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We prove a many-server heavy-traffic fluid limit for an overloaded Markovian queueing system having two customer
classes and two service pools, known in the call-center literature as the X model. The system uses the fixed-queue-
ratio-with-thresholds (FQR-T) control, which we proposed in a recent paper as a way for one service system to
help another in face of an unexpected overload. Under FQR-T, customers are served by their own service pool
until a threshold is exceeded. Then, one-way sharing is activated with customers from one class allowed to be
served in both pools. After the control is activated, it aims to keep the two queues at a pre-specified fixed
ratio. For large systems that fixed ratio is achieved approximately. For the fluid limit, or FWLLN, we consider
a sequence of properly scaled X models in overload operating under FQR-T. Our proof of the FWLLN follows
the compactness approach, i.e., we show that the sequence of scaled processes is tight, and then show that all
converging subsequences have the specified limit. The characterization step is complicated because the queue-
difference processes, which determine the customer-server assignments, need to be considered without spatial
scaling. Asymptotically, these queue-difference processes operate on a faster time scale than the fluid-scaled
processes. In the limit, due to a separation of time scales, the driving processes converge to a time-dependent
steady state (or local average) of a time-varying fast-time-scale process (FTSP). This averaging principle allows
us to replace the driving processes with the long-run average behavior of the FTSP.
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1. Introduction. In this paper we prove that the deterministic fluid approximation for the over-
loaded X call-center model, suggested in [37] and analyzed in [38], arises as the many-server heavy-traffic
fluid limit of a properly scaled sequence of overloaded Markovian X models under the fixed-queue-ratio-
with-thresholds (FQR-T) control. (A list of all the acronyms appears in §F in the appendix.) The X
model has two classes of customers and two service pools, one for each class, but with both pools capable
of handling customers from either class. The service-time distributions depend on both the class and the
pool. The FQR-T control was suggested in [36] as a way to automatically initiate sharing (i.e., sending
customers from one class to the other service pool) when the system encounters an unexpected overload,
while ensuring that sharing does not take place when it is not needed.

1.1 A Series of Papers. This paper is the fourth in a series. First, in [36] we heuristically derived a
stationary fluid approximation, whose purpose was to approximate the steady-state of a large many-server
X system operating under FQR-T during the overload incident. More specifically, in [36] we assumed that
a convex holding cost is incurred on both queues whenever the system is overloaded, and our aim was
to develop a control designed to minimize that cost. (That deterministic cost approximates the long-run
average cost during the overload incident in the stochastic model.) We further assumed that the system
becomes overloaded due to a sudden, unexpected shift in the arrival rates, with new levels that may not
be known to the system managers, and that the staffing of the service pools cannot be changed quickly
enough to respond to that sudden overload.

Under the heuristic stationary fluid approximation, in [36] we proved that a queue-ratio control with
thresholds (QR-T) is optimal, and showed how to calculate the optimal control parameters. We also
showed that the QR-T control outperforms the optimal static control when the arrival rates are known.
In general, that optimal QR-T control is a function of the arrival rates during the overload incident,
which are assumed to be unknown. In the special case of a separable quadratic cost, i.e., for C(Q1, Q2) =
c1Q

2
1 + c2Q

2
2, with c1, c2 being two constants, we proved that the FQR-T control is optimal, so that two

queue ratios – one for each direction of overload – are optimal for all possible overload scenarios. More
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generally, we found that a FQR-T control was approximately optimal, as illustrated by Figure 4 of [36].
Thus, in all subsequent work we have focused on the FQR-T control.

Second, in [37] we applied a heavy-traffic stochastic averaging principle (AP) as an engineering principle
to describe the transient (time-dependent) behavior of a large overloaded X system operating under FQR-
T. The suggested fluid approximation was expressed via an ordinary differential equation (ODE), which is
driven by a stochastic process. Specifically, the expression of the fluid ODE as a function of time involves
the local steady state of a stochastic process at each time point t ≥ 0, which we named the fast-time-scale
process (FTSP). As the name suggests, the FTSP operates on (an infinitely) faster time scale than the
processes approximated by the ODE, thus converges to its local steady state instantaneously at every
time t ≥ 0. Extensive simulation experiments showed that our approximations work remarkably well,
even for surprisingly small systems, having as few as 25 servers in each pool.

Third, in [38] we investigated the ODE suggested in [37] using a dynamical-system approach. The
dynamical-system framework could not be applied directly, since the ODE is driven by a stochastic
process, and its state space depends on the distributional characteristics of the FTSP. Nevertheless,
we showed that a unique solution to the ODE exists over the positive halfline [0,∞) for each specified
initial condition. The stationary fluid approximation, derived heuristically in [36], was shown to exist
as the unique fixed point (or stationary point) for the fluid approximation. Moreover, we proved that
the solution to the ODE converges to this stationary point, with the convergence being exponentially
fast. (That supports the steady-state approximation used in [36].) In addition, a numerical algorithm to
solve the ODE was developed, based on a combination of a matrix-geometric algorithm and the classical
forward Euler method for solving ODE’s.

1.2 Overview. In this fourth paper, we will prove that the solution to the ODE in [37, 38] for
specified initial condition is indeed the many-server heavy-traffic fluid limit of the overloaded X model,
which we also call a functional weak law of large numbers (FWLLN); see Theorem 4.1; see §3.4 for the
key assumptions. In doing so, we will prove a strong version of state-space collapse (SSC) for the server-
assignment processes; see Corollary 6.2 and Theorem 6.4. We will also prove a strong SSC result for the
two-dimensional queue process in Corollary 4.1. In a subsequent paper [39] we prove a functional central
limit theorem (FCLT) refinement of the FWLLN here, which describes the stochastic fluctuations about
the fluid path.

We only consider the X model during the overload incident, once sharing has begun; that will be
captured by our main assumptions, Assumptions 3.1 and 3.2. As a consequence, the model is stationary
(without time-varying arrival rates), but the evolution is transient, because the system does not start in
steady state. Because of customer abandonment, the stochastic models will all be stable, approaching
proper steady-state distributions. As a further consequence, during the overload incident sharing will
occur in only one direction, so that the overloaded X model actually behaves as an overloaded N model,
but that requires proof; that follows from Corollary 6.3 and Theorem 6.4. Our FWLLN serves as an
approximation for the time-dependent behavior of the model, as it approaches steady state. In addition,
we prove a weak law of large numbers for the stationary distributions, showing that the unique fixed
point of the fluid limit is also the limit of the scaled stationary model. Proving that latter result builds
on a novel limit-interchange argument, which requires the established FWLLN.

Convergence to the fluid limit will be established in roughly three steps: (i) representing the sequence
of systems (§§5.1 and 6), (ii) proving that the sequence considered is C-tight (§5.2), and (iii) uniquely
characterizing the limit ([38] and §7). The first representation step in §5.1 starts out in the usual
way, involving rate-1 Poisson processes, as reviewed in [35]. However, the SSC part in §6 requires a
delicate analysis of the unscaled sequence. The second tightness step in §5.2 is routine, but the final
characterization step is challenging. These last two steps are part of the standard compactness approach
to proving stochastic-process limits; see [7], [12], [35] and §11.6 in [48]. As reviewed in [12] and [35],
uniquely characterizing the limit is usually the most challenging part of the proof, but it is especially
so here. Characterizing the limit is difficult because the FQR-T control is driven by a queue-difference
process which is not being scaled and hence does not converge to a deterministic quantity with spatial
scaling. However, the driving process operates in a different time scale than the fluid-scaled processes,
asymptotically achieving a (time-dependent) steady state at each instant of time, yielding the AP.

As was shown in [38], the AP and the FTSP also complicate the analysis of the limiting ODE. First, it
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requires that the steady state of a continuous-time Markov chain (CTMC), whose distribution depends
on the solution to the ODE, be computed at every instant of time. (As explained in [38], this argument
may seem circular at first, since the distribution of the FTSP is determined by the solution to the ODE,
while the evolution of the solution to the ODE is determined by the behavior of the FTSP. However, the
separation of time scales explains why this construction is consistent.) The second complication is that
the AP produces a singularity region in the state space, causing the ODE to be discontinuous in its full
state space. Hence, both the convergence to the many-server heavy-traffic fluid limit, and the analysis of
the solution to the ODE depend heavily on the state space of the ODE, which is characterized in terms
of the FTSP. For that reason, many of the results in [38] are needed for proving convergence.

1.3 Literature. Our previous papers discuss related literature; see especially §2 of [36]. Our FQR-T
control extends the FQR control and other queue-and-idleness ratio controls suggested and studied in
[14, 15, 16], but the limits there were established for a different regime under different conditions. Here
we study the FQR-T control and establish limits for overloaded systems. Unlike that previous work, here
the service rates may depend on both the customer class and the service pool in a very general way.
In particular, our X model does not satisfy the conditions of the previous theorems even under normal
loads.

There is a substantial literature on averaging principles, e.g., see [26] and references therein, but there
is not one unified framework that can easily be applied to any model. Moreover, it is common practice to
use averaging principles as direct approximations, i.e., to simply replace a fast process by its long-term
average behavior. That is the classic approach for deterministic dynamical systems, e.g., see Chapters
10 and 11 of [25]. We ourselves took that approach in [37]. It is significant that, unlike the classical
dynamical-systems approach, the AP in our case here is a result of the fast oscillations of a stochastic
process (the FTSP discussed above). We thus named this phenomenon a stochastic averaging principle
in [38], although we refer to it simply as an AP.

Averaging principles are relatively rare in operations research. See p. 71 of [48] for discussion related
to the queueing literature. Two notable papers in the queueing literature are Coffman et al. [10], which
considers the diffusion limit of a polling system with zero switch-over times, and Hunt and Kurtz [18],
which considers large loss networks under a large family of controls. The limits via an AP in Hunt and
Kurtz [18] are the basis for other papers studying loss networks. We refer to [1] and [50], and references
therein. The work in [18] is also closely related to our work since it considers the fluid limits of such
loss systems, with the control-driving process moving on a faster time scale than the other processes
considered.

For the important characterization step, we give two proofs, one in the main paper and the other in the
appendix. The shorter proof in the main paper closely follows [18], exploiting martingales and random
measures, building on Kurtz [28]. In contrast, our second approach exploits stochastic bounds, which we
also use in the important preliminary step establishing state space collapse.

There is now a substantial literature on fluid limits for queueing models, some of which is reviewed in
[48]. For recent work on many-server queues, see [21, 24]. Because of the separation of time scales here,
our work is in the spirit of fluid limits for networks of many-server queues in [4, 5], but again the specifics
are quite different. Their separation of time scales justifies using a pointwise stationary approximation
asymptotically, as in [32, 47].

2. Preliminaries. In this section we specify the queueing model, which we refer to as the X model.
We then specify the FQR-T control. We then provide a short summary of the many-server heavy-traffic
scaling and the different regimes. We conclude with our conventions about notation.

2.1 The Original Queueing Model. The Markovian X model has two classes of customers, ini-
tially arriving according to independent Poisson processes with rates λ̃1 and λ̃2. There are two queues,
one for each class, in which customers that are not routed to service immediately upon arrival wait to
be served. Customers are served from each queue in order of arrival. Each class-i customer has limited
patience, which is assumed to be exponentially distributed with rate θi, i = 1, 2. If a customer does not
enter service before he runs out of patience, then he abandons the queue. The abandonment keep the
system stable for all arrival and service rates.
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There are two service pools, with pool j havingmj homogenous servers (or agents) working in parallel.
This X model was introduced to study two large systems that are designed to operate independently under
normal loads, but can help each other in face of unanticipated overloads. We assume that all servers are
cross-trained, so that they can serve both classes. The service times depend on both the customer class i
and the server type j, and are exponentially distributed; the mean service time for each class-i customer
by each pool-j agent is 1/µi,j . All service times, abandonment times and arrival processes are assumed
to be mutually independent. The FQR-T control described below assigns customers to servers.

We assume that, at some unanticipated time, the arrival rates change instantaneously, with at least one
increasing. At this time the overload incident has begun. We consider the system only after the overload
incident has begun, assuming that it is in effect at the initial time 0. We further assume that the staffing
cannot be changed (in the time scale under consideration) to respond to this unexpected change of arrival
rates. Hence, the arrival processes change from Poisson with rates λ̃1 and λ̃2 to Poisson processes with
rates λ1 and λ2, where λ̃i < mi/µi,i, i = 1, 2 (normal loading), but λi > µi,imi for at least one i (the
unanticipated overload). (These new arrival rates may not be known by the system manager.) Without
loss of generality, we assume that pool 1 (and class-1) is the overloaded (or more overloaded) pool. The
fluid model (ODE) is an approximation for the system performance during the overload incident, so that
we start with the new arrival rate pair (λ1, λ2). (The overload control makes sense much more generally;
we study its performance in this specific scenario.)

The two service systems may be designed to operate independently under normal conditions (without
any overload) for various reasons. In [36, 37] we considered the common case in which there is no efficiency
gain from service by cross-trained agents. Specifically, in [36] we assumed the strong inefficient sharing
condition

µ1,1 > µ1,2 and µ2,2 > µ2,1. (1)

Under condition (1), customers are served at a faster rate when served in their own service pool than
when they are being served in the other-class pool. However, many results in [36] hold under the weaker
basic inefficient sharing condition: µ1,1µ2,2 ≥ µ1,2µ2,1.

It is easy to see that some sharing can be beneficial if one system is overloaded, while the other is
underloaded (has some slack), but sharing may not be desirable if both systems are overloaded. In order
to motivate the need for sharing when both systems are overloaded, in [36] we considered a convex-
cost framework. With that framework, in [36] we showed that sharing can be optimal in the fluid
approximation, even if it causes the total queue length (queue 1 plus queue 2) to increase. Despite the
optimality of the control in the framework of [36], in this paper we do not assume that either the strong
or the weak inefficient sharing condition holds, since the FWLLN holds regardless of the service rates.
We mention that there can be other operational reasons for not sharing customers between pools during
normal loads (e.g., to avoid too much agent distraction), but to share during overloads (e.g., to provide
some minimal service-level constraints for both classes).

Let Qi(t) be the number of customers in the class-i queue at time t, and let Zi,j(t) be the number
of class-i customers being served in pool j at time t, i, j = 1, 2. Given a stationary (state-dependent)
routing policy, the six-dimensional stochastic process

X6(t) ≡ (Q1(t), Q2(t), Z1,1(t), Z1,2(t), Z2,1(t), Z2,2(t)), t ≥ 0, (2)

becomes a six-dimensional CTMC. (≡ means equality by definition.) In principle, the optimal control
could be found from the theory of Markov decision processes, but that approach seems prohibitively
difficult. For a complete analysis, we would need to consider the unknown transient interval over which
the overload occurs, and the random initial conditions, depending on the model parameters under normal
loading. In summary, there is a genuine need for the simplifying approximation we develop.

2.2 The FQR-T Control for the Original Queueing Model. The purpose of FQR-T is to
prevent sharing when the system is not overloaded, and to rapidly start sharing when the arrival rates
shift. If sharing is elected, then we allow sharing in only one direction.

Assumption 2.1 (one-way sharing) Sharing is allowed in only one direction at any one time.

When sharing takes place, FQR-T aims to keep the two queues at a certain ratio, depending on the
direction of sharing. Thus, there is one ratio, r1,2, which is the target ratio if class 1 is being helped
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by pool 2, and another target ratio, r2,1, when class 2 is being helped by pool 1. As explained in [36],
appropriate ratios can be found using the steady-state fluid approximation. In particular, the specific
FQR-T control is optimal in the special case of a separable quadratic cost function. More generally, fixed
ratios are often approximately optimal.

We now describe the control. The FQR-T control is based on two positive thresholds, k1,2 and k2,1,
and the two queue-ratio parameters, r1,2 and r2,1. We define two queue-difference stochastic processes
D1,2(t) ≡ Q1(t)−r1,2Q2(t) and D2,1 ≡ r2,1Q2(t)−Q1(t). As shown in [36], in that convex cost framework
there is no incentive for sharing simultaneously in both directions, implying that these ratio parameters
should satisfy r1,2 ≥ r2,1; see Proposition EC.2 and (EC.11) of [36]. However, even without the cost
framework, we do not want sharing to ever occur in both directions simultaneously. Hence we make the
following assumption.

Assumption 2.2 (ordered ratio parameters) The ratio parameters are assumed to satisfy r1,2 ≥ r2,1.

