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1 Introduction

Macroeconomists define the business cycle as common fluctuations across a wide range of economic

variables. Starting with the seminal work by Geweke (1977), dynamic factor models have been

used to extract the common fluctuations in economic variables. As predicted by economic theory

and verified by numerous empirical papers with Sargent and Sims (1977) being the first, business

cycle fluctuations can be captured by a relatively small number of factors. However, the number of

observed time series relevant for business cycle analysis is large. This has led to intensive research

to estimate common factors from large panels of data under weak conditions, see Stock and Watson

(2002) and Forni et al. (2005) among others. Thus, while early work extracts common factors from

a relatively small number of series, the more modern practice is to extract them from a large number

of time series chosen to give a balanced representation to the various sectors of the economy.

In this paper, we develop a state space estimation methodology for a highly flexible hierarchical

(multi-level) dynamic factor model. The hierarchy is produced by splitting a large panel of data

into a much smaller number of blocks, each of which consists of a reasonably large number of series.

We assume that each block is driven by factors that are common amongst series within the block,

and factors at the block level are themselves driven by factors that are common to all block-level

factors. Additional levels can be obtained by further splitting blocks into finer sub-blocks and

assuming that factors at the sub-block level are driven by a smaller number of block-level factors.

This hierarchical structure implies that the transition equation for the common factors at a given

level has a time varying intercept that depends on the common factors at the next higher level and

must be taken into account in the filtering algorithm.

The point of departure of our analysis is to organize a large panel of data into smaller blocks,

and there are several motivations for doing so. Data on the US economy are published on a

continuous schedule. For example, in the first week of each month the Bureau of Labor Statistics

(BLS) publishes the employment report which consists of an establishment and a household survey.

The release of the employment report is followed by the release of retail sales, retail inventories

and inventory-sales data by the Commerce Department in the second week of each month. This

is followed by the release of industrial production and capacity utilization data by the Board of

Governors in the third week of each month and so on. Organizing the data into an employment

block, a retail sales block, and so forth has two advantages. First, exploiting the sequence in
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which data arrive is useful for real-time monitoring of economic activity. Second, we can explicitly

distinguish between comovement at the block level from those at the aggregate level, which is useful

for understanding the observed fluctuations in the data.

Sectoral and geographic structure provide another natural way to organize the data into blocks.

For example, housing data are available for different regions in the U.S. With each region corre-

sponding to a block, we can distinguish between housing shocks at the regional and the national

levels. To facilitate economic analysis, it is often convenient to consider a price factor, a financial

market factor, and a labor market factor. This can be achieved by estimating the factors from a

block of price data, a block of labor market data, a block of financial time series and so on.1 Since

the blocks have a well-defined interpretation, one can give names to the block-level factors imme-

diately. This overcomes a common criticism of large dimensional factor analysis that the factors

are difficult to interpret.

To provide a simple example of a hierarchical dynamic factor model, let t = 1, . . . , T be an

index for time, and b = 1, . . . , B be the index for blocks. Abstracting from dynamics to focus on

the hierarchical structure for now, an observation on variable i belonging to block b observed at

time t, denoted xbit, is modeled as

xbit = λ′G.biGbt + eXbit, i = 1, ..., Nb (1)

where Gbt is a set of kGb latent block-level factors, Nb is the total number of variables in block b

and eXbit is a purely idiosyncratic error (i.e., independent of all other errors and factors but not

necessarily an IID process). We posit that the latent block-level factors themselves obey a factor

structure, viz:

Gbkt = λ′F.bkFt + eGbkt (2)

where Ft is a vector of kF factors that are common across blocks and eGbkt is a block-specific

idiosyncratic error that is independent of all other block specific errors and all factors but is not

necessarily an IID process. Thus, variables within a block can be correlated through Ft or eGbkt,

but variables between blocks can be correlated only through Ft. In the terminology of multilevel

models, (1) is the level-1 equation, and (2) is the level-2 equation. A stochastic process for Ft would
1The widely used macroeconomic data provided by Stock and Watson (2006) is already loosely organized around

blocks of data on output, consumption, prices, etc. Although it is not always clear which block some series belong
to, this ambiguity does not matter as the block structure is not exploited in the analysis. In contrast, in one of our
main applications data are placed into blocks by data source. For example, we might have a retail sales block based
on the underlying detail of the the Census Bureau’s monthly retail sales release.
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constitute a level-3 equation. To be concrete, consider a level-3 model using four blocks of housing

data: the Northwest, the West, the Midwest, and the South. For each block (or region), we have

data (xbit) on house prices, houses sold, building permits, etc. Then G2t is the set of (block-level)

factors common to variables in the West, and eG2t are shocks to the West. Idiosyncratic shocks

to each series collected for the West are represented by eX2it. The factors Ft represent variations

common to all four regions and are the only source of co-movement between, for example, the West

and the Northeast.

The difference between a multilevel and a two-level factor model is best understood when Ft

and Gbt are scalars. With kG = KF = 1,

xbit = λG.bi(λF.b1Ft + eGb1t) + eXbit

= λbiFt + vbit (3)

where λbi = λG.biλF.b1 and

vbit = λG.bieGb1t + eXbit.

A standard factor model ignores the block structure and stacks all observations up irrespective of

which block an observation belongs to. The data are thus analyzed using the level-2 representation

xit = λiFt + vit.

This level-2 representation would be equivalent to an exact factor model if {eGb1t : b = 1, ..., B}

was a zero stochastic process. We would otherwise obtain an ‘approximate factor model’ if vit

was ‘weakly correlated’ across i and t. In practice, this means that the number of idiosyncratic

errors that are serially and/or cross-sectionally correlated cannot be too large. The condition

will be satisfied if the number of series in each block was relatively small in the sense that the

variation in vbit is dominated by eXbit as N → ∞ and Nb → ∞. Instead of making this hard to

impose assumption, our hierarchical model tackles this problem by explicitly specifying the block

structure.

Modeling the dynamics at the individual, block, and the aggregate levels is useful in a variety of

economic models. For example, risk factors in asset returns can be due to variations on the market

portfolio, which is common, and to industry specific effects. It is also reasonable to assume that

business cycle variations have a global, a regional or a country-specific component. Our hierarchical

dynamic factor model naturally lends itself to analyzing such empirical questions.
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This paper sets up the model and the framework for estimation. Our goal here is to show

that common variations at the block level are significant, and that going from a two to a three or

higher level model not only has statistical advantages, it also provides a better understanding of

economic fluctuations. We consider three examples. The first uses housing data where the blocks

are determined by geography. The second is a three-level model of production with six blocks of data

organized by the timing of data releases. The third is a four-level model for real economic activity.

The decomposition of variance in each case shows that block-level variations tend to be stronger

than the common variations, though both are small relative to the purely idiosyncratic components

in the series. We also compare the factor estimates to the principal component estimates and isolate

one episode in which the principal components estimator treats a block-level variation as common

because the large magnitude of the block-level event contributes significantly to the total variations

in the data.

2 A Three Level Dynamic Factor Model

We assume that the data used in the analysis (denoted Xbit) are stationary, mean-zero, standardized

to have a unit variance after possible logarithmic transformation and detrending. We assume that

there are kb common factors Gb in each block b = 1, . . . , B. Let the mean zero block-level factors

be Gbkt for k = 1, . . . kb. Hence, there is a total number KG = (k1 + . . .+ kB) of block-level factors.

We assume that these KG block-level factors share a total of KF common factors Ft. Let Nb denote

the number of variables in block b. This implies a total number N = (N1 + . . .+NB) of variables

in the analysis. We assume that N and T are both large, but that B is much smaller than N .

