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Abstract

Vehicles have recently overtaken coal to become the largest source of air pollution in urban

China. Research on mobile sources of pollution has foundered due both to inaccessibility of

Chinese data on health outcomes and strong identifying assumptions. To address these, I collect

daily ambulance call data from the Beijing Emergency Medical Center and combine them with

an idiosyncratic feature of a driving restriction policy in Beijing that references the last digit of

vehicles’ license plate numbers. Because the number 4 is considered unlucky by many in China,

it tends to be avoided on license plates. As a result, days on which the policy restricts license

plates ending in 4 unintentionally allow more vehicles in Beijing. Leveraging this variation, I

find that traffic congestion is indeed 20% higher on days banning 4 and that 24-hour average

concentration of NO2 is 12% higher. Correspondingly, these short term increases in pollution

increase ambulance calls by 12% and 3% for fever and heart related symptoms, while no effects

are found for injuries. These estimates are largely unchanged when day of the week fixed effect,

weather, and lagged pollution are included. These findings suggest that traffic congestion has

substantial health externalities in China but that they are also responsive to policy.
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1 Introduction

Air pollution is a major environmental threat to people in both developing and developed

countries. According to the 2014 United Nations Environment Programme (UNEP) Year Book, air

pollution has become the leading cause of environmentally related deaths. As estimated 7 million

premature deaths were connected to air pollution globally in 2012, among which 3.7 million were

caused by outdoor air pollution. Pollution from the transport sector is responsible for a large portion

of the health effects. Road transport accounted for 50% of the health cost in OECD countries in 2010

(UNEP 2014). With its rapid economic development and less stringent environmental standards,

China is experiencing deteriorating air quality. Moreover, because of the fast-growing transport

sector, vehicle emission has become one of the major sources of air pollution in urban China, which

could lead to significant social costs. While it is important to quantify the negative externalities

of air pollution, surprisingly little literature has documented the relationship between air pollution

and health in China, especially the contribution of road transport to the total health impact of air

pollution. Even less is known about Chinese policies that might affect air pollution and health.

Thus, this study aims to explore the effects of the driving restriction policy and air pollution from

traffic sources on health in China.

In this paper, I use a driving restriction policy introduced in Beijing as a natural experiment

to study the health effects of mobile sources of air pollution. The policy was introduced in 2008 to

alleviate traffic congestion and reduce vehicle emissions in Beijing. Under the policy, vehicles are

restricted from the road each workday based on the last digit of the vehicle’s license plate number.

Because the number 4 is considered unlucky in Chinese culture, it tends to be avoided on license

plates, resulting in fewer vehicles with plate numbers ending in 4 compared with other numbers.1

Hence, this driving restriction unintentionally allows more vehicles on the road in Beijing on days

in which the number 4 is restricted. I collected data on traffic congestion, ambient air pollution,

and ambulance calls, exploiting time series variations in the number of vehicles allowed on the road

attributable to the idiosyncratic feature of the driving restriction, and exploring the relationship

1The number four is considered to be unlucky in Chinese culture because it sounds like death in Chinese. Due to
this reason, people tries to avoid to use the number four in places like phone numbers and plate numbers. Since there
are few people willing to choose a vehicle license plate with four in it, the Beijing Traffic Management Bureau even
stopped issuing plate number with four. Other papers that investigate the impact of Chinese superstitious beliefs
have focused on the willingness to pay for special license plates in Hong Kong (e.g., Fortin, Hill, and Huang 2014;
Ng, Chonga, and Du 2010; Woo et al. 2008).
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between traffic condition, ambient air pollution, and health. The driving restriction provides a

compelling setting for estimating the effects of air pollution on health. First, the variation in

air pollution induced by days with different restricted numbers is unlikely to correlate with other

confounding factors, therefore, this treatment can be considered to be “as good as random.” Second,

it helps address potential measurement error in the reported ambient pollution levels (Angrist and

Krueger 2001).

This paper shows that this exogenous variation in the number of vehicles allowed on the road is

a significant predictor of traffic condition, ambient air pollution, and health in Beijing. Specifically,

on days when vehicles with license plates ending in the number 4 are restricted (hereafter referred

to as “number 4 day”), the traffic congestion index increases by 20%. The number 4 day also has an

significant impact on ambient air pollution. The 24-hour average concentration of nitrogen dioxide

(NO2) from noon on the number 4 day to noon the next day is 12% higher. Correspondingly,

the short-term increase in the pollution level increases ambulance calls. On days after the number

4 day, the emergency ambulance call rates related to heart disease and fever are higher by 2.9%

and 11.5%, respectively, while no effects are found for injuries as a control group. Looking at

subpopulation groups, I find that the point estimates for the population aged 65 and above are

larger than those of younger population groups. However, comparing the mean ambulance call rates

of each subpopulation, the population aged 15 and 64 has the largest percentage change. With a

distributed lag model, there is no significant temporal displacement effect or lag effect on ambulance

call rates. These estimates are largely unchanged when controlling for weather, lagged pollution,

and day of the week fixed effect. These findings suggest that traffic congestion has substantial

health externalities in China but that they are also responsive to policy.

The findings in this paper are an important contribution to the literature on air pollution

and health in developing countries. Although associations between air pollution and health have

been well documented, most of them are based on developed countries where air pollution levels

are relatively lower. These estimates cannot be extrapolated to developing countries where air

pollution levels are much higher if a nonlinear health effect of pollution exists. Furthermore, while

most of the existing literature on this topic in China focuses on particulate matter (PM) or total

suspended particulate (TSP), the findings of this study shed some light on the health impact of

more traffic-related pollutants such as NO2. With the rapid growth in road transportation and an
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increasing share of air pollution from traffic sources in developing countries, it is crucial for policy

makers to understand the negative social externalities.

This study also has important policy implications for urban planning and transportation poli-

cies. Traffic congestion is a problem of urban areas worldwide, and policy makers must understand

the social benefits of reducing traffic congestion. Knittel et al. (2011) examined the relationship

between traffic, ambient air pollution, and infant health, but the traffic shocks they used were from

non-policy related sources such as accidents or road closures. In contrast, the present study is based

on an actual policy aiming to reduce traffic congestion. This study suggests that implementing this

policy can result in significant social benefits on air quality and health. Since this study is based

on a natural experiment at high baseline pollution levels, the results may be more generalizable to

other factors affecting traffic congestion in polluted cities.

In addition, this study is relevant to the enforcement of driving restrictions. Driving restrictions

have been introduced in many cities worldwide before Beijing, but their effectiveness is debatable.

Davis (2008) examined the driving restriction introduced in Mexico City in 1989 and found it

ineffective, since people were purchasing secondhand cars to avoid this inconvenience. Results of

the present study, on the other hand, suggest that the driving restriction in Beijing is effective in

reducing traffic congestion and air pollution, and in improving health outcomes. The difference in

effectiveness implies that people responded to similar policies differently in the two cases. Possible

reasons for the effectiveness of the driving restriction in Beijing might be related to the policy

limiting vehicle sales and the upgrading of the subway system. In December 2010, Beijing intro-

duced a policy that limits the issuance of vehicle license plates to 2,000 per month, which prevents

people from purchasing additional vehicles to circumvent the driving restriction. Meanwhile, the

large-scale opening of new subway lines provides extra public transit alternatives for people when

their vehicles are restricted. Now that many other cities in China have replicated or are about to

replicate this driving restriction, it is important to understand the conditions for this policy to be

effective.

The rest of this paper is organized as follows: Section 2 provides a background of Beijing’s

transportation and air pollution situation, as well as its driving restriction policy. Section 3 de-

scribes the data. Section 4 presents the empirical strategy and results. Section 5 discusses the

economic valuation. Section 6 concludes.
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2 Background

2.1 Air Pollution and Health

Literature on the the relationship between air pollution and health includes both epidemio-

logical and economic studies. Most of the epidemiological studies in this field were conducted in

the United States and OECD countries (e.g., Dockery et al. 1993; Pope et al. 2002; Cohen et al.

2004), with a focus on PM and mortality. The levels of PM in these studies are much lower than

the levels in China. Some epidemiological studies conducted in the 1950s might be more relevant

to developing countries, considering the high pollution level back then (Logan and Glasg 1953;

Greenburg et al. 1962). Some epidemiological studies have been conducted in China as well. Most

of them focused on the impact of pollution from coal burning, such as TSP and sulfur dioxide

(SO2), on mortality (e.g., Gao et al. 1993; Xu et al. 1994; Dong et al. 1995; Xu et al. 1996; Chang

et al. 2003; Kan and Chen 2004; Aunan and Pan 2004). However, few, if any, studies focused on

the impact of pollution from the transport sector. With the fast-growing transport sector in urban

China and more stringent industrial emission control policies, there is a decreasing trend in TSP

and SO2 emission from industrial sources and an increasing trend of pollution from traffic sources

in urban China. As major pollutants from traffic sources, nitrogen oxides (NOx) are considered

to have increasing potential with the rapid motorization in China (Hao and Wang 2005; Hillbol

et al. 2013). Hence, it is important to understand the relationship between human health and

traffic-emitted pollutants like NOx in China.

One problem when estimating the effect of air pollution on health is that air pollution is not

randomly assigned to individuals, and it is difficult to measure the effects when other unobserved

determinants of health correlate with air pollution. For example, health-conscious people may live

in neighborhoods with better air quality or avoid exposure to high pollution. Another problem that

may complicate the estimation is measurement error when using the ambient air pollution level as

a measure of individual exposure. To avoid these problems, some economic studies use econometric

tools such as fixed effects and instrumental variables to estimate the effects. For example, Currie et

al. (2009) explored the effects of air pollution on infant health, using maternal fixed effects to control

for unobserved characteristics of mothers. Chay and Greenstone (2003) examined the impact of

reduced TSPs induced by the 1981-1982 recession to examine the impact on infant mortality rates.

