the opposite arrangement, receptive fields with inhibitory centers
and excitatory surrounds.) Importantly, the response of these neurons to the
light pattern is approximately linear. If two spots of light are shown, the
response to the two is approximately equal to the sum of the responses to each
alone. If both spots fall in the center of the receptive ficld, the reuron responds
more to the combination than to either alone. If one spot falls in the center and
one in the surround, the responses cancel.

Neurons in the visual cortex of vertebrates were later discovered to have even
more complicated receptive fields. Some of these cortical cells are still linear
systems with a central excitatory area and adjacent inhibitory areas, but now
these areas are rectangular with one or two rectanguizar inhibitory areas adjacent
to the long edge of the rectangular excitatory area. For a review of this
physioclogy, see Robson [1980), -

Single-channe! modef. Thus it scemed reasonable to model the important stage
of the visual system as an array of many of these neurons. Their receptive fields
were assumed to be heavily overlapping and densely distributed across the visnal
field. (See, for example, Ratliff’s delightful book, Mack Bands [1965]) This
conception is called a Single-Channel Model. 1f (1) each neuron responds
linearly, (2) the output of this array is taken to be the two-dimensional function
giving the response of each neuron as a function of the central position of the
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neuron’s receptive field, and (3) the input to this array is taken to be the
two-dimensional function giving light intensity at each point in the visual field,
then this array is a linear system.

Behavioral as well as physiological evidence supported this model. For exam-
ple, the perceived appearance of edges, that is, the existence of Mach bands, is
consistent with such a model (Ratliff (1965%). 1 will not go further into this
evidence, however, as we are about to discard this model, after we have given it
credit for inspiring the use of a new stimulus with which to study vision.

Sinusoidal gratings. This new stimulus was a sinuscidal grating. Since the
rather prevalent, rather reasonabie model of the visual system was a linear
system, people who knew about Fourer or linear systems analysis paturally
thought of using sinusoidal inputs 1o the system (Bryngdahl [1962], DePalma
and Lowry [1962], and Patel [1966]). What would the appropriate sinusoid be?
One candidate, the candidate that was chosen, is a one-dimensional sinusoidal
grating like that shown in Figure 1. A sinusoidal grating is a pattern in which the
luminance in one direction varies sinusoidally, while the luminance in the
perpendicular direction is constant. The spaiial Srequency of a sinusoidal grating
is the number of cycles of the sinusoid per unit distance. The mean luminance of
a grating is the average luminance across the whole grating and is generally kept
constant, (One of the attractions of sinusoidal gratings is that the mean lumi-
nance of 2 grating can easily be held constant, keeping the observer in a
relatively constant state of light adaptation and thus avoiding manifest early
nonlinearities in the visual system, while the contrast and spatial frequency are
varited.) The contrass of a grating is a measure of the amplitnde of the sinusoid;
it is usually taken to be one-half the difference between the maximum and
minimum luminance divided by the mean luminance, :

Fourier analysis. Although I suspect the following will be familiar to most
readers, let me review briefly the relevant facts of Fourier analysis. Any
two-dimensional function like that describing the luminance at each point in a
visual pattern can be Fourier analyzed, that is, the (two-dimensional) Fourier
transform of the function can be computed. Further, the Fourier transform can
be inverted to give back the original function. Or, to put it in terms of wvisual
patterns, any visual pattern {remember we are only talking about flat, unmoving,
uncolored patterns) can be synthesized by adding together sinusoidal gratings of
different frequencies and orientations in appropriate phases and contrasts. And
there is only ome set of sinusoidal gratings which will synthesize any given
pattern. '

Further, the response of a linear, translation-invariant system, like the single-
channel model described above, to a sinusoidal graling is particularty simple. It
is a sinusoid of the same frequency and orientation as the grating. Thus only its
amplitude and phase need to be specified. The function specifying amplitude
and phase for each frequency-orientation combination is known as the transfer
function of the system., '




FiGure 1. A simple sine-wave gating comtaining one spatial frequency is on the top left, and a
compound grating containing two frequencies {one three times the other) is on the top right. The
lnm.immccproﬁlaof&epammshmunderneathmchpalmnuwlidlﬁle&('I'hedomd
lines on the lower right show the luminance profiles of the individual component sine-waves.) From
Grabam and Nachmiag [1971], . : .