Each time series in a given block b is decomposed into a serially correlated idiosyncratic com-

ponent, eXbit, and a common component ΛG.bi(L)Gbt which it shares with other variables in the

same block. Each block-level factor Gbt has a serially correlated block-specific component eGbt and

a common component ΛF.b(L)Ft which it shares with all other blocks. Finally, the economy-wide

factors Ft are assumed to be serially correlated. Let

Xbt =
(
Xbt.1 Xbt.2 . . . Xbt.Nb

)′
Gbt =

(
Gbt.1 Gbt.2 . . . Gbt.kb

)′
.
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Then, the model can be summarized by the following equations:

Xbt = ΛG.b0Gbt + . . .+ ΛG.bsGb
Gb,t−sGb

+ eXbt, (4)

Gbt = ΛF.b0Ft + . . .+ ΛF.bsF
Ft−sF + eGbt (5)

Ft = ΨF.1Ft−1 + . . .+ ΨF.qFFt−qF + εFt (6)

eXbit = ΨX.bi1eXbi,t−1 + . . .+ ΨX.biqXbi
eXbi,t−qXbi

+ εXbit (7)

eGbt = ΨG.b1eGb,t−1 + . . .+ ΨG.bqGb
eGb,t−qGb

+ εGbt. (8)

The idiosyncratic components eXbi are AR processes of order qXbi, the block-specific component is

an AR process of order qGb
, and the economy-wide factors Fkt are AR processes of order qFk

. We

assume normally distributed innovations throughout. Thus,

εXbi ∼ N(0, σ2
Xbi) i = 1, . . . Nb

εGbk ∼ N(0, σ2
Gbk) k = 1, . . . kGb, b = 1, . . . B

εFr ∼ N(0, σ2
Fr

) r = 1, . . .KF .

The dynamics of the model can be enriched by allowing for stochastic volatility and Markov

switching effects at different levels of the hierarchy. The current specification allows the lag or-

der of the factor loading matrix and the factor specific errors to differ across blocks as well as

within blocks. Similarly, the lag order of the idiosyncratic errors can also vary across blocks

and units. Thus, sGb = (sGb.1, . . . sGb.Nb
) is a vector. Similarly, qXb = (qXb.1, . . . qXb.Nb

) and

qGb = (qGb.1, . . . qGb.kb
) are also vectors with possibly non-identical entries. Let sF = maxb∈B sFb,

sG = maxb(maxi∈Nb
sGb.i), qX = maxb(maxi∈Nb

qXbi), and qG = maxb(maxk∈kb
qGb.k). Stacking up

the data by blocks and letting

Xt =
(
X1t X2t . . . XBt

)′
Gt =

(
G1t G2t . . . GBt

)′
,

we have

Xt = ΛG(L)Gt + eXt

Gt = ΛF (L)Ft + eGt

ΨF (L)Ft = εFt

ΨX(L)eXt = εXt

ΨG(L)eGt = εGt.
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Then ΛG(L) is a N ×KG matrix polynomial of order sG, ΛF (L) is a KG ×KF matrix polynomial

of order sF , ΨX(L) is a N × N matrix polynomial of order qX , ΨG(L) is a KG × KG matrix

polynomial of order qG, ΨF (L) is a KF × KF matrix polynomial of order qF . Finally, ΣX =

diag(σ2
X11, ..., σ

2
XBNB

), ΣG = diag(σ2
G11, ..., σ

2
GBkB

), and ΣF = diag(σ2
F1, ..., σ

2
FKF

) are matrices of

dimension N ×N,KG×KG, and KF ×KF , respectively. To ensure identification of the block-level

factors G, we assume that for s = 0, . . . , sG

ΛG.s =


ΛG.1s 0 · · · 0

0 ΛG.2s
...

...
. . . 0

0 · · · 0 ΛG.Bs

 .
The block-diagonal structure of ΛG.s implies that each block Xb of variables exclusively loads on

the block-level factors Gb. We assume that at lag 0, and for each b = 1, . . . , B, ΛG.b0 is a Nb × kb
matrix whose upper-left kb × kb block is lower-triangular with ones on the diagonal. For example,

if kb = 2, we would have

ΛG.b0 =



1 0
ΛG.b02,1 1
ΛG.b03,1 ΛG.b03,2

: :
ΛG.b0Nb,1

ΛG.b0Nb,2

 .

This implies that the first variable within each block exclusively loads on the contemporaneous

observation of the first block-level factor, the second exclusively on the contemporaneous observa-

tions of the first two block-level factors and so on. We order the variables in each block such that

the first kb series are variables of economic interest and yet have independent information. The

loadings of the remaining variables in each block are unrestricted.

To ensure identification of the economy-wide factors F , we assume that the upper KF × KF

submatrix of ΛF.0 is lower triangular. If KF = 2, we have

ΛF.0 =


1 0

ΛF.02,1 1
ΛF.03,1 ΛF.03,2

. .
ΛF.0KG,1

ΛF.0KG,2


This normalization assumes that the blocks are ordered so that the common factors load heavily

on the first block-level factors. An alternative is to normalize the variance of εF to unity and to

restrict the diagonal elements of the upper-left KF ×KF block of ΛF.0 to be positive.
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2.1 The State Space Representation

Let Θ = (ΘF ; ΘG; ΘX) where ΘF ,ΘG are parameters that characterize Ft, Gt respectively, and ΘX

are the remaining parameters. By assumption,

(i) xt |= Θ|Gt,ΘX (ii) Gt |= Θ|Ft,ΘG, (iii) Ft |= Θ|ΘF

where |= stands for stochastic independence. Stepwise specification of the sub-models leads to the

statistical model

f(xt, Ft, Gt; Θ) = f(xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft; ΘF ).

The data density is

f(xt; Θ) =
∫ ∫

f(xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft|ΘF )dGtdFt.

Because of the assumed hierarchical structure, the data density can be constructed recursively from

the pair of equations:

f(Gt|ΘF ,ΘG) =
∫
f(Gt|Ft; ΘG)f(Ft|ΘF )dFt

f(xt|Θ) =
∫
f(xt|Gt; ΘX)f(Gt|ΘF ,ΘG)dGt.

Here, f(xt;Gt; ΘG) is the measurement equation and f(Gt|Ft; ΘF ) is the structural model for the

latent factor Ft. As discussed in Mouchart and Martin (2003), strong identification of the mea-

surement model is required to obtain weak identification of the statistical model. Our assumptions

ensure that ΘX = (ΨX ,ΣX ,ΛG) are identified from the measurement model, ΘG = (ΨG,ΣG,ΛF )

are identified from the structural model for Gt, and ΘF = (ΨF ,ΣF ) are identified from the transi-

tion equation for Ft. These equations are now made precise.

Common Factor Dynamics The common factors evolve according to

ΨF (L)Ft = εFt,

where ΨF (L) = IKF
−ΨF.1L− . . .ΨF.qFL

qF . This can be rewritten in companion form as
Ft
Ft−1

...
Ft−qF +1

 =


ΨF.1 ΨF.2 · · · ΨF.qF

I 0 0
...

. . . . . .
...

0 · · · I 0




Ft−1

Ft−2
...

Ft−qF

+


εFt
0
...
0
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or

~Ft = ~ΨF
~Ft−1 +~εFt

where εFt ∼ N(0,ΣF ) and ||~ΨF || < 1.

