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1 Introduction

Estimators of the autoregressive parameter of the AR(1) model are generally thought to be super-

consistent when there is a unit root, but that the asymptotic distribution is non-standard. This

paper finds an estimator that has a convergence rate of T 3/4 and has a non-standard distribution,

and three estimators with a convergence rate of
√
T with t-statistics that are asymptotically normal.

The primary reason for the classical properties of our estimators is that the moments evaluated

at the true parameter vector are stationary, and a central limit theorem applies. The studentized

estimators are asymptotically standard normal, allowing one to conduct inference without deciding

a priori whether or not the regressors are non-stationary. The same set of critical values can also

be used irrespective of how the deterministic trend function is specified. Because our estimators

are not super-consistent when the regressors are truly non-stationary, not surprisingly, this slower

rate of convergence translates into power loss when the unit root hypothesis is being tested. This

is the price we pay for practical simplicity and robustness. However, these properties can be

highly useful in applied work because the answers to many macroeconomic questions are sensitive

to assumptions about the nature of the trend and to whether the corresponding regressions are

run in levels or in first-differences (see Han, Phillips, and Sul (2009a,b)). A general method that

would work uniformly well whether the regressors are integrated (with a unit root)), stationary or

nearly-integrated may still be attractive.

Our discussion focuses on the AR(1) model yt = α0yt−1 + et, et ∼ i.i.d.(0, 1). Most linear

estimators of α are
√
T consistent and asymptotically normal when α0 < 1 but are super-consistent

and non-normal when α0 = 1. Our main estimator is denoted ’QD’ and it adopts a method of

moments setup. Let wt be the data and let θ0 denote the true parameter vector of dimension

K. Consider a vector of M × 1 moments g(wt; θ) = gt(θ) and assume that Eg(wt; θ0) = 0. Let

ḡ(θ) = 1
T

∑T
t=1 gt(θ) be the vector of sample moments evaluated at an arbitrary θ. The generalized

methods of moments estimator using a M ×M positive definite weighting matrix WT is

θ̂ = argmin
θ

QT (θ), QT (θ) = ḡ(θ)′WT ḡ(θ). (1)

Whereas the standard theory assumes wt is stationary ergodic, we allow wt to be possibly non-

stationary. The classical OLS estimator uses the moment condition E [(yt − αyt−1)yt−1] = E [et(α)yt−1] =

0. The corresponding QT (α) is asymptotically bounded at the true value α0, but asymptotically

explodes at α 6= α0 when α0 equals unity or is in the 1/T neighborhood of one. What we need

for a
√
T consistent and normal estimator is that QT (θ) converges to Q(θ) uniformly in θ and the

cental limit theorem holds for θ̂ at the true value θ0.
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Our main idea is to use a stationary instrument in place of yt−1 in the moment condition.

For example, our FD estimator uses the moment condition E [et(α)∆yt−1] = 0, while three other

estimators use E [et(α)et−1] = 0. The latter moment condition arguably has more information than

the former since ∆yt−1 may be over-differenced in the stationary case. As et−1 is not observed,

we suggest two ways of implementing this. The first is a two-step HD estimator whereby one first

proxies et−1 by some first stage residuals êt−1 (such as the OLS) so that the moment condition

is linear in α. The second and more direct implementation is to perform non-linear estimation

and estimate the error term et−1 simultaneously with α. But because the objective function is

quadratic in α, it explodes in the neighborhood of the unit root process. We show that such an

estimator converges at rate T 3/4 and has a non-standard distribution. However, we observe that the

higher lag auto-covariances have the same exploding summand. By subtracting the variance from

all autocovariances, we are able to obtain a
√
T consistent QD estimator that is asymptotically

normal.

The key to the proposed estimators is to find moments such that central limit theorem holds,

at least when the sample moments are evaluated at the true parameter vector. We begin in Section

2 by first considering an exactly identified model, abstracting from deterministic terms and serial

correlation in the errors. The general AR(p) case with deterministic terms will then be discussed.

Extensions to predictive regressions will also be considered.

2 The AR(1) Model

Consider the simple AR(1) without deterministic terms, so that

yt = α0yt−1 + et, et ∼ i.i.d. (0, σ2). (2)

When α0 < 1, standard asymptotic theory holds, and T−1
∑T

t=1 y
2
t−1

p−→E(y2
t ) = σ2

1−α2
0
. In the

local-to-unity framework with α0 = 1 + c/T , the functional central limit theorem holds that
1√
T

∑[Tr]
t=1 et ⇒ σW (r) and thus T−2

∑T
t=1 y

2
t−1 ⇒ σ2

∫ 1
0 Jc(r)

2dr, where ⇒ denotes weak conver-

gence in distribution, Jc(r) is an Ornstein-Uhlenbeck process generated by the standard Brownian

motion W (r) defined on C[0, 1], the space of continuous functions on [0, 1]. The fact that the

sample moments have different properties when α0 < 1 and when α0 = 1 have been the basis of

many unit root tests. The distribution of OLS estimator has a discontinuity at α0 = 1 which makes

inference difficult.
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2.1 The QD Estimator

Our main estimator is based on matching the sample moments of some transformation of the data

with the moments of the model under the same transformation. For the AR(1) model, define

et(α) = yt − αyt−1 as the quasi-difference of yt. Let

γj(α) = E(et(α)et−j(α))

be the autocovariance of et at lag j. The sample analog in terms of observed variables is

γ̂j(α) =
1
T

T∑
t=1

(yt − αyt−1)(yt−j − αyt−j−1).

Consider the estimator

α̂QD0

J = arg min
α

J∑
j=1

(γ̂j − γj)2 .