By definition, the response of a linear system to any stimulus which is the sum
of components is equal to the sum of the responses to the components by
themselves. Therefore, according to the linear, translation-invariant single-chan-
nel model described above, the response of the visual system to any pattern at
all can easily be computed from its response to sinusoids as long a5 one knows
its transfer function. o .

Application to single-channel model. Thus, if the simple single-channel model :
introduced above were correct, it would be quite easy to characterize all the
parameters of pattern vision. One would just have to know the responses to all
sinusoidal gratings (which are a small subset of all possible patterns) and one
would know the response to all paiterns. Since the response to any sine is a sine -
of same frequency and orientation, to know the responses to all sinusoidal
gratings ome would just have to know the amplitudes and phases of the
Tesponses. - , .

How does an array of meuroms with antagonistic excitatory and inhibitory
areas in their receptive felds respond to gratings of different frequencies and
orientations? It responds to a limited range of spatial frequencies, responding
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best to a2 medium frequency. It responds less well to high frequencies because
the nonzero width of the excitatory center smears high frequencies. It responds
less well to low frequencies because the inhibitory surround, which is wider than
the excitatory ceater, depresses responses to low frequencies. If the array is
made up of neurons with rectangular receptive fields like those in the cortex, it
will also respond only to limited ranges of orientation. The orientation it will
respond to best is the one where the bars of the gratings are parallel to the long
dimension of the rectangular segments in the receptive fields. The phase of the
response will depend on the symmetry of the receptive field. Even-symmetric
receptive lields like those having equai-sized iphibitory flanks on either side of
the excitatory center do not introduce any phase shift,

The simplicity introduced by this simple single-channel model is certainly
appealing. But this simple single-channe! model can easily be shown to be
wrong.

Sine-plus-sine experiments. I am going to describe an experiment that is
similar to the original experiment of Campbell and Robson, but allows more
telling comparisons between experimental results and theoreticai predictions
(Grabam and Nachmiss J1971]). Four kinds of patterns were used, all of which
were patterns varying in one direction only. See Figure 2, left column, for these
patterns’ luminance profiles. (A luminance profile is a one-dimensional cut in
the interesting direction through the two-dimensional function giving light
intensity at each spatial position.) The four patterns were: two simple sinusoidal
gratings, one of frequency three times the other, and two compound gratings,
each containing both frequencies but in different phases, (Photographs of one of
these simple and one of these compound gratings are shown in Figure 1.} For
each pattern, the detection threshoid (that is, the contrast at which an observer
can just tell that 2 pattern is present rather than a blank feld of the same mean
luminance) was measured. _

Single-channel model predictions. What would the singie-channe! model pre-
dict for this experiment? The middle column of Figure 2 shows the one-dimen-
sional cuts through the two-dimensional output of the channels. These are called
response profiles. The response of the channel to the compound grating will just
equal the response to the components (in the appropriate phase). To derive the
predictions for an observer’s threshold, some assumption must be made linking
the responses of the model to the behavior of the observer. Here for ease of
explanation T will make the simplest assumption. (Many others have been
considered over the years, but none has rescued the single-channel model. If one
made a sufficiently complicated linking hypothesis, one could undoubtedly
rescue the model, but then the interesting part of the model would be in the
linking hypothesis, not in the single channel.) We will here assume that an
observer detects a pattern whenever the peak-trough difference in the response
of the channef (the difference between the largest and the smallest values)
reaches some criterion.
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Fioure 2. Four grating patterns are indicatad by their luminance profiles in the left column, (The
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Guhamand‘Nachm.i.u[Im].
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If each component sine-wave’s Contrast has been set so that it is Jjust at
threshold (as illustrated in the first two rows of Figure 2), the single-channel
mode] predicts that the peak-trough difference in the response to each of the
compounds will be far above threshold, For the peaks-subtract phase, the
peak-trough difference in the tesponse is 1.4 times threshold and for the
pezks-add phase 2.0 times threshold. Thus, if the single-channel model were
carrect, these two compound gratings should be much more visible thag their