As long as D1,2(t) ≤ k1,2 and D2,1(t) ≤ k2,1 we consider the system to be normally loaded (i.e., not
overloaded) so that no sharing is allowed. Hence, in that case, the two classes operate independently.
Once one of these inequalities is violated, the system is considered to be overloaded, and sharing is
initialized. For example, if D1,2(t) > k1,2 and Z2,1(t) = 0, then class 1 is judged to be overloaded and
service-pool 2 is allowed to start helping queue 1: If a type-2 server becomes available at this time t,
then it will take its next customer from the head of queue 1. When D1,2(t) − k1,2 ≤ 0, new sharing is
not initiated. Then new sharing stops until one of the thresholds is next exceeded. However, sharing
in the opposite direction with pool 1 servers helping class 2 is not allowed until both Z1,2(t) = 0 and
D2,1(t) > k2,1.

It can be of interest to consider alternative variants of the FQR-T control just defined. For example,
it may be desirable to relax the one-way sharing rule imposed above. We might use additional lower
thresholds for Z1,2(t) and Z1,2(t) to allow sharing to start more quickly in the opposite direction when
the queue lengths indicate that is desirable. However, we do not discuss such control variants here.

With the FQR-T control just defined, the six-dimensional stochastic process X6 ≡ {X6(t) : t ≥ 0} in
(2) is a CTMC. (The control depends only on the process state.) This is a stationary model, but we are
concerned with its transient behavior, because it is not starting in steady state. We aim to describe that
transient behavior. The control keeps the two queues at approximately the target ratio, e.g., if queue 1 is
being helped, then Q1(t) ≈ r1,2Q2(t). If sharing is done in the opposite direction, then r2,1Q2(t) ≈ Q1(t)
for all t ≥ 0. That is substantiated by simulation experiments, some of which are reported in [36, 37]. In
this paper we will prove that the ≈ signs are replaced with equality signs in the fluid limit.

2.3 Many-Server Heavy-Traffic Scaling. To develop the fluid limit, we consider a sequence of
X systems, {Xn

6 : n ≥ 1} defined as in (2), indexed by n (denoted by superscript), using the standard
many-server heavy-traffic scaling, i.e., with arrival rates and number of servers growing proportionally to
n

Assumption 2.3 (many-server heavy-traffic scaling) As n→ ∞,

λ̄ni ≡ λni
n

→ λi and m̄n
i ≡ mn

i

n
→ mi, 0 < λi,mi <∞, (3)

and the service and abandonment rates held fixed.

We then define the associated fluid-scaled stochastic processes

X̄n
6 (t) ≡ n−1Xn

6 (t), t ≥ 0. (4)

Where Xn
6 is defined as in (2) for each n.

For each system n there are thresholds kn1,2 and kn2,1 scaled as follows:

Assumption 2.4 (scaled thresholds) For k1,2, k2,1 > 0 and a sequence of positive numbers {cn : n ≥ 1},
kni,j/cn → ki,j , (i, j) = (1, 2) or (2, 1), where cn/n→ 0 and cn/

√
n→ ∞ as n→ ∞. (5)
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The first scaling by n in Assumption 2.4 is chosen to make the thresholds asymptotically negligible
in many-server heavy-traffic fluid scaling, so they have no asymptotic impact on the steady-state cost
(in the cost framework of [36]). The second scaling by

√
n in Assumption 2.4 is chosen to make the

thresholds asymptotically infinite in many-server heavy-traffic diffusion scaling, so that asymptotically
the thresholds will not be exceeded under normal loading. It is significant that the scaling shows that we
should be able to simultaneously satisfy both conflicting objectives in large systems.

We consider an overload incident in which class 1 is overloaded, and more overloaded than class 2 if
both are overloaded. Hence we primarily focus on the queue difference processes Dn

1,2. We redefine the
queue-difference process by subtracting kn1,2 from Qn

1 , i.e.,

Dn
1,2(t) ≡ Qn

1 (t)− kn1,2 − r1,2Q
n
2 (t), t ≥ 0. (6)

(Similarly, we write Dn
2,1(t) ≡ r2,1Q

n
2 (t) − kn2,1 − Qn

1 (t).) We now apply FQR using the process Dn
1,2 in

(6): if Dn
1,2(t) > 0, then every newly available agent (in either pool) takes his new customer from the

head of the class-1 queue. If Dn
1,2(t) ≤ 0, then every newly available agent takes his new customer from

the head of his own queue.

Let

ρni ≡ λni
µi,imn

i

, and ρi ≡ lim
n→∞

ρni =
λi

µi,imi
, i = 1, 2. (7)

Then ρni is the traffic intensity of class i to pool i, and ρi can be thought of as its fluid counterpart.

Our results depend on the system being overloaded. However, in our case, a system can be overloaded
even if one of the classes is not overloaded by itself. We define the following quantities:

qai ≡ (λi − µi,imi)
+

θi
and sai ≡

(

mi −
λi
µi,i

)+

, i = 1, 2, (8)

where (x)+ ≡ max{x, 0}. It is easy to see that qai s
a
i = 0, i = 1, 2. Note that qai is the steady-state of the

class-i fluid-limit queue when there is no sharing, i.e., when both classes operate independently. Similarly,
sai is the steady state of the class-i fluid-limit idleness process. For the derivation of the quantities in (8)
see Theorem 2.3 in [49], especially equation (2.19), and §5.1 in [36]. See also §6 in [38].

2.4 Conventions About Notation. We use capital letters to denote random variables and stochas-
tic processes, and lower-case letters for deterministic counterparts. For a sequence {Y n : n ≥ 1} (of
stochastic processes or random variables) we denote its fluid-scaled version by Ȳ n ≡ Y n/n. The fluid
limit of stochastic processes Ȳ n will be denoted by a lower case letter y, and sometimes by Ȳ . Let ⇒
denote convergence in distribution. Then the fluid limits will be expressed as Ȳ n ⇒ y as n→ ∞.

We use the usual R, Z and Z+ notation for the real numbers, integers and nonnegative integers,
respectively. Let Rk denote all k-dimensional vectors with components in R. For a subinterval I of
[0,∞), let Dk(I) ≡ D(I,Rk) be the space of all right-continuous Rk valued functions on I with limits
from the left everywhere, endowed with the familiar Skorohod J1 topology. We let dJ1 denote the metric on
Dk(I). Since we will be considering continuous limits, the topology is equivalent to uniform convergence
on compact subintervals of I. If I is an arbitrary compact interval, we simply write Dk. Let Ck be the
subset of continuous functions in Dk. Let e be the identity function in D ≡ D1, i.e., e(t) ≡ t, t ∈ I.

We use the familiar big-O and small-o notations for deterministic functions: For two real functions f
and g, we write

f(x) = O(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| <∞,

f(x) = o(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| = 0.

The same notation is used for sequences, replacing x with n ∈ Z+.

For a, b ∈ R, let a∧ b ≡ min {a, b}, a∨ b ≡ max {a, b}, (a)+ ≡ a∨ 0 and (a)− ≡ 0∨−a. For a function
x : [0,∞) → R and 0 < t <∞, let

‖x‖t ≡ sup
0≤s≤t

|x(s)|.

Let Y ≡ {Y (t) : t ≥ 0} be a stochastic process, and let f : [0,∞) → [0,∞) be a deterministic function.
We say that Y is OP (f(t)), and write Y = OP (f), if ‖Y ‖t/f(t) is stochastically bounded, i.e., if

lim
a→∞

lim sup
t→∞

P (‖Y ‖t/f(t) > a) = 0.
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We say that Y is oP (f(t)) if ‖Y ‖t/f(t) converges in probability (and thus, in distribution) to 0, i.e., if
‖Y ‖t/f(t) ⇒ 0 as t→ ∞. If f(t) ≡ 1, then Y = OP (1) if it is stochastically bounded, and Y = oP (1)
if ‖Y ‖t ⇒ 0. We define OP (f(n)) and oP (f(n)) in a similar way, but with the domain of f being Z+,
i.e., f : Z+ → [0,∞). These properties extend to sequences of random variables and processes indexed
by n if the property holds uniformly in n.

3. Representation of the Fluid Limit. In this section we represent the fluid limit as a solution
to an ODE which is driven by a FSTP. In contrast to the six-dimensional scaled process X̄n

6 in (4), the
ODE is only three-dimensional. Hence, we start by briefly discussing the dimension reduction in §3.1.
Afterwards, we define the FTSP in §3.2 and then present the ODE in §3.3. We have studied the FTSP
and the ODE in [38], to which we refer for more details. In §3.4 we state three main assumptions.

3.1 Dimension Reduction. We will making assumptions implying that we consider the system
during an overload incident in which class 1 is overloaded, and more so than class 2 if it is also overloaded.
We will thus be considering sharing in which only pool 2 may help class 1. We will thus have both service
pools fully occupied, with service pool 1 serving only class 1. We will thus have P (Bn

T ) → 1 as n → ∞,
for all T , 0 < T <∞, where Bn

T is the subset of the underlying probability space defined by

Bn
T ≡ {Zn

1,1(t) = mn
1 , Z

n
2,1(t) = 0, Zn

1,2(t) + Zn
2,2(t) = mn

2 for 0 ≤ t ≤ T }. (9)

On the set Bn
T the effective dimension is reduced from six to three. Carefully justifying this SSC will be

the topic of §6. Thus, in addition to the process Xn
6 in (2) for each n, we also consider the six-dimensional

processes
Xn,∗

6 ≡ (Qn
1 , Q

n
2 ,m

n
1 e, Z

n
1,2, 0e,m

n
2e− Zn

1,2) in D6 (10)

and the associated three-dimensional processes

Xn
3 ≡ (Qn

1 , Q
n
2 , Z

n
1,2) in D3, (11)

obtained by truncating the process Xn,∗
6 , keeping only the essential first, second and fourth coordinates.

(Note that P (Xn,∗
6 = Xn

6 in D6([0, T ])) = P (Bn
T ) → 1 as n → ∞.) We obtain a further alternative

representation for the associated three-dimensional fluid-scaled processes X̄n
3 , denoted by X̄n in §6; see

(45).

3.2 The Fast-Time-Scale Process (FTSP). Since we consider the system during an overload
incident in which class 1 is overloaded, and more so than class 2 if it is also overloaded, we will primarily
consider only the one queue difference processes Dn

1,2 in (6). The FTSP can perhaps be best understood
as being the limit of a family of time-expanded queue-difference processes, defined for each n ≥ 1 by

Dn
e (Γ

n, s) ≡ Dn
1,2(t0 + s/n), s ≥ 0. (12)

whereXn is the three-dimensional process in (11) and we condition onXn(t0) = Γn for some deterministic
vector Γn assuming possible values of Xn(t0) ≡ (Qn

1 (t0), Q
n
2 (t0), Z

n
1,2(t0)). (The time t0 is an arbitrary

initial time.) We choose Γn so that Γn/n→ γ as n→ ∞, where γ ≡ (q1, q2, z1,2) is an appropriate fixed
state (in three dimensions, because we will have sharing in only one direction. The formal statement
of the limit for Dn

e in (12) is Theorem 4.4. Since we divide s in (12) by n, we are effectively dividing
the rates by n. (See (70)-(71) for the transition rates of Dn

1,2 itself.) We are applying a “microscope”
to “expand time” and look at the behavior after the initial time more closely. That is in contrast to
the usual time contraction with conventional heavy-traffic limits. See [46] for a previous limit using time
expansion.

Let r ≡ r1,2 and let γ ≡ (q1, q2, z1,2) be a possible state in the three-dimensional state space S ≡
[0,∞)2 × [0,m2]. Directly, we let the FTSP {D(γ, s) : s ≥ 0} be a pure-jump Markov process with

transition rates λ
(r)
− (γ), λ

(1)
− (γ), µ

(r)
− (γ) and µ

(1)
− (γ) for transitions of +r, +1, −r and −1, respectively,

when D(γ, s) ≤ 0. Similarly, let the transition rates be λ
(r)
+ (γ), λ

(1)
+ (γ), µ

(r)
+ (γ) and µ

(1)
+ (γ) for transitions

of +r, +1, −r and −1, respectively, when D(γ, s) > 0.

We define the transition rates for D(γ) as follows: First, for D(γ, s) ∈ (−∞, 0] with γ ≡ (q1, q2, z1,2),
the upward rates are

λ
(1)
− (γ) ≡ λ1, and λ

(r)
− (γ) ≡ µ1,2z1,2 + µ2,2(m2 − z1,2) + θ2q2. (13)
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Similarly, the downward rates are

µ
(1)
− (γ) ≡ µ1,1m1 + θ1q1 and µ

(r)
− (γ) ≡ λ2 (14)

Next, for D(γ, s) ∈ (0,∞), we have upward rates

λ
(1)
+ (γ) ≡ λ1 and λ

(r)
+ (γ) ≡ θ2q2. (15)

The downward rates are

µ
(1)
+ (γ) ≡ µ1,1m1 + µ1,2z1,2 + µ2,2(m2 − z1,2) + θ1q1 and µ

(r)
+ (γ) ≡ λ2. (16)

As in §7.1 of [38], we identify important subsets of the state space S ≡ [0,∞)2 × [0,m2]:

S
b ≡ {q1 − rq2 = 0}, S

+ ≡ {q1 − rq2 > 0}, S
− ≡ {q1 − rq2 < 0}. (17)

Let D(γ,∞) be a random variable that has the steady-state limiting distribution of the FTSP D(γ, s) as
s→ ∞ and let

π1,2(γ) ≡ P (D(γ,∞) > 0). (18)

That is, π1,2(γ) is the probability that the stationary FTSP associated with γ ∈ S is strictly positive.

It turns out that D(γ,∞) and π1,2(γ) are well defined throughout S. In S
b the function π1,2 can

assume its full range of values, 0 ≤ π1,2(γ) ≤ 1; the boundary subset Sb is where the AP is taking place.
For all γ ∈ S

+, π1,2(γ) = 1; for all γ ∈ S
−, π1,2(γ) = 0. In order for S

− to be a proper subspace of S,
both service pools must be constantly full. Thus, if γ ∈ S

−, then z1,1 = m1 and z1,2 + z2,2 = m2, but q1
and q2 are allowed to be equal to zero.

An important role will be played by the subset A of Sb such that the FTSP is positive recurrent. The
AP takes place only in the set A. In Theorem 6.1 of [38] we showed that positive recurrence of the FTSP,
and thus the set A, depends only on the constant drift rates in the two regions:

δ+(γ) ≡ r
(

λ
(r)
+ (γ)− µ

(r)
+ (γ)

)

+
(

λ
(1)
+ (γ)− µ

(1)
+ (γ)

)

δ−(γ) ≡ r
(

λ
(r)
− (γ)− µ

(r)
− (γ)

)

+
(

λ
(1)
− (γ)− µ

(1)
− (γ)

)

. (19)

The FTSP {D(γ, s) : s ≥ 0} is positive recurrent if (and only if) the state γ belongs to the set

A ≡ {γ ∈ S : δ−(γ) > 0 > δ+(γ)}. (20)

Let the other two subsets of Sb be

A
+ ≡ {x ∈ S

b | δ+(x) ≥ 0} and A
− ≡ {x ∈ S

b | δ−(x) ≤ 0}. (21)

From Theorem 6.2 of [38], we obtain the following lemma, giving the limiting behavior of the FTSP
for any state in S.

Lemma 3.1 (limiting behavior of the FTSP) For all γ ∈ S and x ∈ R,

lim
s→∞

P (D(γ, s) ≤ x) = F (γ, x) ≡ P (γ, (−∞, x]), (22)

where F (γ, ·) is a cdf associated with a possibly defective probability measure P (γ, ·) depending on the
state γ. Moreover,

for all γ ∈ A and x ∈ R, 0 < F (γ, x) < 1 and 0 < π1,2(γ) < 1;

for all γ ∈ S
+ ∪A

+ and x ∈ R, F (γ, x) = 0 and π1,2(γ) = 1; (23)

for all γ ∈ S
− ∪A

− and x ∈ R, F (γ, x) = 1 and π1,2(γ) = 0.