Also define

α̂QDJ = argmin
α

J∑
j=1

ḡQDj (α)′ḡQDj (α)

where

ḡQDj (α) = γ̂j(α)− γ̂0(α) =
1
T

T∑
t=1

(yt − αyt−1)
[
(yt−j − αyt−j−1)− (yt − αyt−1)

]
.

The estimators are labelled ‘QD’ since they are based on the quasi-differences of yt. The primary

difference between QD0 and QD is that the former does not subtract γ̂0(α) from γ̂j(α).

Proposition 1 Let yt be generated as in (2). Then

i.
√
T (α̂QDJ − α0)⇒ N(0, σ2

J) uniformly over |α0| ≤ 1, where σ2
J =

“PJ
j=1 α

(j−1)
0

”2
+
PJ
j=1 α

2(j−1)
0“PJ

j=1 α
2(j−1)
0

”2 .

ii. α̂QD0

J is super-consistent in the local-to-unity framework with α0 = 1 + c/T . In particular, T 3/2(α̂QD0

J − α0)2 ⇒ −ξR 1
0 J

2
c (s)ds

if ξ < 0

T (α̂QD0

J − α0)⇒ 1+2
R 1
0 Jc(s)dW (s)

2
R 1
0 J

2
c (s)ds

if ξ > 0
(3)

where Jc is an Ornstein-Uhlenbeck process generated by the Brownian motion W that is in-

dependent of ξ ∼ N(0, 1/J).
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Proposition 1 shows that it is possible to have estimators of α that converges at a rate slower than

T and also not normally distributed, but an estimator of α with classical properties is also possible.

The proposition implies that when J = 1, then uniformly over |α0| ≤ 1,

√
T (α̂QD1 − α0)⇒ N(0, 2)

The two QD estimators are non-standard covariance structure estimators. Usually, the unknown

parameters enter only the analytical covariances of the model, which in our case, is γ1(α). With our

estimator, α enters the sample covariance γ̂1(α) as well. If |α0| << 1, our estimator is easily shown

to have classical properties under regularity conditions. But in the local-to-unity framework, ḡ(α)

is not well behaved for all values of α. Thus while α̂QD0 is consistent, the asymptotic distribution is

non-standard. However, the problematic term that frustrates a quadratic expansion of γ̂j(α) around

α0 is asymptotically collinear with the corresponding term in γ̂0(α). Note that γ̂j(α) − γ̂0(α) is

the sample analog of E(et(α)[et−j(α)− et(α)]), and the sample mean of et−j(α)− et(α) is bounded

for all values of α. This leaves us with a ḡQD(α) that, when evaluated at α0, obeys a central limit

theorem. Proposition 1 follows.

The QD estimator has an asymptotic distribution that is normal and continuous at α0 = 1.

Few estimators of α are
√
T consistent and asymptotically normal when α0 = 1. There are two

exceptions. So and Shin (1999) considered α̂ =
PT
t=2 xtytPT
t=1 xtyt−1

while Phillips and Han (2008) considered

α̂ =
PT
t=2 ∆yt−1(2∆yt+∆yt−1)PT

t=2(∆yt−1)2
. Both are linear estimators and can also be seen as using stationary

instruments.1 Our QD estimator is non-linear; it is motivated by the intuitive fact that E(etet−1) =

0 when evaluated at the true value of α. Our key to asymptotic normality is that the sample analog

of E(etet−1) = 0 obeys a central limit theorem. We now consider linear estimators based on this

same moment.

2.2 A Hybrid Estimator

Recall that the least squares estimator uses the moment gt(α) = yt−1et. Although yt−1 is orthogonal

to et, the sample moment has a random limit in the local-to-unity framework. Suppose et−1 was

observed and we replace yt−1 by et−1 in the moment condition. It is uncorrelated with et(α)

and is hence a valid instrument. The only problem is that et−1 is not observed. To resolve this

problem, we use the fact that the least squares estimator α̂OLS is consistent for all |α0| ≤ 1. Thus,

let ẽt−1 = yt − α̂OLSyt−1. Conveniently, generated instruments do not require a correction for the

1Choi (1993) showed that the least squares estimates of the autoregressive coefficients are
√
T consistent and

asymptotically normal, even though the sum of the autoregressive coefficients has a Dickey-Fuller type distribution
when the true sum is unity. For cointegration regressions, Laroque and Salanie (1997) used two OLS regressions in
stationary variables to obtain a

√
T consistent estimate of the cointegrating vector.
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standard errors like generated regressors. Let α̂HD be a hybrid quasi-difference estimator satisfying

ḡHD(α̂HD) =
1
T

T∑
t=k

ẽt−k(yt − α̂HDyt−1) = 0.

It is easy to see that

α̂HD =
∑T

t=k ytẽt−k∑T
t=k yt−1ẽt−k

= α0 +
∑T

t=k et(α0)ẽt−k∑T
t=k yt−1ẽt−k

.

Consistency of α̂HD follows from the fact that γ̂k(α0)
p−→γk(α0). We refer to α̂HD as a hybrid

estimator because it is based on the covariance between the quasi-difference of yt and a stationary

random variable. The objective function is now linear in α. This is unlike QD0 which is based on

the product of two quasi-differenced variables. It is the quadratic term in this product that makes

the distribution of QD0 non-standard. It is then straightforward to show that HD behaves in the

classical way even in local-to-unity region:

Proposition 2 Let yt be generated as in (2) with α0 = 1 + c/T . Then

√
T (α̂HD − α0)⇒ 2(1 + Jc(1)2)−1N(0, 1). (4)

To construct the t-statistic one can use

Âvar(α̂HD) = σ̂2

(
T−1

T∑
t=1

yt−1ẽt−1

)2

,

where σ̂2 is a consistent estimate of σ2. Then tHD ⇒ N(0, 1).