sinusoidal components and the peaks-add much more visible than the peaks-
subtract.
For human observers, however, all four patterns are, to 2 first approximation,
equally detectable. This fact is inconsistent with the single-channel model,
Nomuniform single-channel model. A possible variant of the single-channel
model that immediately jumps into the mind of many a person is a model in
which the size of receptive field changes as one moves from the foveal center to
the periphery (although there is still only one size of receptive field at each
location). Such a change fits in well with all the phenomena showing that our
acuity is better in the middle of the visual field than in the periphery. This
modified single-channel model is also wrong, however. A more recent versicn
{(Graham, Robson and Nachmias [1978]) of the sine-plus-sine experiment de-
scribed above was done with small patches of grating. (These patches had slow
transitions at their edges to avoid introducing 100 many other spatial frequencies
and other edge effects) These patches were small encugh that, according to a
nonuniform single-channel model in which receptive field size changes with
position at a rate consistent with other visual data, all the patches would have
been detected by the same size of receptive field; therefore, the compound
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would have besn more detectable than the components, and the peaks-add
compound would have been more detectable thap the peaks-subtract. The
experimental results, however, were the same as for the full grating, thus ruling
out the nonuniform single-channel model.

Multiple-channels model predictions. The experimental results are, however,
consistent with a multipie spatial-frequency channels model. Fach of the muiti-
ple channels might itself be an array of receptive fields all of the same size,
Different channels have different sizes of receptive field, a low spatial-frequency
channel having larger receptive fields than a high spatial-frequency chanunel. As
far as any individual channel is concerned, the compound grating behaves just
Like one of its components. For example, in the right column of Figure 2, the
cbannel which is sensitive only to the low-frequency component (channel a)
responds to the compound just as if it contained onmly the low-frequency
component. If we assume that a pattern is detectable whenever the response of
at least one channel is great enough, and if we continue to ignore, as we have
been, the possibility of variability from trial to tral, then this multiple-channels
model predicts that all four of the gratings in Figure 2 are just at threskoid. In
general, a compound grating is exactly as detectable as its most detectable
component and phase does not matter. To a first approximation, this is what is
found.

Probability summation. But it is only 2 first approximation. The compound
gratings are both, in fact, just a little bit more detectable than their compo-
nents—not nearly as much more as a single-channel model predicts, but a little,
This added detectability came as no surptise 1o a psychologist, because a
favorite notion of psychologists is “probability summation”, In all psychophysi-
cal experiments, there is a great deal of variability. An observer's response to a
particular stimulus is not always the same. A pattern near threshold just does
not look the same from trial to trial. Sometimes an observer will see the pattern
very clearly; sometimes he will not see it at all. Suppose this variability is due to
variability in the responses of the channels, and the variability in different
channels is independent. Then, the two channels that respond to a compound
graling each have independent chances of detecting the compound grating, but
only one of the two channels has a chance to detect a component by itself,
Therefore, the compound gratings shouid be slightly more detectable than either
component. A muitiple-channels model with probability summation among the
channels quantitatively accounts for the exact threshoids of the compound
gratings (Sachs, Nachmias, and Robson [1971); Graham, Robson, and
Nachmias [1978]). e

The existence of this probability summation, which is a form of nonlinear
summation between channels, greaily complicates calculations from a multiple-
chanpels model. -

To further complicate the situation, recent evidence carefully varying the
number of bars in a grating (Robson and Graham [1981]) strongly suggests there
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is also probability summation across the spatial extent of each channed, Or, to
put it in terms of possible physiclogy, if the channels are conceived of as arrays
of receptive fields, then each receplive field has its own independent variability.
Thus, to make predictions from the multiple-channels model, one also needs to
take into account this nonlinear probability summation across spatial extent.

Quick pooting model. In order to calculate the predictions of 2 multiple-chan-
nels model with probability summation, the variability in individua} receptive
fields or channels was originally assumed to be described by a Gaussian
distribution, With this assumption, it was extremely tedious to do the calcula-
tions of a pattern’s threshold from the responses of the muitiple receptive fields
or multiple channels, Fortunatety, a few years ago, Frank Quick [1974] pointed
out the existence of a function, known in some contexts as the Weibull function,
which is a good approximation to the curnulative Gaussian but is much easfer to. |
work with as long as it is embedded in a certain psychophysical model.