Later in §7.2, we obtain a proper limiting steady-state distribution for the FTSP for all γ in S by appending
states +∞ and −∞ to the state space R of the FTSP {D(γ, s) : s ≥ 0}. Lemma 3.1 then implies that
P (γ,R) = 1 for γ ∈ A, P (γ, {+∞}) = 1 for γ ∈ S

+ ∪ A
+ and P (γ, {−∞}) = 1 for γ ∈ S

− ∪ A
−.
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3.3 The Ordinary Differential Equation (ODE). We can now present the three-dimensional
ODE in terms of the FTSP D. Let x(t) ≡ (q1(t), q2(t), z1,2(t)) be the solution to the ODE at time t; let
ẋ ≡ (q̇1, q̇2, ż1,2), where ẋ(t) is the derivative evaluated at time t and

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + z2,2(t)µ2,2]− θ1q1(t)

q̇2(t) ≡ λ2 − (1 − π1,2(x(t))) [z2,2(t)µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(24)

with π1,2(x(t)) ≡ P (D(x(t),∞) > 0) for each t ≥ 0, where D(x(t),∞) has the limiting steady-state
distribution as s → ∞ of the FTSP D(γ, s) for γ = x(t). (Recall also that z2,2 = m2 − z1,2.) Theorem
5.2 of [38] shows that the ODE has a unique solution as a continuous function mapping [0,∞) into S for
any initial value in S. Lemma 3.1 shows that π1,2(x(t)) is well defined for any x(t) in S.

Equivalently, we have the following integral representation of the ODE in (24):

z1,2(t) ≡ z1,2(0) + µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds,

q1(t) ≡ q1(0) + λ1t−m1t− µ1,2

∫ t

0

π1,2(x(s))z1,2(s)) ds

− µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds− θ1

∫ t

0

q1(s) ds,

q2(t) ≡ q2(0) + λ2t− µ2,2

∫ t

0

(1− π1,2(x(s)))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds− θ2

∫ t

0

q2(s)) ds.

(25)

We will see that the integral representation in (25) is closely related to an associated integral represen-
tation of X̄n ≡ (Q̄n

1 , Q̄
n
2 , Z̄

n
1,2); see (45); X̄n is replaced by the deterministic state x and the indicators

1{Dn
1,2(s)>0} are replaced by π1,2(x(s)).

It is easy to see that the right-hand side of the ODE is not a continuous function of x and, in
particular, is not locally Lipschitz continuous in x. Thus, proving that the ODE posses a unique solution
is not straightforward. The proof of that statement is the main result in [38] and builds on matrix-
geometric methods, as well as heavy-traffic limit theorems for the FTSP; see Theorems 5.2 and 7.1 there.
The matrix-geometric representation of the FTSP also provides key tools for developing an algorithm to
compute that unique solution.

3.4 Three Main Assumptions. We now introduce three main assumptions: Assumptions 3.1-3.3
below. All three assumptions are assumed to hold throughout the paper, unless explicitly stated otherwise.
These assumptions are in addition to the four assumptions made in §2: Assumptions 2.1-2.4. (Here we
do not require (1).) Our first new assumption is on the asymptotic behavior of the model parameters; it
specifies the essential form of the overload. For the statement, recall the definitions in (3), (5) and (8),
which describe the asymptotic behavior of the parameters.

Assumption 3.1 (system overload, with class 1 more overloaded)

The rates in the overload are such that the limiting rates satisfy

(1) θ1q
a
1 > µ1,2s

a
2 .

(2) qa1 > r1,2q
a
2 .

Condition (1) in Assumption 3.1 ensures that class 1 is asymptotically overloaded, even after receiving
help from pool 2. To see why, first observe that, since sa2 ≥ 0, qa1 > 0, so that λ1 > µ1,1m1 and ρ1 > 1.
Hence, class 1 is overloaded. Next observe that µ1,2s

a
2 = µ1,2(1− ρ2)

+, and that (1− ρ2)
+ is the amount

of (steady-state fluid) extra service capacity in pool 2, if it were to serve only class-2 customers. Thus,
Condition (1) in Assumption 3.1 implies that enough class-1 customers are routed to pool 2 to ensure that
pool 2 is overloaded when sharing is taking place. This conclusion will be demonstrated in §6. Condition
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(1) in Assumption 3.1 is slightly stronger than Condition (I) of Assumption A in [38]. because here there
is a strong inequality instead of a weak inequality.

Condition (2) in Assumption 3.1 ensures that class 1 is more overloaded than class 2 if class 2 is also
overloaded. This condition helps ensure that there is no incentive for pool 1 to help pool 2, so that Zn

2,1

should remain at 0.

Our second assumption is about the initial conditions. For the initial conditions, we assume that the
overload, whose asymptotic character is specified by Assumption 3.1, is ongoing or is about to begin.
In addition, sharing with pool 2 allowed to help class 1 has been activated by having the threshold kn1,2
exceeded by the queue difference process Dn

1,2 and is in process. Thus actual sharing is being controlled
by the difference process Dn

1,2 in (6). Here is our specific assumption.

Assumption 3.2 (initial conditions) For each n ≥ 1, P (Zn
2,1(0) = 0, Qn

i (0) > an, i = 1, 2) = 1,

X̄n(0) ⇒ x(0) ∈ A ∪ A
+ ∪ S

+ as n→ ∞, and Dn
1,2(0) ⇒ L if x(0) ∈ A ∪ A

+,

where {an : n ≥ 1} is a sequence of real numbers satisfying an/cn → a, 0 < a ≤ ∞, for cn in (5); Dn
1,2 is

defined in (6); X̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2); x(0) is a deterministic element of R3; A, A

+ and S
+ are the subsets

of S in (20), (21) and (17); and L is a proper random variable, i.e., P (|L| <∞) = 1.

Since we are interested in times when sharing occurs with pool 2 helping class 1, in Assumption 3.2 we
assume that the scale of Qn

1 (0) is at least as large as that of the threshold kn1,2 (so either the threshold
has already been crossed, or it is about to be crossed). Note that we also assume that Dn

1,2(0) ⇒ L, so
that it is natural to assume that Qn

2 (0) has the same order as Qn
1 (0); we elaborate in Remark 4.2 and

Appendix E below.

In Assumption 3.2 we do not allow x(0) in S
−, because such an initial condition may activate sharing

in the wrong direction, with pool 1 helping class 2, causing the system to leave the state space S; see
Remark 4.1.

As noted in §3.3, in [38] we required that the queue ratio parameter be rational in order to establish
results about the FTSP and the ODE.

Assumption 3.3 (rational queue ratio parameter) The queue ratio parameters r1,2 and r2,1 are rational
positive numbers.

Given Assumption 3.3, without loss of generality, we let the thresholds be rational (of the form kn1,2 =
mn/k where r1,2 = j/k). We conjecture that Assumption 3.3 can be removed, but that condition has
been used in [38] to make the pure-jump Markov FTSP a quasi-birth-and-death (QBD) process, which in
turn was used to establish critical properties of the FTSP and the ODE. We use some of these properties
in this paper as well. By Assumption 3.3, r1,2 = j/k for positive integers j and k. The computational
efficiency of the algorithm to solve the ODE developed in §11 of [38] actually depends on j and k not
being too large as well, because the QBD matrices are 2m× 2m, where m ≡ max {j, k}, see §6.2 of [38],
and the steady-state of that QBD must be calculated at each discretization step in solving the ODE.
Fortunately, simulations show that the system performance is not very sensitive to small changes in r1,2,
so that having m be 5 or 10 seems adequate for practical purposes.

Relaxing Assumption 3.3 will have practical value only if an efficient algorithm for solving the ODE is
developed. We remark that computing the stationary distribution of a pure-jump Markov process can in
general be hard and time consuming, and that we need to compute the stationary distribution of a large
number of such processes in order to solve the ODE. Hence, the ability to analyze the FTSP as a QBD
has an important advantage, even if Assumption 3.3 is relaxed.

4. Main Results. In this section we state the main results of the paper. In §4.1 we state the main
theorem, establishing the FWLLN via the AP, proving that the (unique) solution to the ODE (24) is
indeed the fluid limit of X̄n

6 . In §4.2 we establish convergence of the stationary distributions, showing
that the order of the two limits n → ∞ and t → ∞ can be interchanged in great generality. In §4.3 we
establish asymptotic results about the queue-difference stochastic process. We conclude in §4.4 by giving
a brief overview of the following proofs.
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4.1 The Fluid Limit. We are now ready to state our main result in this paper, which is a FWLLN
for scaled versions of the vector stochastic process (Xn

6 , Y
n
8 ), where Xn

6 ≡ (Qn
i , Z

n
i,j) ∈ D6 as in (2) and

Y n
8 ≡ (An

i , S
n
i,j , U

n
i ) ∈ D8, i, j = 1, 2, where An

i (t) counts the number of class-i customer arrivals, Sn
i,j(t)

counts the number of service completions of class-i customers by agents in pool j, and Un
i (t) counts the

number of class-i customers to abandon from queue, all in model n during the time interval [0, t]. For
the FWLLN, we focus on the scaled vector process

(X̄n
6 , Ȳ

n
8 ) ≡ n−1(Xn

6 , Y
n
8 ), (26)

as in (4). To explicitly state the AP, we also consider the functions

Θn(t) ≡
∫ t

0

1{Dn
1,2(s)>0} ds and ϑ(t) ≡

∫ t

0

π1,2(x(s)) ds, t ≥ 0, (27)

where π1,2(·) is defined in (18). In particular, π1,2(x(s)) is the probability that the stationary FTSP
D(x(s), ·), associated with x(s), is strictly positive, where x(s) is the value of the fluid limit of X̄n(s) at
time s, s ≥ 0.

Recall that Assumptions 2.1-2.4 and 3.1-3.3 are assumed to be in force throughout the paper.

Theorem 4.1 (FWLLN via the stochastic averaging principle) As n→ ∞,

(X̄n
6 , Ȳ

n
8 ,Θ

n) ⇒ (x6, y8, ϑ) in D15([0,∞)), (28)

where (x6, y8, ϑ) is a deterministic element of C15([0,∞)), x6 ≡ (qi, zi,j), y8 ≡ (ai, si,j , ui), i = 1, 2; j =
1, 2; ϑ in (27); z2,1 = s2,1 = m1 − z1,1 = m2 − z2,2 − z1,2 = 0e; x ≡ (q1, q2, z1,2) is the unique solution to
the three-dimensional ODE in (24) mapping [0,∞) into S. The remaining limit function y8 is defined in
terms of x6:

ai(t) ≡ λit, si,j(t) ≡ µi,j

∫ t

0

zi,j(s) ds, ui(t) ≡ θi

∫ t

0

qi(s) ds for t ≥ 0, i = 1, 2; j = 1, 2. (29)

We prove Theorem 4.1 by showing in §5.2 that the sequence {(X̄n
6 , Ȳ

n
8 ,Θ

n) : n ≥ 1} is C-tight in
D15([0,∞)) and by showing subsequently that the limit of every convergent subsequence of X̄n

6 must take
values in S and be a solution to the ODE (24), which has a unique solution by Theorem 5.2 of [38].

4.2 Limit Interchange Result. Under the FQR-T control operating during a single overload inci-
dent of unlimited duration, the six-dimensional stochastic process Xn

6 ≡ (Qn
i , Z

n
i,j ; i, j = 1, 2) is a positive

recurrent irreducible CTMC for each n. Hence, X̄n
6 ≡ n−1Xn

6 has a unique steady-state (limiting and
stationary) distribution X̄n

6 (∞) for each n.

Theorem 8.2 of [38] implies that there exists a unique stationary point x∗ ≡ (q∗1 , q
∗
2 , z

∗
1,2) in the state

space S to the three-dimensional limiting ODE in (24), where

z∗1,2 =
θ2(λ1 −m1µ1,1)− r1,2θ1(λ2 −m2µ2,2)

r1,2θ1µ2,2 + θ2µ1,2
∧m2,

q∗1 =
λ1 −m1µ1,1 − µ1,2z

∗
1,2

θ1
and q∗2 =

λ2 − µ2,2(m2 − z∗1,2)

θ2
.

(30)

Let x∗6 be the six-dimensional version of x∗ ≡ (q∗1 , q
∗
2 , z

∗
1,2) in (30), i.e.,

x∗6 ≡ (q∗1 , q
∗
2 ,m1, z

∗
1,2, 0,m2 − z∗1,2) for x∗ = (q∗1 , q

∗
2 , z

∗
1,2). (31)

Observe that, if λ2−µ2,2m2 > 0, then the numerator in the expression of z∗1,2 is equal to θ1θ2(q
a
1 −r1,2qa2 )

and is strictly positive by Condition (2) in Assumption 3.1, so that 0 < z∗1,2 ≤ m2. Moreover, by Corollary

8.2 in [38], the two conditions in Assumption 3.1 guarantee that x∗ ∈ S
b ∪ S

+, and in particular, that
x∗ ∈ S.

We now establish a limit interchange result.

Theorem 4.2 (interchange of limits) For each continuous bounded function f : R6 → R,

lim
n→∞

lim
t→∞

E[f(X̄n(t))] = lim
t→∞

lim
n→∞

E[f(X̄n(t)] = f(x∗6),

where x∗6 is defined in (31).
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We will prove Theorem 4.2 by first proving the limit on the left side. For that, we can relax the
assumptions. In particular, we will show that the sequence of stationary distributions converges to the
unique stationary point of the ODE, without requiring Assumptions 3.2 and 3.3. Of course, Assumption
3.2 plays no role because it concerns the initial conditions.

The current proof of Theorem 8.2 of [38] used for (30) above does apply Theorem 5.2 of Theorem
5.2 of [38], which depends on Assumption 3.3, the technical assumption that r1,2 and r2,1 are rational
numbers. However, we now show that Theorem 8.2 of [38] actually does not depend on Assumption 3.3.

Lemma 4.1 Under the conditions of Theorem 8.2 of [38], excluding Assumptions 3.2 and 3.3 here, x∗ is
the unique stationary point of the ODE.

Proof. Assume that the conditions of Theorem 8.2 of [38] are satisfied with an irrational r ≡ r1,2.
Construct a sequence of rational numbers {rn : n ≥ 1} with rn → r as n→ ∞. Then, for all n sufficiently
large, the conditions of Theorem 8.2 of [38] are satisfied with rn. Let x∗n be the unique stationary point
associated with rn. Then, by Theorem 8.1 of [38], x∗n → x∗ as n→ ∞. �

The existence of a stationary point of an ODE necessarily implies the existence of a (constant) solution
to the ODE, but it does not require the existence of a unique solution to the ODE. Thus, the existence
of a unique solution provided by Theorem 5.2 of [38], which does use Assumptions 3.2 and 3.3, is not
needed. Moreover, Theorems 8.3 and 9.2 of [38] imply that x∗ is globally asymptotically stable and x(t)
converges to x∗ exponentially fast as t→ ∞. These too do not depend on Assumptions 3.2 and 3.3.

We now show that x∗6 is the limit of the stationary sequence {X̄n
6 (∞) : n ≥ 1} without assuming

Assumptions 3.2 and 3.3. The proof of Theorem 4.3 appears in §8.1.

Theorem 4.3 (WLLN for the stationary distributions) Under the assumptions here, excluding Assump-
tions 3.2 and 3.3, X̄n

6 (∞) ⇒ x∗6 in R6 as n→ ∞, for x∗6 in (31).

Proof of Theorem 4.2. The iterated limit on the left holds by virtue of Theorem 4.3. The iterated
limit on the right holds because of Theorem 4.1 together with the fact that x∗6 is a globally asymptotically
stable stationary point for the fluid limit, by (31) and Theorem 8.3 of [38]. �

Remark 4.1 (starting in S
−) It is significant that the limit interchange in Theorem 4.2 is not valid

throughout S. If Assumption 3.2 holds, except that x(0) ∈ S
−, then q1(0) − r1,2q2(0) < 0. Together

with Assumption 2.2, that implies that, in some regions of S−, d2,1 ≡ r2,1q2(0) − q1(0) > 0; that can
hold in S

− because r1,2q2(0) can be larger than q1(0). In those cases we have P (Dn
1,2(0) < 0) → 1 and

P (Dn
2,1(0) > kn2,1) → 1 as n→ ∞. If we assume that P (Zn

1,2(0) = Zn
2,1(0) = 0) = 1 for all n ≥ 1, which is

consistent with Assumption 3.2, then, asymptotically, we will initially have sharing the wrong way, with
pool 1 helping class 2. By the continuity, there will be an interval [0, δ] for which

inf
{0≤t≤δ}

{d2,1(t)} > 0.

Hence, asymptotically as n → ∞, there will rapidly be sharing with pool 1 helping class 2. It can be
shown that there exists δ > 0 and ǫ > 0 such that P (Z̄n

2,1(δ) > ǫ) → 1 as n → ∞. This shows that the
limit interchange is not valid for every initial condition in S

−.