2.3 The FD Estimator

The HD is a two-step IV estimator. Consider a one-step estimator using ∆yt−1 as instrument:

α̂FD =
∑T

t=2 yt∆yt−1∑T
t=2 yt−1∆yt−1

. (5)

Under the AR(1) model,

α̂FD = α0 +
T−1

∑T
t=2 et∆yt−1

T−1
∑T

t=2 yt−1∆yt−1

.

Consistency follows from the fact that T−1
∑T

t=1 et∆yt−1
p−→E(et∆yt−1), which is zero. In the local

to unity framework,
√
T (α̂FD − α0)⇒ 2(1 + Jc(1)2)−1N(0, 1).
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The estimator again has an asymptotic variance that is random, but can be estimated by

Âvar(α̂FD) = σ̂2

(
T−1

T∑
t=1

yt−1∆yt−1

)2

,

σ̂2 is a consistent estimate of σ2. The standardized estimator is again approximately normal.

We have suggested three estimators that are
√
T consistent and asymptotically normal in the

local to unity framework. These estimators also have classical properties in the standard asymp-

totic framework when α0 is strictly bounded from the unit circle. In particular,
√
T (α̂QD0 −

α0) d−→N(0, 1),
√
T (α̂QD−α0) d−→N(0, 2),

√
T (α̂HD−α0) d−→N(0, 1), and

√
T (α̂FD−α0) d−→N(0, 2(1+

α0)). Notably, these are inefficient estimators relative to OLS, since
√
T (α̂OLS−α0) d−→N(0, 1−α2

0).

However, the QD, HD, and FD estimators all have stanardized distributions that are continuous

in α0. Testing the hypothesis that α0 = 0.95 is as simple as testing the hypothesis that α0 = 0.5.

The practical appeal is that asymptotic normality permits standard inference. The usual critical

values of -1.64 and -2.32 can be used when the significance level of the test is 5 and 1 percent,

respectively. We will see in simulations that their size and power properties are stable throughout

the parameter space of α.

3 Deterministic Terms and Correlated Errors

We now consider a more general data generating process

yt = dt + xt, (6)

xt = α0xt−1 + ut, β(L)ut = et,

α0 = 1 +
c

T
, (7)

β(L) = 1− β1L− . . .− βpLp,
∞∑
j=0

|βj | <∞,

et ∼ iid(0, σ2) ω2 = σ2(1− β(1)2)−1

where e0 = 0, E(x2
0) <∞, β(L) = ψ(L)−1 with

∑∞
j=0 |ψj | <∞, et ∼ iid(0, σ2). The non-normalized

spectral density at frequency zero of ut is given by ω2 = σ2(1− β(1))−2. The deterministic terms

are captured by dt =
∑r

j=0 δjt
j where r is the order of the deterministic trend function. We focus

on the intercept only case with dt = δ0 and the linear trend case with dt = δ0 + δ1 t. Hereafter,

we let θ = (α, σ2, β1, . . . , βp) be the K × 1 vector of parameters of the model. The true parameter

vector is denoted θ0 and the correct lag length is denoted p0.

Let x̂t = yt − d̂t, the residuals from a projection of yt on the deterministic terms. Now when

an intercept is included, the Brownian motion in G0 will be replaced by a demeaned Brownian
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motion. For example, ḠHDT (α0) ⇒ GHD0 = −σ2

2 (J̄c(1)2 + 1) where J̄c(r) = Jc(r) −
∫ 1

0 Jc(r)dr.

The extension to the linear trend case is similar, with the obvious replacement of J̄(r) by J̃c(r),

where J̃c(r) = Jc(r)−
∫ 1

0 (4− 6s)Jc(s)ds− r
∫ 1

0 (12− 6s)W (s)ds is a detrended standard Brownian

motion. GLS and recursive detrending can easily be accommodated. The population quantity of

the detrended variables

γk(α) = E(xt − αxt−1)(xt−k − αxt−k−1)

for k ≥ 0 can be replaced by the sample analog,

γ̂k(α) =
1
T

T∑
t=1

(x̂t − αx̂t−1)(x̂t−k − αx̂t−k−1).

When ut is serially correlated and β(L) is a finite p-th order polynomial in L, we simply match

up to p autocovariances γk(α), k = 1, . . . , p. As with any estimator of the autoregressive model,

the lag length p is important. To see how p affects inference, suppose p0 = 2, so the DGP is

yt = ρ0yt−1 − b0,1∆yt−1 + et. If the researcher (wrongly) assumes p = 1, then γ̂k − γk will not

be zero for any k > 1. The J test of overidentifying restrictions provides a natural guide to

the selection of p. In this sense, p is no longer a nuisance parameter but is chosen to satisfy the

moment conditions. Estimates corresponding to a J test that rejects the moment conditions should

be disregarded.

4 Simulations

We now use simulations to illustrate the properties of our estimators. For D=QD0, QD, HD or

FD, let

ḡD(θ, p) = (ḡD1 (θ, p), . . . , ḡDM (θ, p))′

where M is the number of lagged autocovariances. The estimators are constructed as

θ̂D = argmin
θ∈θ ḡD(θ, p)′WT ḡ

D(θ, p).