Let P, be the probability that the ith receptive field in the jth channet detects
the stimulus (that is, the probability that the response of that receptive field is
greater than some criterion). Let S, ; be the sensitivity of that receptive field 1o
the stimulus (that is, the reciprocal of the contrast necessary to produce
detection by the receptive field on half of the trials), Let K be a parameter
determining the steepuess of the function, Let ¢ be the contrast in the stimulus
pattern, Then the function suggested by Quick is

—d.'-.'.i',)z ) --.
}’;,-1—2( ) ) :

If one assumes that the observer detects a pattern if and only if at least one of
the receptive fields in one of the channels does, then, letting P be the probability
of the observer’s detecting the pattern, letting M be the number of receptive
fields in each channel, and letting & be the number of channels,

M N
P=1- 11 (1-p).
HJ s
We still need to specify how the observer’s prabability of detecting a pattern
determines his response in an experiment. We will make the simple-mind;;l
assumption that, when he does detect the pattern, he always responds correctly
and when he does not detect the pattern, he simply guesses. This assumption,
sometimes called the high-threshold model of response bias, is known to be
wrong (see Green and Swets (1974} for example), but perhaps it is a good
enough approximation to the truth to be used. {In any case, when it is embedded
within the whole model, the resulting predictions seem to account for many
resuits, as will be described below.)
By substituting Quick’s psychometric function into the expression for P, the
observer’s probability of detection, one finds by easy algebraic manipulations
that P =1 — 24" ghere S is the semsitivity of the observer to the stimulus
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(the reciprocal of the contrast necessary for the observer to detect the pattern on
haif of the trials), and can easily be expressed in terms of the sensitivities of the

underlying units
MM Yk
s -[ 3 s,;l .
[

Notice that we have made the implicit assumption that £ has the same value
for each receptive field, that is the variability in response magnitude is the same
for every receptive ficld. Under this assumption, the function specifying the
observer’s probability of detection (the so-called psychometric function) has the
same form for every stimulus and aiso the same form as the function specilying
a single receptive field’s probability of detection. Green and Luce [1975] proved
that functions of the above form (the base need not be 2) are the only ones
having this invariance property.

Empirically, a value for & of about 1.5 seems to describe the psychometric
function for a wide variety of stimuli (e.g. Graham, Robson and Nachmias
[1978), Legge (1978, Robson and Graham {1981), Watson [1979].

To remind you, the sensitivity of each receptive field 5, is just that of 2 linear
system with the appropriate weighting function (that is, having the size and
shape that go with a particular channel’s frequency and orientation frequency
domain). (Since they are linear systems, the sensitivity of each one to 2
particular stimulus multiplied by the contrast in the stimulus gives you the
response magnitude, Therefore, sensitivity is the same as the response magnitude
to a criterion contrast.) In experiments to measure the thresholds of compound
gratings containing far-apart frequencies (as in Figure 2) each channel only
responds to one frequency so there is no need 1o actually know the weighting
function. '

The above expression is easily recognized as a metric in a space where each
dimension represents the sensitivity of one receptive field. The sensitivity to a
stimujus is just the distance between the origin (which represents the case of no
pattern, that is, a blank, homogeneous field) and the point representing that
stimulus. (One might extend this approach and let the distance between any two
points in the space represent the discriminability of any two stimuli, but almost
6 work has been done on such an extension so 1 will not mention it further.)
When k is infinity, the observer’s semsitivity equals the sensitivity of the most
sensitive unit {which makes this version of the above expression equivalent to
the mode} without any probability summation). When & i8 1, the sensitivities or
responses of different units are just being linearly summed. When & is 2, there is
power-summation (which is a model that occurs in many cOREX!s but is false in
this context). And when k is about 3.5, this expression quantitatively predicts the
thresholds for a wide variety of patterns.

Since this last is an important point, let me elaborate on it a punute. The
above expression, with a value for & of about 3.5, produces predictions that
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agree very closely with the thresholds for a wide variety of patterns including
combinations of sines with sines (¢.g. Graham, Robson and Nachmias [1978],
Quick, Mullins and Reichert [1978]), patches of sines with varicus numbers of
cycles (Legge [1978), Robson and Graham [1981)), and some aperiodic stimuli as
well as combinations of aperiodic somuli with siges (e.g. Grabam [1977];
Bergen, Wilson and Cowan (1979]). For the latter predictions, one does need to
know the weighting functions. More of that later, Further, one can expand one’s
perspective and include time as a dimension (varying the length of time a
pattern is om, or its temporal frequency content) and this same approach will
work (Watson [1979], Watson and Nachmias {1977].