Block-Level Dynamics The structural (pseudo measurement) equation is

Gt = ΛF.0Ft + ΛF.1Ft−1 + . . .+ ΛF.sF
Ft−sF + eGt (9)

= ΛF (L)Ft + eGt

with G′t =
(
G1t

... GBt

)
, Gbt being a kb × 1 vector,

ΨG(L)eGt = εGt (10)

and where ΛF.s is a KG × KF matrix of factor loadings. We call this a structural instead of a

measurement equation because Gt is not observed. Here, ΨG(L) is a block-diagonal matrix with

diagonal blocks ΨGb(L), where for b = 1, . . . B, ΨG.b(L) is itself a diagonal matrix with elements

ψG.bi(L),

ψG.bi(L) = 1− ψG.bi1L− . . .− ψG.biqGL
qG

We restrict ||ψG.bi(L)|| < 1 for stationarity and assume εGt ∼ N(0,ΣG). Together, (9) and (10)

imply that

ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt.

This leads to the block-level transition equation
Gt
Gt−1

...
Gt−qG+1

 =


αFt
0
...
0

+


ΨG.1 ΨG.2 · · · ΨG.qG

I 0 0
...

. . . . . .
...

0 · · · I 0




Gt−1

Gt−2
...

Gt−qG

+


εGt
0
...
0


or

~Gt = ~αFt + ~ΨG
~Gt−1 +~εGt

where

αFt = ΨG(L)ΛF (L)Ft. (11)
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Within-Block Dynamics For each b = 1, . . . , B, we have

Xbt = ΛG.b0Gbt + . . .+ ΛG.bsG
Gbt−sG

+ eXbt,

ΨX.b(L)eXbt = εXbt

where we recall that the top kGb × kGb block of ΛG.b0 is lower triangular with diagonal elements

equal to one, and with Xbt ordered so that Gbt have non-trivial loadings on the first kb variables in

block b. For each b, ΨX.b(L) is a diagonal matrix with elements given by

ψX.bi(L) = 1− ψX.bi1L− . . .− ψX.biqXL
qX

Then, for b = 1, . . . B, the measurement equation for each block can be rewritten as

ΨX.b(L)Xbt = ΨX.b(L)ΛG.b(L)Gbt + εXbt,

or

X̃bt = Λ̃G.b(L)Gbt + εXbt (12)

where X̃bt = ΨX.b(L)Xbt and Λ̃G.b(L) = ΨX.b(L)ΛG.b(L). These can be stacked to produce

X̃t = Λ̃G(L)Gt + εXt

Decomposition of Variance Given the state space representation of the model, it is not hard

to see that for each individual variable Xbi,

vec(V ar(Xbi)) = γ′F.bivec(V ar(Ft)) + γ′G.bivec(V ar(Gbt)) + vec(V ar(eXbi)) (13)

where

γ′F.bi =

(
sG∑
s=0

λ′G.bis ⊗ λ′G.bis

)
·

(
sF∑
s=0

ΛF.bs ⊗ ΛF.bs

)

γ′G.bi =

(
sG∑
s=0

λ′G.bis ⊗ λ′G.bis

)

vec(V ar(Ft)) =

I − qF∑
q=1

(ΨF.q ⊗ΨF.q)

−1

vec(ΣF )

vec(var(Gbt)) =

I − qG∑
q=1

(ΨG.bq ⊗ΨG.bq)

−1

· vec(ΣGb
)

vec(V ar(eXbi)) =

1−
qX∑
q=1

ψ2
X.biq

−1

· σ2
Xbi.
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The total variance is the sum of the unconditional variance of the components multiplied by the

effective loadings on the components. Dividing the three components on the right hand side of

(13) gives the fraction of the variance in X explained by the common innovations εF , block-specific

innovations εGb, and idiosyncratic errors εX , respectively. We denote these by shareF , shareG, and

shareX . A two level factor model does not distinguish between Ft and Gt. In these models, one

minus shareX is the size of the common component.

2.2 Markov Chain Monte Carlo

We use the method of Markov Chain Monte Carlo (MCMC) to estimate the posterior distribution

of the parameters of interest. The method samples a Markov chain that has the posterior density

of the parameters as its stationary distribution. MCMC has been used by Kim and Nelson (2000),

Aguilar and West (2000), Geweke and Zhou (1996) and Lopes and West (2004), among others, to

estimate two level factor models. These algorithms are variations and extensions of the method

developed in Carter and Kohn (1994) and Fruhwirth-Schnatter (1994). Although in theory, the

algorithm allows for multiple factors, most previous studies have limited attention to estimation of

a single factor. We allow both Ft and Gbt to be vector valued.

Our setup is a hierarchical dynamic factor model where each level admits a state-space repre-

sentation that has a measurement and a transition equation. The MCMC algorithm thus needs

to be extended to handle this hierarchical structure. Let Λ = (ΛG,ΛF ), Ψ = (ΨF ,ΨG,ΨX),

Σ = (ΣF ,ΣG,ΣX). The main steps are as follows:

1. Organize the data into blocks to yield Xbt, b = 1, . . . B. Use principal components to initialize

{Gt} and {Ft} Use these to produce initial values for Λ, Ψ, Σ.

2. Conditional on Λ,Ψ, Σ and {Ft}, draw {Gt} taking into account time varying intercepts.

3. Conditional on Λ,Ψ, Σ and {Gt}, draw {Ft}.

4. Conditional on {Ft} and {Gt}, draw Λ, Ψ, and Σ.

5. Return to 2.

We assume conjugate priors, and thus Step (4) is straightforward. Step (3) follows the Carter

and Kohn procedure used for level two models and is thus also standard. The main complication
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going from a two to a three level model lies in the way {Gt} is sampled in Step (2). Recall that

the transition equation for Gbt is of the form

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .ΨG.bqGb
Gbt−qGb

+ εGbt.

This involves the term αF.bt = ΨG.b(L)ΛF (L)Ft, which, given a draw of Ft, can be interpreted as a

time-varying intercept that is known for all t. By conditioning on Ft, our updating and smoothing

equations for Gt explicitly take into account the information carried by Ft. Details of Steps 2 and

3 are given in the Appendix.

3 Related Work

Multilevel factor models have been considered extensively in the psychology literature. See, for

example, Goldstein and Browne (2002). With the size of the panel being large in only one dimen-

sion and assuming a strict factor structure, these models can be estimated by maximum likelihood.

Howover, these models do not allow for dynamics. Dynamic hierarchical linear models were consid-

ered by Gammerman and Mignon (1993), but there are no latent variables. Our three-level factor

model shares common features with a few approaches that have previously been suggested in the

macroeconomic literature. Kose et al. (2003) and Kose et al. (2008) used multi-level factor models

to study international business cycle comovements. In their model, economic fluctuations in each

country are attributed to three types of shocks: a world, a regional and a country-specific business

cycle component. For each observable variable i in country b, they have

xbit = ciFt + dbiGbt + ebit

where Ft is a world factor, Gbt is a factor specific to region b, and where ebit is a component specific

to variable i in country b.2

Our model hierarchical multilevel model differs from theirs in a number of ways. While their

Ft and Gbt are scalars, we allow for multiple common and multiple block-level factors. Comparing

this setup to (3), their loading on the world factor ci plays the role of our λG.biλF.b1 and their

loading dbi on the regional factor is our λG.bi. Since we impose the structure that Gbt is linear in

Ft, the responses of shocks to Ft for all variables in block b can only differ to the extent that their

exposure to the block-level factors differs, whereas ci is unconstrained in Kose et al. (2008). In
2A similar framework was recently used by Stock and Watson (2008a) to analyze national and regional factors in

housing construction.
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other words, our multilevel model is hierarchical. By imposing this hierarchical structure, we have

a total of KG ×KF and N ×KG parameters characterizing loadings on Ft and Gt, whereas Kose

et al. (2008) have N ×KF and N ×KG parameters, respectively. As KG is much smaller than N ,

our framework is considerably more parsimonious, an issue that has computational consequences

as we discuss below.