We simulate data as follows:

yt = dt + xt

(1− αL)xt = et, et ∼ N(0, 1)

The parameter of interest is α. We bound the parameter space for α to [−1.5, 1.5]. If the converged

estimates are outside of this range, we change the starting value up to 3 times. Very rarely does

an estimate falls outside of this range. The simulations are based on 2,000 replications.
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As a point of reference, OLS estimates for ρ are reported. These are based on the regression

yt = δ0 + δ1t+ ρyt−1 +
p−1∑
j=1

bj∆yt−j + error.

For QD and QD0 estimators we use two-step GMM (optimal weighting matrix), while for HD and

FD estimators we use an identity weighting matrix.

Table 1 reports the mean estimates for the intercept and the linear trend model when T = 200

and 500, along with the J test for overidentifying restrictions. The downward bias in OLS estimates

when the data are highly persistent is well known. The HD and FD estimators are also downward

biased, but less so than OLS. The QD is the most accurate of the estimators considered. Note that

the QD0 is generally precise, even though its distribution is non-normal. The last panel of Table 1

shows that the J statistic has the correct size.

Table 2 reports the finite sample power for one sided tests at alternatives evaluated at α =

α0− .05 and α = α0− .10. The high power reported for OLS when α exceeds .9 mainly reflects size

distortions. The result that stands out is that the size of the proposed tests is quite uniform over

the entire parameter space. This permits testing if H0 : α = .95, for example, a parameter region

when least squares based tests have highly distorted size.

Ultimately, the proposed estimators are useful only if the potential for a more accurate size when

the data are highly persistent does not come at the cost of power loss outside of the persistent range.

This turns out to be the case. For example, when α0 is .5, the power of OLS, QD, and HD are quite

similar, even though the power of FD is somewhat lower. The reason is that when α0 is far from

the unit circle, OLS is
√
T consistent, just like the QD, FD, and HD. Power is also fairly similar

for both the intercept only and the linear trend model.

Figure 1 plots the distribution of t-statistics for QD, QD0, FD, HD and OLS estimators at

T=200 and T=500. As one can see, the QD0 is non-normal. However, the normal approximation to

the finite sample distribution of the three estimators are good. This is quite remarkable, considering

that a non-standard distribution is expected when one works with highly persistent data.

5 Predictive Regressions

The proposed estimators can be used in other problems when highly persistent data have caused

problems for estimation and inference. In Gorodnichenko and Ng (2007), the QD is used to estimate

dynamic stochastic general equilibrium (DSGE) models. The estimators can be also be used in
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predictive regressions. Suppose there is one regressor, and

yt = βxt−1 + uyt (8)

xt = αxxt−1 + ext,

uyt = αyuyt−1 + eyt, |αy| < 1

where eyt ∼ (0, σ2
y), ext ∼ (0, σ2

x), cov(ext, eyt) = σxy, cov(ext−j , eyt−k) = 0, ∀j, k 6= 0. If αx = 1,

(1−β) is a cointegrating vector, and least squares provide super-consistent estimates but inference

is non-standard. As is well known, the finite sample distribution of β̂OLS is not well approximated

by the normal distribution if xt is highly persistent and possibly non-stationary. The challenge is

how to conduct inference that is robust to the dynamic properties of the data.

Let θ = (αx, αy, β, σ2
x, σ

2
y , σxy)

′. Let γk be the model-implied autocovariance between yt and

xt−k, both quasi-differenced at αx, and let γ̂k is the sample analog. Our QD estimator is

θ̂ = argmin
θ

ḡQD(θ)′WT ḡ
QD(θ)

where ḡQD(θ) is defined as in AR(1) case, but in addition to autocovariances for yt and xt, the

cross-covariances are also considered. Let Yt = (yt, xt, uyt)′ and Vt = (eyt, ext)′. The state-space

representation of this model is:
∆αxyt
∆αxxt
∆αxuyt
eyt
ext

 =


0 β αy −αy 0
0 αx 0 0 −αy
0 0 αy −αy 0
0 0 0 0 0
0 0 0 0 0




∆αxyt−1

∆αxxt−1

∆αxuy,t−1

ey,t−1

ex,t−1

+


1 0
0 1
1 0
1 0
0 1


[
eyt
ext

]

which can be simplified to∆αxyt
∆αxxt
ext

 =

0 β 0
0 αx −αy
0 0 0

∆αxyt−1

∆αxxt−1

ex,t−1

+

1 0
0 1
0 1

[eyt
ext

]
(9)

Using (9), we can compute all the autocovariance of quasi-differenced variables as implied by

the model. Matching the sample covariances of the quasi-differenced variables with those of the

model yields estimates of the parameters with normal properties. Using the moments of the quasi-

differenced variables in estimation can potentially be used in a broad range of applications.

6 Concluding Comments

In this paper, we suggest that moments based on quasi-differenced data can be used to derive

estimators with classical properties. We also show that for the AR(1) model, it is possible to have
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an estimator of α that converges at a rate of T 3/4, which appears to be a new result. It is an open

question whether estimators with a convergence rate faster than
√
T can be asymptotically normal.

Quasi-differencing renders possibly non-stationary processes stationary so that classical limit

theorems can be applied. But it is also because of this that the estimates are
√
T consistent and

not super-consistent in the local-to-unity framework. In exchange for this slower convergence, our

estimators are asymptotically normal throughout the parameter space.

Quasi-differencing has a long tradition in econometrics and underlies GLS estimation. Canjels

and Watson (1997) and Phillips and Lee (1996) found that quasi-differencing gives more precise

estimates of the trend parameters when the errors are highly persistent. Pesavento and Rossi

(2006) suggest that for such data, quasi-differencing can improve the coverage of impulse response

functions. In both studies, the data are quasi-differenced at α = ᾱ which is fixed at the value as

suggested by the local to unity framework. This parameter is being estimated in our QD and HD.