In short, a model in which there is probability summation across space (across
the receptive fields within each channel) and among channels and in which the
variability is described by the function suggested by Quick with a steepness
parameter of 3.5 accounts both for the psychometric functions that have been
collected for 2 number of stimuli and for the actual threshold values that have
been measured for an even wider collection of stimuli. This is a very impressive
feat. However, caution is still in order. The nonlinear peoling across receptive
fields and channels exhibited in the equation for § that does such a good job at
accounting for thresholds may not actually be due to probability surnmation
{independent noise) but to some other cause, and the agreemnent between
psychometric function steepness parameter and the exponent needed to account
for thresholds may be just fortuitious. We know that, in detail, the psychophysi-
cal high-threshold theory must be wrong. For discussion of these issues, see
Robsen and Graham [1981).

In any case, the metric in the equation for § has proved its usefulness and has
given us insight into the kind of pooling across receptive fields and channels that
must be assumed in order to predict thresholds. _

Let us now go back to the issue of what the weighting functions for individual
receptive fields look like or, 1o put in another way, what the spatial-frequency
and orientation tuning of individual channeis is like. Or, to put it still another
way, let us go back to the issue of whether the visual system actually does a
Fourier analysis of the visual scene. )

Strict - Fourier analysis? What would it mean if we said that the brain
performed a Fourier analysis of the visual scene? We might mean, if we were
speaking strictly, that there was a set of neurons that computed the Fourier
transform of the visual pattern. The magnitude of the response of a particular
neuron in the set would be completety determined by the amount {or by the
phase) of a particular spatial-frequency/orientation component present in the
pattern. In other words, each neuron in the set would respond only to an
extremely narrow range of spatial frequencies and orientations. Different neu-
rons would respond to different spatial-frequency/orientation combinations so
the set as a whole wouid compute an excellent approximation to a Fourjer
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transform. (It is an approximation because there are oniy 2 finite aumber of
neurons and the Fourier transform is 2 continuous function, but this kind of
approximation has no practical consequences,) .

There is no such set of neurons amywhere in the brain: at least, there is
absolutely no evidence, either physiological or psychophysical, that such z set of
neurons exists. The brain, therefore, does not perform a strict Fourier analysis of
the visual scene. Further, I should say as & historical note, that none of the
people (Campbell, Robson, Thomas, Pantle, or Sekuter) mentioned above meant
to be implying that the visual system did 2 strict Fourier analysis, although they,
particularly Campbell and Robson, have sometimes been blamed (or credited)
with so doing.

Although there is no evidence that the brain performs 2 strict Fourier analysis,
there is an accumulating mass of evidence that the brain performs operations
with many of the characteristics of Fourier analysis, operations that could be
called crude Fourier analyses.

Evideoce for a crude Fourier amalysis, When the thresholds for compound
gratings containing component frequencies that are close together are properly
interpreted (that is, probability summation across space is allowed for, see
references given above), they suggest a bandwidth for each channel on the order
of I3 or 2 octaves, Channels of this medium bandwidth could not be said to do
a strict Fourfer analysis, but nonetheless, the response magnitude of each
channel does give you a good idea of how much of the channel’s preferred
spatial frequency is present in the pattern. So one might want to say that a set of
channels with this sort of medium bandwidth does a crude Fourier analysis.
Sine-plus-sine experiments are only one kind of evidence, however. Let us look
now, very briefly, at the other kinds of evidence that have supported the notion
of muitiple spatial-frequency channels and at the bandwidths suggested by each
kind of evidence. - _

In Adaptation and Masking Experiments, the visibility of test patterns is
measured either after the observer has inspected 2 suprathreshold adapting
patiern, or while he is inspecting 2 masking pattern. The visibility of the test
pattern should be affected by the adapting (or masking) patiern if the patterns
are processed by the same channel, but not if they are processed by different
chanpels, In fact, when the test pattern and adapting (or masking) pattern
contain similar spatial frequencies, the test pattern is affected. But when the test
pattern and adapting {or masking) pattern contain very different spatial frequen-
cies or orientations, the test pattern is not affected. These effects oceur both at
threshold and on some aspects of suprathreshold perceived appearance. That is,
the threshold for a test grating, the perceived contrast in a suprathreshold test
grating, and the perceived frequency and orientation of a suprathreshold test
grating are all altered by previous adaptation to or simultaneous masking by a

grating of similar spatial-frequency and orientation. How similar? an octave or
50,
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In addition to the wide variety of adaptation and masking effects that have

been studied there are some less well-studied, higher-order perceptual effects
that seem to reveal the action of the spatial-frequency channels.