Diebold et al. (2008) discuss another model that is similar in spirit to ours. These authors

decompose interest rates in different countries into global and country-specific level and slope

factors. These factors are identified by assuming a particular parametric form of the factor loadings.

Diebold et al. (2008) estimate their model in two-steps. First, they obtain individual country

factors by separately estimating the level-2 model for each country. Second, they assume a linear

dependence of country-level factors on the global factors and obtain the global yield factors by

estimating another level-2 model treating the country-level factors as data. In contrast to this

two-step approach, we estimate the factors at both levels of the hierarchy simultaneously. In other

words, we explicitly take into account the common variation at the third level when estimating the

dynamics in the level-2 factors.

Also somewhat related to our model, Milani and Belviso (2006) organize a large panel of macroe-

conomic time series for the US into blocks of data. They do not assume the existence of comovement

beyond the block structure, but instead model the dynamic evolution of the different block factors

jointly within a VAR. Clearly, this approach imposes a constraint on the number of block factors

that one can allow for. Hallin and Liska (2008) also study dynamic factor models with a block

structure. While we assume the block structure of the data as known, they develop methods to

estimate the common, block-level, and idiosyncratic factors from the data. In their analysis, the

factors can fall into as many as 2K possible categories, where K denotes the number of blocks. This

can be computationally challenging if K turns out to be large. Our work is distinct from theirs, as

by exploiting the timing of data release or economic and geographical structure, we assume that

the block structure of the data is known.

In terms of estimation, Otrok and Whiteman (1998) estimate latent dynamic factors by consid-

ering their conditional joint distribution. The main practical limitation is that they have to invert

a variance-covariance matrix of rank T at each iteration of their Gibbs sampling algorithm. Hence,

estimation becomes computationally demanding for problems when N and T are both large. Our

experimental models here have up to N > 400 series and T close to 200, and we anticipate using as
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many as 1,000 series in a full fledged analysis. To alleviate the dimensionality problem, we put more

structure on the block factors Gt. This enables us to exploit the prediction error decomposition of

Ft and Gt which avoid inverting large matrices.

An alternative to Gibbs sampling is to estimate Gt by principal components, and then estimate

Ft from the principal components estimates of Gt. This method was implemented in Beltratti

and Morana (2008). However, sequential estimation by principal components would not take into

account the dependence of Gt on Ft through αFt. These ‘unrestricted’ estimates of Gt should thus

be less efficient than our one step estimates. Another advantage of our approach is that the posterior

distributions allow us to assess sampling uncertainty about the estimated factors. While the large

sample theory for principal components estimation of Gt and Ft is given in Bai and Ng (2006),

the properties of the principal components estimator for Ft based upon a first step estimation of

Gt by principal components is not known. It remains unclear how to obtain theoretical prediction

intervals or assess the sampling uncertainty of counter-factual analysis within the two-step principal

components framework.

Since the true Ft are latent variables it will be difficult to compare the precision of the estimates.

However, as a cross-check, it is useful to compare the estimates produced by our three level model

with those obtained from principal components analysis. Hereafter, we use a ’tilde’ to denote

estimates obtained by the method of principal components, and a ’hat’ to denote estimates obtained

from our MCMC algorithm. That is, Ĝt denote the posterior means of the block-level dynamic

factors while F̂t are the posterior means of the factors common to Gt. In contrast, we refer to F̃t

as the principal component estimates obtained using all data at once and let F̃t(G̃t) denote the

two step principal components estimates (obtained from extracting principal components from the

block-level principal components estimates). When comparing the results, it should be kept in

mind that the method of principal components estimates the static factors, whereas we estimate

the dynamic factors, which should generally be smoother than the static factors.

4 Empirical Analysis

We assume the prior distribution for all factor loadings λ and autocorrelation coefficients ψ to be

Gaussian with mean zero and variance one. The prior distribution for the variance parameters is

that of an inverse chi-square distribution with ν degrees of freedom and a scale of d where ν and
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d2 are set to 4 and 0.01, respectively.3 After discarding the first 2,000 draws as a burn-in, we take

another 25,000 draws, storing every 50-th draw. The reported statistics for posterior distributions

are based on these 500 draws. Results obtained from storing every one of the first 8,000 draws after

burn-in are very similar.

We use the principal components estimated for each block, denoted G̃b,PC , as starting values

for Gt. The principal components extracted from the data pooled across blocks are then used as

starting values for F . Note that the principal components only identify the factor space using the

normalization that Λ̃′G,PCΛ̃G,PC/N = Ir and the matrix G̃′PCG̃PC is diagonal. We use alternative

identification assumptions. Therefore, our starting values may be far from the true values. As

a cross-check on our choice of initialization, we also run the MCMC algorithm using randomly

generated numbers for the factors as starting values and find that the sampler converges to the

same posterior means.

In the three applications considered in this paper, we use a balanced panel of monthly data from

1992:01-2008:02. After the data transformation, our sample effectively starts in 1992:4, giving T =

191 observations for all blocks. The data are transformed (by taking logarithm and differencing)

using Stock and Watson (2008b) as a guide.

An important aspect of our analysis is that we use prior information to identify the factors. This

involves grouping the series in the dataset into blocks of variables, and then ordering the variables

in each block so that the series thought most likely to be representative of comovement in a given

block are put in positions one through kGb. The choice of these variables, as well as summary

statistics based upon the factors estimated by principal components are reported in Tables A1 and

A2.

4.1 A Housing Model Using Actual and Simulated Data

Our first model uses monthly U.S. housing data with a breakdown into three geographical blocks:

the Northeast (NE), the West (W), and a third block (CTL) that combines the South with the

Midwest. The three blocks comprise 7, 8, and 18 series, respectively. Note that the principal

component estimates of the block-level factors will not be precise because of the small number of

units in each block. We assume that there are two factors in each block, i.e. kGb = 2 for all b, and
3If θ is distributed as inverse χ2 with ν degrees of freedom and a sale of d, written θ ∼ Iχ2(v, d2), then θ is

distributed as an inverse gamma with parameters α/2 and β/2, where α = ν and β = d2ν. We use this equivalence
in our procedure and sample variance parameters based on the χ2 distribution.
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all block-level factors are in turn driven by one common factor, i.e. KF = 1. The common and

block-level factors are modeled to have AR(1) dynamics, that is qGb = qF = 1. We allow for two

lags of the respective factors in the measurement equations, i.e. sGb = sF = 2. The results are

reported in Table 1.

The estimated ψF suggest that the common factor is highly persistent, while ψ̂G are generally

not significantly different from zero. The bottom panel of Table 1 provides the decomposition of

variance into economy-wide, regional, and idiosyncratic shocks. At each draw of the Gibbs sampler,

we obtain the shares for each series and then average over units within a block. We then report

the mean and standard deviation of these block-level decompositions across all draws. According

to the results, the common housing factor accounts for 10 to 17% of the regional fluctuations in the

housing market while regional factors account for anther 12 to 24%. However, by far the largest

source of variations in the housing market are idiosyncratic. Our methodology thus seems capable

of disentangling the different levels of cross-sectional variation.

In addition to the housing analysis being of interest in its own right, we also use this simple

example to assess the precision of the estimator. Treating the posterior means of the parameter

estimates as well as F̂t and Ĝt as ‘true’ values, and resampling εX we construct a set of simulated

data. The simulated data are then used to estimate the parameters. Comparing the estimates

obtained from the simulated data with the ’true’ values gives an assessment of the precision of the

estimates.