5



Chen et al. (2013) explored the impact of different TSPs due to the different winter heating policies

in northern and southern China on life expectancy and mortality. Studies have used variations of

pollution caused by port activity, airport runway congestion, and road traffic congestion to explore

the health impact of air pollution from traffic sources (Currie and Walker 2011; Knittle et al. 2011;

Moretti and Neidell 2011; Schlenker and Walker 2011). However, no studies have employed these

econometric tools to estimate the effects of air pollution from traffic sources on health in China.

2.2 Transportation Problem and Air Pollution in Beijing

With its high population density and extensive economic activities, Beijing is facing trans-

portation problems as are other mega-cities around the world. During the past couple of decades,

Beijing has experienced rapid change in the transportation sector along with economic growth. Ac-

cording to the annual report of the Beijing Transportation Research Center, transportation needs

in Beijing have been increasing steadily in the past decades, reaching 30.3 million trips per day in

2012. 2 The mix of transportation modes is also changing. The most distinct change is the share

of trips by private vehicles, which increased from 5% in 1986 to 34% in 2010. The stock of motor

vehicles in Beijing has been increasing exponentially, reaching 5.2 million in 2012. Much of the

increase has been driven by private vehicles, which accounted for 80% of the total vehicle stock in

2012. Because of the rapid growth of ownership and usage of private vehicles, the traffic congestion

problem is becoming more serious. In 2012, the average road speed during peak hours on workdays

was around 25km/h, and the average hours of congestion was over 4 hours per day.3

Air pollution is another serious problem in Beijing. In 2012, the annual average concentration

of SO2, NO2, particulate matter smaller than 10µg (PM10), and carbon monoxide (CO) in Beijing

was 28µg/m3, 52µg/m3, 109µg/m3, and 1.4mg/m3, respectively (EPB 2012). The annual average

concentration of NO2 and PM10 exceeds the level specified in the World Health Organization’s

(WHO) annual mean air quality guidelines by one fourth and over five times, respectively. The

level of SO2 also exceeds WHO’s 24-hour mean guidelines on nearly half of the days in 2012. 4

With the Ambient Air Quality Standard of China, which is much looser than the WHO standard,

2Trips counted here include those within the Sixth Ring Road, exclude trips by foot.
3Here congestion is defined as when it takes 50% more travel times than running with the speed limit.
4Details of the WHO air quality guidelines are presented in Table 1. http://whqlibdoc.who.int/hq/2006/WHO_

SDE_PHE_OEH_06.02_eng.pdf?ua=1
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NO2 and SO2 meets the second-class air quality standard (the standard applied to residential

areas) and PM10 exceeds the second-class air quality by 9%. 5 Many studies have confirmed that

mobile sources have replaced coal burning and become the most important contributor to Beijing’s

air pollution. Vehicle emissions are identified as major contributors to pollutants including carbon

monoxide (CO), NOx, PM, and volatile organic compounds (VOCs)(Hao et al. 2000; Hao et al.

2001; Fu et al. 2001; Walsh 2007; Westerdahl et al. 2009; Wang et al. 2010). According to a report

by the Beijing Municipal Environmental Protection Bureau (EPB) in 2012, vehicle-emitted NOx

, CO, and PM smaller than 2.5µg PM2.5 accounted for 56.9%, 85.9%, and 22.2%, respectively, of

the total emission from all sources in Beijing. 6

Although several scientific studies have linked exposure to air pollutants with adverse health

effects, the mechanism of how air pollution affects health remains unclear. Short-term exposure

to PM, NOx, and sulfur oxides (SOx) all have negative effects on health. For PM, small particles

such as PM10 and PM2.5 are considered to pose the greatest problems because they can penetrate

into the lungs and even the bloodstream. NOx and SOx can react with other compounds to form

small particles. These particles can penetrate into sensitive parts of lungs and cause or worsen

respiratory disease, as well as aggravate existing heart disease. In the presence of sunlight, NOx

is a precursor of ozone. Exposure to ozone can also trigger a variety of health problems including

respiratory system diseases and heart problems. Exposure to CO can cause negative effects on

health by reducing the oxygen-carrying capacity of the blood. At high levels, CO can cause heart

and respiratory problems, and extremely high levels of CO can lead to death.

2.3 Driving Restriction in Beijing

Beijing is not the first to introduce a driving restriction policy. Similar restrictions were

implemented in Santiago, Chile in 1986 and in the Mexico City metropolitan area in 1989. Several

Latin American cities followed suit, including Sao Paulo, Brazil and Bogota, Columbia. During the

2008 Olympic Games, Beijing implemented a short-term driving restriction referred to as the Odd-

even driving restriction in which vehicles with odd plate numbers were restricted on odd days and

5According to Ambient Air Quality Standard(GB3095-2012), first class standard applies for nature reserve areas,
second class standard applies for residential, business, and industrial areas. Details of second class standard are
presented in Table 1.

6Here the vehicle emitted PM2.5 includes both primary and secondary emission, but excludes vehicle-induced
road dust. http://www.bjepb.gov.cn/bjepb/323474/331443/331937/331945/449229/index.html
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those with even plate numbers were restricted on even days. This policy proved to be a success in

reducing traffic congestion and ambient air pollution. Seeing the significant effects, the government

decided to continue with a less stringent version of the policy. On October 11 2008, the Beijing

government announced the implementation of a half-year trial of the driving restriction until April

10 2009. The driving restriction was based on the last digit of the vehicle’s license plate number.

From Monday to Friday, vehicles with license plate numbers ending in 1 or 6, 2 or 7, 3 or 8, 4 or 9,

and 5 or 0, respectively, were banned from the roads. The restricted day of the week for different

numbers rotated every four weeks. The driving restriction was in force within (and including) the

Fifth Ring Road, from 6:00 in the morning to 21:00 in the afternoon. When this half-year trial

ended, the government started a new round of the driving restriction lasting one year. This time,

the restricted day of the week changed every 13 weeks, and the restriction area was narrowed to

inside (and excluding) the Fifth Ring Road and from 7:00 to 20:00. The third round of the driving

restriction began immediately after the previous round on April 11 2010. Since then, there have

been no changes in the policy, and the restriction remains in force. Also, the penalty for violating

the regulation has changed over time. Initially, drivers who violated the restriction were stopped

and fined 100 yuan (around $16.3) for the day. Since there would be no extra penalty if the violator

was caught more than once in a day, some people were willing to risk being caught and pay for the

daily fine. To improve enforcement, since 2011, the government has changed this daily penalty to

a 100 yuan every three hours.

With the gradual changes in policy, it is reasonable to expect people’s behavior and response

toward the restriction to change over time. Wang et al. (2013), using a 2010 household travel survey

in Beijing, found that the driving restriction did not significantly influence individuals’ choice to

drive. They found that a large percentage of drivers left home before 7:00 to circumvent the driving

restriction, and violations of driving restriction were common. After 2011, with the improvement of

the transport surveillance system and the stricter penalty for violating the restriction, the Beijing

Traffic Management Bureau claimed that compliance with the driving restriction had improved.

The opening of subway lines linking the central city area with the rural area 7 and the increase of

7Five subway lines were opened on December 30th 2010 (line Daxing, Yizhuang, Fangshan, Changping, and
western part of line 15), extending the subway service area to suburb areas. And on December 31st 2011, three
new lines were opened (line 8, 9, and eastern part of line 15), further improved the linkage between city center and
Beijing’s suburb areas.
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parking fees 8 since 2011 have also helped encourage people to switch from private vehicles to the

public transportation system.

Hence, with people’s gradually changing behavior and different policy packages, the effects

of driving restrictions could be very different. For example, Davis (2008) measured the effect of

Mexico City’s driving restriction on air quality using a regression discontinuity design, based on

hourly pollution measures from monitoring stations. The results showed no evidence that the

restrictions had improved air quality. In addition, evidence from additional sources indicates that

the restriction led to an increase in the total number of vehicles in circulation as well as a change

in composition toward high-emissions vehicles like used vehicles. However, Salas (2010) argued

that changes in methodology can alter its conclusions. Specifically, Salas 2010 showed that there

are different effects within different time windows, which is consistent with the hypothesis that

people gradually adapt to the policy. A few studies have focused on the effect of Beijing’s driving

restriction, but no consensus has been reached (Chen et al. 2011; Viard and Fu 2011; Sun et al.

2014). The mixed results are partly due to the different identification methods employed and likely

related to the studies’ different time windows.

3 Data

In this study, I combined three major data sets for the year of 2012: measures of traffic

congestion, ambient air pollution, and health outcomes. The details of each set of data are as

follows.

3.1 Measure of Traffic Congestion

As a measure of traffic congestion, I collected a traffic congestion index maintained by the

Beijing Transportation Research Center 9. This index is calculated based on the real-time speed of

vehicles on the road collected from taxis and street monitors in the area within the Fifth Ring Road

of Beijing. It is weighted by the traffic volume on each road. The index describes the relationship

between travel time according to real-time speeds on the road and travel time in obedience to the

8Parking fee for non-residential areas in central Beijing was increased on Apr.1st 2011. Compared to old parking
fee standards, the new standards are higher by around five times.