In Recognition Experiments, the observer is asked to say not only whether
some pattern is present but what that patiern is (out of some small set of
possible patterns). Far-apart frequencies are recognized whenever they are
detected (Nachmias and Weber [1975]) as if there were spatial-frequency chan-
nels and the observer could always tell which of the channels had detected the
stimuius. Closer-together frequencies, however, begin to be confused. How close
together they need to be to produce confusion may tell something about the
bandwidth of channels. The available results suggest medium bandwidths
(Hirsch [1977], Thomas and Barker [1977]).

As an aside off the topic of bandwidth, let me tell you two other interesting
recognition results from experiments where compound gratings were used. First,
compound gratings containing two frequencies in a ratio of three to one can be
far enough above threshoid that an observer can always detect both components
(can always tell you that both are present rather than just one) and yet be
unzbie to tell you which of two phases the components are in (Nachmias and
Weber [1975]). This lack of phase discrimination is easy to explain if spatial-
frequency channels exist so that the two components are exciling separate
channels, and, near threshold, these channels signal nothing about phase so the
relative phase of the two components cannot be computed. The second interest-
ing result is that at threshold contrasts, the compound grating is sometimes seen.
as a compound, sometimes seen as one of its components, sometimes seen as the
other component, and sometimes seen as a blank (Hirsch [1977]). To a first
approximation anyway, the proportions of times it is seen as each one is what
you would expect if there were independent variability in each channel {proba-
bility summation), -

In Texture Segregation Experiments (also called grouping or effortiess texture
discrimination experiments), the observer is asked whether or not he can:
immediately see that there are two different areas in the pattern that contain two
different textures. Julesz originally conjectured that an observer could only see
immediately (without scrutiny) that the textures in the two different areas were
different if the second-order statistics of the two textures differed. Different
second-order statisties implies different autocorrelation functions and hence
different amplitude spectra in the Fourier transforms. If there were exiremely
narrow-bandwidth channels, i.e., if the visual system did a striet Fourier analy-
sis, throwing out the phase information, Julesz's conjecture would amount to
saying that textures could only be discriminated when the outputs of these
channels were different. Julesz, however, keeps discovering texture pairs for
which his conjecture is wrong. Although they have identical second-order
statistics and hence identical Fourier amplitudes, they are discriminable. He
explains these by postulating a second class of visual mechanism in addition to
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the one that computes second-order statistics {the one squivalent to extremely
narrowband channels). See Julesz [1981] for a review of this work, I think it
might be better if he did not postulate a second class of visual mechanism but
just said that the channels were not extremely narrowband but somewhat
broader, as all the other evidence indicates.

Physiology. Receptive fields come in different sizes even at the retinal ganglion
cell level where they are concentric. Thus they respond to different ranges of
spatial frequencies, although each responds to quite a broad range. In the cortex,
recent work (Movshon, Thompson and Tolhurst (1978}, and DeVaiois, Albrecht
and Thorell [1977]) show neurons that respond 1o very different ranges of spatial
frequencies, The bandwidth of these neurons is limited but certainly not ex-
tremely narrow. The available physiclogical evidence, therefore, if you are
willing to identify the psychophysical chanmels with the neuroms in the
geniculo-cortical pathway, also suggests medium bandwidth channels.

The role of mathematics.

Has mathematics been useful in this work? Historically, knowledge of the
theorems about Fourler transforms and linear systems suggested the use of
sinusoidal gratings, and the use of sinusoidal gratings has certainly added to our
knowledge of the visual system. In particular, the results of experiments using
gratings were a major factor in suggesting the multiple spatiai-frequency chan-
nels model which is now so popular. _

If these channels were extremely narrowband, the mathematics of Fourier
analysis would have been a very concise, natural description of the system,
expressing something fundamentat about the way the visnal system processed
information. The decomposition of a stimulus into a basis set of sinusoidal
components by Fourier analysis would have comresponded very closely to a
decomposition done by the visual system. Each sinusoidal component would
have excited one and only one channel. But the channels are not extremely
narrowband.

Ever with medium-bandwidth channels, one can often have better intuitions
about how the channels will respond by considering the Fourier transforms of
the stimuli rather than the stimuli themseives and by considering the transfer
functiens in the frequency domain of the theorctical channels rather than the
weighting fuucticns in the space domain. Formally, one can often calculate the
predictions more easily using Fourier wransforms (e.g. the calculations for
aperiodic stimuli and combinations of sines and aperiodic stimuli in Grabam
(19r7). In this case, however, the mathematics of Fourier analysis is primarily
serving as a calculating tool rather than as a natural expression of something
fundamental about the visual system. .