The top left panel of Figure 1 graphs the (true) F against F̂ . The two are almost indistinguish-

able, showing the sampler gives posterior means that are very close to the true values of the latent

process. Clearly, F̂ is significantly below zero in recent years. At the end of our estimation sample

(2008:2), F̂ is -0.843, with a sample standard deviation of 0.320. In comparison, the maximum

value of F̂ over the sample is 0.427. The top right panel of Figure 1 graphs Gb1 against Ĝb1 for

the West, which is far more volatile than the factors in the Northeast and the other regions. The

Ĝb are quite close to the true factor processes as implied by the simulated data. It is evident that

shocks to all three regions have mostly been negative since 2006. While the state of housing in

the other regions appears to be still in a downward trend, there are signs of rebounding in both

the West and Northeast at the end of our sample period. In sum, we find that regional and to a

smaller extent economy-wide shocks have contributed to the recent housing slump.
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4.2 A Six Block Model for Production

We estimate a dynamic hierarchical factor model for six blocks of data related to output in the US

economy that are released at different dates in each month: industrial production (IP), capacity

utilization (CU), the establishment survey (ES), the household survey (HS), manufacturers’ surveys

(MS), and durable goods (DG). According to the IC2 criterion of Bai and Ng (2002), four of the

six blocks have either one or two factors. However, the criterion suggests that the HS and MS

blocks may have as many as eight factors. Although our Bayesian estimation approach generally

allows for different numbers of factors across blocks, we let all blocks be driven by two block-level

components so as to enhance comparability of the results. We assume one common factor at the

aggregate level.4 Our model is described by the following set of parameters : KF = 1, kGb = 2 for

all b, sFr = 2, sGb = 2, qFr = qGb.k = qXb.i = 1 for all b = 1, . . . B, r = 1, . . .KF , k = 1, . . .KGb,

and i = 1, . . . Nb. We note that the estimated factors and idiosyncratic errors are generally mildly

persistent, suggesting that the transformed data used in the analysis are stationary.

The top panel of Table 2 reports the posterior means and standard errors of the dynamic

parameters. The common factor has an autoregressive coefficient of .795. The block-level factors

have varying degrees of persistence, and many of the block-level factors are close to white noise.

The block-level shocks tend to have larger variance than the shocks to the common factors.

In this model, there are 2 × N loadings on Gt, and KG × 1 loadings on Ft, where KG = 12

and N=315. Instead of reporting all the loadings, we summarize the properties of the model

by evaluating the relative importance of the common, block-level, and idiosyncratic variation.

According to the model, the DG block has the best fit. The bottom panel of Table 2 shows that

there is substantial heterogeneity across blocks. Of the six blocks considered, the CU, the IP, and

the ES blocks have the largest common component, explaining 20% or more of the variation in the

data of the block. The block-level shocks roughly explain another 15% of the variation in these

three blocks. Thus, the common and block-level factors in our sample of economic variables explain

close to 40% of the variation in the blocks. This is similar to what one finds in principal components

analysis applied to the much analyzed Stock and Watson dataset with 132 series, where the first

five factors are found to explain about 40% of the data.

While aggregate shocks to the CU, IP, and ES blocks are more important than the block-level
4Initial estimation assuming two common factors suggests that the second factor has a very small variance, and

dropping it did not lead to any noticeable change in the decomposition of variance.
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shocks, the block-level component is larger than the common component in all remaining blocks.

Shocks common to MS block account for around 24% of the variations, compared to the common

component of about 4%. The result that stands out in Table 2 is that the idiosyncratic component

always explains the largest share of variation. In particular, 80% of the variation in the Household

Survey block is idiosyncratic, and only 2% of the variation in that block is explained by the common

factor F . Although the monthly employment report (which contains the HS data) is well-watched by

financial markets, our findings suggest that the HS data contain little information about the level

of non-housing real economic activity. The results generally highlight the difficulty in distilling

information relevant for aggregate policy from observed data, as block-level information can be

disguised as common variations, and a large idiosyncratic component can make precise estimation

of the common factor space difficult.

The relative importance of the common factors based on principal components estimation is

also reported in Table 3. Both one and two step principal component estimation of Ft suggests

that the first two factors explain about 40% of the variation in the data. The correlation between

our first factor F̂1 and the first principal component is 0.80.

As noted earlier, if block-level variations are important, some of the principal components

extracted from the entire panel of data might correspond to block-level factors. To investigate this

issue, we regress the principal components F̃rt on F̂ to obtain residuals ẽrt for each r = 1, . . .KF .

These are variations deemed common by the method of principal components but not by our F̂t.

We then check if these residuals can be explained by our estimated block-level factors by regressing

ẽrt on Ĝbkt. To conserve space, Table 3 reports the R2s that exceed 0.1. Evidently, many of

the block-level variations are correlated with the factors estimated by the method of principal

components from the entire data panel. The first and second principal components are correlated

with variations in the Establishment Survey block (b = 3) with a correlation as high as 0.716, while

the third principal component is highly correlated with the Household Survey block (b = 4). This

could be a consequence of the fact that the employment block constitutes one third of the data,

and common variations in the Household Survey block are deemed more important in principal

component analysis than in our framework. The factors of the Durable Goods block (b = 6) are

correlated with the second and fourth principal component. Overall, we interpret these results as

suggesting that variations identified as common by principal component analysis may in fact occur

at the block-level and not be genuinely common.
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Figure 2 graphs the factors estimated using the three different methods. The top panel plots

F̂t estimated using our hierarchical model against the first principal component F̃t(G̃t) extracted

from the block-level principal components. The lower panel graphs F̂t against the first principal

component F̃t extracted from the entire data panel. All estimates indicate that the trough of the

last recession occurred towards the end of 2001. This is in agreement with the NBER business cycle

dates which report November 2001 as the trough of the last recession. All estimates also indicate a

slowdown in the level of real activity since the middle of 2005, with the common factor F̂t estimated

using our hierarchical model suggesting a weaker economy than the principal component estimates.

4.3 A Four Level Model

Some blocks of data are naturally organized by sub-blocks. For example, data on the establishment

and household surveys are released together in the employment report, while data for industrial

production and capacity utilization are also released at the same time. Our hierarchical factor

model can easily be extended to allow for a sub-block level as we will discuss next.

We continue to let Xbit denote variables associated with block-level factors Gbt. To distinguish

data associated with blocks that have sub-blocks from those that do not, let Zbsit be the observed

data for block b where s is an index for the sub-blocks. Let Hbst be the factors of sub-block b. Then

a four-level model can be represented by

Zbsit = ΛH.bsi(L)Hbst + eXbsit (14)

Hbst = ΛG.bs(L)Gbt + eHbst (15)

Gbt = ΛF.b(L)Ft + eGbt (16)

Fkt = ΨF.1Fk,t−1 + . . .ΨF.qFk
Fk,t−qF + εFkt (17)

eGbt = ΨG.b1eGb,t−1 + . . .+ ΨG.bqGb
eGb,t−qGb

+ εGbt (18)

eHbst = ΨH.bs1eHbs,t−1 + . . .+ ΨH.bsqHbs
eHbs,t−qHbs

+ εHbst (19)

eXbsit = ΨX.bsi1eXbsi,t−1 + . . .+ ΨX.bsiqXbs
eXbsi,t−qXbs

+ εXbsit (20)

The dependence of Ht on Gt implies that

Hbst = αG.bst + ΨH.bs1Hbst−1 + . . .ΨH.bsqHbs
Hbst−qHbs

+ εHbst

where αG.bst = ΨH.bs(L)ΛG.b(L)Gbt. As in the level three model, the dependence of Gbt on Ft in
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turn implies

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .ΨG.bqGb
Gbt−qGb

+ εGbt.