9Data were obtained from Beijing Transportation Research Center: http://www.bjtrc.org.cn/
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road’s speed limit. It is on a scale from zero, which represents no congestion at all, to ten, which

represents a very congested road. The explanation of its values is shown in Table 3, presented as

the amount of time needed compared to driving at the speed limit.

The traffic congestion index I obtained is a 15-minutes average time series data. Figure 2

presents the 15-minute variation of the traffic congestion index in 2012. It shows that on a typical

workday, the morning peak starts at around 7:00 and ends at 9:00, and that the evening peak

is from around 17:00 to 19:00. The maximum congestion index during peak hours could reach

value of six or above, which is two to three times higher than during non-peak hours. With the

15-minute average traffic congestion index, I explored how traffic conditions varies within a day.

First, I divided the 24 hours within a day into three periods: peak hours, non-peak hours, and

non-restricted hours. Peak hours include morning peak hours from 7:00 to 9:00, and evening peak

hours from 17:00 to 19:00. Non-peak hours include the hours between 7:00 and 20:00 when the

driving restriction is in force, but exclude peak hours. Non-restricted hours, which include the

hours before 7:00 and after 20:00, are the hours when the driving restriction is not in force. Rows

2 to 5 in Panel A of Table 4 show that the values of the congestion index are very different in the

three time spans, with the largest value during peak hour hours, and the smallest value during

non-restricted hours.

Besides the value of the congestion index, I also generated a data set covering the duration

of peak hours each day. Following the description of the traffic congestion index in Table 3, I

defined morning peak hours as the period of time before 13:00 during which all 15-minute average

congestion indices reached four or above. I used the same definition for evening peak hours, which

were after 13:00. Based on this definition of morning and evening peak hours, I determined the

duration, starting time, and ending time of morning and evening peak hours on a daily basis.

Summary statistics for these variables are also listed in Panel A of Table 4.

3.2 Measure of Air Quality

As a measure of air quality, I obtained two sets of data. One was measured and recorded by

the Beijing Environmental Protection Bureau (EPB), and the other one was from the US embassy

in Beijing.

Air quality in Beijing is measured and recorded by a network of air quality monitoring stations
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operated by the EPB. As of 2012, this network consisted 27 stations distributed uniformly in both

urban and rural areas of Beijing. The stations measure and record concentrations of three major

air pollutants: NO2, PM10, and SO2. The first set of data used here is the station-level 24-hour

average concentration of NO2, PM10, and SO2 in 2012. This data is converted from the 24-hour

average pollutant-specific air pollution index(API) reported by the EPB. The pollutant-specific API

is an index scaled from 0 to 500, calculated by a function based on the pollutant’s concentration.

Table 2 shows the pollutant’s concentration and its corresponding API range. With the value of

API, air quality is classified into five categories based on health concerns. Air quality is defined

to be “excellent” if API is below 50, “good” if it is between 50 and 100, “slightly polluted” if it is

between 100 and 200, “moderately polluted” if it is between 200 and 300, and “heavily polluted” if

it is above 300 (see Table 2). One thing to note here is that the 24-hour period refers to the period

from 12:00 on the previous day to 12:00 on the current day.

Another set of data is the hourly PM2.5 concentration measured and reported by the US

embassy in Beijing. Concerned about Beijing’s air quality and its potential health impacts, the US

embassy in Beijing started to monitor PM2.5 in 2008 and to provide this information as a resource

for the health of the American community. The monitor is located at the site of the embassy, which

is within the Fourth Ring Road. With this hourly measure of PM2.5, I was able to further explore

the temporal feature of driving restriction’s effects on air pollution and health. Summary statistics

of air quality data are presented in Panel B of Table 4.

There have been concerns about data quality in China for a long time, and the discrepancy

between the air quality index reported by the US embassy in Beijing and the API reported by the

EPB always debatable. Possible reasons behind this might be due to difference in the pollutants

being measured (PM2.5 for the US embassy, and PM10 for the EPB before 2013) and different

locations of monitoring stations (a single station at the US embassy versus the city average for the

EPB). Starting in 2013, the EPB began to measure and record levels of PM2.5 as well. In response

to the data quality issue, I chose the EPB monitoring station closest to the US embassy (within a

distance of 1.6 kilometers), and compared the PM2.5 measurements from the two stations. Figure 4

presents the daily measures of PM2.5 from these two stations in 2013. The two measures covariated

very well, with a correlation coefficient of 0.92. The mean value of PM2.5 from the US embassy

was slightly higher (by 9%) than the one from the EPB, but the difference is not unreasonable
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considering the different monitoring location.

Among the three pollutants monitored by EPB, NO2 is considered to have the closest connec-

tion with road transportation, PM10 is also considered to be a major pollutant from traffic, while

SO2 mainly comes from coal burning(Hao et al. 2001; Westerdahl et al. 2009; Hao et al. 2005).

Though most NO2 emissions come from traffic, the hourly variation of NO2 in Beijing doesn’t

match traffic patterns exactly. The concentration of NO2 doesn’t have a clear morning peak, and

it reaches the lowest level around noon. Then, it starts to increase and remains at high levels from

the evening until the next morning. This diurnal pattern can be explained by the chemical reaction

with other gaseous pollutants, and by meteorological conditions. First of all, most NO2 is not

directly emitted from vehicles, but is converted from the vehicular emissions of NO, which is part

of the reason why level of NO2 doesn’t respond to commuting peaks immediately. Second, the

chemical reaction between NO, NO2, and O3 in the presence of sun light results in a low concen-

tration of NO2 during the daytime (Chen et al. 2009). Another reason for the relatively high level

of pollution during the nighttime is the temperature inversion that occurs at night, which traps

pollutants near the surface. For particulate matters, the hourly US embassy PM2.5 data shows

similar diurnal patterns: the concentration reaches its bottom at around 13:00, and the daily max-

imum appears in the evening hours, starting from 20:00 (see Figure 5). This diurnal pattern has

also been recorded by related studies, and is considered to be influenced by temperature inversion

and boundary layer development patterns(Zhao et al. 2009). Since the level of pollution in Beijing

doesn’t respond to traffic conditions as they occurred but only starts to show their effects in the

early evening, I matched the 24-hour average air pollution level, from 12:00 on the current day to

12:00 on the next day, with the traffic conditions on the current day. More details will be discussed

in Section 4.

3.3 Measure of Health

While previous research has focused primarily on the effects on mortality, I focus on air pol-

lution’s effects on morbidity in this paper. The usual measure of morbidity comes from hospital

inpatient and emergency room admission data. However, in Beijing’s case, inpatient admission

data might not be a good measure of contemporaneous health conditions of local people. Given the

unequal distribution of health resources in China, Beijing’s high quality medical resources draw a
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significant number of patients from outside of Beijing. A large portion of inpatient cases in Beijing

are not local residents. On the other hand, with limited medical resources and a large number of

patients from both inside and outside of Beijing, a patient who seeks an inpatient slot may not

be able to get registered at once.10 Another possible source of morbidity is emergency room visit

data; however, the health department in Beijing doesn’t provide this dataset.

Here I collected the number of emergent ambulance calls in Beijing in 2012 as a measure of

health outcomes. The data was recorded by Beijing Emergency Medical Center(EMC), which takes

charge of emergency medical calls and provides emergency medical services within the urban area

of Beijing. When an urgent medical condition occurs, the client is supposed to dial in and report

the patient’s symptom, situation, age, gender and location. Then, the EMC will send doctors and

an ambulance to the scene immediately. With this detailed set of records, EMC helps to provide

a district-level data set on the number of ambulance calls by patients’ self-reported symptoms, as

well as the numbers of calls by different gender and age categories. The data covers all six districts

in the urban area of Beijing.

The data set includes three types of self-reported symptoms, which are symptoms related to

heart disease, fever, and injury. Respiratory illnesses are not included here because there are very

few respiratory cases, possibly due to the fact that most respiratory disease patients are not in such

a critical condition that they need an ambulance. On the contrary, heart-related disease was more

common in the data set and is considered to be correlated with air pollution (Peters et al. 2001).

Within the field of heart disease, I included a category for coronary heart disease. This is one of

the most common heart diseases, and its symptoms are relatively easier for patients to confirm.

Another symptom included in the data set was fever, which can be caused by inflammation and

is also a common respiratory symptom. Fever has been used in other studies as a measure for

respiratory morbidity (Peters et al. 1997). Lastly, I included injury as a control group.

District level total population and population by age and gender categories were also collected

for the calculation of emergency call rates. The permanent population in the six districts of the ur-

ban area is over eight million, and accounts for around 65 percent of the total permanent population

in Beijing. Summary statistics for this data set can be referred to in Table 5.

10http://www.people.com.cn/GB/paper503/2137/341362.html
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3.4 Weather Data

Weather data in Beijing was obtained from the ISD-Lite data set published by National Oceanic

and Atmospheric Administration (NOAA).11 The data set contains hourly records of air temper-

ature, dew point temperature, sealevel pressure, wind direction, wind speed, sky conditions (the

fraction of the total celestial dome covered by clouds or other obscuring phenomena), and pre-

cipitation. To match weather data with the 24-hour average air pollution measure, I averaged

the weather indicators based on the same 24-hour period from 12:00 to 12:00. The 24-hour wind

direction is the vector average of hourly reported wind directions.12

4 Empirical Strategy and Results

Since there are fewer vehicles with license plate numbers ending in the number 4, the driving

restriction in Beijing unintentionally allows more vehicles on the road during days on which plate

numbers ending in 4 are restricted. This quirk of the driving restriction provides an exogenous

shock to the air pollution level that is unlikely to correlate with other short-term determinants of

health. Table 6 compares the mean values of weather variables, visibility, and air pollution levels

on the number 4 days and other days. As expected, while the mean value of air pollution is higher

on the number 4 day, no statistically significant difference is observed between the two groups for

weather conditions and visibility. The number 4 day is also expected to be distributed evenly among

the days of the week because the policy rotates the assignment of restricted numbers to weekdays

every three months.13 In the following section, I use this exogenous variation of the number of

vehicles allowed on the road induced by the driving restriction to explore the relationship between

traffic condition, air pollution, and health.