4.3 The Limiting Behavior of the Queue Difference Process. In this section we present
important supplementary results that help “explain” the AP, which takes place in A. The following
results are not applied in the proof of Theorem 4.1, but are also not immediate corollaries of the FWLLN;
their proofs are given in §8.

For each n ≥ 1, let Γn
6 be a random state of Xn

6 that is independent of subsequent arrival, service and
abandonment processes, and let Γn be the random state of Xn

3 associated with Γn
6 as in (11).

Theorem 4.4 If Γn
6/n ⇒ γ6, where γ6 ≡ (q1, q2,m1, z1,2, 0,m2 − z1,2) with γ ≡ (q1, q2, z1,2) ∈ A ⊂ R3

for A in (20) and Dn
e (Γ

n, 0) ⇒ D(γ, 0) in R as n→ ∞, where Dn
e is the time-expanded queue-difference

process in (12) and D is the FTSP in §3.2, then
{Dn

e (Γ
n, s) : s ≥ 0} ⇒ {D(γ, s) : s ≥ 0} in D as n→ ∞; (32)
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i.e., we have convergence of the sequence of time-inhomogeneous non-Markov processes {Dn
e (Γ

n) : n ≥ 1}
to the limiting time-homogeneous pure-jump Markov process D(γ).

The next results are about the queue-difference process Dn
1,2 itself (as opposed to the expanded queue

difference process Dn
e ). Recall the definition of stochastic boundedness in §2.4. Recall also that tightness

in R is equivalent to stochastic boundedness in R, but not in D.

Theorem 4.5 (stochastic boundedness of Dn
1,2) If x(t0) ∈ A for some t0 ≥ 0, then there exists t2 > t0

such that x(t) ∈ A for all t ∈ [t0, t2] and for all t1 satisfying t0 < t1 ≤ t2 the following hold:

(i) {Dn
1,2(t) : n ≥ 1} is stochastically bounded in R for each t satisfying t1 ≤ t ≤ t2.

(ii) {{Dn
1,2(t) : t ∈ I} : n ≥ 1} is neither tight nor stochastically bounded in D(I), I ⊆ [t0, t2].

(iii) For any sequence {cn : n ≥ 1} satisfying cn/ logn→ ∞ as n→ ∞, it holds that

sup
t1≤t≤t2

{Dn
1,2(t)/cn} ⇒ 0 as n→ ∞. (33)

If x(t) ∈ A for all t ∈ [t0,∞) the above statements hold for any finite t2 > t0.

As an immediate corollary to (33) in Theorem 4.5, we have the following SSC of the queues. In
particular, that claim implies SSC of the fluid and diffusion scaled queues when the fluid limit x is in A.

Corollary 4.1 (SSC of queue process in A) For the interval [t1, t2] in Theorem 4.5,
dJ1(Q

n
1 , r1,2Q

n
2 )/cn ⇒ 0 in D([t1, t2]) as n → ∞, for every sequence {cn : n ≥ 1} satisfying

cn/ logn→ ∞ as n→ ∞. If x(0) ∈ A and we consider the interval [0, t2], then the result is strengthened
to hold on [t0, t2] ≡ [0, t2].

Since the sequence of queue-difference processes is not D tight, by virtue of Theorem 4.5, we cannot
have convergence of these processes in D. However, we can obtain a proper limit for the tight sequence
of random variables {Dn

1,2(t) : n ≥ 1} in R for each fixed t ∈ [t1, t2] by exploiting the AP. See [47] for a
similar result.

Theorem 4.6 (pointwise AP) Consider the interval [t1, t2] in Theorem 4.5. Then Dn
1,2(t) ⇒ D(x(t),∞)

in R as n→ ∞ for each t, t1 ≤ t ≤ t2, where D(x(t),∞) has the limiting steady-state distribution of the
FTSP D(γ, s) for γ = x(t).

Remark 4.2 (hitting times of A) First, the stochastic boundedness in Theorem 4.5 above actually holds
at time t0 and thus in the larger interval [t0, t2] if t0 = 0 and x(0) ∈ A, because of the assumed convergence
of Dn

1,2(0) in Assumption 3.2. However, we cannot get the full convergence in Theorem 4.6 at t0 = 0
because the limit L in Assumption 3.2 need not be distributed the same as D(x(0),∞). Second, we may
also have t0 > 0 because t0 is a hitting time of A from S−A. Even if x(0) ∈ A, the fluid limit might leave
A eventually, and later return to A at some time t0; then x(t0) ∈ A but x(s) /∈ A for all s ∈ (t0 − ǫ, t0)
for some ǫ > 0. If t0 is such a hitting time of A, then we cannot obtain even a stochastic boundedness
result at time t0, but we obtain the pointwise convergence in Theorem 4.6 in the interval (t0, t2], open
on the left.

Finally, Theorem 4.6 can be applied to strengthen the conclusion of Theorem 4.4 by showing that
Dn

e (X
n(t), ·) converges to a stationary FTSP D(x(t), ·), with Xn(t) ≡ (Qn

1 (t), Q
n
2 (t), Z

n
1,2(t)), and x(t) ≡

(q1(t), q2(t), z1,2(t)) is the limit of X̄n(t) at the fixed time t.

Corollary 4.2 Suppose that the condition of Theorem 4.5 holds. For each t such that the conclusion
of Theorem 4.5 (i) holds for an interval [t1, t2], t1 ≤ t ≤ t2,

{Dn
e (X

n(t), s) : s ≥ 0} ⇒ {D(x(t), s) : s ≥ 0} in D as n→ ∞,

where the limiting FTSP D(x(t), ·) is a stationary process, i.e., D(x(t), s)
d
= D(x(t),∞) for all s ≥ 0.



14 : An Averaging Principle
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Proof. First, for Xn
6 (t) as in Theorem 4.1 and x6(t) ≡ (q1(t), q2(t),m1, z1,2(t), 0,m2 − z1,2(t)), we

have Γn
6/n⇒ γ6 by Theorem 4.1, where Γn

6 ≡ Xn
6 (t), γ6 ≡ x6(t) and γ ≡ x(t) ≡ (q1(t), q2(t), z1,2(t)) is in

A (because of our choice of t). Moreover,

Dn
e (X

n(t), 0) = Dn
1,2(t) ⇒ D(x(t), 0)

d
= D(x(t),∞) in R as n→ ∞,

where the first equality holds by the definition of Dn
e , and the limit holds by applying Theorem 4.6.

Hence, the conditions in Theorem 4.4 hold, so that we have convergence in D of the process Dn
e (X

n(t), ·)
to the FTSP D(x(t), ·). Since D(x(t), 0)

d
= D(x(t),∞), the limiting FTSP is stationary as claimed. �

4.4 Overview of the Proofs. The rest of this paper is devoted to proving the six theorems above:
Theorems 4.1-4.6. We prove Theorem 4.1 in §§5-7. Toward that end, in §5 we establish structural results
for the sequence {(X̄n

6 , Ȳ
n
8 ) : n ≥ 1}, where Xn

6 ≡ (Qn
i , Z

n
i,j) ∈ D6 as in (2) and Y n

8 ≡ (An
i , S

n
i,j , U

n
i ) ∈ D8,

i, j = 1, 2 and the associated fluid-scaled process (X̄n
6 , Ȳ

n
8 ) in (26). In §5.1 we construct the stochastic

processes (Xn
6 , Y

n
8 ) in terms of rate-1 Poisson processes. In §5.2 we show that the sequence of stochastic

processes {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} is C-tight in D14 and, consequently, there are convergent subsequences with

smooth limits. In §6 we show that the representation established in §5.1 can be simplified under Assump-
tions 3.1-3.3, reducing the essential dimension from 6 to 3. The final three-dimensional representation
X̄n in (45) there explains the form of the ODE in (24).

Given the tightness established in §5.2, we prove the main Theorem 4.1 by characterizing the limit of
all convergent subsequences in §7. Given the SSC established in §6 and given that the three-dimensional
ODE in §3.3 has been shown to have a unique solution in [38], it suffices to show that the limit of any
subsequence must almost surely be a solution to the ODE. For that last step, our proof in §7 follows
Hunt and Kurtz [18], which draws heavily upon Kurtz [28]. It exploits our martingale representation in
theorem 6.3 and basic properties of random measures from [28]. We also have developed an alternative
proof exploiting stochastic bounds. It is given in §C in the appendix. Finally, in §8 we prove Theorems
4.3- 4.6.

There is more in the appendix. In §A we present supporting technical results to prove the SSC
results in §6. We start by introducing auxiliary frozen queue difference processes in §A.1. We construct
useful bounding processes in §§A.2, A.3 and A.4. These are primarily for quasi-birth-and-death (QBD)
processes, because we exploit a QBD representation for the FTSP; see §6 of [38] for background. We
establish extreme value limits for QBD processes in §A.5. In §B we exploit the technical results in §A to
prove three theorems stated in §6.

5. Preliminary Results for X
n

6
. In this section we establish preliminary structural results for the

vector stochastic process (Xn
6 , Y

n
8 ), where Xn

6 ≡ (Qn
i , Z

n
i,j) ∈ D6 as in (2) and Y n

8 ≡ (An
i , S

n
i,j , U

n
i ) ∈ D8,

i, j = 1, 2 and the associated fluid-scaled process (X̄n
6 , Ȳ

n
8 ) in (26). The results in this section do not

depend on Assumptions 3.1-3.3. We do impose the many-server heavy-traffic scaling in §2.3.
In §5.1 we construct the stochastic processes (Xn

6 , Y
n
8 ) in terms of rate-1 Poisson processes. In §5.2

we show that the sequence of stochastic processes {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} is C-tight in D14. In Corollary 5.1

we apply the tightness to deduce smoothness properties for the limits of convergent subsequences.

5.1 Representation of X
n

6
. In this section we develop representations for the basic CTMC Xn

6

with the FQR-T control. At first in this section we do not require Assumptions 3.1-3.3, so that we can
have sharing in either direction, but in only one direction at any time. Let (λn1 , λ

n
2 ) be the pair of fixed

positive arrival rates in model n, which here are unconstrained.

Following common practice, as reviewed in §2 of [35], we represent the counting processes in terms
of mutually independent rate-1 Poisson processes. We represent the counting processes An

i , S
n
i,j and Un

i

introduced in the beginning of §4.1 as

An
i (t) ≡ Na

i (λ
n
i t), Sn

i,j(t) ≡ Ns
i,j

(

µi,j

∫ t

0

Zn
i,j(s) ds

)

, Un
i (t) ≡ Nu

i

(

θi

∫ t

0

Qn
i (s) ds

)

, (34)

for t ≥ 0, where Na
i , N

s
i,j and Nu

i for i = 1, 2; j = 1, 2 are eight mutually independent rate-1 Poisson
processes.



: An Averaging Principle
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 15

We can then obtain a general representation of the CTMC Xn
6 , which is actually valid for general

arrival processes with arrivals one at a time. Let Sn
1 ≡ Sn

1,1 + Sn
2,1, S

n
2 ≡ Sn

1,2 + Sn
2,2 and Sn ≡ Sn

1 + Sn
2 .

Paralleling (6), let Dn
2,1(t) ≡ r2,1Q

n
2 (t)− kn2,1 −Qn

1 (t).

Theorem 5.1 (general representation of Xn
6 ) For each n ≥ 1, the stochastic process Xn

6 is well defined
as a random element of D6 by (34) and

Qn
1 (t) ≡ Qn

1 (0) +

∫ t

0

1{Zn
1,1(s−)+Zn

2,1(s−)=mn
1 }
dAn

1 (s)−
∫ t

0

1{Dn
1,2(s−)>0,Zn

2,1(s−)=0,Qn
1 (s−)>0} dS

n(s)

−
∫ t

0

1{{Qn
1 (s−)>0}∩({Zn

2,1(s−)>0,Dn
2,1(s−)≤0}∪{Zn

2,1(s−)=0,Dn
1,2(s−)≤0})} dS

n
1 (s)− Un

1 (t),

Zn
1,1(t) ≡ Zn

1,1(0) +

∫ t

0

1{Zn
1,1(s−)+Zn

2,1(s−)<mn
1 }
dAn

1 (s)

−
∫ t

0

1{({Zn
1,2(s−)>0}∪{Dn

2,1(s−)≤0})∩{Qn
1 (s−)=0}} dS

n
1,1(s)−

∫ t

0

1{Dn
2,1(s−)>0,Zn

1,2(s−)=0} dS
n
1,1(s),

Zn
1,2(t) ≡ Zn

1,2(0) +

∫ t

0

1{Dn
1,2(s−)>0,Zn

2,1(s−)=0,Qn
1 (s−)>0} dS

n
2,2(s)

−
∫ t

0

1{{Dn
1,2(s−)≤0}∪{Zn

2,1(s−)>0}} dS
n
1,2(s).

Symmetry yields the parallel definitions of Qn
2 (t), Z

n
2,2(t) and Zn

2,1(t) from Qn
1 (t), Z

n
1,1(t) and Zn

1,2(t) by
simply switching the subscripts 1 and 2.

We remark that the representation of Xn
6 in Theorem 5.1 holds even without Assumptions 3.1-3.3.

Proof. Just as in Lemma 2.1 of [35], we can justify the construction by conditioning on the initial
values (the first term in each display) and the counting processes. With these sample paths specified,
we recursively construct the sample path of Xn

6 . By applying mathematical induction over successive
transition epochs of Xn

6 , we show that the sample paths are right-continuous piecewise-constant functions
satisfying the equations given.

To explain Qn
1 , the second term represents the increase by 1 at each class-1 arrival epoch when service

pool 1 is fully occupied; otherwise the arrival would go directly into service pool 1. The third term
represents the decrease by 1 when any server completes service and sharing with pool 2 helping class 1
active; that requires that the class-1 queue length be positive (Qn

1 (s) > 0); sharing with pool 2 helping
class 1 occurs when both Dn

1,2(s) > 0 and Zn
2,1(s) = 0. The fourth term represents the decrease by 1

when any pool-1 server completes service, provided that again the queue length is positive (Qn
1 (s) > 0).

There are two scenarios: (i) {Zn
2,1(s) > 0, Dn

2,1(s) ≤ 0} and (ii) {Zn
1,2(s) = 0, Dn

1,2(s) ≤ 0}. In the first,
pool 1 is helping class 2, so type-1 servers take from queue 1 only when Dn

2,1(s) ≤ 0. The second scenario
is the relative complement within the event {Zn

2,1(s) = 0, Qn
1 (s) > 0} of the event in the third term, i.e.,

pool 2 is allowed to help class 1, but Dn
1,2(s) ≤ 0, so that only type-1 servers take from queue 1 at time s.

To explain Zn
1,1, the second term represents the increase by 1 which occurs at each class-1 arrival

epoch at which service pool 1 has spare capacity (Zn
1,1(s) + Zn

2,1(s) < mn
1 ). The third term represents

the decrease by 1 that occurs when a server in pool 1 completes service of a class-1 customer, with pool
1 not helping class 2 (({Zn

1,2(s) > 0} ∪ {Dn
2,1(s) ≤ 0})) when the class-1 queue is empty (Qn

1 (s) = 0).
The fourth term represents the decrease by 1 that occurs when a server in pool 1 completes service of a
class-1 customer, when pool 1 is helping class 2 ({Dn

2,1(s) > 0, Zn
1,2(s) = 0}).

To explain Zn
1,2, the second term represents the decrease by 1 that occurs when a server in pool 2

completes service of a class-2 customer, when class 2 is helping class 1 ({Dn
1,2(s) > 0, Zn

2,1(s) = 0, Qn
1 (s) >

0}). The third term represents the decrease by 1 that occurs when a server in pool 2 completes service
of a class-1 customer, when class 2 is not helping class 1 ({Dn

1,2(s) ≤ 0} ∪ {Zn
2,1(s) > 0}).

Since the model is fully symmetric, the processes Qn
2 , Z

n
2,2 and Zn

2,1 are the symmetric versions of Qn
2 ,

Zn
2,2 and Zn

2,1, respectively, with the indices 1 and 2 switched. �

5.2 Tightness and Smoothness of the Limits. We do part of the proof of Theorem 4.1 here by
establishing tightness. For background on tightness, see [7, 35, 48]. We recall a few key facts: Tightness of
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a sequence of k-dimensional stochastic processes in Dk is equivalent to tightness of all the one-dimensional
component stochastic processes in D. For a sequence of random elements of Dk, C-tightness implies D-
tightness and that the limits of all convergent subsequences must be in Ck; see Theorem 15.5 of the first
1968 edition of [7]. Alternatively, Conditions (7.6) and (7.7) of Theorem 7.3 in [7] hold for processes in
D if and only if conditions (13.4) and (13.5) of Theorem 13.2 of [7] hold and the limits of all convergent
subsequences are in C; see the Corollary on p. 179 of [7] or Theorem VI.3.26 of [19].