Conditional on Gbt, Ft, and Θ, we can draw Hbst for each s and b, and conditional of Ft, we can

draw Gbt for each b. Blocks that have a sub-block structure can be combined with blocks that do

not. A model with more levels can always be decomposed into a sequence of two-level models. Of

course, we will need to have a reasonable number of series at the sub-block level, and a multi-level

model would be more time intensive to estimate. But conceptually, a model with ’branches’ in

some but not all blocks is straightforward to set up in our framework.

In our application of a four level model, we consider nine sub-blocks of data: the establishment

survey (ES), household survey (HS), manufacturer’s survey (MS), durable goods (DG), industrial

production (IP) and capacity utilization (CU), retail sales (RS), wholesale trade (WT), and autos-

ales (AUTO). We organize the nine sub-blocks in three blocks that together comprise 402 series.

The first is an output block with sub-blocks IP, CU, MS, and DG representing the goods pro-

duction. The second is a labor market block consisting of sub-blocks ES and HS. The third is a

demand block consisting of sub-blocks RS, WT, and AUTO. We estimate one common factor and

let KG = (1, 2, 1) and KH = 2 for all sub-blocks. We interpret the estimated common factor as a

factor for real economic activity.

Table 4 only reports the autoregressive parameters for Gt and Ft. As in the three level models

considered in the previous section, the common factor is again more persistent than the block-

level factors. The ψG for the output factor is close to that found for CU and IP, while that for the

employment block is higher than that found for ES or HS. The demand factor is the least persistent

of all block factors. Table 4 also reports the decomposition of variance, which is now performed at

the sub-block level. The CU and IP blocks continue to have the largest common component. The

sub-blocks of the demand block have relatively large variations due to factors common to series in

the sub-blocks, but the overall picture remains that idiosyncratic shocks dominate.

Perhaps of most interest is an analysis of the state of real economic activity estimated with the

model. This is presented in Figure 3. The solid line is the F̂t based on our model and the dotted

line is the principal component estimate, F̃t, both standardized to have a mean of zero and unit

variance. Note that our F̂t is noticeably smoother than F̃t. The latter features large spikes in 1996

that are also picked up by our sub-block factors for the establishment survey block ES. One potential

explanation for this relates to the government shutdown of the budget in January 1996. Due to the
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large number of employment related series in the dataset, the first principal component extracted

from the entire panel puts a lot of weight on this block-level event. In contrast, it is appropriately

treated as variations associated to a sub-block of employment using our four-level hierarchical

model. Our (non-standardized) estimates suggest that the state of real economic activity at the

end of our sample in 2008:02 stood at -.328. With the sample standard deviation of F̂t being .202,

the level of real activity was thus considerably below average. However, according to our estimate,

activity in 2008:02 was still stronger than at the trough of the 2001 recession for which we record

a value of -0.598.

5 Conclusion

This paper lays out a framework for analyzing dynamic hierarchical factor models. The approach

has three advantages. First, by extracting common components from blocks, the estimated factors

have a straightforward interpretation. Explicitly modeling the block-level variation also resolves an

important drawback of standard (two-level) factor models in which common shocks at the block-

level can be confounded with genuinely common shocks. Second, the blocks can be defined to

take advantage of the timing of data releases, which makes the framework suitable for real time

monitoring of economic activity. Third, the framework allows for a more disaggregated analysis of

economic fluctuations while still achieving a reasonable level of dimension reduction. While a two-

level model only enables counter-factual analyses of aggregate or idiosyncratic shocks, the effects

of aggregate, block-level, and idiosyncratic shocks can be coherently analyzed in our framework.
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Sampling {Ft}

To obtain estimates of the global factors F given the block factors G, we have to perform the
following steps. First, pre-whiten the observation equation

Gt = ΛF (L)Ft + eGt

so that its errors are i.i.d. This gives ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt or

G̃t = Λ̃F (L)Ft + εGt

where G̃t = ΨG(L)Gt, and where Λ̃F (L) = ΨG(L)ΛF (L) = Λ̃F0+Λ̃F1L+...+Λ̃Fs∗FL
s∗F is a KG×KF

matrix polynomial of order s∗F = qG + sF . Stacking the lags of F , this gives the companion form:

G̃t =
[

Λ̃F.0 Λ̃F.1 · · · Λ̃F.s∗F

]
Ft
Ft−1

...
Ft−s∗F

+ εGt


Ft
Ft−1

...
Ft−s∗F+1

 =


ΨF.1 · · · ΨF.qF 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Ft−1

Ft−2
...

Ft−s∗F

+


εFt
0
...
0


or

G̃t = ~̃ΛF ~Ft + εGt and ~Ft = ~ΨF
~Ft−1 +~εFt

where ~ΣF = V ar(~εFt) =
(

ΣF 0
0 0

)
.

Denote ΞF the set of parameters {~̃ΛF , ~ΨF ,ΣG,~ΣF }. Then, following Carter and Kohn (1994),
the conditional distribution of the factors ~F given the pre-whitened block factors {G̃t} and the
parameters ΞF can be obtained by performing the following steps. First run the Kalman filter
forward to obtain estimates ~FT |T of the (stacked) factors and their variance covariance matrix ~PT |T
in period T based on all available sample information:

~Ft+1|t = ~ΨF
~Ft|t

~PFt+1|t = ~ΨF
~PFt|t~Ψ

′
F + ~ΣF

~Ft|t = ~Ft|t−1 + ~PFt|t−1
~̃Λ
′
F

(
~̃ΛF ~PFt|t−1

~̃Λ
′
F + ΣG

)−1(
G̃t −

~̃ΛF ~Ft|t−1

)
~PFt|t = ~PFt|t−1 − ~PFt|t−1

~̃Λ
′
F

(
~̃ΛF ~PFt|t−1

~̃Λ
′
F + ΣG

)−1
~̃ΛF ~PFt|t−1

Next, draw ~FT from its conditional distribution given ΞF and the data through period T :

~FT |{G̃t},ΞF ∼ N(~FT |T , ~PFT |T )
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Then, for t=T−1, . . . , 1 proceed backwards to generate draws ~Ft|T from

~Ft|T |~F ∗t+1, {G̃T },ΞF ∼ N(~Ft|t, ~F ∗t+1
, ~Pt|t, ~F ∗t+1

) (21)

where ~Ft|t, ~F ∗t+1
= ~Ft|t + ~Pt|t~Ψ

∗′
F (~Ψ∗F ~Pt|t ~Ψ

∗′
F + ΣF )−1 (~F ∗t+1 − ~Ψ∗F ~Ft|t)

and ~Pt|t, ~F ∗t+1
= ~Pt|t − ~Pt|t ~Ψ

∗′
F (~Ψ∗F ~Pt|t ~Ψ

∗′
F + ΣF )−1 ~Ψ∗F ~Pt|t.

where ~F ∗t and ~Ψ∗F are the first KF rows of ~Ft and ~ΨF , respectively. Note also that we initialize the
Kalman filter with the unconditional mean and variance of the states ~F , i.e. ~F1|0 = E[~F ] = 0 and

vec(~P1|0) =
[
IsF∗ −

(
~ΨF ⊗ ~ΨF

)]−1
vec(~ΣF ).

Sampling {Gt}

A similar algorithm can be used to sample the block factors G. Since the block-dynamics are
assumed to be independent, this can be done block by block. Recall that X̃bt = Λ̃Gb(L)Gbt +
εXbt,∀ b = 1, . . . , B, where X̃bt = ΨXb(L)Xbt and Λ̃Gb(L) = ΨXb(L)ΛGb(L) is a Nb × Kb matrix
polynomial of order s∗G = qX + sG. Furthermore, Gbt = αFbt + ΨG.b1Gbt−1 + . . .ΨG.bqGb

Gbt−qGb
+

εGbt where αFbt = ΨGb(L)ΛF (L)Ft, ∀ b = 1, . . . , B. Together, these two equations imply the
following state-space form

X̃bt =
[

Λ̃G.b0 Λ̃G.b1 · · · Λ̃G.bs∗G

]
Gbt
Gbt−1

...
Gbt−s∗G

+ εXbt


Gbt
Gbt−1

...
Gbt−s∗G

 =


αFbt

0
...
0

+


ΨGb1 · · · ΨGbqG 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Gbt−1

Gbt−2
...