Further work in this direction may prove to be useful.
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Appendix

Proof of Proposition 1

Properties of QD First let us consider the problem of matching the j−th autocovariance. That

is, Qj(α) = (γ̂j(α)−γj)2 and α̂ = arg minαQj(α). Under our assumptions ω = γ0 = σ2, and γj = 0

for all j > 0.

Qj(α) =
((

1
T

∑
etet−j − γj

)
− α− α0

T

∑
[etyt−j−1 + et−jyt−1] +

+
(α− α0)2

T

∑
yt−1yt−j−1

)2

.

We denote the i−th derivative of Qj(α) by Q(i)
j . The first order condition for the optimization

is Q(1)
j (α̂) = 0. The usual GMM logic deduces the asymptotics of α̂ from the Taylor expansion of

the form

Q
(1)
j (α̂) = Q

(1)
j (α0) + (α̂− α0)Q(2)

j (α∗) = 0.

However, this logic does not work here since
Q

(2)
j (α0)

Q
(2)
j (α∗)

= 0 for α∗ 6= α0. In fact, the next term in

the Taylor expansion has the same problem. We expand the first order condition until the residual

term keeps the same order of magnitude for α in the neighborhood of α0:

Q
(1)
j (α0) + (α̂− α0)Q(2)

j (α0) +
(α̂− α0)2

2
Q

(3)
j (α0) +

(α̂− α0)3

6
Q

(4)
j (α∗) = 0. (10)

We use the following asymptotic statements:

√
T

(
1
T

∑
etet−j − γj

)
⇒ ξj ∼ N(0, σ2

j ), (11)

1√
T

[Ts]∑
t=1

et ⇒ ωW (s), (12)

1
T

∑
et−jyt−1 ⇒ γ0 + ...+ γj−1 + ω2

∫ 1

0
Jc(s)dW (s), (13)

1
T

∑
etyt−1−j ⇒ −γ1 + ...− γj−1 + ω2

∫ 1

0
Jc(s)dW (s), (14)

1
T 2

∑
yt−1yt−j−1 ⇒ ω2

∫ 1

0
J2
c (s)ds. (15)

Here (11) is a regular Central Limit Theorem, (12) is a Functional Central Limit Theorem, (13)-

(15) are a slight modification of local-to-unity asymptotic results (see for example, Phillips (1987)).

The variable ξj are mutually independent and independent from W (·), σ2
j = σ4 is the long-run

11



variance of the sequence etet−j , ω = γ0 = σ2 is the long-run variance of et, Jc(s) =
∫ s

0 e
c(t−s)dW (t)

is an Ornstein-Uhlenbeck process.

From (11) - (15) it is easy to find the order of magnitude of different terms:

T 1/2Q
(1)
j (α0) =a −2

√
T

(
1
T

∑
etet−j − γj

)∑
[etyt−j−1 + et−jyt−1]⇒

⇒ −2ξj

(
γ0 + 2ω2

∫ 1

0
Jc(s)dW (s)

)
;

T−1/2Q
(2)
j (α0) =a 4

√
T

(
1
T

∑
etet−j − γj

)
1
T

(
1
T

∑
yt−1yt−j−1

)
⇒

⇒ 4ξjω2

∫ 1

0
J2
c (s)ds;

T−1Q
(3)
j (α0) =a −12

1
T

(
1
T

∑
yt−1yt−j−1

)(
1
T

∑
[etyt−j−1 + et−jyt−1]

)
⇒

⇒ −12ω2

∫ 1

0
J2
c (s)ds

(
γ0 + 2ω2

∫ 1

0
Jc(s)dW (s)

)

T−2Q
(4)
j (α) = 24

(
1
T 2

T∑
1

yt−1yt−2

)2

⇒ 24
(
ω2

∫ 1

0
J2
c (s)ds

)2

> 0

To summarize:

Q
(1)
j (α0) = O(T−1/2), Q(2)

j (α0) = O(T 1/2), Q(3)
j (α0) = O(T 1), Q(4)

j (α) = O(T 2)

Assume that T γ(α̂− α0) = O(1), and calculate the order of magnitude of different terms:

Q(1)(α0) = O(T−1/2), Q(2)(α0)(α̂− α0) = O(T 1/2−γ),

Q(3)(α0)(α̂− α0)2 = O(T 1−2γ), Q(4)(α0)(α̂− α0)3 = O(T 2−3γ)

It allows us to find what terms are dominating in the Taylor expansion (10):

- if γ < 3/4 then Q(4)(α0)(α̂− α0)3 is the only leading term;

- if γ = 3/4 then Q(4)(α0)(α̂− α0)3 and Q(2)(α0)(α̂− α0) are leading and of the same order;

- if 3/4 < γ < 1 then Q(2)(α0)(α̂− α0) is the only leading term;

- if γ = 1 then Q(2)(α0)(α̂− α0) and Q(1)(α0) are leading and of the same order;

- if γ > 1 then Q(1)(α0) is the only leading term.

12



Given that we have to solve equation (10), the only suspects are γ = 3/4 and γ = 1.

If γ = 3/4 then asymptotically we have the following equation:

(α̂− α0)Q(2)
j (α0) +

(α̂− α0)3

6
Q

(4)
j (α∗) = 0.

or

T 3/2(α̂− α0)2 = −T 3/2
Q

(2)
j (α0)

Q
(4)
j (α∗)

⇒ −ξj
ω2
∫ 1

0 J
2
c (s)ds

the equation has solution only for ξj < 0.