Theorem 5.2 The sequence {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (26) is C-tight in D14.

Proof. It suffices to verify conditions (6.3) and (6.4) of Theorem 11.6.3 of [48], namely to show that
X̄n(0) is stochastically bounded (tight in R6) and appropriately control the oscillations, using the modulus
of continuity on C. We obtain the stochastic boundedness at time 0 immediately from Assumption 3.2.

We now show that we can control the oscillations below. For that purpose, let w(x, ζ, T ) is the modulus
of continuity of the function x ∈ D, i.e.,

w(x, ζ, T ) ≡ sup {|x(t2)− x(t1)| : 0 ≤ t1 ≤ t2 ≤ T, |t2 − t1| ≤ ζ}. (35)

Using the representations in §5.1, for t2 > t1 ≥ 0 we have

∣

∣Q̄n
1 (t2)− Q̄n

1 (t1)
∣

∣ ≤ An
1 (t2)−An

1 (t1)

n
+
Sn(t2)− Sn(t1)

n
+
Sn
1,1(t2)− Sn

1,1(t1)

n
+
Un
1 (t2)− Un

1 (t1)

n
.

and similarly for Q̄n
2 . Hence, for any ζ > 0 and T > 0,

w(Qn
1/n, ζ, T ) ≤ w(An

1 /n, ζ, T ) + w(Sn/n, ζ, T ) + w(Sn
1,1/n, ζ, T ) + w(Un

1 /n, ζ, T ).

Then observe that we can bound the oscillations of the service processes Sn
i,j by the oscillations in the

scaled Poisson process Ns
i,j(n·). In particular, by (34),

w(Sn
i,j/n, ζ, T ) ≤ w(Ns

i,j(nµi,jmj ·)/n, ζ, T ) ≤ w(Ns
i,j(n·)/n, cζ, T ) (36)

for some constant c > 0. Next for the abandonment process Un
i , we use the elementary bounds

Qn
i (t) ≤ Qn

i (0) + An
i (t),

|Un
i (t2)− Un

i (t1)| = |Ni(θi

∫ t2

t1

Qn
i (s) ds| ≤ |Ni(nθ(Q̄

n
i (0) + Ān

i (T ))(t2 − t1))|.

Let qbd ≡ 2(qi(0) + T ), where Q̄n
i (0) ⇒ qi(0) by Assumption ??, and let Bn be the following subset of

the underlying probability space:

Bn ≡ {Q̄n
i (0) + Ān

i (T ) ≤ qbd}.
Then P (Bn) → 1 as n→ ∞ and, on the set Bn, we have

w(Un
i /n, ζ, T ) ≤ w(Nu

i (nqbd·)/n, ζ, T ) ≤ w(Nu
i (n·)/n, cζ, T ) (37)

for some constant c > 0.

Thus, there exists a constant c > 0 such that, for any η > 0, there exists n0 and ζ > 0 such that, for
all n ≥ n0, P (Bn) > 1− η/2 and on Bn

w(Qn
i /n, ζ, T ) ≤ w(Na

i (n·)/n, cζ, T ) + 2

2
∑

i=1

2
∑

j=1

w(Ns
i,j(n·)/n, cζ, T ) + w(Nu

i (n·)/n, cζ, T ).

However, by the FWLLN for the Poisson processes, we know that we can control all these moduli of
continuity on the right. Thus we deduce that, for every ǫ > 0 and η > 0, there exists ζ > 0 and n0 such
that

P (w(Qn
i /n, ζ, T ) ≥ ǫ) ≤ η for all n ≥ n0.

Hence, we have shown that the sequence {Q̄n
i } is tight.

We now turn to the sequence {Z̄n
1,2}. Let An

1,2(t) denote the total number of class-1 arrivals up to time
t, who will eventually be served by type-2 servers in system n. Let Ān

1,2 ≡ An
1,2/n and S̄n

1,2(t) ≡ Sn
1,2(t)/n,

for Sn
1,2(t) in (34). Since

Zn
1,2(t) = Zn

1,2(0) +An
1,2(t)− Sn

1,2(t),
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we have

|Z̄n
1,2(t2)− Z̄n

1,2(t1)| ≤ Ān
1,2(t2)− Ān

1,2(t1) + S̄n
1,2(t2)− S̄n

1,2(t1).

However, for An
1 in (34),

An
1,2(t2)−An

1,2(t1) ≤ An
1 (t2)−An

1 (t1).

Since Ān
1 ⇒ λ1e in D, the sequence {Ān

1} is tight. Together with (36), that implies that the sequence
{Z̄n

1,2} is tight as well. Finally, we observe that the tightness of {Ȳ n
8 } follows from (36), (37) and the

convergence of Ān
i . �

Since the sequence {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (26) is C-tight by Theorem 5.2, every subsequence has a

further subsequence which converges to a continuous limit. We now apply the modulus-of-continuity
inequalities established in the proof of Theorem 5.2 to deduce additional smoothness properties of the
limits of all converging subsequence.

Corollary 5.1 If (X̄6, Ȳ8) is the limit of a subsequence of {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in D14, then each

component in D, say X̄i, has bounded modulus of continuity; i.e., for each T > 0, there exists a constant
c > 0 such that

w(X̄i, ζ, T ) ≤ cζ w.p.1 (38)

for all ζ > 0. Hence (X̄6, Ȳ8) is Lipschitz continuous w.p.1, and is thus differentiable almost everywhere.

Proof. Apply the bounds on the modulus of continuity involving Poisson processes in the proof of
Theorem 5.2 above. For a Poisson process N , let N̂n ≡ √

n(N̄n − e), where N̄n(t) ≡ N(nt)/n, t ≥ 0. By
the triangle inequality, for each n, ζ, and T ,

w(N̄n, ζ, T ) ≤ w(N̂n, ζ, T )√
n

+ w(e, ζ, T ) ⇒ ζ as n→ ∞.

Since, w(x, ζ, T ) is a continuous function of x for each fixed ζ and T , we can apply this bound with the
inequalities in the proof of Theorem 5.2 to deduce (38). �

We remark in closing this section that Theorem 5.2 and Corollary 5.1 also hold with Assumption 3.2
replaced by X̄n(0) ⇒ x(0) as n→ ∞, where x(0) is a deterministic element of R3.

6. Structural Simplification. We now exploit Assumptions 3.1-3.3 to simplify the representation
established in §5.1 above, reducing the essential dimension from 6 to 3, following the plan described in
§3.1. We first establish this dimension reduction over an interval [0, τ ] and later, after Theorem 4.1 has
been proved over the same interval [0, τ ], we show that all the results here, and thus Theorem 4.1 too,
can be extended to the interval [0,∞).

Let

T n
0 ≡ inf{t > 0 : Zn

2,1(t) > 0 or Qn
1 (t) = 0 or Qn

2 (t) = 0}. (39)

By Assumption 3.2, both queues are initially strictly positive (so there is no idleness in either pool) and
Zn
2,1(0) = 0. Hence, T n

0 > 0 for each n ≥ 1. Theorem 5.1 with the definitions in (34) implies the following

reduction from six dimensions to three over [0, T n
0 ]. Let

d
= denote equality in distribution for processes.

Corollary 6.1 On the random interval [0, T n
0 ], Xn

6 = Xn,∗∗
6 w.p.1, where

Xn,∗∗
6 ≡ (Qn

1 , Q
n
2 ,m

n
1,1e, Z

n
1,2, 0e,m

n
2e− Zn

1,2),

with

Qn
1 (t) ≡ Qn

1 (0) +An
1 (t)−

∫ t

0

1{Dn
1,2(s−)>0} dS

n(s)−
∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,1(s)− Un

1 (t)

Qn
2 (t) ≡ Qn

2 (0) +An
2 (t)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
2,2(s)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,2(s)− Un

2 (t)

Zn
1,2(t) ≡ Zn

1,2(0) +

∫ t

0

1{Dn
1,2(s−)>0} dS

n
2,2(s)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,2(s), (40)
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and Xn,∗∗
6

d
= Xn,∗

6 , where Xn,∗
6 ≡ (Qn,∗

1 , Qn,∗
2 ,mn

1,1e, Z
n,∗
1,2 , 0e,m

n
2e− Zn,∗

1,2 ) with

Qn,∗
1 (t) ≡ Qn,∗

1 (0) +Na
1 (λ

n
1 t)−Ns

1,1(µ1,1m
n
1 t)−Ns,2

1,2

(

µ1,2

∫ t

0

1{Dn,∗
1,2 (s)>0}Z

n,∗
1,2 (s)) ds

)

−Ns
2,2

(

µ2,2

∫ t

0

1{Dn,∗
1,2 (s)>0}(m

n
2 − Zn,∗

1,2 (s)) ds

)

−Nu
1

(

θ1

∫ t

0

Qn,∗
1 (s) ds

)

, (41)

Qn,∗
2 (t) ≡ Qn,∗

2 (0) +Na
2 (λ

n
2 t)−Ns,2

2,2

(

µ2,2

∫ t

0

1{Dn,∗
1,2 (s)≤0}(m

n
2 − Zn,∗

1,2 (s)) ds

)

−Ns
1,2

(

µ1,2

∫ t

0

1{Dn,∗
1,2 (s)≤0}Z

n,∗
1,2 (s) ds

)

−Nu
2

(

θ2

∫ t

0

Qn,∗
2 (s) ds

)

, (42)

Zn,∗
1,2 (t) ≡ Zn,∗

1,2 (0) +Ns
2,2

(

µ2,2

∫ t

0

1{Dn,∗
1,2 (s)>0}(m

n
2 − Zn,∗

1,2 )(s) ds

)

−Ns
1,2

(

µ1,2

∫ t

0

1{Dn,∗
1,2 (s)≤0}Z

n,∗
1,2 (s) ds

)

, (43)

where Na
i , N

u
i , N

s
1,1, N

s
i,2, N

s,2
i,2 for i = 1, 2 are mutually independent rate-1 Poisson Processes and

Dn,∗
1,2 (t) ≡ Qn,∗

1 (t)− kn1,2 − r1,2Q
n,∗
2 (t) as in (6).

Note that in two places in the three displays (41)-(43) above we have introduced the new independent
rate-1 Poisson processes Ns,2

i,2 . Note that Zn,∗
1,2 (t) might be equal to zero for some or all t in [0, T n

0 ].

We next prove that T n
0 is bounded away from 0 asymptotically, i.e., that there exists a τ > 0 such

that P (T n
0 ≥ τ) → 1 as n→ ∞. We do so in two parts (both proved in §B):

Theorem 6.1 (no sharing in the opposite direction) There exists τ > 0 such that ‖Zn
2,1‖τ ⇒ 0 as n→ ∞.

Theorem 6.2 (positive queue lengths) For τ in Theorem 6.1,

P

(

inf
0≤t≤τ

min{Qn
1 (t), Q

n
2 (t)} > 0

)

→ 1 as n→ ∞.

As an immediate consequence of Theorems 6.1 and 6.2 above, we obtain the following SSC result.

Corollary 6.2 (SSC of the service process) For τ > 0 in Theorem 6.1, P (T n
0 > τ) → 1 as n → ∞,

where T n
0 is defined in (39); i.e.,

(mn
1 e− Zn

1,1, Z
n
2,1, m

n
2 e− Zn

1,2 − Zn
2,2) ⇒ (0e, 0e, 0e) in D3([0, τ ]) as n→ ∞.

We make two important remarks about Corollary 6.2: First, the limit holds without any scaling.
Second, here we do not yet show that a limit of Z̄n

1,2 as n → ∞ exists. We only show that, when
analyzing the four service processes Zn

i,j , it is sufficient to consider Zn
1,2.

Recall that dJ1 denotes the standard Skorohod J1 metric and Xn,∗
6 is the essentially three-dimensional

process defined in (10). The following corollary is immediate from Corollary 6.2.

Corollary 6.3 (Representation via SSC) As n → ∞, dJ1(X
n
6 , X

n,∗
6 ) ⇒ 0 in D6([0, τ ]), for Xn,∗

6 in
(10), τ in Theorem 6.1 and (Qn,∗

1 , Qn,∗
2 , Zn,∗

1,2 ) in (41)-(43).

We now obtain further simplification using a familiar martingale representation, again see [35]. Hence-
forth, we work with the process Xn,∗

6 defined in Corollary 6.1, but omit the asterisks. Consider the
representation of Xn

3 in (41)-(43) above, and let

Mn,a
i (t) ≡ Na

i (λ
n
i t)− λni t,

Mn,u
i (t) ≡ Nu

i

(

θi

∫ t

0

Qn
i (s)) ds

)

− θi

∫ t

0

Qn
i (s) ds,

Mn,s
i,2 (t) ≡ Ns

i,2(J
n
i,2(t))− Jn

i,2(t),

Mn,s,2
i,2 (t) ≡ Ns,2

i,2 (J
n
i,2(t))− Jn

i,2(t),

(44)
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where Jn
i,2(t) are the compensators of the point processes in (41)-(43), i = 1, 2, e.g.,

Jn
1,2(t) ≡ µ1,2

∫ t

0

1{Dn
1,2(s)<0}Z

n
1,2(s) ds.

The quantities in (44) can be shown to be martingales (with respect to an appropriate filtration); See
[35]. The following lemma follows easily from the functional strong law of large numbers (FSLLN) for
Poisson processes and the C-tightness established in Theorem 5.2.

Lemma 6.1 (fluid limit for the martingale terms) As n→ ∞,

n−1(Mn,a
1 ,Mn,a

2 ,Mn,u
1 ,Mn,u

2 ,Mn,s
1,2 ,M

n,s
2,2 ,M

n,s,2
1,2 ,Mn,s,2

2,2 ) ⇒ (0e, 0e, 0e, 0e, 0e, 0e, 0e, 0e) in D8([0, τ ]).

Proof. By Theorem 5.2, the sequence {X̄n
6 : n ≥ 1} is tight in D. Thus any subsequence has a

convergent subsequence. By the proof of Theorem 5.2, the sequences {Jn
i,j/n} are also C-tight, so that

{Jn
i,j/n}, i = 1, 2, all converge along a converging subsequence as well. Consider a converging subsequence

{Xn} and its limit X̄, which is continuous by Theorem 5.2. Then the claim of the lemma follows for the
converging subsequence from the FSLLN for Poisson processes and the continuity of the composition map
at continuous limits, e.g., Theorem 13.2.1 in [48]. In this case, the limit of each fluid-scaled martingale
is the zero function 0e ∈ D, regardless of the converging subsequence we consider, and is thus unique.
Hence we have completed the proof. �

Hence, instead of X̄n
3 (the relevant components of X̄n,∗

6 ) in (41)-(43), we can work with X̄n ≡
(Q̄n

1 , Q̄
n
2 , Z̄

n
1,2) for

Z̄n
1,2(t) ≡ Z̄n

1,2(0) + µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m̄

n
2 − Z̄n

1,2(s)) ds − µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z̄

n
1,2(s) ds,

Q̄n
1 (t) ≡ Q̄n

1 (0) + λ̄n1 t− m̄n
1 t− µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z̄

n
1,2(s)) ds

− µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m̄

n
2 − Z̄n

1,2(s)) ds− θ1

∫ t

0

Q̄n
1 (s) ds,

Q̄n
2 (t) ≡ Q̄n

2 (0) + λ̄n2 t− µ2,2

∫ t

0

1{Dn
1,2(s)≤0}(m̄

n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z̄

n
1,2(s) ds− θ2

∫ t

0

Q̄n
2 (s)) ds.

(45)

Theorem 6.3 As n → ∞, dJ1(X̄
n
3 , X̄

n) ⇒ 0 in D3([0, τ ]) as n → ∞, where X̄n
3 is defined in (41)-(43),

X̄n is defined in (45) and τ is as in Theorem 6.1.

Proof. It suffices to show that M̄n ⇒ (0e, 0e, 0e) in D3([0, τ ]) as n→ ∞, where

M̄n ≡ X̄n
3 − X̄n. (46)

However, M̄n ⇒ (0e, 0e, 0e) by virtue of Lemma 6.1 above by the continuous mapping theorem with
addition at continuous limits. �

As a consequence of Theorem 6.3, henceforth we can focus on X̄n in (45) instead of X̄n
3 in (41)-(43).