11Data was obtained here: http://cdo.ncdc.noaa.gov/pls/plclimprod/poemain.accessrouter?datasetabbv=DS3505
12http://www.ndbc.noaa.gov/wndav.shtml
13During the one year period of 2012, there was in total four rounds of rotation of restricted numbers on different

weekdays. Hence, the number four day distributed evenly through Mondays to Thursdays, but much less on Fridays.
To ensure the robustness of results, I enlarge my sample for air pollution to include and extra three month in 2013
to balance the day of week when the number four is restricted. Results are largely unchanged with this enlarged
sample. However, restricted by the heath data, my main study period is the year of 2012.
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4.1 Effects of the Number 4 Day on Traffic Congestion

I first tested whether the higher number of vehicles on the road during the number 4 days has

any impact on the traffic condition. The measure for traffic congestion includes both the value of

the congestion index and the duration of congestion. I expected a higher congestion level and more

congested hours during the number 4 days.

The effect of the number 4 day on traffic congestion is estimated by the following equation:

Congestiont = α0 + α11{DR 4t} + holidayt + weathert (1)

+ montht + dowt + hourt + εt

where Congestiont is the 15-minutes average congestion index on date t, and 1{DR 4t} is the

dummy variable indicating the date on which plate numbers ending with 4 are restricted. I included

a dummy for holidays to reflect the possible different traffic conditions during holidays. I also

included daily average weather variables, including linear and quadratic terms in air temperature,

dew point temperature, sealevel pressure, wind direction, wind speed, precipitation, sky condition

(fraction of the total celestial dome covered by clouds or other obscuring phenomena), and dummies

for eight wind directions, to account for effects of weather on the traffic condition. Finally, I included

the month of the year, day of the week, and hour of the day fixed effect to account for unobserved

factors correlated to the traffic condition in a given month, weekday, and hour.

The coefficient of interest is α1, which represents the number 4 day’s effects on the value of

congestion index. Column 1 in Table 7 shows that the number 4 day corresponds to an average

increase of 0.52 in the congestion index. To determine whether there are different effects on different

times of the day, I restricted the sample to peak hours, non-peak hours, and non-restricted hours.

Peak hours include morning peak hours from 7:00 to 9:00 and evening peak hours from 17:00 to

19:00. Non-peak hours include all hours from 7:00 to 20:00 when the driving restriction is in force

but exclude peak hours. Non-restricted hours include the hours before 7:00 and after 20:00, when

the driving restriction is not in force. When the sample is limited to peak hours, the magnitude

of the effect increases to 0.85 for morning peak hours, and 1.37 for evening peak hours. For

non-peak hours, the effect is slightly lower at 0.78. And for non-restricted hours, the effect is
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only 0.063. All estimates during the period when the driving restriction is in force are significant

at the 1% confidence level, while the estimate for the non-restricted hours is significant only at

the 10% confidence level. Compared with the mean value of the traffic congestion index, during

number 4 days, the congestion index is higher by around 23%. The largest effect is during the

evening peak hours, when the congestion index is higher by 30%. Although the significance level

is lower, there is also a small effect during the non-restricted hours. This is reasonable, because if

people cannot use their vehicles to get to work during the day when restrictions are in place, they

cannot make the return trip when the restriction is not in place. Finally, as a sensitivity check,

I narrowed down the sample to include only weekdays (excluding weekends and holidays). Since

people may exhibit different travel behavior during weekends and holidays, and fixed effects might

be unable to perfectly control for this, I only compared traffic conditions on number 4 days with

other weekdays using the narrowed down sample. The magnitude of the effects is stable across the

two specifications.

To further explore the effects of number 4 days on the congestion pattern and to determine

whether people adjust their travel behavior during the number 4 days, I tested the effects on the

duration of congestion, and the starting and ending times of the morning and evening peaks with the

same method. As described earlier, I defined a 15-minute period as “congested” if the congestion

index during that period reached 4 or above, and calculated the duration of congestion by counting

the number of “congested” 15-minute periods. Column 1 of Table 8 shows the effects of number

4 days on the number of congested hours for the whole day. The effect is estimated to be 2.47 at

the 1% confidence level, which means congested hours increase by 2.47 hours on number 4 days.

Columns 2 and 3 show that the effect is 1.18 for morning peak hours and 1.25 for evening peak

hours. Compared with the mean value, the number 4 day is associated with a 50% increase in daily

congested hours. In Table 9, the starting and ending time of the morning and evening peak hours

are the dependent variables. For morning peak hours, the estimated coefficients are -0.13 and 1.05

for starting and ending time, respectively, which means morning congestion periods tend to start

around 8 minutes earlier and end around 1 hour later during the number 4 days. For evening peak

hours, the coefficients are estimated at -0.86 and 0.39, which means evening congestion periods

start around 50 minutes earlier and end about 23 minutes later.

These results confirm that the number 4 day has a significant effect on traffic congestion. On
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the one hand, it has a positive impacts on the level of congestion during all periods of the day.

The impact is largest during evening peak hours and morning peak hours, followed by non-peak

hours. The impact is marginal during the non-restricted hours. On the other hand, the number 4

day causes an increase in congestion hours. The results show that traffic is heavier during number

4 days, and there is no sign of people redirecting travels toward non-restricted hours to circumvent

the restriction.

4.2 Effects of the Number 4 Day on Ambient Air Pollution

I estimated the number 4 day’s effect on ambient air pollution by running the following regres-

sion.

Pollutionmt = α0 + α11{DR 4t} + holidayt + weathert (2)

+ montht + dowt + stationm + εmt

where Pollutionmt is the daily measure of pollutants concentration of NO2, PM10, or SO2

measured by the EPB monitoring station m on date t. As discussed in Section 3, the level of

certain pollutants such as PM and NO2 in Beijing tends to be lower during daytime and higher

during the night due to meteorological conditions (Chen et al. 2009; Zhao et al. 2009). Hence,

traffic emission during morning peak hours might be hard to accumulate due to the meteorological

conditions in favor of dilution of pollutants. In contrast, emission during the evening peak hours

is relatively easier to accumulate starting from the evening until the next morning. Based on the

hypothesis that the traffic condition today has an impact on air quality during the time period

from noon of the current day to noon the next day, I used the 24-hour average concentration for

pollutants during this period as the dependent variable. As before, I included weather variables

including linear and quadratic terms in air temperature, dew point temperature, sealevel pressure,

wind speed, precipitation, sky condition (fraction of the total celestial dome covered by clouds or

other obscuring phenomena), and dummies for eight wind directions as controls. To match with

the 24-hour average air pollution measure, the weather variables used here are averaged values over

the same period from noon to noon as well. The holiday fixed effect, month fixed effect, day of
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the week fixed effect, and monitoring station fixed effect were also included to control for possible

unobserved temporal and spatial factors. Standard errors were two-way clustered at the station and

date level to account for both serial correlation within a station over time and spatial correlation

among stations within a day. Since Beijing has only 27 stations and too few cluster may yield

over-rejection of the no-effect null hypothesis (Bertrand et al. 2004; Cameron et al. 2008), here

I used the wild cluster bootstrap approach described in Cameron, Gelbach, and Miller (2008) to

calculate the p-values.14

The coefficient of interest is α1, which represents the number 4 day’s effects on the air pollution

level. Since there are more vehicles on the road on the number 4 days, I expected α1 to be positive.

Table 10 presents estimate results using equation(2). Columns 1 to 3 show the effects on NO2,

PM10, and SO2 respectively. Among the three pollutants, NO2 is considered the most closely

related to road traffic. Column 1 suggests that the number 4 day is associated with an 5.76-

6.03µg/m3 increase in 24-hour average NO2 concentration from noon of the current day to noon

the next day, which is an approximately 12% increase compared to its mean value. Since the

driving restriction is only in force within the Fifth Ring Road, I expect heterogeneity in the effects

on pollution for urban areas and rural areas. When I limited the sample to urban stations, the

effects on NO2 increased to 6.82-6.92µg/m3. For rural stations, the effects were smaller at around

4.88-5.29µg/m3, but still statistically significant. It is not surprising to see positive and significant

effects in rural areas where the driving restriction is not in force, because a large proportion of

people who reside in the rural areas of Beijing commute to the urban center for work on a daily

basis. Columns 2 and 3 show the effects on PM10 and SO2, pollutants that are less closely related

to traffic than NO2. While the sign of coefficients is correct, the significance level is much lower.

Columns 4 to 6 present similar results from regressions with a lag term of the pollution level as

an additional control to account for the potential influence of the pollution level from the previous

day. To check for robustness, I also ran regressions without controls for weather and day of the

week fixed effect. The results (available upon request) were largely unchanged.