If γ = 1 then asymptotically we have the following equation:

Q
(1)
j (α0) + (α̂− α0)Q(2)

j (α0) = 0.

or

T (α̂− α0) = T
Q

(1)
j (α0)

Q
(2)
j (α0)

⇒
γ0 + 2ω2

∫ 1
0 Jc(s)dW (s)

2ω2
∫ 1

0 J
2
c (s)ds

But if ξj < 0 then at the above mentioned solution the second derivative Q(2)
j (α̂) will be of the

wrong sign (the solution is a local maximum of Q rather than a local minimum). That is, we proved

that (3) holds.

Now, let us consider a possibility that several covariances are matched, that is:

Q(α) =
J∑
j=1

Qj(α), α̂QD0 = arg min
α
Q(α).

All statements analogous to those above stay valid and lead to (3) with ξj being replaced with∑J
j=1 ξj/J ∼ N(0, σ4/J). So, one can see that in the AR(1) case matching more than one autoco-

variance leads to increase in efficiency.

Properties of QD The QD estimator is α̂ = arg minα gj(α)2,

gj(α) =
[
γ̂j(α)− γ̂0(α)

]
−
[
γj(α)− γ0(α)

]
.

Again in our case γj(α) = 0 for all j > 0, and γ0 = σ2.

γ̂j(α) =
1
T

T∑
t=1

etet−j + (α0 − α)
1
T

T∑
t=1

(
yt−1et−j + yt−j−1et

)
+ (α0 − α)2 1

T

T∑
t=1

yt−1yt−j−1

γ̂0(α) =
1
T

T∑
t=1

e2
t + 2(α0 − α)

1
T

T∑
t=1

yt−1et + (α0 − α)2 1
T

T∑
t=1

y2
t−1.
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1
T

∑
[yt−1yt−j−1 − y2

t−1] =
1
T

∑
yt−1yt−j−1 −

1
T

∑
yt−1(αj0yt−j−1 +

j−1∑
k=0

αk0et−k−1)

= (1− αj0)
1
T

∑
t

yt−1yt−j−1 −
1
T

j−1∑
k=0

αk0

(∑
t

yt−1et−k−1

)
.

If α0 = 1 + c/T , and j is fixed, then (13) and (15) imply

1
T

∑
[yt−1yt−j−1 − y2

t−1]⇒ j

(
−cω2

∫ 1

0
J2
c (s)ds− γ0 − ω2

∫ 1

0
Jc(s)dW (s)

)
= Op(1).

It implies that α̂ is
√
T consistent, and

√
T (γ̂j(α̂)− γ̂0(α̂)) = ξj − ξ0 +

√
T (α̂−α0)

(
γ0 + 2ω2

∫
Jc(r)dW (r)− 2ω2

∫
Jc(r)dW (r)

)
+ op(1).

That is,
√
Tg(α̂) = ξj − ξ0 + γ0

√
T (α̂− α0) + op(1).

This gives
√
T (α̂− α0) ∼ N(0, 2).

If we use the classical assumption that |α0| < 1 is fixed, then again the second order term

T−1
∑

[yt−1yt−j−1 − y2
t−1] = Op(1)

The term on (α0 − α) is
1
T

T∑
t=1

(
yt−1et−j + yt−j−1et

)
→p αj−1

0 σ2

The estimate α̂ is
√
T consistent,

√
T (γ̂j(α̂)− γ̂0(α̂)) = ξj − ξ0 +

√
T (α̂− α0)αj−1

0 σ2 + op(1),

and
√
T (α̂− α0)⇒ N(0, 2/α2(j−1)

0 ).

Now assume that we match a fixed number of autocovariances:

α̂QDJ = arg min
α

J∑
j=1

g2
j (α).

We assume that J stays fixed. The first order condition is
∑J

j=1 gj(α̂)∂gj∂α (α̂) = 0. In local to unity

asymptotic framework we have ∂gj
∂α (α̂) = 2γ0 + op(1) and as before

√
Tg(α̂) = ξj − ξ0 + γ0

√
T (α̂−

α0) + op(1). That is, our problem is asymptotically equivalent to

J∑
j=1

(ξj − ξ0) +
√
T (α̂− α0)Jγ0 + op(1) = 0.
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That is,
√
T (α̂− α0)⇒ N(0, 1 + 1/J).

In stationary asymptotics: ∂gj
∂α (α̂) = 2σ2αj−1 + op(1) and as before

√
Tg(α̂) = ξj − ξ0 +

αj−1
0 σ2

√
T (α̂− α0) + op(1). As a result:

√
T (α̂− α0) = −

∑J
j=1(ξj − ξ0)αj−1

0

σ2
∑J

j=1 α
2(j−1)
0

⇒ N(0, σ2
J)

Where

σ2
J =

(∑J
j=1 α

(j−1)
0

)2
+
∑J

j=1 α
2(j−1)
0(∑J

j=1 α
2(j−1)
0

)2

The FD Estimator

Consider the FD estimator:

α̂FD − α0 =
∑T

t=1 et∆yt−1∑T
t=1 yt−1∆yt−1

.

Since ∆y−1 = et−1 when α0 = 1, the numerator satisfies 1√
T

∑T
t=1 etet−1

d−→N(0, σ4). The denomi-

nator is yt−1et−1 = (yt−2+et−1)et−1. Now T−1
∑T

t=1 yt−2et−1 ⇒ σ2

2 (Jc(1)2−1) and T−1
∑T

t=1 e
2
t−1

p−→σ2.

Thus, the denominator converges to σ2

2 (Jc(1)2 + 1).