Gbt−s∗G−1

+


εGbt

0
...
0


or

X̃bt = ~̃ΛGb ~Gbt + εXbt and ~Gbt = ~αFbt + ~ΨGb
~Gbt−1 +~εGbt

where ~ΣGb = V ar(~εGbt) =
(

ΣGb 0
0 0

)
.

Denote ΞGb the set of parameters {~ΛGb, ~ΨGb,~ΣGb,ΣXb}. Conditional on ΞGb and {Ft}, the
above equations represent a state-space system with a time-varying intercept. We therefore need to
slightly adjust the Carter and Kohn (1994) method laid out before. The complete set of equations
is as follows.

First, run the Kalman filter forward to obtain estimates ~GbT |T of the factors and their variance
covariance matrix ~PbT |T in period T based on all available sample information. With the time-
varying intercept ~αFbt, this implies the following steps:
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~Gbt+1|t = ~αFbt + ~ΨGb
~Gbt|t

~PGbt+1|t = ~ΨGb
~PGbt|t~Ψ

′
Gb + ~ΣGb

~Gbt|t = ~Gbt|t−1 + ~PGbt|t−1
~̃Λ
′
Gb

(
~̃ΛGb ~PGbt|t−1

~̃Λ
′
Gb + ΣXb

)−1(
X̃bt −

~̃ΛGb ~Gbt|t−1

)
~PGbt|t = ~PGbt|t−1 − ~PGbt|t−1

~̃Λ
′
Gb

(
~̃ΛGb ~PGbt|t−1

~̃Λ
′
Gb + ΣXb

)−1
~̃ΛGb ~PGbt|t−1

We again initialize the filter with the unconditional mean and variance of the states ~Gb, i.e.
~Gb1|0 = E[~Gb] and vec(~P1|0) = vec(var(~Gb)). Precisely, these are given by

E[~Gbt] = E
[
~αFbt + ~ΨGb

~Gbt−1 +~εGbt
]

= 0

V ar(~Gbt) = V ar(~αFbt + ~ΨGb
~Gbt−1 +~εGbt)

= V ar(~αFbt) + ~ΨGbV ar(~Gbt−1)~Ψ′Gb + ~ΣGb + 2~ΨGbCov(~αFbt, ~Gbt−1)

Altogether, we therefore have

vec(V ar(~Gb)) =
[
I −

(
~ΨGb ⊗ ~ΨGb

)]−1 (
~ΣαF + ~ΣGb + 2~ΨGbΣαFGb

)
where

~ΣαF = V ar(~αFbt) =
[

ΣαF 0
0 0

]
and ΣαF = V ar(αFbt) = V ar(~̃ΛFb0 ~Ft) = ~̃ΛFb0V ar(~Ft)

~̃Λ
′
Fb0

Moreover,

~ΣαFGb
= Cov(~αFbt, ~Gbt−1) =

[
Σab 0
0 0

]
,

with Σαb = ~̃ΛFb1V ar(~Ft−1)~Λ′Fb0

The Kalman filter iterations provide us with the conditional distribution of ~GbT |T given ΞGb and
the data through period T :

~GbT |{X̃bt},ΞGb ∼ N(~GbT |T , ~PGbT |T )

Using again the algorithm of Carter and Kohn, we sample the entire set of factor observations
conditional on the parameters ΞGb and all the data. Given the Gaussianity and Markovian structure
of the state-space model, the distribution of ~Gbt given ~Gbt+1 and X̃btis normal:

~Gbt|X̃bt, ~G
∗
bt+1,ΞGb ∼ N(~Gbt|t, ~G∗bt+1

, ~PGbt|t, ~G∗bt+1
) (22)
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where

~Gbt|t, ~G∗bt+1
= E[~Gbt|X̃bt, ~G

∗
bt+1]

= ~Gbt|t + ~PGbt|t~Ψ
∗′
Gb

(
~Ψ∗Gb ~PGbt|t~Ψ

∗′
Gb + ΣGb

)−1
(~G∗bt+1 − ~αbt+1 − ~Ψ∗Gb ~Gbt|t)

~PGbt|t, ~G∗bt+1
= V ar(~Gbt|X̃bt, ~G

∗
bt+1)

= ~PGbt|t − ~PGbt|t~Ψ
∗′
Gb

(
~Ψ∗Gb ~PGbt|t~Ψ

∗′
Gb + ΣGb

)−1
~Ψ∗Gb ~PGbt|t

where ~G∗bt+1 and ~Ψ∗Gb denote the first kb rows of ~Gbt+1 and ~ΨGb, respectively. Given these conditional
distributions, we can then proceed backwards to generate draws ~G∗bt for t=T−1, . . . , 1.
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Table A1: Data
Block Variables Ordered 1 and 2

1 CU Capacity Utilization: Machinery (SA, Percent of Capacity)
Capacity Utilization: Motor Vehicles and Parts (SA, Percent of Capacity)

2 IP IP: Durable Consumer Goods (SA, 2002=100)
IP: Nondurable Consumer Goods (SA, 2002=100)

3 ES All Employees: Wholesale Trade (SA, Thous)
Avg Wkly Earnings: Construction (SA, $/wk)

4 HS Civilian Labor Force: Men: 25-54 Years (SA, Thous)
Unemployment Rate: Full-Time Workers: Men (SA, %)

5 MS ISM Mfg: PMI Composite Index (SA, 50+ = Econ Expand)
Phila FRB Bus Outlook: General Activity, Current, Diffusion Index (SA,%)

6 DG Mfrs’ Inventories: Machinery (EOP, SA, Mil.$)
Mfrs’ Unfilled Orders: Machinery (EOP, SA, Mil.$)

7 RS Retail Sales: General Merchandise Stores (SA, Mil.$)
Retail Sales: Motor Vehicle Dealers (SA, Mil$)

8 WT Merchant Wholesalers: Sales: Automotive (SA, Mil.$)
Merchant Wholesalers: Sales: Apparel (SA, Mil.$)

9 AUTO Domestic Car Retail Sales (SAAR, Mil. Units)
Domestic Light Truck Retail Sales (SAAR, Mil. Units)

10 H- NE Housing Starts: 1-Unit: Northeast (SAAR, Thous.Units)
Housing Completions: 1-Unit: Northeast (SAAR, Thous.Units)

11 H- WEST Housing Starts: 1-Unit: West (SAAR, Thous.Units)
Housing Completions: 1-Unit: West (SAAR, Thous.Units)

12 H- CTL Housing Starts: 1-Unit: Midwest (SAAR, Thous.Units)
Housing Starts: 1-Unit: South (SAAR, Thous.Units)

Summary Statistics
b T N IC2 R2eF1

R2eF2
AR eF1

AR eF2

CU 191 25 1 0.210 0.092 0.112 0.031
IP 191 38 1 0.208 0.086 0.123 0.033
ES 191 72 2 0.189 0.132 -0.190 0.675
HS 191 85 8 0.113 0.081 -0.122 -0.446
MS 191 35 4 0.143 0.108 -0.062 -0.104
DG 191 60 2 0.115 0.088 0.273 0.302
RS 191 30 1 0.187 0.086 -0.333 -0.301
WT 191 53 1 0.093 0.064 -0.312 -0.115
AS 191 4 4 0.483 0.242 -0.360 -0.365

H- NE 191 8 8 0.190 0.181 -0.352 -0.531
H- WEST 191 7 7 0.240 0.196 -0.310 -0.199
H- CTL 191 18 0 0.119 0.091 -0.112 -0.246

Note: IC2 is the Bai-Ng (2002) criteria for determining the number of factors. R2
j is the j-th eigenvalue of x′x

divided by the sum of the eigenvalues. AR eFj
is the first order autocorrelation of j-th principal component of F .
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Table A2: Univariate Analysis of Principal Component Estimates
Two Step Model:

G̃bjt = Λ̃F.bjF̃t(G̃t) + ẽGbjt

G̃bjt = Ψ̃G.bjG̃bjt−1 + ε̃Gbjt

ẽGbjt = Ψ̃eGbj
ẽGbjt−1 + ε̃Gbjt

F̃kt(G̃t) = Ψ̃F.kF̃kt−1(G̃t) + ε̃Fkt.