To further explore the temporal feature of how number 4 days affect ambient air pollution,

I ran more tests based on the hourly measure of PM2.5 data measured by the US embassy in

14Bertrand et al. (2004) and Cameron, Gelbach, and Miller (2008) have shown that clustering can over-reject
when the number of clusters are small. Here I use the STATA command cgmwildboot by Judson Caskey to carry out
the wild cluster bootstrap approach and calculate the p-values for coefficients.
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Beijing. I divided each 24-hour period into eight 3-hour periods and ran regressions for each of

the periods during the number 4 day and the subsequent day. For this set of regressions, I used

the 3-hour average concentration of PM2.5 as the dependent variable and controlled for holiday,

weather, month of year, and day of the week fixed effects as before. Weather variables were 3-hour

average values matched with each 3-hour period. Coefficients for the 16 periods are presented

in Table 11 and Figure 6. Although the significance level is not high, the coefficients show the

expected temporal pattern. As shown in Figure 6, the effects start to appear at around 21:00 on

the number 4 days, and gradually disappear at around 12:00 the next day. The magnitude of effects

is comparable to the effects of PM10. This provides some evidence of the lagged effects of the traffic

condition on the air pollution level in Beijing.

A review of the air quality standard regulated by the MEP of China (Table 1) can enhance

understanding of the magnitude of effects. The standard for 24-hour mean NO2 concentration is

80 µg/m3. The mean value of 24-hour average NO2 concentration in Beijing is 50.24 µg/m3 (see

Panel B of Table 4). On number 4 days, the pollution level is estimated to be higher by 6.03 µg/m3.

Even after adding the 6.03 µg/m3 effect to the 50.24 µg/m3 mean, the concentration is still below

the air quality standard for residential area set by MEP.

4.3 The Number 4 Day, Ambient Air Pollution, and Health

4.3.1 Effects of the Number 4 Day on Ambulance Call Rate

I began with the following regression to explore the effect of the driving restriction on health,

particularly how the number 4 day affects local health outcomes. As mentioned in the previous

section, the day’s traffic condition mainly affects pollution levels from early evening until the next

morning. Hence, the number 4 day is expected to have major effects on health outcomes on the

next day. In equation (3), I used a district-level measure of health outcomes on the next day as the

dependent variable, 1{DR 4t} on the right hand side is the number 4 day dummy that equals to

one if number 4 is restricted on date t. Holiday, month of the year, day of the week, and district

fixed effects were included to account for possible unobserved temporal and spatial factors. Weather

variables including linear and quadratic terms in air temperature, dew point temperature, sealevel

pressure, wind speed, precipitation, sky condition, and dummies for eight wind directions were also
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included to account for effects of weather on health.

Healthdt = α0 + α11{DR 4t} + holidayt + weathert (3)

+ montht + dowt + districtd + εdt

Table 12 presents the results from equation(3). The measure of health outcome is the district-

level daily emergency ambulance call rates (number of emergency ambulance calls per million

people) by self-reported symptom. Regressions were weighted by district-level population size.

Symptom types that are expected to be affected by pollution include heart-related symptoms and

fever. Injury was included to provide a falsification test. Standard errors were clustered on both

district and date level, and p-value was calculated using the wild cluster bootstrap approach. Each

coefficients in the table is from a different regression. The first column of each panel is from

regressions using the full sample, while the second column of each panel is from regressions using

the sample excluding weekends and holidays.

Panel A in Table 12 presents the effects for the overall population. The number 4 day has

significant positive effects on both heart-related symptoms and fever, but no significant impact on

the control group “injury”. The point estimates in Panel A show that the number 4 day leads to an

increase of 0.155, 0.081, and 0.190 in ambulance call rates related to all heart symptoms, coronary

heart problems, and fever, respectively. Panels B and C report coefficients for male and female

populations. There is no significant difference between the two subpopulations for fever. However,

for coronary heart disease, the coefficient for females is insignificant at 0.027, much smaller than

that of males at 0.118. Panels D to F report coefficients for different age categories. For fever, the

point estimate for the population aged 65 and older is the largest at 1.253, compared to 0.068 for

the population aged 15 to 64, and 0.274 for the population below 15 years old.

Multiplying coefficients estimated in Table 12 with population size, Panel A of Table 13 reports

the predicted increase in the number of emergency ambulance calls on number 4 days for the urban

area of Beijing. With a population size of 12.28 million, the urban area of Beijing is estimated

to have 1.9 and 2.33 more emergency ambulance calls related to heart diseases and fever during

number 4 days. Although Table 12 shows that the subpopulation aged 65 and older has the largest
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point estimates, a significant portion of the increase in emergency ambulance calls occurs in the

subpopulation aged 15 to 64 given its large population size. Panel B of Table 13 reports the

percentage change of ambulance call rates by dividing the coefficients in Table 12 by the mean

values of ambulance call rates. The percentage increase in ambulance call rates associated with

number 4 days is 3%, 19%, and 12% for all heart-related symptoms, coronary heart problems,

and fever, respectively. Breaking into subpopulations, rows 2 to 3 of Panel B show a difference in

percentage changes of ambulance call rates for coronary heart problems between male and female

groups. The percentage increase for the male group is around 30%, while the increase in the female

group is only 8%. Rows 4 to 6 show the percentage changes for different age groups. While the

point estimates for the population aged 65 and older shown in Table 13 are larger than those of

other age groups, the percentage increase presented in row 4 of Panel B is much smaller compared

to that of the population aged 15 to 64.

4.3.2 Relationship between Ambient Air Pollution and Health

To further explore the linkage between ambient air pollution and health outcomes, I first ran

a set of tests using traditional OLS regressions. To match the air pollution level with health data,

the station-level air pollution data were averaged into district level. In this set of regressions,

I used district-level ambulance call rates by symptom as the dependent variable, and pollution

concentration as the independent variable. As before, weather condition, holiday, month of the

year, day of the week, and district fixed effects were included as controls. Estimates were weighted

by district-level population size, and standard errors were two-way clustered by district and date.

Table 14 reports the OLS estimates. Although the significance level is low, the positive coefficients

suggest a positive relationship between the ambient air pollution level and ambulance call rates

related to heart problems and fever.

However, estimates from traditional OLS regressions may suffer from biases introduced by

measurement error or any unobserved determinants of both pollution and health. In this study, I

assigned the ambient pollution level from monitoring stations to the people residing in the district.

This might not precisely reflect individuals’ exposure to air pollution, since there might be spatial

variation in the pollution level within a district and people might commute between districts.

Time-varying unobserved factors that affect both pollution and health, such as weather, can also
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generate bias in estimates. To prevent this problem, I examined the effects of ambient air pollution

on health, using the following instrumental variable approach to regress ambulance call rates by

symptom on instrumented air pollution concentration.

Pollutiondt = α0 + α1
ˆCongestiont + holidayt + weathert (4)

+ montht + dowt + districtd + εdt

Healthdt = β0 + β1 ˆPollutiondt + holidayt + weathert (5)

+ montht + dowt + districtd + ηdt

In equation (4), the district-level 24-hour average air pollution concentration for the period

from noon of the current day to noon the next day is the dependent variable. On the right-hand

side, ˆCongestiont is the daily traffic congestion index instrumented by the number 4 day. As shown

in the previous section, since the driving restriction only has a significant impact on the level of

NO2, I used the concentration of NO2 as the measure of air pollution. In the second stage equation

(5), the health outcome for the next day is regressed on the estimated NO2 level from noon of the

current day to noon the next day in equation (4). Other control variables include weather variables,

holiday, month of the year, day of the week, and district fixed effects. Estimates were weighted

by district-level population size, and standard errors were two-way clustered by both district and

date.

Table 15 presents the effects of instrumented NO2 on ambulance call rates. Panel A shows the

effects for the overall population. There are significant effects on the ambulance call rates for heart-

related symptoms and fever but no effects on injury. Based on estimates from the IV regression,

a one standard deviation increase in NO2 is associated with a 6%, 35%, and 27% increase in

ambulance call rates of heart-related symptoms, coronary heart problems, and fever, respectively.

This relationship between NO2 and health should be explained with caution. As mentioned earlier,

the traffic condition is related to a series of pollutants, such as NO2, PM10, PM2.5, CO, and O3.

With these possible sources of endogeneity but only one instrument variable, the model is under

identified. The estimates presented here can be viewed as a relationship between heath and air

pollution from traffic sources, using NO2 as an indicator of traffic-related air pollution.
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4.3.3 Displacement and Lag Effects

The baseline regressions in the previous sections only examine the effect of the traffic condition

and air pollution on contemporaneous health outcomes. However, if air pollution has lagged effects

on health, the contemporaneous estimation will underestimate the total health effects. On the

other hand, if there is a temporal displacement of health effects, which makes already vulnerable

people call the ambulance earlier, then the regression will overestimate the effects.

To further explore the temporal dynamics of air pollution’s impacts on health, I estimated a

distributed lag regression that included three lag terms of instrumented NO2 concentration and

one lead term as a falsification test. If the instrumented NO2 concentration has lagged effects on

health, then the coefficients for lag terms should be positive. Conversely, if there is a temporal

displacement of health effects, then a decrease in ambulance call rates should be observed in subse-

quent periods, hence, the coefficients for lag terms should be negative. Table 16 reports the results

for the distributed lag model. As expected, the lead term does not have a statistically significant

health effect. The largest effects emerge for the current term. For lag terms, the previous day’s

NO2 concentration has a positive effect on the current day’s coronary heart disease ambulance call

rate. Results show no sign of any temporal displacement effect for heart disease or fever.