To show that the t statistic is asymptotically normal even though α̂ is only conditionally normal,

we need to show that the numerator and the denominator of the t statistic are independent. For

this, we need to consider the joint distribution of[
T−1/2

∑T
t=1 et−1et T−1

∑T
t=1 yt−1et−1

]
.

Their covariance is

T−3/2E

[ T∑
s=1

es−1es

T∑
t=1

yt−1et−1

]
.

Since yt−1 =
∑t

j=1 ej−1, this covariance is non-zero only if s = t. In this case,

T−3/2
T∑
s=1

E(e2
se

2
s−1) = T−3/2

T∑
s=1

σ4 = σ4T−1/2 p−→0.

The two terms are asymptotically uncorrelated. By the Brownian motion property of the denomina-

tor and asymptotic property of the numerator, the two terms are also asymptotically independent.

By the continuous mapping theorem, the ratio has a limit 2(1 + Jc(1)2)−1N(0, 1).
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When |α0| < 1, the denominator is

T−1
T∑
t−1

yt−1∆yt−1 = T−1
T∑
t=1

y2
t−1 − yt−1yt−2 = γ̂y(0)− γ̂y(1)

p−→ γy(0)− γy(1) =
σ2(1− α0)

1− α2
0

=
σ2

1 + α0
.

Now consider the numerator: T−1
∑T

t=1 et∆yt−1
p−→E(et∆yt−1) = 0 by the law of iterated pro-

jection and var(∆yt) = 2γy(0) − 2γy(1) = 2 σ2

(1+α0) . It follows that var(et∆yt−1) = 2σ4/(1 + α0).

Combining the results,
√
T (α̂FD −α0) d−→ (1+α0)

σ2 N(0, 2σ4

(1+α0)) = N(0, 2(1 +α0)). Arguments similar

to FD apply to HD estimator. Details are omitted.
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Table 1: Mean Estimates of ρ and Rejection Rates of J Test.

ρ0 M OLS QD QD0 HD FD QD QD0 HD FD
DGP 1(a) Mean estimates J test

Intercept model: T=200
1.00 2 0.973 1.002 1.004 0.975 0.961 0.071 0.090 0.062 0.065
0.98 2 0.956 0.983 0.998 0.962 0.958 0.072 0.080 0.062 0.065
0.95 2 0.927 0.954 0.962 0.933 0.932 0.072 0.063 0.061 0.065
0.92 2 0.898 0.925 0.930 0.904 0.903 0.072 0.070 0.059 0.065
0.90 2 0.878 0.906 0.909 0.884 0.883 0.073 0.071 0.060 0.066
0.85 2 0.827 0.858 0.855 0.834 0.834 0.075 0.082 0.059 0.067
0.50 2 0.474 0.507 0.493 0.486 0.488 0.084 0.109 0.062 0.070
-0.50 2 -0.539 -0.511 -0.499 -0.495 -0.491 0.114 0.107 0.068 0.028

Intercept model: T=500
1.00 2 0.989 1.004 0.998 0.990 0.974 0.054 0.079 0.056 0.055
0.98 2 0.971 0.985 0.996 0.974 0.974 0.059 0.055 0.057 0.056
0.95 2 0.941 0.955 0.960 0.944 0.945 0.061 0.046 0.055 0.055
0.92 2 0.911 0.925 0.929 0.914 0.915 0.061 0.055 0.054 0.055
0.90 2 0.891 0.906 0.907 0.894 0.895 0.060 0.058 0.055 0.055
0.85 2 0.841 0.856 0.851 0.844 0.845 0.060 0.068 0.054 0.054
0.50 2 0.489 0.504 0.497 0.495 0.496 0.072 0.074 0.056 0.062
-0.50 2 -0.513 -0.501 -0.498 -0.497 -0.495 0.086 0.075 0.059 0.031

Linear trend model: T=200
1.00 2 0.947 1.002 1.006 0.963 0.968 0.072 0.083 0.063 0.065
0.98 2 0.938 0.982 0.996 0.953 0.958 0.074 0.075 0.064 0.065
0.95 2 0.912 0.954 0.962 0.926 0.932 0.074 0.057 0.063 0.066
0.92 2 0.884 0.925 0.928 0.897 0.903 0.073 0.065 0.061 0.065
0.90 2 0.864 0.906 0.905 0.877 0.883 0.073 0.072 0.060 0.066
0.85 2 0.814 0.858 0.851 0.827 0.833 0.076 0.085 0.061 0.066
0.50 2 0.458 0.507 0.487 0.479 0.487 0.086 0.114 0.061 0.070
-0.50 2 -0.563 -0.511 -0.501 -0.497 -0.491 0.113 0.118 0.073 0.028

Linear trend model: T=500
1.00 2 0.979 1.005 0.999 0.986 0.988 0.059 0.071 0.056 0.057
0.98 2 0.965 0.985 0.996 0.971 0.974 0.061 0.052 0.056 0.056
0.95 2 0.936 0.955 0.959 0.942 0.944 0.061 0.043 0.055 0.055
0.92 2 0.906 0.925 0.927 0.912 0.914 0.061 0.053 0.054 0.055
0.90 2 0.886 0.906 0.905 0.892 0.894 0.060 0.059 0.055 0.056
0.85 2 0.836 0.856 0.849 0.842 0.844 0.060 0.070 0.055 0.054
0.50 2 0.483 0.504 0.495 0.492 0.496 0.072 0.078 0.057 0.063
-0.50 2 -0.524 -0.501 -0.499 -0.498 -0.495 0.086 0.078 0.064 0.031
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Table 2: Finite Sample Power: M = 2.

t1 : H0 : ρ = ρ0 t2 : H0 : ρ0 − .05 t3 : H0 : ρ = ρ0 − .10
H1 : ρ < ρ0 H1 : ρ > ρ0 − .05 H1 : ρ > ρ0 − .1