Block T Nb IC2 R2
Gb.1

R2
Gb.2 Ψ̃ eG.b1 Ψ̃ eG.b2

CU 191 25 1 0.210 0.092 0.112 0.031
IP 191 38 1 0.208 0.086 0.123 0.033
ES 191 72 2 0.189 0.132 -0.190 0.675
HS 191 85 8 0.113 0.081 -0.122 -0.446
MS 191 35 4 0.143 0.108 -0.062 -0.104
DG 191 60 2 0.115 0.088 0.273 0.302
RS 191 30 1 0.187 0.086 -0.333 -0.301
WT 191 53 1 0.093 0.064 -0.312 -0.115
AS 191 4 4 0.483 0.242 -0.360 -0.365
H- NE 191 8 8 0.190 0.181 -0.352 -0.531
H- WEST 191 7 7 0.240 0.196 -0.310 -0.199
H- CTL 191 18 0 0.119 0.091 -0.112 -0.246

Note: Let G̃bjt be the j-th factor obtained by the method of principal components using data
from block b. Then R2

Gbj
is the explanatory power of the j factor, obtained as the ratio of j-th largest

eigenvalue X ′X to the sum of the eigenvalues. Ψ̂ eG.bj is the estimated first order autocorrelation

coefficient of G̃bj .
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Table 1: A Three Level Housing Model

Posterior Means and Standard Deviations: ψ̂G and ψ̂F
Estimates Standard Errors

b j ψG.bj σ̂2
G.bj ψG.bj σ̂2

G.bj

1 1 -0.007 0.366 0.177 0.098
1 2 -0.105 0.082 0.114 0.031
2 1 0.009 0.310 0.126 0.085
2 2 -0.251 0.091 0.128 0.038
3 1 0.110 0.116 0.179 0.066
3 2 -0.114 0.040 0.114 0.015

ψF σ2
F

1 0.945 0.016

Decomposition of Variance
Estimates Standard Errors

block σ2
X shareF shareG shareX σ2

X shareF shareG shareX
Data

1 1.490 0.173 0.237 0.590 2.299 0.133 0.059 0.087
2 1.742 0.106 0.230 0.664 5.924 0.103 0.051 0.064
3 1.368 0.140 0.118 0.742 1.269 0.101 0.032 0.077
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Table 2: A Six Block Three Level Model for Production:

Gbt = ΛF.b(L)Ft + eGbt

ΨF.r(L)Frt = εFrt, r = 1, . . .KF

ΨG.bj(L)eGbjt = εGbjt, j = 1, . . .KGb.

Block j Ψ̂G.bj σ̂2
εbj S.E

CU: 1 1 0.272 0.031 0.114 0.026
CU: 1 2 0.288 0.072 0.166 0.033
IP: 2 1 0.322 0.043 0.117 0.020
IP: 2 2 0.098 0.064 0.107 0.018
ES: 3 1 0.013 0.027 0.185 0.010
ES: 3 2 -0.034 0.027 0.185 0.010
HS: 4 1 -0.067 0.103 0.100 0.021
HS: 4 2 -0.021 0.059 0.101 0.013
MS: 5 1 0.381 0.860 0.130 0.103
MS: 5 2 0.087 0.106 0.099 0.023
DG: 6 1 -0.101 0.039 0.173 0.009
DG: 6 2 0.041 0.041 0.175 0.009
Factor ΨF.k σ̂2

F.k S.E.
1 0.795 0.020 0.068 0.008

Principal Component Estimates
N R2

F.1 R2
F.2 Ψ̃F.1 Ψ̃F.2

F̃t(G̃t) 14 .205 .133 .074 .272
F̃t 315 .210 .208 .187 .339

Decomposition of Variance
Estimates Standard Errors

block σ2
X shareF shareG shareX σ2

X shareF shareG shareX
1 CU: 1.235 0.197 0.144 0.659 0.120 0.048 0.021 0.042
2 IP: 1.318 0.245 0.151 0.604 0.153 0.054 0.019 0.043
3 ES: 1.116 0.201 0.138 0.661 0.112 0.053 0.020 0.037
4 HS: 1.061 0.021 0.170 0.809 0.029 0.015 0.011 0.013
5 MS: 1.130 0.044 0.244 0.712 0.053 0.025 0.020 0.018
6 DG: 1.033 0.062 0.141 0.798 0.040 0.028 0.013 0.024

Table 3: Correlation Between Ĝbkt and ẽ
rt| bF

r b k ρ r b k ρ

1 3 2 0.235 4 1 2 0.109
2 3 2 0.716 4 6 1 0.233
2 5 1 0.124 5 4 2 0.139
2 6 2 0.196 6 2 2 0.138
3 4 1 0.616 7 5 2 0.224
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Table 4: A Nine Block Four Level Model for Real Activity
b j Ψ̂G.bj σ̂2

εbj S.E
1 1 0.302 0.101 0.140 0.024
2 1 0.351 0.037 0.193 0.015
2 2 0.342 0.019 0.328 0.007
3 1 0.182 0.063 0.173 0.024

Factor ΨF.k σ̂2
F.k S.E.

1 0.895 0.013 0.049 0.007

Decomposition of Variance
block sub-block σ2

X shareF shareG shareH shareX
Estimates

1 CU 1.239 0.104 0.137 0.169 0.590
1 IP 1.157 0.099 0.129 0.153 0.619
1 MS 1.050 0.027 0.033 0.237 0.703
1 DG 0.975 0.022 0.027 0.172 0.779
2 ES 1.032 0.051 0.103 0.205 0.641
2 HS 1.026 0.018 0.037 0.177 0.767
3 RS 1.091 0.045 0.072 0.213 0.669
3 WT 1.007 0.015 0.023 0.164 0.798
3 AU 1.050 0.040 0.066 0.552 0.342

Standard Errors
1 CU 0.525 0.063 0.033 0.027 0.040
1 IP 0.404 0.061 0.029 0.020 0.041
1 MS 0.076 0.027 0.012 0.018 0.023
1 DG 0.072 0.023 0.008 0.013 0.021
2 ES 0.167 0.044 0.026 0.027 0.033
2 HS 0.058 0.023 0.013 0.014 0.022
3 RS 0.509 0.044 0.020 0.022 0.032
3 WT 0.147 0.022 0.010 0.015 0.022
3 AU 0.332 0.046 0.034 0.051 0.027
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Figure 1: “True” and Estimated Factors for Housing
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95 100 105
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
NE: G and Ĝ
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Figure 2: 6-Block, 3 Level Model of Output
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Figure 3: 9-Block, 4 Level Model of Real Economic Activity
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