5 Economic Cost of the Number 4 Day

Findings of this study show that the number 4 day has a significant impact on traffic condition,

ambient air pollution, and ambulance call rates. To evaluate the economic cost of the number 4

day, or the economic cost of a weaker driving restriction, I first examined the economic costs of a

higher level of traffic congestion. Results in Section 4.1 show that during the number 4 days, the

average increase of the traffic congestion index is 0.52. Based on the traffic congestion index and

the corresponding extra time spent on the road presented in Table 3, this can be translated into

an average increase of 7% in travel time. According to the 2012 Beijing Transport Annual Report,

the average travel time of private vehicles is 42.5 minutes; thus, the number 4 day is associated

with a 3-minute increase in average travel time for private vehicles. The number of passenger trips

by private vehicles in 2012 was 9.9 million per day. Multiplied by the 3-minute increase in average

travel time, this amounts to 0.5 million extra hours per day. To express it in economic values, I
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multiplied the extra hours by the average wage in Beijing in 2012, and obtained a daily cost of $

0.59 million.

The health effects found in this study are only a portion of the total health effects. The

ambulance call data used in the study only counts sick people with an acute condition who have

to call an ambulance; it does not count those who feel sick but just stay home or go to the hospital

by themselves. In addition, I only estimated the contemporaneous health effects by focusing on the

daily variation of air pollution; I did not account for any long-term health effects of air pollution.

Finally, the data focused on those living in the urban areas of Beijing. I was unable to estimate the

potential effects of people living in the rural areas of Beijing, where air pollution is also affected by

the driving restriction.

To monetize morbidity, one common approach is to estimate by people’s willingness to pay

(WTP) to avoid illness. The WTP approach should capture the value of the suffering avoided, the

time lost, and the medical treatment costs of illness. However, to my knowledge, no contingent

valuation studies for morbidity have been conducted in China. Thus, I used the value of statistical

life (VSL) multiplied with the estimated number of deaths from increased ambulance calls to

valuate the health cost. The VSL used here is $0.76 million, which is based on the estimated VSL

in Krupnick et al. (2006) and adjusted for income difference. The estimated number of deaths

was calculated by multiplying the number of increased ambulance calls on the number 4 day by

emergency patients’ mortality rate. As shown in Table 15, the number 4 day increases the number

of ambulance calls related to heart diseases and fever by 4.2 cases in the urban areas of Beijing.

Based on the number of emergency call patients and the number of deaths presented in Wan et al.

(2008), the mortality rate of emergency call patients in Beijing is estimated at 4.2%. Multiplying

the two numbers, I estimated the increase in deaths of emergency patients at 0.18. The health cost

is therefore estimated to be $0.14 million per day.

6 Conclusion

This study exploits a unique feature of the driving restriction policy and the superstitious

resentment of the number 4 in Beijing to examine the relationship between traffic congestion,

ambient air pollution, and health. Based on the license plate number’s last digit, the driving

24



restriction policy in Beijing unintentionally allows more vehicles on the road during days when the

number 4 is restricted. This provides an exogenous shock of air pollution for estimating the effects

on health. I found that the number 4 day is a strong predictor of traffic conditions, ambient air

pollution, and local health outcomes. The traffic congestion level is 20% higher on days restricting

the number 4, and the 24-hour average concentration of NO2 from noon of the number 4 day to noon

the next day is 12% higher. These short-term increases in air pollution increase ambulance calls

by 3%, 19%, and 12% for heart-related symptoms, coronary heart disease, and fever, respectively,

while no effects are found for injuries. While the point estimates of changes in ambulance call rates

for the population aged 65 and older are larger, the percentage increase for the population aged 15

to 64 is higher. Given the large size of the population aged 15 to 64, a significant proportion of the

increase in ambulance calls is attributed to this group. With a distributed lag model, I found no

significant forward displacement or lagged effects of traffic congestion induced pollution on health.

The results suggest the significant health impacts of air pollution from the road transportation

sector and the substantial negative health externalities of traffic congestion in China. With rapid

urbanization and motorization, traffic congestion and air pollution have become serious problems

in large Chinese cities. It is therefore crucial to quantify the negative externalities coming from the

transport sector. Evidence from this study can help to inform policy decisions. Although various

transport policies have been implemented in different Chinese cities over the past a few years, little

evidence has been provided on the effects of these policies. While the effects of the driving restric-

tion policy remain debatable, many densely populated Chinese cities (e.g. Nanchang, Changchun,

Lanzhou, Guiyang, Hangzhou, and Chengdu) have replicated or are about to replicate this policy.

This study helps provide evidence on the potential social benefits of reducing traffic congestion

through policies like the driving restriction policy. Results suggest that a driving restriction pol-

icy could be effective in reducing traffic congestion and air pollution and improving local health

outcomes in a certain context.
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8 Figures

Figure 1: Vehicle Stock and Mode of Transportation in Beijing

Notes: Figure at the top plots the trends of total vehicle stock and private vehicle stock in Beijing.
The bottom figure shows changes in mode of transportation in Beijing. Data for the figure come
from Beijing Transport Annual Report.
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Figure 2: Average 15-minutes Traffic Congestion Index in 2012

Notes: This graph plots the average 15-minutes traffic congestion index in the year of 2012, based
on the 15-minutes traffic congestion index for urban area of Beijing reported by Beijing Transport
Research Center.

31



Figure 3: Location of Air Quality Monitoring Stations

Notes: Air quality in Beijing was monitored by a network of 27 monitoring stations in 2012.
Green dots in the graph show the locations of the 27 monitoring stations operated by Beijing
Environmental Protection Bureau. Red dot in the graph shows the location of US Embassy of
Beijing, which started to provide PM2.5 measurement from 2008.
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Figure 4: Association of PM2.5 Concentrations Measured in Nongzhanguan Station and US Em-
bassy

Notes: The graph plots the 24-hour average concentrations of PM2.5 measured by Nongzhanguan
station operated by EPB and the US embassy of Beijing in 2013. Nongzhanguan is the EPB station
that locates closest to US embassy, which locates within 1.6 kilometers to the US Embassy.
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Figure 5: Diurnal Pattern of PM2.5 Concentration in Beijing

Notes: The graph plots the annual average hourly variation of PM2.5 concentration, based on
measurement from US Embassy in the year of 2012.
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Figure 6: Effects of the Number 4 Day on PM2.5

Notes: The 3-hour average PM2.5 concentration is regressed on the dummy of number 4 days for
the sixteen 3-hour periods of the number four day and the subsequent day. Regressions include
weather controls (linear and quadratic terms of minimum and maximum temperature, dew point,
air pressure, precipitation, sky condition, wind speed, and dummies for eight wind directions),
holiday, month, and day of week fixed effects. Coefficients for the 16 periods are plotted in the
figure, with 10% confidence interval. Coefficients are also presented in Table 11.
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9 Tables

Table 1: Air Quality Standard by MEP and WHO

Annual Mean(µg/m3) 24-hour Mean(µg/m3)

MEP Second Class Air Quality Standard
PM10 70 150
PM2.5 35 75
SO2 60 150
NO2 40 80

WHO Air Qulity Guideline
PM10 20 50
PM2.5 10 25
SO2 - 20
NO2 40 -

Note: Table lists second class air quality standards set by Ministry of Environmental Protection
of China (air quality standards that applied to residence, business, and industrial area, according
to Ambient Air Quality Standard (GB3095-2012)) and air quality guidelines set by WHO (http:
//whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf?ua=1).
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Table 2: Pollution Concentration and Corresponding Air Pollution Index

PM10 NO2 SO2 API
Air quality Air quality Notes of health effects

24-hour average (µg/m3) level condition

50 80 50 50 I Excellent Daily activity will not be affected.

150 120 150 100 II Good Daily activity will not be affected.

350 280 800 200 III
Slightly The symptom of the susceptible is slightly
polluted aggravated, while the healthy people will

have stimulated symptoms.

420 565 1600 300 IV

The symptoms of the patients with cardiac
Moderate and lung diseases will be aggravated
polluted remarkably. Healthy people will

experience a drop in endurance and
increased symptoms.

500 750 2100 400
V

Heavy Exercise endurance of the healthy people
600 940 2620 500 polluted drops down, some will have strong

symptoms. Some diseases will appear.

Note: Table lists pollution concentration and the corresponding range of air pollution index (API)
for PM10, NO2, and SO2. The corresponding air quality condition and health concerns for five
categories of API are also listed in the table.
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Table 3: Traffic Congestion Index and the Corresponding Traffic Condition

Values Congestion level Extra time spend on road

0-2 No congestion Running with the speed limit, don’t need extra time.
2-4 Almost no congestion 20%-50% times longer than running with the speed limit.
4-6 Slightly congested 50%-80% times longer than running with the speed limit.
6-8 Moderately congested 80%-110% times longer than running with the speed limit.
8-10 Heavily congested 110% times longer or more than running with the speed limit.

Note: Table lists values of traffic congestion index with the corresponding congestion level and extra time
needed.
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Table 4: Summary Statistics for Measure of Traffic Congestion and Air Quality

Obs. Mean Std.Dev. Min. Max.