After we prove Theorem 4.1, we can extend the interval [0, τ ] over which all the previous results in this
section hold to the interval [0,∞).

Theorem 6.4 (global SSC) All of the results above in this section extend from the interval [0, τ ] to the
interval [0,∞).

We prove Theorems 6.1 and 6.2 in §B, after establishing supporting technical results in §A. In §B.3,
we prove Theorem 6.4, under the assumption that Theorem 4.1 has been proved over [0, τ ], which will be
done in §7, by showing that the interval over which the conclusion is valid can be extended from [0, τ ] to
[0,∞), once Theorem 4.1 has been proved over [0, τ ]. That will imply that Theorem 4.1 then holds over
[0,∞) as well.
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7. Completing the Proof of Theorem 4.1: Characterization. The C-tightness result in The-
orem 5.2 implies that every subsequence of the sequence {(X̄n

6 , Ȳ
n
8 ) : n ≥ 1} in (26) has a further

converging subsequence in D14([0,∞)), whose limit is in the function space C14([0,∞)). To establish the
convergence of the sequence {(X̄n

6 , Ȳ
n
8 )} we must show that every converging subsequence converges to

the same limit.

Corollary 6.3 and Theorem 6.3 imply that we can simplify the framework over an initial time interval
[0, τ ]. In particular, it suffices to focus on the sequence {X̄n} in D3([0, τ ]) given in (45), where the limits
of the subsequences will be in C3([0, τ ]), but we will later show that this restriction can be relaxed. In
particular, we will show that convergence holds in D14([0,∞))

We achieve the desired characterization of X̄n in D3([0, τ ]) by showing that the limit of any converging
subsequence is almost surely a solution to the ODE (24) over [0, τ ]. The existence and uniqueness of the
solution to the ODE has been established in Theorem 5.2 in [38]. As indicated in §4.4, we have developed
two different proofs, the first proof exploits random measures and martingales, following [18, 28]; it is
given here in §§7.2 and 7.3. The second exploits stochastic bounds as in the proof of Lemma B.3; it is
given in Appendix C. Both proofs start from the following subsection.

7.1 Proof of Theorem 4.1: Reduction to Integral Terms. Let X̄ be the limit of a converging
subsequence of {X̄n : n ≥ 1} in (45) in D([0, τ ]) for τ in Theorem 6.3. We consider n ≥ 1 with the
understanding that the limit is through a subsequence. Many of the terms in (45) converge directly
to their counterparts in (25) because of the assumed many-server heavy-traffic scaling in §2.3 and the
convergence X̄n ⇒ X̄ through the subsequence obtained from the tightness. Indeed, the only exceptions
are the integral terms involving the indicator functions. Let Īnz,i, Ī

n
q,1,i, and Ī

n
q,2,i be the ith integral term

in the respective expression for Z̄n
1,2, Q̄

n
1 and Q̄n

2 in (45), i = 1, 2. We first observe that these sequences
of integral terms are tight.

Lemma 7.1 (tightness of integral terms) The six sequences of integral processes {Īnz,i : n ≥ 1}, {Īnq,1,i :
n ≥ 1}, and {Īnq,2,i : n ≥ 1} involving the indicator functions appearing in (45) are each C-tight in
D([0, τ ]).

Proof. We consider only the integral term Īnq,1,1, because the others are treated in the same way.
First, boundedness is elementary: 0 ≤ Īnq,1,1(t) ≤ tmn

2/n. Second, the modulus in (35) is easily controlled:
w(Īnq,1,1, ζ, T ) ≤ ζmn/n→ ζm2. �

Hence, we can consider a subsequence of our original converging subsequence in which all these integral
terms converge to proper limits as well. Hence we have the following expression for X̄ , the limit of the
converging subsequence.

Z̄1,2(t) = z1,2(0) + µ2,2Īz,1(t)− µ1,2Īz,2(t)

Q̄1(t) = q1(0) + λ̄1t− m̄1t− µ1,2Īq,1,1(t)− µ2,2Īq,1,2(t)− θ1

∫ t

0

Q̄1(s) ds,

Q̄2(t) = q2(0) + λ̄2t− µ2,2Īq,2,1(t)− µ1,2Īq,2,2(t)− θ2

∫ t

0

Q̄2(s)) ds.

(47)

In (47), we have exploited the assumed convergence of the initial conditions in Assumption 3.2 to replace
X̄(0) by x(0) in (47). At this point, it only remains to show that the terms Īz,i, Īq,1,i and Īq,2,i appearing
in (47) necessarily coincide almost surely with the corresponding terms in the integral representation (25)
associated with the ODE in (24) over the interval [0, τ ]. That will uniquely characterize the limit over
that initial interval [0, τ ] because, by Theorem 5.2 of [38], there exists a unique solution to the ODE.

Thus, it suffices to establish the following lemma, which we do in two different ways, one in the next
two sections and the other in Appendix C.

Lemma 7.2 (representation of limiting integral terms) For τ in Theorem 6.3, the integral terms in (47)
necessarily coincide with the corresponding integral terms in (25) with X̄ substituted for x for 0 ≤ t ≤ τ ,
e.g.,

Īq,1,1(t) =

∫ t

0

π1,2(X̄(s))Z̄1,2(s)) ds, 0 ≤ t ≤ τ, w.p.1. (48)
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7.2 Exploiting Random measures. For the rest of our proof of Lemma 7.2, we closely follow Hunt
and Kurtz [18], which applies Kurtz [28]. There are two key steps: (i) exploiting random measures and
(ii) applying a martingale representation to characterize the limit in terms of the steady-state distribution
of the FTSP in §3.2. This subsection is devoted to the first step; the next subsection is devoted to the
second step.

We now introduce random measures in order to expose additional structure in the integral term Īq,1,1
in (47). The random measures will be defined by setting

νn([0, t]×B) ≡
∫ t

0

1{Dn
1,2(s)∈B} ds, t ≥ 0, (49)

where B is a measurable subset of the set E of possible values of Dn
1,2. Given the definition of Dn

1,2 in (6),
we exploit Assumption 3.3 stating that r1,2 is rational and the assumption after it that the thresholds
are rational as well, so that we can have the state space E be discrete, independent of n. (This property
is not necessary for the analysis at this point, but it is a helpful simplification. The space E could even
be taken to be a subset of Z, using the construction in §6 of [38] by renaming the states in E.) Of course,
we are especially interested in the case in which B is the set of positive values; then we focus on the
associated random variables νn([0, t]× (0,∞)), n ≥ 1, as in (45).

As in [18, 28], it is convenient to compactify the space E. We do that here , first, be adding the states
+∞ and −∞ to E and, second, by endowing E with the metric and associated Borel σ-field from R

induced by the mapping ψ : E → [−1, 1], defined by ψ(x) = x/(1+ |x|). That makes E a compact metric
space. We then consider the space M ≡M(S) of (finite) measures µ on the product space S ≡ [0, δ]×E
for some δ > 0, such that µ([0, t]×E) = t for all t > 0. Moreover, we endowM with the Prohorov metric,
as in (1.1) of [28]. Since S is compact, the space M inherits the compactness; i.e., it too is a compact
metric space, by virtue of Prohorov’s theorem, Theorem 11.6.1 of [48].

Let P ≡ P(M) ≡ P(M(S)) be the space of probability measures on M(S), also made into a metric
space with the Prohorov metric, so that convergence corresponds to the usual notion of weak convergence
of probability measures. As a compact metric space, M(S) is a complete separable metric space, so that
this is a standard abstract setting for weak convergence of probability measures [7, 12, 48]. By Prohorov’s
theorem, this space P of probability measures on M(S) also is a compact metric space.

Thus we have convergence of random measures νn ⇒ ν as n→ ∞ if and only if E[f(νn)] → E[f(ν)] as
n→ ∞ for all continuous bounded real-valued functions f on M . On the other hand, by the continuous
mapping theorem, if we have νn ⇒ ν as n → ∞, then we also have f(νn) ⇒ f(ν) as n → ∞ for each
continuous function on M . One reason that the random measure framework is convenient is that each
continuous bounded real-valued function f on S corresponds to a continuous real-valued function on
M(S) via the integral representation

f(µ) ≡
∫

S

f(s) dµ(s).

As a consequence, if νn ⇒ ν as n→ ∞, then necessarily also
∫

S

f(s) dνn(s) ⇒
∫

S

f(s) dν(s) in R as n→ ∞

for all continuous bounded real-valued functions f on S.

In our context it is important to observe what are the continuous functions on E after the compactifi-
cation above. The new topology requires that the functions have finite limits as k → +∞ or as k → −∞.
All the functions we consider will be continuous on E because they take constant values outside bounded
sets. We will use the following stronger result, which is a special case of Lemma 1.5 of [28].

Lemma 7.3 (extended continuous mapping theorem) If f is a continuous bounded real-valued function on
S and {fn : n ≥ 1} is a sequence of measurable real-valued functions on S such that ‖fn − f‖S → 0 as
n→ ∞, then

∫

S

fn(s) dν
n(s) ⇒

∫

S

f(s) dν(s) in R as n→ ∞.
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Proof. First, starting from the convergence νn ⇒ ν, apply the Skorohod representation theorem to
obtain versions converging w.p.1, without changing the notation. Then, by the triangle inequality,

|
∫

S

fn(s) dν
n(s)−

∫

S

f(s) dν(s)| ≤ |
∫

S

fn(s) dν
n(s)−

∫

S

f(s) dνn(s)|+ |
∫

S

f(s) dνn(s)−
∫

S

f(s) dν(s)|

≤ ‖fn − f‖Sνn(S) + |
∫

S

f(s) dνn(s)−
∫

S

f(s) dν(s)| → 0 as n→ ∞,

using the uniform convergence condition and the limit νn(S) → ν(S) < ∞ in the first term and the
continuous mapping in the second term. This shows convergence w.p.1 for the special versions and thus
the claimed convergence in distribution. �

The randommeasures we consider are random elements ofM(S), where S is the product space [0, δ]×E.
These random measures can be properly defined by giving their definition for all product sets [0, t]×B,
as we have done in (49). The usual extension produces full random elements of M(S).

We exploit the compactness of E introduced above to obtain compactness of P(M) and thus relative
compactness of the sequence {(X̄n

6 , ν
n);n ≥ 1}.

Lemma 7.4 (relative compactness) The sequence {(X̄n
6 , ν

n);n ≥ 1} defined by (26) and (49) is relatively
compact in D6([0, δ])×M(S) for any δ > 0.

Proof. We already have observed that, because of the compactness imposed on E, the space
P(M(S)) is compact. By Theorem 5.2, the sequence {X̄n

1,2 : n ≥ 1} is tight and thus relatively compact.
However, relative compactness of the components implies relative compactness of the vectors. Thus the
sequence {(X̄n

6 , ν
n);n ≥ 1} defined by (26) and (49) is relatively compact in D6([0, δ]×M(S). �

Another crucial property of the random measures on the product space is that the random measures
themselves admit a product representation or factorization, as indicated by Lemma 1.4 of [28]; also see
Lemma 2 of [18]. This result requires filtrations. For that, we observe that Xn

6 is a Markov process
and νn restricted to [0, t] × E is a function of the Markov process Xn

6 over [0, t]. Thus, we can use the
filtrations Fn

t generated by Xn
6 for each n ≥ 1. In our context, we have the following consequence of

Lemma 1.4 of [28].

Lemma 7.5 (factorization of the limiting random measures) Let (X̄, ν) be the limit of a converging subse-
quence of {(X̄n

6 , ν
n);n ≥ 1} in D6([0, δ])×M(S) obtained via Lemma 7.4. Then there exists ps ≡ ps(B),

a measurable function of s for each measurable subset B in E and a probability measure on E for each s
in [0, δ], such that, for all measurable subset B1 of [0, δ] and B2 of E,

ν(B1 ×B2) =

∫

B1

ps(B2) ds. (50)

As a consequence of the three lemmas above, we obtain the following preliminary representation.

Lemma 7.6 (initial representation of limiting integral terms) Every subsequence of the sequence
{(X̄n

6 , ν
n);n ≥ 1} defined by (26) and (49) in D6([0, δ]) ×M(S) as a further converging subsequence.

Let (X̄, ν) be a limit of a convergent subsequence. For any δ ≤ τ for τ in Theorem 6.3, the integral
terms in (47) necessarily coincide with the corresponding integral terms in (45) with a probability p1,2(s)
substituted for 1{Dn

1,2(s)>0} and X̄ substituted for x for 0 ≤ t ≤ δ, in particular,

Īq,1,1(t) =

∫ t

0

p1,2(s)Z̄1,2(s)) ds, 0 ≤ t ≤ δ, w.p.1. (51)

where Z̄1,2 is the component of X̄ and p1,2(s) ≡ ps((0,∞)) for ps in (50), so that p1,2(s) is a measurable
function of s with 0 ≤ p1,2(s) ≤ 1, 0 ≤ s ≤ δ.

Proof. By Lemma 7.4, we are justified in focusing on a converging subsequence with limit (X̄, ν),
where X̄ ≡ (Q̄i, Z̄i,j). For (51), we focus on (Z̄1,2, ν). As before, apply the Skorohod representation
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theorem to obtain a version converging w.p.1 along the subsequence, without changing the notation. For
the corresponding terms indexed by n,

Īnq,1,1(t) = µ1,2

∫ t

0

Z̄n
1,2(s)1{Dn

1,2(s)>0}ds =

∫ t

0

Z̄n
1,2(s) ν

n(ds× dy), (52)

so that we can apply Lemma 7.3 to deduce that

Īnq,1,1(t) → Īq,1,1(t) ≡ µ1,2

∫ t

0

Z̄1,2(s) ν(ds× dy).

Finally, we apply Lemma 7.5 to show that the representation of ν in (52) is equivalent to (51). �

It now remains to determine the term p1,2(s) in the integrand of the integral (51). In the next section
we will show that we can write p1,2(s) = P (D(X̄(s),∞) > 0), thus completing the proof of Lemma 7.2.

7.3 A Martingale Argument to Characterize the Probability in the Integrand. We now
finish the proof of Lemma 7.2 by characterizing the probability measure ps in Lemma 7.5.

Proof of Lemma 7.2. We will prove that p1,2(s) = P (D(X̄(s),∞)) > 0 for almost all s in the
integral (51), where D(X̄(s),∞)) is a random variable with the steady-state distribution of the FTSP
in §3.2 depending on the state X̄(s), which is the limit of the converging subsequence of the sequence
{X̄n : n ≥ 1}. This step will make (51) reduce to the desired (48).

We first comment on the exceptional sets. We establish the result w.p.1, so that there is an exceptional
set, say Υ, in the underlying probability space Ω with P (Υ) = 0, such that we claim the conclusion of
Lemma 7.2 holds in Ω − Υ. However, for each ω ∈ Ω − Υ, we find an exceptional set Ψ(ω) in [0, δ]
where the Lebesgue measure of Ψ(ω) is 0. However, the integral in Lemma 7.2 is unchanged if we
change the definition of the integrand on a set of Lebesgue measure 0. Hence, we can assume that
p1,2(s) = P (D(X̄(s),∞) > 0) for all s in [0, δ] for each sample point ω ∈ Ω − Υ. After doing that, we
obtain the w.p.1 conclusion in Lemma 7.2.

We remark that it is possible to obtain a single exceptional set Ψ in [0, δ] such that p1,2(s) =
P (D(X̄(s),∞)) > 0 for all s ∈ [0, δ] − Ψ w.p.1. The construction to achieve that stronger goal is
described in Example 2.3 of Kurtz [28] on p. 196. The conditions specified there hold in our context.
Since that property is not required here, we do not elaborate.

Continuing with the main proof, we now aim to characterize the entire probability measure ps on
E appearing in Lemma 7.5. We will do that by showing that ps satisfies the equation characterizing
the steady-state distribution of the FTSP D(X̄(s), ·) for almost all s with respect to Lebesgue measure
(consistent with the notion of an averaging principle). Since the FTSP D(X̄(s), ·), given X̄(s), is a CTMC
with the special structure (only four transitions possible from each state, and only two different cases
for these, as shown in (13)-(16)), just as for finite-state CTMC’s (in elementary textbooks), it suffices to
show that

∑

i

ps({i})Qi,j(X̄(s)) = 0 for all j (53)

for almost all s in [0, δ] with respect to Lebesgue measure, where i and j are states of the FTSP and
Qi,j(X̄(s)) in (53) is the (i, j)th component in the infinitesimal rate matrix (generator) of the CTMC
D(X̄(s), ·).