'I'hl_:rc is another, more subtle, way in which Fourier analysis may be contrib-
uting to our understanding of the visual system. Fourier transforms of stimuli
may be enlightening simply as a new description of visual stimuli. Independently
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of the way the visuat system actually works, 2 new description of visual stimulj
may stimuiate the humap investigators of the visual system and provoke them
- into creative thought, particularly when the new description is as different from
the old description as Fourier transforms are from the original function. In a
seuse, spatial-frequency descriptions (Fourier transforms) and point-wise de-
scriptions (intensity as a function of spatial position) are opposites. A stimulus
consisting of a single spatial frequency is completely localized on the frequency
dimension, but infinitely extended in space, whereas a stimulus consisting of a
single point is completely localized in space but infinitely extended on the
frequency dimension. These two descriptions emphasize very different aspects of
the stimulus, - :
In addition to Fourjer analysis, another sort of mathematics seems to have
been useful in the work of understanding pattern vision, particularly the
thresholds for the detection of patterns. That is the metric expression given
above for nonlinear pooling (perhaps probability Summation) across receptive
fields and channels and the Weibull function as a description of psychometric
functions, Again, this mathematics seems primarily to have served as a calculai-
ing tool rather than an expression of something fundamental. It does seem,
however, to have allowed much: greater insight into the possible effects of
nonlinearities like those involved in pooling across units.

What would be nice In the way of mathematics?

A substitute for sinusoidal grarings and Fourier analysis. It would be useful to
have some mathematics that was as natural a representation of a systexﬁ
involving medium-bandwidth channels (channels with receptive fields that ase
quite well localized in the visual field and only contain a few excitatory or
inhibitory sections) as Fourier analysis is of extremely narrowband chanpels
(channels with a large number of excitatory and inhibitory sections in receptive
fields extended across the visual field). There is probably no representation quite
as nice as to provide a basis set of stimuli into which any stimulus can be
uniquely decomposed and which correspond precisely to the sensitivities of the
channels (so that each stimulus in the basis set stimulates one and only one
channel). But perhaps some representation exists which is better suited to and
thus provides more insight into the case of medium-bandwidth channels. Suth a
representation might provide a new kind of stimulys (perhaps little patches of
something like a sinusoidal grating) which was the optimal kind of stimulus for
studying a system of medium-bandwidth changels and might also provide a way
of dealing with the responses to those optimal stimuli,

More ways to investigate and describe noniinearities. Even though the channels
are not extremely narrowband, they would be moderately easy to deal with as
long as the channels were themselves linear systems and one could examine the
properties of one channei at a time. Such, however, is not the case, particularly
not for behavioral (psychophysical) phenomena but also not always for physio-
logical data. Thus, investigators of pattern vision, like so many other people,
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need more flexible and insightful and convenient ways of handling noniinear
SysicIns. _

Psychophysics. We have already discussed above the fact that probability
summation is necessary to accurately account for the thresholds of patterns,
That is, the threshold for a pattern is not determined by the one channel that is
most sensitive to the pattern (the one channel that gives, on the average, the
largest response to the pattern), but the threshold is always determined by
nonlirear pooling of the sensitivities of all the channels that respond at all to the
pattern. (Of course, channeis that are very icsensitive contribute negligibly, but
all channels that are almost as sensitive as the most sensitive channel contribute
substantialty.) Thus, one is aiways looking at the action of a group of channels
rather thar a single channel.

Further, even if each receptive field of the channels operative in the
pschophysical phenomena does tirm out to be a linear system, as is cwrently
assumed, the output of a channel (the cutput of a whole array of receptive fields
of the same size} seems to be the resultani of probability summation across
space or some similar kind of noniinear pocling. So the response of a channel
cannot be taken 10 be the response of a completely linear system.

Although the Quick pooling model presented above does a very good job at
accounting for threshold data, we know il cannot be completely correct.

Physiology . If we limit our interest to single neurons, then it is easy to look at
only one at a time. Then the only question is whether they are linear or not.
Well, many are, or at least linear enough that Fourier analysis works, even in the
cortex. But many are not. At all levels in the visual system, a major distinction is
being made now between x and y, or sustained and transient, or linear and
nonlinear cells. The nonlinear cells are, of course, much more difficult 1o figure
out. Some progress is being made using newly-developed versions of Wiener
analysis (Shapely and Victor [1979], Victor and Knight [1979)). '
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