Panel A: Measure of Traffic Congestion
15-minutes Average Traffic Congestion Index

All hours 28071 2.28 1.83 0.30 9.70
Morning peak hours 2359 3.48 2.23 0.49 8.79
Evening peak hours 2396 5.15 2.14 0.91 9.70
Non-peak hours 10655 2.91 1.37 0.49 9.52
Non-restricted hours 12661 0.99 0.48 0.30 8.61

Hours of Congestion
All day 231 4.17 2.27 0.25 12.25
Morning peak 231 2.17 1.08 0.25 5.25
Evening peak 251 2.62 1.58 0.25 7.50

Starting and Ending Times of Peak Hours
Morning Peak

Starting time 231 8.09 1.02 7.25 12.00
Ending time 231 10.03 1.18 8.00 13.00

Evening Peak
Starting time 253 16.44 1.31 13.00 18.50
Ending time 253 18.85 0.74 14.50 21.50

Panel B: Measure of Air Quality
All Stations

NO2 8841 50.24 27.35 0 204.8
PM10 9672 106.67 74.94 4 600
SO2 9026 28.65 28.85 4 195.5
PM2.5 8295 90.52 81.72 0 994

Urban Stations
NO2 3938 57.81 24.89 1.6 204.8
PM10 4305 116.22 76.16 5 600
SO2 4053 29.44 29.88 4 195.5

Rural Stations
NO2 4903 44.17 25.92 0 171.2
PM10 5367 99 73.05 4 600
SO2 4973 28.01 27.97 4 195.5

Note: Table lists summary statistics for measure of traffic congestion and air quality in 2012.
Measures of traffic congestion include 15-minutes average traffic congestion index, duration of
congested hours, and starting and ending times of morning and evening peaks. Measures of air
quality include 24-hour average NO2, PM10, and SO2 concentrations from EPB stations, and
hourly PM2.5 concentration from US Embassy in Beijing.
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Table 5: Summary Statistics for Measure of Health

Obs. Mean Std.Dev. Min. Max.

Overall Population
All heart 2196 5.102 2.614 0 16.52
Coronary 2196 0.416 0.619 0 4.695
Fever 2196 1.651 1.323 0 9.39
Injury 2196 8.542 3.323 0 25.33

Male
All heart 2196 4.293 2.964 0 18.349
Coronary 2196 0.379 0.789 0 6.116
Fever 2196 1.718 1.758 0 11.236
Injury 2196 8.048 4.109 0 26.966

Female
All heart 2196 5.531 3.477 0 22.436
Coronary 2196 0.424 0.884 0 9.615
Fever 2196 1.409 1.692 0 16.026
Injury 2196 6.131 3.488 0 25.918

Age 65 or Older
All heart 2196 23.569 14.128 0 93.75
Coronary 2196 2.266 3.994 0 31.25
Fever 2196 9.857 9.414 0 78.125
Injury 2196 19.632 12.675 0 93.75

Age 15 to 64
All heart 2196 2.923 1.879 0 13.947
Coronary 2196 0.192 0.467 0 4.024
Fever 2196 0.355 0.577 0 4.184
Injury 2196 4.475 2.448 0 19.526

Age under 15
All heart 2196 0.097 0.911 0 17.241
Coronary 2196 0 0 0 0
Fever 2196 2.879 5.33 0 34.483
Injury 2196 2.45 4.752 0 40.541

Note: Table lists summary statistics for emergency ambulance call rates (number of ambulance
calls per million people) by disease type and subpopulation groups.
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Table 6: Comparison of Weather and Air Quality between the Number 4 Days and Other Days

Number 4 Days Other Days
P-Value T-Value

Mean Std.Dev. Mean Std.Dev.

Weather Variables
Min Temp (◦C) 6.763 11.837 6.594 12.202 0.929 0.090
Max Temp (◦C) 17.619 12.901 17.576 12.181 0.982 0.022
Dew Point (◦C) 2.898 12.983 1.479 14.832 0.531 0.627
Air Pressure (hPa) 1015.44 10.262 1016.15 10.166 0.654 -0.449
Precipitation (mm) 0.123 0.455 0.212 1.071 0.569 -0.571
Wind Speed (m/s) 2.598 1.418 2.829 1.265 0.246 -1.162
Sky Condition 0.288 0.195 0.282 0.208 0.854 0.184
Visibility 5.917 4.217 6.347 4.868 0.564 -0.577

Air Quality
NO2(µg/m

3) 59.224 31.896 48.893 25.140 0.000*** 12.537
PM10(µg/m

3) 120.420 72.835 104.540 75.092 0.000*** 7.020
SO2(µg/m

3) 35.325 36.852 27.201 27.170 0.000*** 8.901

Note: Table lists mean value and standard deviation for weather and air quality variables for the
number 4 days and other days. P-values and T-values are presented based on mean value T test
between the two groups.
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Table 8: Effects of the Number 4 Day on Duration of Congestion Periods

1 2 3

Peak Hours Morning Peak Evening Peak
Panel A: Full sample

2.47*** 1.18*** 1.25***
[0.33] [0.14] [0.24]

Obs. 231 231 251

Panel B: Excludes weekends and holidays
2.45*** 1.19*** 1.22***
[0.32] [0.14] [0.23]

Obs. 191 197 202

Weather Y Y Y
Month FE Y Y Y
Day of week Y Y Y

Note: Table regresses duration of congestion periods on dummy of number 4 days. Regressions
include weather controls (linear and quadratic terms of minimum and maximum temperature, dew
point, air pressure, precipitation, sky condition, wind speed, and dummies for eight wind directions),
holiday, month, and day of week fixed effects. Robust standard errors in brackets. Significance
levels are indicated by *** 1%, ** 5%, * 10%.
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Table 10: Effects of the Number 4 Day on Air Pollution

1 2 3 4 5 6
NO2 PM10 SO2 NO2 PM10 SO2

Panel B: Full sample
All stations 6.03** 11.53** 3.56* 5.41*** 11.10 3.44**

[0.016] [0.048] [0.094] [0.006] [0.118] [0.44]
Obs. 8841 9649 8777 8376 9493 8366
Urban stations 6.92*** 14.39 4.49 5.98*** 13.76 4.66*

[0.002] [0.128] [0.13] [0.000] [0.304] [0.07]
Obs. 3938 4293 3910 3727 4229 3738
Rural stations 5.29** 9.25* 2.79 4.99** 8.98 2.47

[0.02] [0.044] [0.17] [0.01] [0.122] [0.178]
Obs. 4903 5356 4867 4649 5264 4628

Panel B: Excludes weekends and holidays
All stations 5.76*** 8.39 2.73** 5.17*** 8.26 2.60*

[0.008] [0.138] [0.034] [0.000] [0.204] [0.082]
Obs. 5938 6416 5839 5590 6278 5538
Urban stations 6.82*** 11.03 3.6 5.82*** 10.65 3.63*

[0.000] [0.194] [0.14] [0.000] [0.356] [0.06]
Obs. 2647 2854 2602 2483 2793 2471
Rural stations 4.88*** 6.29 2.03 4.67** 6.35 1.81

[0.000] [0.16] [0.134] [0.012] [0.168] [0.218]
Obs. 3291 3562 3237 3107 3485 3067

Weather Y Y Y Y Y Y
Day of Week Y Y Y Y Y Y
Month FE Y Y Y Y Y Y
Lag Pollution Y Y Y

Note: Table regresses 24-hour average pollution concentration for the periods from noon the current
day to noon the next day on the dummy of number 4 days. Regressions include weather controls
(linear and quadratic terms of minimum and maximum temperature, dew point, air pressure,
precipitation, sky condition, wind speed, and dummies for eight wind directions), holiday, month,
day of week, and monitoring station fixed effects. Column 4-6 also controls for lag term of air
pollution. Robust standard errors are two-way clustered on both station and date level. Considering
clustering with small number of stations might yield over-rejection of null hypothesis, P-values in
brackets are calculated with wild cluster bootstrap approach. Significance levels are indicated by
*** 1%, ** 5%, * 10%.

45



Table 11: Effects of the Number 4 Day on PM2.5 for Different Time Periods

1 2 3 4
Number 4 Day Day after Number 4 Day

Full sample Weekdays Full Sample Weekdays

0am-3am 15.8 11.5 29.1* 24.5
[12.2] [12.1] [16.0] [16.1]

Obs. 348 230 347 235
3am-6am -1.47 -9.71 24.5 20.8

[11.9] [12.1] [16.3] [16.2]
Obs. 348 230 347 235
6am-9am -7.97 -13.5 21.2 17.9

[11.3] [11.3] [14.8] [14.6]
Obs. 346 229 345 234
9am-12pm -11.8 -13.3 24.0* 20.9

[9.95] [9.84] [14.3] [14.2]
Obs. 346 230 345 232
12pm-15pm -4.86 -10.2 15.5 12.3

[9.89] [10.3] [12.8] [12.9]
Obs. 350 235 349 235
15pm-18pm 1.56 -0.32 8.84 5.08

[9.46] [9.82] [13.5] [13.6]
Obs. 351 236 351 237
18pm-21pm 2.74 2.5 4.72 0.5

[10.7] [10.9] [14.2] [14.3]
Obs. 348 235 348 234
21pm-24pm 19.7 18 6.52 2.64

[12.8] [13.5] [14.5] [14.8]
Obs. 347 235 347 234

Weather Y Y Y Y
Day of Week Y Y Y Y
Month FE Y Y Y Y

Note: Table regresses 3-hour average PM2.5 concentration on the dummy of number 4 days for
the sixteen 3-hour periods of the number four day and the subsequent day. Regressions include
weather controls (linear and quadratic terms of minimum and maximum temperature, dew point,
air pressure, precipitation, sky condition, wind speed, and dummies for eight wind directions),
holiday, month, and day of week fixed effects. Robust standard errors in brackets. Significance
levels are indicated by *** 1%, ** 5%, * 10%. Coefficients presented here are plotted in Figure 6.
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Table 12: Effects of the Number 4 Day on Ambulance Call Rate