However, we will follow [18] and use the framework in §§4.2 and 8.3 of [12]. In particular, the FTSP
satisfies the assumptions in Corollary 8.3.2 on p. 379 in [12]. As in (9) of [18], this step corresponds
to an application of Proposition 4.9.2 of [12], but the simple CTMC setting does not require all the
structure there. Following the proof of Theorem 3 in [18] (and §2 of [28]), we now develop a martingale
representation for f(Dn

1,2), where f is a bounded continuous real-valued function on the state space E of
Dn

1,2. This construction is the standard martingale associated with functions of Markov processes, just
as in Proposition 4.1.7 of [12]. Since, Dn

1,2 is a simple linear function of the CTMC Xn
6 in (6), we can

write f(Dn
1,2) = g(Xn

6 ) for some continuous bounded function g. The martingale will be with respect to
the filtration Fn

t generated by the Markov process Xn
6 (as in Lemma 7.5).

Recalling that Dn
1,2 ≡ Qn

1 − r1,2Qn
2 , we can write f(Dn

1,2(t)) in terms of the independent rate-1 Poisson
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processes in (34) as follows

f(Dn
1,2(t)) ≡ f(Dn

1,2(0))−
∫ t

0

[f(Dn
1,2(s−) + 1)− f(Dn

1,2(s−))]dNa
1 (λ

n
1 s)

−
∫ t

0

[f(Dn
1,2(s−)− 1)− f(Dn

1,2(s−))]
(

dNu
1 (θ1Q

n
1 (s)) + dNs

1,1(µ1,1m
n
1 s)
)

−
∫ t

0

1{Dn
1,2(s)>0}[f(D

n
1,2(s−)− 1)− f(Dn

1,2(s−))]
(

dNs
1,2(µ1,2Z

n
1,2(s)) + dNs

2,2(µ2,2(Z
n
2,2(s)))

)

−
∫ t

0

1{Dn
1,2(s)≤0}[f(D

n
1,2(s−) + r) − f(Dn

1,2(s−))]
(

dNs
1,2(µ1,2Z

n
1,2(s)) + dNs

2,2(µ2,2(Z
n
2,2(s)))

)

−
∫ t

0

1{Dn
1,2(s)>0}[f(D

n
1,2(s−) + r) − f(Dn

1,2(s−))]dNu
s (θ2Q

n
2 (s))

−
∫ t

0

[f(Dn
1,2(s−)− r)− f(Dn

1,2(s−))]dNa
2 (λ

n
2 s).

We next rewrite the representation for f(Dn
1,2(t)) above to achieve a martingale representation. To that

end, we add and then subtract the appropriate Riemann integral from each of the integrals above, e.g.,

∫ t

0

[f(Dn
1,2(s−) + 1)− f(Dn

1,2(s−))]dNa
1 (λ

n
1 s) =

∫ t

0

[f(Dn
1,2(s−) + 1)− f(Dn

1,2(s−))]dMn,a
1 (s) +

∫ t

0

[f(Dn
1,2(s−) + 1)− f(Dn

1,2(s−))]λn1ds,

for Mn,a
1 in (44). Note that an integral of a predictable process with respect to a martingale is again a

martingale. We thus achieve a modifies representation of f(Dn
1,2(t)) in terms of martingales and their

associated predictable quadratic-variation processes; see, e.g., §3.5 in [35] for more details. Rearranging
terms, so that all the martingales in the modified representation appear on the left-hand side and letting
Mn

f denote the sum of those martingales, we have

Mn
f (t) ≡ f(Dn

1,2(t))− f(Dn
1,2(0))−

∫ t

0

λn1 [f(D
n
1,2(s−) + 1)− f(Dn

1,2(s−))]ds

−
∫ t

0

(mn
1 + θ1Q

n
1 (s))[f(D

n
1,2(s−)− 1)− f(Dn

1,2(s−))]ds

−
∫ t

0

1{Dn
1,2(s)>0}(µ1,2Z

n
1,2(s) + µ2,2(m

n
2 − Zn

1,2(s)))[f(D
n
1,2(s−)− 1)− f(Dn

1,2(s−))]ds

−
∫ t

0

1{Dn
1,2(s)≤0}(µ1,2Z

n
1,2(s) + µ2,2(m

n
2 − Zn

1,2(s)))[f(D
n
1,2(s−) + r)− f(Dn

1,2(s−))]ds

−
∫ t

0

1{Dn
1,2(s)>0}θ2Q

n
2 (s)[f(D

n
1,2(s−) + r)− f(Dn

1,2(s−))]ds

−
∫ t

0

λn2 [f(D
n
1,2(s−)− r)− f(Dn

1,2(s−))]ds. (54)

Note that Mn
f is a Fn

t -martingale itself.

It follows from essentially the same arguments as in the proof of Lemma 6.1 and the continuity of
addition at continuous limits, that M̄n

f ≡ Mn
f /n ⇒ 0e in D as n → ∞, for Mn

f in (54). In addition, we

have n−1(f(Dn
1,2(t)) − f(Dn

1,2(0))) ⇒ 0e in D since f is bounded. We write the remaining terms of M̄n
f
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as

D̄n
f (t) ≡ M̄n

f (t)− n−1(f(Dn
1,2(t))− f(Dn

1,2(0))) =

∫

(0,t)×E

λ̄n1 [f(y + 1)− f(y)]νn(ds× dy)

−
∫

(0,t)×E

(m̄n
1 + θ1Q̄

n
1 (s))[f(y − 1)− f(y)]νn(ds× dy)

−
∫

(0,t)×E

1{y>0}(µ1,2Z̄
n
1,2(s) + µ2,2(m̄

n
2 − Z̄n

1,2(s)))[f(y − 1)− f(y)]νn(ds× dy)

−
∫

(0,t)×E

1{y≤0}(µ1,2Z̄
n
1,2(s) + µ2,2(m̄

n
2 − Z̄n

1,2(s)))[f(y + r)− f(y)]νn(ds× dy)

−
∫

(0,t)×E

1{y>0}θ2Q̄
n
2 (s)[f(y + r)− f(y)]νn(ds× dy)−

∫

(0,t)×E

λ̄n2 [f(y − r)− f(y)]νn(ds× dy).

By Lemmas 7.6 and 7.3, D̄n
f ⇒ D̄f = 0e as n→ ∞ along the converging subsequence, where

D̄f ≡
∫

(0,t)×E∆

λ1[f(y + 1)− f(y)]ν(ds× dy)−
∫

(0,t)×E

(m1 + θ1Q̄1(s))[f(y − 1)− f(y)]ν(ds× dy)

−
∫

(0,t)×E

1{y>0}(µ1,2Z̄1,2(s) + µ2,2(m2 − Z̄1,2(s)))[f(y − 1)− f(y)]ν(ds× dy)

−
∫

(0,t)×E

1{y≤0}(µ1,2Z̄1,2(s) + µ2,2(m2 − Z̄1,2(s)))[f(y + r)− f(y)]ν(ds× dy)

−
∫

(0,t)×E

1{y>0}θ2Q̄2(s)[f(y + r) − f(y)]ν(ds× dy)−
∫

(0,t)×E

λ2[f(y − r) − f(y)]ν(ds× dy).

(55)

However, just as in [18], we can identify the limit D̄f in (55) as the integral with respect to the random
measure ν of the infinitesimal generator of the FTSP D(X̄(s), ·) applied to the test function f . In
particular, for each sample point in the underlying probability space Ω supporting (X̄, ν) except for a
subset Υ with P (Υ) = 0, from Lemma 7.5, we obtain

∫ t

0

∫

E

[Q(X̄(s))f ](y)ps(dy) ds = 0 for all t ≥ 0. (56)

where [Q(X̄(s))f ](y) is the generator of the CTMC D(X̄(s), ·) applied to f as a function of y in E. As
a consequence,

∫

E

[Q(X̄(s))f ](y)ps(dy) = 0 for almost all s with respect to Lebesgue measure. (57)

It follows from Proposition 4.9.2 page 239 in [12], that ps is the (unique) stationary distribution of the
FTSP D(X̄(s), ·) for almost all s. (This step is equivalent to (53).) We apply Lemma 3.1 to conclude
that the FTSP D(γ, ·) has a unique stationary distribution on E for all γ ∈ S. �

7.4 Proof of Theorem 4.1. We can now summarize the proof of our main result - the FWLLN via
the AP.

Proof of Theorem 4.1. There are two steps: (i) establishing convergence over an initial interval
and (ii) expanding the interval of convergence. We consider slightly more general settings than in the
statement of the theorem, by considering the vector (X̄n

6 , Ȳ
n
8 , ν

n) with the random measure νn replacing
Θn. Note that Θn(t) ≡ νn([0, t] × (0,∞)) and ϑ(t) ≡ ν([0, t] × (0,∞)) for Θn and ϑ in (27), νn in (49)
and ν in (50).

(i) Establishing convergence over [0, τ ]. By Theorem 5.2, the sequence {(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (26) is

C-tight in D14([0,∞)). By Lemma 7.4, (X̄n
6 , ν

n) is relative compact in D6×M(S). By Theorem 6.3, there
exists τ > 0 such that the limit point of a converging subsequence of X̄n

6 in D6([0, τ ]) is also the limit
point of X̄n,∗

6 in (10), whose representation is specified in (41)-(43). Thus, it suffices to next characterize
the limit of a converging subsequence of the sequence (X̄n, νn), for {X̄n} ≡ {1/n(Qn

1 , Q
n
2 , Z

n
1,2)} in (45)

over an interval [0, τ ]. The characterization of the limit of X̄n
6 also characterizes the limit of νn since, as
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the proof of Lemma 7.5 demonstrates, each limit point of (X̄n
6 , ν

n) is of the form (X̄6, ν), for ν in (50).
In particular, for any two Borel sets B1, B2,

νn(B1, B2) ≡
∫

B1

1{Dn
1,2(s)∈B2} ⇒ ν(B1 ×B2) ≡

∫

B1

ps(B2) ds in D as n→ ∞,

where ps is the unique stationary distribution of the FTSP D(X̄6(s), ·) for almost all s. Hence, if X̄ ≡ x6,
and in particular, the limit of X̄n

6 is unique, then ps ≡ π1,2(x6(s)) for almost all s, so that the limit ν of
νn is unique as well.

With that characterization complete, we obtain the full convergence (X̄n
6 , Ȳ

n
8 , ν

n) ⇒ (x6, y8, ν) in
D15([0, τ ]) directly, exploiting Theorem 6.3. By Lemma 7.2 above, we complete the characterization step,
showing that P (X̄ = x) = 1 in D3([0, τ ]), where x is a solution to the ODE in (24) with the initial
condition x(0) specified by Assumption 3.2.

(ii) Expanding in the interval of convergence. After establishing the convergence over an initial interval
[0, τ ], we can apply Theorem 6.4 (which uses Theorem 4.1 over [0, τ ]) to conclude that any limit point
of the tight sequence X̄n

6 is again a limit of the tight sequence X̄n,∗
6 in (10) over the entire half line

[0,∞), showing that τ places no constraint on expanding the convergence interval. Moreover, by part
(ii) of Theorem 5.2 in [38], any solution to the ODE, with a specified initial condition, can be extended
indefinitely, and is unique. Hence that places no constraint either. Finally, the martingale argument
allows us to uniquely characterize the steady-state distribution of the FTSP D(γ, ·) in §3.2 even when
the state γ is not in A, provided that we have the SSC provided by Theorem 6.4. In particular, we will
have either π1,2(γ) = 1 or π1,2(γ) = 0 if γ /∈ A. �

8. Remaining Proofs of Theorems in §4. We now provide the remaining proofs for four theorems
in §4. At this point, Theorem 4.1 has been proved.

8.1 Proof of Theorem 4.3. We will consider a sequence of stationary Markov processes {{X̄n
6 (t) :

t ≥ 0} : n ≥ 1}, with X̄n
6 (0)

d
= X̄n

6 (∞) for each n ≥ 1. That initial condition makes the stochastic
processes strictly stationary. We will refer to these stationary processes as stationary versions of the
processes X̄n

6 and denote them by X̄n
s . We start by establishing tightness.

Lemma 8.1 (tightness of the sequence of stationary distributions) The sequences {X̄n
6 (∞) : n ≥ 1} and

{{X̄n
s (t) : t ≥ 0} : n ≥ 1} are tight in R6 and D6, respectively.

Proof. First, for the tightness of {X̄n
6 (∞) : n ≥ 1} in R6, it suffices to treat the six components

separately. The tightness of {Z̄n
i,j(∞) : n ≥ 1} in R is immediate because 0 ≤ Z̄n

i,j(∞) ≤ mn
j /n, where

mn
j /n → mj as n → ∞. The tightness of the queue lengths follows from Lemma A.5. In particular,

since (i) Qn
i (t) ≤st Q

n
i,bd(t) for all t and (ii) Qn

i (t) ⇒ Qn
i (∞) and Qn

i,bd(t) ⇒ Qn
i,bd(∞) as t → ∞ for all

n ≥ 1, we necessarily have Qn
i (∞) ≤st Q

n
i,bd(∞) for all n, because stochastic order is preserved under

convergence. Since Q̄n
i,bd(∞) ⇒ qi,bd(∞) ≡ qi(0) ∨ (λi/θi) as n → ∞, the sequence {Q̄n

i,bd(∞) : n ≥ 1}
is stochastically bounded, which implies that the sequence {Q̄n

i (∞) : n ≥ 1} is stochastically bounded as
well. Since tightness of the marginal distributions implies tightness of vectors, the sequence of steady-
state random vectors {X̄n(∞) : n ≥ 1} is tight in R6. Given the tightness of {X̄n

s (0)}, the proof of
tightness in D6 is identical to the proof of Theorem 5.2. �

We next establish the analogue of the structural simplification results in §6. Let X̄(∞) ≡
(Q̄i(∞), Z̄i,j(∞)) be a limit of the stochastically bounded sequence {X̄n

6 (∞)}. Let X̄ ≡ (Q̄i, Z̄i,j) be
a limit of the sequence {{X̄n

s (t) : t ≥ 0} : n ≥ 1}. Note that X̄ must itself be a stationary process.

Lemma 8.2 P (Z̄1,1(∞) = m1, Z̄2,1(∞) = 0, Z̄2,2(∞) = m2 − Z̄1,2(∞)) = 1.

Proof. Let Īj(∞) ≡ mj − Z̄1,j(∞) − Z̄2,j(∞), j = 1, 2. To prove the claim, we need to show that
P (Z̄2,1(∞) > 0) = P (Īj(∞) > 0) = 0. We will consider the sequence of stationary versions {X̄n

s }, and a
limit X̄ of this sequence.

(i) P (Z̄2,1 = 0e) = 1. We will show that the opposite assumption leads to a contradiction. Hence,

suppose that P (Z̄2,1(s) > 0) > 0 for some s ≥ 0. The stationarity of Z̄2,1 implies that Z̄2,1(0)
d
= Z̄2,1(s).

Hence, we can equivalently assume that P (Z̄2,1(0) > 0) > 0.
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Let B2,1 denote the set in the underlying probability space, of all sample paths of X̄ with Z̄2,1(0) > 0.
By the contradictory assumption, P (B2,1) > 0. Following the arguments in Lemma B.1, if Z̄2,1(0) > 0,
then Z̄1,2(t) > 0 for all t ≥ 0, which implies that Z̄2,1(t) > 0 for all t ≥ 0 in B2,1.

Consider a sample path in B2,1. Because of one-way sharing, Z̄1,2 = 0e, so that the only departures
from Q̄1 are due to service completions in pool 1 and abandonment. Since Z̄1,1 ≤ m1 w.p.1, Q̄1 is
stochastically bounded from below, in sample-path stochastic order, by the fluid limit of an Erlang-A
model with m1 servers. At the same time, Q̄2 is stochastically bounded from above by the fluid limit of
an Erlang-A model with m2 servers. Hence, there exists ǫ > 0 such that, for some s ≥ 0,

rQ̄2(t)− ǫ ≤ rqa2 < qa1 ≤ Q̄1(t) + ǫ for all t ≥ s, (58)

where rqa2 < qa1 by Assumption 3.1. Now, because Q̄1 and Q̄2 are bounded with probability 1, we can find
s0 > 0 such that (58) holds with this s0 for all possible initial condition in B2,1. However, this implies
that Z̄2,1 is strictly decreasing for all t ≥ s0 and for all sample paths in B2,1 (because no fluid can flow
from queue 1 to pool 2), so that Z̄2,1(t) < Z̄2,1(s0) for all t > s0 in B2,1, contradicting the stationarity of
Z̄2,1. Thus, P (B2,1) = 0.