ρ0 OLS QD QD0 HD FD OLS QD QD0 HD FD OLS QD QD0 HD FD

T=200

1.00 0.454 0.061 0.113 0.124 0.029 0.539 0.168 0.392 0.158 0.067 0.912 0.319 0.641 0.568 0.251
0.98 0.225 0.063 0.085 0.109 0.032 0.466 0.194 0.376 0.215 0.094 0.883 0.333 0.597 0.614 0.289
0.95 0.147 0.069 0.134 0.107 0.042 0.374 0.197 0.246 0.229 0.124 0.805 0.329 0.538 0.617 0.309
0.92 0.117 0.072 0.132 0.101 0.047 0.308 0.198 0.198 0.227 0.130 0.725 0.327 0.529 0.606 0.304
0.90 0.110 0.074 0.128 0.100 0.050 0.281 0.198 0.177 0.223 0.132 0.674 0.322 0.531 0.600 0.305
0.85 0.097 0.082 0.115 0.097 0.051 0.222 0.192 0.160 0.210 0.134 0.563 0.313 0.547 0.574 0.297
0.50 0.076 0.099 0.091 0.084 0.046 0.106 0.165 0.204 0.172 0.125 0.252 0.287 0.480 0.432 0.265
-0.50 0.070 0.114 0.065 0.052 0.074 0.057 0.203 0.231 0.223 0.204 0.095 0.460 0.515 0.522 0.407

Intercept model: T=500

1.00 0.453 0.041 0.171 0.073 0.014 0.960 0.240 0.554 0.474 0.174 1.000 0.488 0.868 0.933 0.493
0.98 0.153 0.050 0.065 0.076 0.028 0.913 0.248 0.497 0.518 0.232 0.999 0.478 0.954 0.956 0.579
0.95 0.114 0.052 0.106 0.073 0.040 0.777 0.248 0.338 0.504 0.233 0.994 0.461 0.967 0.953 0.571
0.92 0.095 0.053 0.093 0.074 0.041 0.675 0.243 0.351 0.480 0.233 0.984 0.447 0.949 0.940 0.564
0.90 0.094 0.056 0.088 0.074 0.043 0.617 0.243 0.376 0.470 0.228 0.969 0.442 0.937 0.935 0.563
0.85 0.094 0.061 0.079 0.072 0.043 0.492 0.237 0.379 0.450 0.222 0.906 0.438 0.910 0.912 0.561
0.50 0.067 0.076 0.062 0.067 0.048 0.203 0.211 0.341 0.330 0.197 0.496 0.452 0.789 0.781 0.503
-0.50 0.062 0.074 0.052 0.047 0.063 0.100 0.335 0.366 0.389 0.296 0.187 0.774 0.829 0.856 0.677

Linear trend model: T=200

1.00 0.768 0.068 0.108 0.226 0.055 0.146 0.188 0.361 0.106 0.061 0.664 0.332 0.507 0.461 0.226
0.98 0.429 0.070 0.111 0.157 0.047 0.216 0.197 0.352 0.169 0.101 0.710 0.334 0.502 0.538 0.291
0.95 0.278 0.069 0.150 0.144 0.052 0.207 0.197 0.255 0.192 0.121 0.658 0.326 0.468 0.552 0.313
0.92 0.206 0.073 0.150 0.136 0.056 0.180 0.195 0.200 0.189 0.129 0.589 0.325 0.447 0.543 0.309
0.90 0.184 0.076 0.147 0.132 0.053 0.165 0.195 0.169 0.186 0.128 0.552 0.322 0.449 0.532 0.304
0.85 0.159 0.082 0.135 0.128 0.056 0.138 0.192 0.139 0.177 0.132 0.455 0.311 0.477 0.514 0.292
0.50 0.102 0.099 0.106 0.103 0.048 0.076 0.162 0.184 0.146 0.125 0.196 0.287 0.437 0.392 0.268
-0.50 0.082 0.113 0.069 0.056 0.075 0.048 0.203 0.220 0.214 0.203 0.078 0.459 0.499 0.506 0.406

Linear trend model: T=500

1.00 0.775 0.046 0.143 0.128 0.034 0.826 0.249 0.420 0.397 0.172 0.997 0.489 0.817 0.916 0.523
0.98 0.275 0.049 0.078 0.096 0.033 0.822 0.251 0.456 0.470 0.236 0.996 0.478 0.934 0.943 0.570
0.95 0.182 0.053 0.125 0.089 0.043 0.691 0.248 0.303 0.458 0.232 0.990 0.461 0.947 0.937 0.571
0.92 0.144 0.054 0.105 0.089 0.043 0.592 0.243 0.303 0.445 0.234 0.968 0.446 0.929 0.925 0.568
0.90 0.134 0.056 0.099 0.088 0.045 0.538 0.244 0.330 0.436 0.229 0.948 0.443 0.911 0.919 0.563
0.85 0.124 0.061 0.088 0.090 0.043 0.416 0.236 0.342 0.417 0.221 0.876 0.437 0.886 0.899 0.559
0.50 0.080 0.076 0.070 0.074 0.048 0.180 0.211 0.321 0.304 0.198 0.451 0.451 0.766 0.758 0.505
-0.50 0.073 0.074 0.056 0.050 0.063 0.089 0.335 0.357 0.376 0.296 0.164 0.774 0.826 0.849 0.676
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Figure 1: Distribution of the t-statistic for the largest autoregressive root in the intercept-only
model with K = 1,M = 2, α0 = 1.
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