1 2 3 4
All Heart Coronary Fever Injure

Panal A: Full Population
Full Sample 0.155*** 0.081*** 0.190*** -0.055

[0.000] [0.000] [0.000] [0.624]
Weekdays 0.168*** 0.081*** 0.193*** -0.091

[0.000] [0.000] [0.000] [0.492]
Panel B: Males

Full Sample 0.176* 0.118** 0.205*** -0.069
[0.096] [0.012] [0.000] [0.408]

Weekdays 0.232*** 0.112* 0.202*** -0.119
[0.000] [0.066] [0.000] [0.120]

Panel C: Females
Full Sample 0.171 0.027 0.203*** 0.002

[0.218] [0.240] [0.000] [0.944]
Weekdays 0.141 0.034 0.211*** 0.003

[0.378] [0.370] [0.000] [0.892]
Panel D: Ages 65 and older

Full Sample 0.253 0.188 1.253*** -0.917
[0.626] [0.396] [0.000] [0.464]

Weekdays 0.594 0.156 1.321*** -0.799
[0.198] [0.456] [0.000] [0.588]

Panel E: Ages 15 to 64
Full Sample 0.156 0.073 0.068*** -0.005

[0.100] [0.164] [0.000] [0.910]
Weekdays 0.153* 0.081* 0.074*** 0.002

[0.078] [0.070] [0.000] [0.968]
Panel F: Ages below 15

Full Sample - - 0.274 -0.053
- - [0.448] [0.716]

Weekdays - - 0.179 -0.093
- - [0.724] [0.562]

Full Sample Obs. 2190 2190 2190 2190
Weekdays Obs. 1458 1458 1458 1458
Weather Y Y Y Y
Day of Week Y Y Y Y
Month FE Y Y Y Y

Note: Table regresses daily ambulance call rate for the next day on the dummy of number 4
days. Regressions include weather controls (linear and quadratic terms of minimum and maximum
temperature, dew point, air pressure, precipitation, sky condition, wind speed, and dummies for
eight wind directions), holiday, month, day of week, and district fixed effects. Robust standard
errors are two-way clustered on both district and date level. Considering clustering with small
number of district might yield over-rejection of null hypothesis, P-values in brackets are calculated
with wild cluster bootstrap approach. Significance levels are indicated by *** 1%, ** 5%, * 10%.
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Table 13: Effects of the Number 4 Day on Ambulance Calls - Changes in Number and Percentage
Change

1 2 3
All Heart Coronary Fever

Panel A: Changes in Number of Ambulance Calls
Full Population 1.9 1 2.33
Males 1.1 0.74 1.29
Females 1.03 0.16 1.22
65 or older 0.3 0.22 1.5
15 to 64 1.55 0.73 0.68
Younger than 15 - - 0.3

Panel B: Percentage Change of Ambulance Call Rates
Full Population 3.29% 19.47% 11.69%
Males 5.40% 29.55% 11.76%
Females 2.55% 8.02% 14.98%
65 or Older 2.52% 6.88% 13.40%
Age 15 to 64 5.23% 42.19% 20.85%
Younger than 15 - - 6.22%

Note: Panel A of the table lists changes in number of emergency ambulance calls in urban area
of Beijing by multiplying coefficients estimated in Table 12 by population size. Panel B lists the
percentage change of ambulance call rates, which is calculated by dividing the coefficients in Table
12 by the mean value of ambulance call rates.
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Table 14: Ambulance Call Rates Regressed on Pollution

1 2 3 4
All Heart Coronary Fever Injure

Panal A: Ambulance Call Rates Regressed on NO2

Full Sample 0.0007 0.0014** 0.0005 -0.0029
[0.802] [0.022] [0.620] [0.120]

Weekdays 0.0006 0.0018* 0.0009 -0.0072***
[0.752] [0.052] [0.612] [0.002]

Panel B: Ambulance Call Rates Regressed on PM10

Full Sample 0.0001 0.0004* 0.0002 -0.0001
[0.890] [0.096] [0.374] [0.862]

Weekdays 0.0003 0.0005*** 0.0005 -0.0013*
[0.638] [0.000] [0.322] [0.082]

Panel C: Ambulance Call Rates Regressed on SO2

Full Sample 0.0021 0.0015** 0.0028*** -0.0037
[0.236] [0.042] [0.000] [0.338]

Weekdays 0.0013 0.0016 0.0037*** -0.0068*
[0.468] [0.164] [0.000] [0.064]

Full Sample Obs. 2048 2048 2048 2048
Weekdays Obs. 1377 1377 1377 1377
Weather Y Y Y Y
Day of Week Y Y Y Y
Month FE Y Y Y Y

Note: Table regresses district level daily ambulance call rate on 24-hour average pollution concen-
tration from noon the day before to noon the current day. Regressions include weather controls
(linear and quadratic terms of minimum and maximum temperature, dew point, air pressure, pre-
cipitation, sky condition, wind speed, and dummies for eight wind directions), holiday, month, day
of week, and district fixed effects. Robust standard errors are two-way clustered on both district and
date level. Considering clustering with small number of district might yield over-rejection of null
hypothesis, P-values in brackets are calculated with wild cluster bootstrap approach. Significance
levels are indicated by *** 1%, ** 5%, * 10%.

49



Table 15: Effects of Instrumented NO2 Concentration on Ambulance Call Rate

1 2 3 4
All Heart Coronary Fever Injure

Panal A: Full Population
Full Sample 0.012** 0.006*** 0.018*** -0.004

[0.022] [0.000] [0.000] [0.720]
Weekdays 0.016*** 0.007*** 0.022*** -0.003

[0.000] [0.000] [0.000] [0.882]
Panel B: Males

Full Sample 0.017** 0.010*** 0.018*** -0.006
[0.036] [0.000] [0.000] [0.404]

Weekdays 0.023*** 0.011* 0.020*** 0.002
[0.000] [0.068] [0.000] [0.918]

Panel C: Females
Full Sample 0.012 0.001 0.021** 0.001

[0.370] [0.660] [0.034] [0.826]
Weekdays 0.015 0.001 0.026*** 0.000

[0.312] [0.720] [0.000] [0.936]
Panel D: Ages 65 and older

Full Sample 0.016 0.009 0.123*** -0.091
[0.870] [0.596] [0.000] [0.606]

Weekdays 0.022 0.007 0.142*** -0.110
[0.764] [0.702] [0.000] [0.570]

Panel E: Ages 15 to 64
Full Sample 0.013 0.007 0.006*** 0.001

[0.126] [0.188] [0.000] [0.902]
Weekdays 0.017*** 0.007 0.007*** 0.008

[0.000] [0.144] [0.000] [0.654]
Panel F: Ages below 15

Full Sample - - 0.028 -0.003
- - [0.410] [0.816]

Weekdays - - 0.034 -0.005
- - [0.346] [0.772]

Full Sample Obs. 2190 2190 2190 2190
Weekdays Obs. 1458 1458 1458 1458
Weather Y Y Y Y
Day of Week Y Y Y Y
Month FE Y Y Y Y

Note: Table regresses district level daily ambulance call rate on instrumented 24-hour average NO2

concentration for the periods from noon the previous day to noon the current day. Regressions
include weather controls (linear and quadratic terms of minimum and maximum temperature,
dew point, air pressure, precipitation, sky condition, wind speed, and dummies for eight wind
directions), holiday, month, day of week, and district fixed effects. Robust standard errors are
two-way clustered on both district and date level. Considering clustering with small number of
district might yield over-rejection of null hypothesis, P-values in brackets are calculated with wild
cluster bootstrap approach. Significance levels are indicated by *** 1%, ** 5%, * 10%.
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Table 16: Effects of Instrumented NO2 on Ambulance Call Rate - Distributed Lag Model

1 2 3
All Heart Coronary Fever

Panal A: Full Sample
ˆNO2 in T+1 0.000015 -0.000015 -0.000021

[0.692] [0.248] [0.366]
ˆNO2 in T 0.000122** 0.000054*** 0.000194***

[0.04] [0] [0]
ˆNO2 in T-1 0.000037 0.000041*** -0.000016

[0.448] [0] [0.738]
ˆNO2 in T-2 0.000022 -0.000017* 0.000044*

[0.328] [0.07] [0.064]
ˆNO2 in T-3 -0.000029 0.000005 -0.000033

[0.296] [0.616] [0.278]

Panal B: Excludes Weekends and Holidays
ˆNO2 in T+1 0.000022 -0.00001 -0.000014

[0.586] [0.23] [0.464]
ˆNO2 in T 0.000173*** 0.000062*** 0.000231***

[0] [0] [0]
ˆNO2 in T-1 0.000053 0.000024*** 0.000003

[0.182] [0] [0.954]
ˆNO2 in T-2 0.00004 -0.000017 0.000031*

[0.442] [0.302] [0.056]
ˆNO2 in T-3 -0.000042 0.000003 -0.000034

[0.204] [0.834] [0.26]

Full Sample Obs. 2166 2166 2166
Weekdays Obs. 1446 1446 1446
Weather Y Y Y
Day of Week Y Y Y
Month FE Y Y Y

Note: Table regresses a distributed lag model, using district level daily ambulance call rate as
dependent variable, instrumented NO2 concentration and its one lead and three lag terms as inde-
pendent variables. Regressions include weather controls (linear and quadratic terms of minimum
and maximum temperature, dew point, air pressure, precipitation, sky condition, wind speed, and
dummies for eight wind directions), holiday, month, day of week, and district fixed effects. Robust
standard errors are two-way clustered on both district and date level. Considering clustering with
small number of district might yield over-rejection of null hypothesis, P-values in brackets are cal-
culated with wild cluster bootstrap approach. Significance levels are indicated by *** 1%, ** 5%,
* 10%.
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