(ii) P (Ī1 = Ī2 = 0e) = 1. We follow the proof of Theorem 6.2, building on the result P (Z̄2,1(∞) =
0) = 1 just established. Recall that Ln

i ≡ Qn
i + Zn

i,1 + Zn
i,2 −mn

i in (88), representing the excess number
of class-i customers in the system, is stochastically bounded from below, in sample-path stochastic order,
by the process Ln

b,i, with L
n
i,b defined by imposing a reflecting upper barrier at kn1,2 for i = 1, 2 and letting

Ln
i,b(0) = Ln

i (0)∧ kn1,2. However, here we working with stationary versions. Since, the processes (Ln
1 , L

n
2 )

are strictly stationary, so are the reflected processes (Ln
1,b, L

n
2,b). Then U

n ≥st U
n
b , where U

n and Un
b and

the linear functions of (Ln
1 , L

n
2 ) and (Ln

1,b, L
n
2,b), respectively, defined in (89). These processes Un and Un

b

are also stationary processes.

However, just as in the proof of Theorem 6.2, Un
b is a birth and death process on the integers in

(−∞, 0], which is independent of Zn
1,2, with drift δnb in (90). Since δnb /n → δb > 0, the birth and death

Un
b has a positive drift for all n large enough. Consequently, −Un

b has the structure of the stationary
queue length process in a stable M/M/1 queue. Since the traffic intensity converges to a limit strictly
less than one, the initial value, and the value at any time, is stochastically bounded. Moreover, we can
apply the essentially the same extreme value argument used in the proof of Theorem 6.2 to conclude
that, for any τ > 0, that P (‖Īni ‖τ > 0) → 0 as n → ∞. We thus conclude that P (‖Īi‖τ = 0) = 1, from
which the conclusion follows, because the interval [0,∞) can be represented as the countable union of
finite intervals of finite length, and the countable sum of 0 probabilities is itself zero. �

A function Ȳ : Rm → Rk, m, k ≥ 1, is said to be locally Lipschitz continuous if for any compact set B,
there exists a constant K(B) such that, for any s, t ∈ B, |Ȳ (s)− Ȳ (t)| ≤ K(B)|s− t|. A locally Lipschitz
continuous function is absolutely continuous and is thus differentiable almost everywhere.

In the following we will consider two locally Lipschitz continuous functions V : R+
k → R

+ and Ȳ :

R
+ → R

+
k , and the “Lie derivative” V̇ (Ȳ (t)) ≡ ∇V · Ȳ ′, where ∇V denotes the gradient of V , and ∇V · Ȳ ′

is the usual inner product of vectors. Since both functions are differentiable almost everywhere, V̇ (Ȳ (t))
is understood to be be taken at points t for which both V and Ȳ are differentiable.

For a vector x ∈ Rk, we let ‖x‖ denote its L1 norm, although any other norm in Rk can be used in
the following. For the following we draw on §8.3 of [38].

Lemma 8.3 Let V : R+
k → R+ be locally Lipschitz continuous, such that V (x) = 0 if and only if x = 0.

Let Ȳ : R+ → R
+
k be Lipschitz continuous with constant N , such that Ȳ ≤ M , for some M > 0. If

V̇ (Ȳ (t)) < 0 for all t ≥ 0 for which Ȳ (t) 6= 0, then Ȳ (t) → 0 as t→ ∞.

Proof. Let f : R+ → R+ be absolutely continuous, such that f(t) = 0 if and only if t = 0. If for
almost every t 6= 0, f ′(t) < 0, then f(t) → 0 as t → ∞. We can apply that argument to the function
f(t) ≡ V (Ȳ (t)) if we show that V (Ȳ (t)) is locally Lipschitz continuous. To see that is the case, note that
for all t > 0,

Ȳ (s) ≤ Ȳ (0) + |Ȳ (s)− Ȳ (0)| ≤M +Nt, 0 ≤ s ≤ t.

Therefore, for any 0 ≤ u ≤ s ≤ t, |f(s)− f(u)| ≤ K(B)N(s− u), where B ≡ {x ∈ R
+
k : ‖x‖ ≤M +Nt}.

�
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Proof of Theorem 4.3. We consider a converging subsequence {X̄n′

s : n′ ≥ 1} of the sequence
{X̄n

s : n ≥ 1} with limit X̄ . By Lemma 8.2, we can consider it to be three-dimensional with components
Q̄1, Q̄2 and Z̄1,2. By Corollary 5.1, the limit X̄ is Lipschitz continuous in t, so that it is differentiable

almost everywhere. Specifically, X̄ is a limit of the sequence represented by (45), with X̄n(0)
d
= X̄n(∞)

for all n ≥ 1. Then each component of the converging subsequence {X̄n′

s } in (45) converges to its
respective limit (e.g., Q̄n′

1 to Q̄1). For our purposes here, it is sufficient to conclude that X̄(t) → x∗ w.p.1
as t→ ∞. Hence, we will not characterize the limit of X̄(t) as t→ ∞.

For the representation of the converging subsequence {X̄n′

s } in (45), let

W̄n′ ≡ (C − 1)Z̄n′

1,2 + CQ̄n′

1 + Q̄n′

2 ,

where C ≥ 1 will be specified later. Since X̄n′

s ⇒ X̄ by assumption, we can apply the continuous mapping
theorem to conclude that W̄n ⇒ W̄ in D3 as n→ ∞, where

W̄ (t) ≡ (C − 1)Z̄1,2(t) + CQ̄1(t) + Q̄2(t)

= (C − 1)Z̄1,2(0)− (Cµ1,2 − µ2,2)

∫ t

0

Z̄1,2(s) ds− µ2,2m2t

+ CQ̄1(0) + C(λ1 − µ1,1m1)t− Cθ1

∫ t

0

Q̄1(s) ds+ Q̄2(0) + λ2t− θ2

∫ t

0

Q̄2(s) ds.

with derivative

W̄ ′(t) = −(Cµ1,2 − µ2,2)Z̄1,2(t)− Cθ1Q̄1(t)− θ2Q̄2(t) + C(λ1 − µ1,1m1) + λ2 − µ2,2m2.

For x ∈ R3, let V (x) ≡ Cx1 + x2 + (C − 1)x3 and note that V̇ (X̄) ≡ ∇V · X̄ ′ = W̄ ′, and that V is
locally Lipschitz continuous. where ∇V denotes the gradient of V , and ∇V ·X̄ ′ is the usual inner product
of vectors. Now let Ȳ denote the derivative of X̄ shifted by x∗ for x∗ in (30), i.e., Ȳ ′ ≡ X̄ ′ + x∗. Hence,
as in the proof of Theorem 8.3 in [38], we have

V̇ (Ȳ ) ≡ −(Cµ1,2 − µ2,2)Z̄1,2(t)− Cθ1Q̄1(t)− θ2Q̄2(t).

If µ1,2 > µ2,2, then we let C = 1, and if µ1,2 ≤ µ2,2 we let C be any number such that C > µ2,2/µ1,2 ≥ 1.
With this choice of C, we see that V̇ (Ȳ ) < 0. By Lemma 8.3, Ȳ (t) → 0, which implies that X̄(t) → x∗

as t→ ∞ w.p.1. (Note that Ȳ and X̄ are Lipschitz continuous and bounded, as required.)

For α > 0, let βV (α) ≡ {x ∈ R3 : ‖V (x) − V (x∗)‖ ≤ α}. By the monotonicity of V (X̄) established
above, for each α > 0 there exists T (α, X̄(0)), such that X̄(t) ∈ βV (α) for all t ≥ T (α, X̄(0)). Since the
queues Q̄1 and Q̄2 are bounded w.p.1, we can uniformly bound T (α, X̄(0)) (uniformly in X̄(0)). Hence,
there exists T ≡ T (α), such that X̄(t) ∈ βV (α) w.p.1 for all t ≥ T . It follows from the stationarity
of X̄ that X̄(0) ∈ βV (α). Since this is true for all α > 0, it must hold that X̄(0) = x∗ which, by the

equality in distribution X̄(∞)
d
= X̄(0), implies that X̄(∞) = x∗ w.p.1. We have thus shown that the

limit of all converging subsequences of {X̄n(∞) : n ≥ 1} is x∗ in (30), which implies the full convergence
X̄n(∞) ⇒ x∗ as n → ∞. Moreover, since x∗ is the limit of a stationary sequence, x∗ itself must be a
stationary point for each fluid limit X̄ (i.e., if X̄(0) = x∗, then X̄(t) = x∗ for all t ≥ 0), and it is globally
asymptotically stable, because X̄(t) → x∗ as t→ ∞, as was shown above. �

Note that none of the proofs in this section used the initial condition in Assumption 3.2, or the
rationality of the queue ratios in Assumption 3.3.

8.2 Proof of Theorem 4.4. The claimed convergence in D is less complicated than it might appear,
because there is no spatial scaling. Consequently, all processes are pure-jump processes, having piecewise
constant sample paths, with only finitely many discontinuities in any bounded interval. Both processes
have the same four possible transitions from each state: ±1 or ±r for r ≡ r1,2. Hence, it suffices to show
convergence in distribution of the first k pairs of jump times and jump values for any k ≥ 1. That can
be done by mathematical induction on k.

We can start by applying the Skorohod representation theorem to replace the assumed convergence in
distribution Γn

6/n⇒ γ6 and Dn
e (Γ

n, 0) ⇒ D(γ, 0) as n→ ∞ by convergence w.p.1 for alternative random
vectors having the same distribution. Hence, it suffices to assume that Γn

6/n → γ6 and Dn
e (Γ

n, 0) →
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D(γ, 0) as n→ ∞ and w.p.1. (We do not introduce new notation.) Thus, for each sample point, we will
have Dn

e (Γ
n, 0) = D(γ, 0) for all n sufficiently large. Hence, we can assume that we start with equality

holding.

Moreover, we can exploit the structure of pure-jump Markov processes. The FTSP is directly such
a pure-jump Markov process with transition rates given in (13)-(16). These rates were defined to be
the limit of the transition rates of the queue difference processes Dn

1,2, after dividing by n. The queue
difference processes Dn

1,2 in (6) are not Markov, but they are simple linear functions of the pure-jump
Markov process Xn

6 .

The transition rates for Dn
1,2 closely parallel (13)-(16). Because of the assumptions, we can work

with the three-dimensional random state Γn ≡ (Qn
1 , Q

n
2 , Z

n
1,2) ∈ R3 with the understanding that the

remaining components of Γn
6 are Zn

1,1 = mn
1 , Z

n
2,1 = 0 and Zn

2,2 = mn
2 − Zn

1,2. Let Dn(Γn, t0) ≡ Dn
1,2(t0)

under the condition that Xn(t0) = Γn. When Dn(Γn, t0) ≤ 0, let the transition rates be λ
(r)
− (n,Γn),

λ
(1)
− (n,Γn), µ

(r)
− (n,Γn) and µ

(1)
− (n,Γn) in (70), for transitions of +r, +1, −r and −1, respectively. When

Dn(Γn, t0) > 0, let the transition rates be λ
(r)
+ (n,Γn), λ

(1)
+ (n,Γn), µ

(r)
+ (n,Γn) and µ

(1)
+ (n,Γn) in (71), for

transitions of +r, +1, −r and −1, respectively.

The many-server heavy-traffic scaling in (3) and the condition Γn/n → γ imply that the transition
rates ofXn

6 are of order O(n) as n→ ∞. However, the time expansion in (12) brings those transition rates
back to order O(1). Indeed, from (13)-(16) and (70)-(71), we see that the transition rates of Dn

e (Γ
n, ·),

which change with every transition of the CTMC Xn
6 , actually converge to the transition rates of the

FTSP D(γ, ·), which only depend on the region (D > 0 and D ≤ 0).

The time until the first transition in the pure jump Markov processD(γ, ·) is clearly exponential. Since
the queue lengths can be regarded as strictly positive by Theorem 6.2, the first transition of Dn

e (Γ
n, ·)

coincides with the first transition time of the underlying CTMC Xn
6 , which also is exponential. Since

the transition rates converge, the time until the first transition of Dn
e (Γ

n, ·) converges in distribution
to the exponential time until the first transition of the FTSP D(γ, ·). Moreover, in both processes the
jump takes one of four values ±1 or ±r. The probabilities of these values converges as well. Hence
the random first pair of jump time and jump value converges to the corresponding pair of the FTSP.
The same reasoning applies to successive pairs of jump times and jump values, applying mathematical
induction. That completes the proof. �

8.3 Auxiliary Results for FTSP’s. Before proving Theorems 4.5 and 4.6, we prove some auxiliary
lemmas that we employ in the proofs. We use stochastic bounds by frozen queue-difference stochastic
processes as in §A.1. The following lemma is proved much like Lemma B.3, exploiting the bounds in
§A.2.

Lemma 8.4 (bounding frozen processes) Suppose that x(t) ∈ A, t1 ≤ t ≤ t2. For any t ∈ [t1, t2] and
ǫ > 0, there exist positive constants δ, η, state vectors xm, xM ∈ A and random state vectors Xn

m, X
n
M ,

n ≥ 1, such that ‖xm − x(t)‖ < ǫ, ‖xM − x(t)‖ < ǫ, n−1Xn
m ⇒ xm, n−1Xn

M ⇒ xM as n→ ∞,

Dn
f (X

n
m, ·) ≤r Dn

f (X
n(t), ·) ≤r D

n
f (X

n
M , ·) and

Dn
f (X

n
m, ·) ≤r Dn

1,2(t) ≤r D
n
f (X

n
M , ·) in D([t1 ∨ (t− δ), (t+ δ) ∧ t2]) for all n ≥ 1, (59)

and P (Bn(δ, η)) → 1 as n→ ∞, where

Bn(δ, η) ≡ {δn+(Xn
M ) < −η, δn−(Xn

M ) > η, δn+(X
n
m) < −η, δn−(Xn

m) > η} (60)

As a consequence, the bounding frozen processes Dn
f (X

n
M , ·) and Dn

f (X
n
m, ·) in (59), and thus also the

interior frozen processes Dn
f (X

n(t), ·), satisfy (20) on Bn(δ, η) and are thus positive recurrent there,
n ≥ 1.

Proof. We use the convergence X̄n ⇒ x provided by Theorem 4.1. Consider one t ∈ [t1, t2]. By the
linearity of the drift functions δ+ and δ− in (19), δn+(X

n(t))/n⇒ δ+(x(t)) and δ
n
−(X

n(t))/n⇒ δ−(x(t))
for x(t) ∈ A, so that (20) holds. Hence there exists η > 0 such that

lim
n→∞

P (δn+(X
n(t)) < −η and δn−(X

n(t)) > η) = 1,

i.e., (73) holds for Γn = Xn(t) with probability converging to 1 as n→ ∞.
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We now bound the drifts in (72). We do that by bounding the change in the components of Xn(t) in
a short interval around time t. To do that, we use the stochastic-order bounds in §A.2, constructed over
the interval [t1 ∨ (t− δ), (t+ δ)∧ t2], with the construction beginning at the left endpoint t1 ∨ (t− δ), just
as in the construction after time 0 in §A.2. Let I(t1,δ) ≡ [t1 ∨ (t− δ), (t+ δ)∧ t2] and let ‖ · ‖δ denote the
norm over the interval I(t1,δ). To construct Xn

M , let

Xn
M+ ≡ (Qn

1,M , Q
n
2,M , Z

n
M+) and Xn

M− ≡ (Qn
1,M , Q

n
2,M , Z

n
M−),

where
Qn

1,M ≡ inft∈I(t1 ,δ)
Qn

1,a(t) ∨ 0, Qn
2,M ≡ ‖Qn

2,b‖δ,
Zn
M+ ≡ inft∈I(t1 ,δ)

Zn
+(t), Zn

M− ≡ ‖Zn
−‖δ,

with Zn
+(t) ≡ Zn

b (t) and Z
n
−(t) ≡ Zn

a (t) if µ2,2 ≥ µ1,2, and Z
n
+(t) ≡ Zn

a (t) and Z
n
−(t) ≡ Zn

b (t) otherwise.
We work with the final value Xn

M+ ≡ Xn
M+((t+ δ)∧ t2), and similarly for Xn

M− . Let {Dn
f (X

n
M , s) : s ≥ 0}

have the rates determined by Xn
M− when Dn

f (X
n
M , s) ≤ 0, and the rates determined by Xn

M+ when
Dn

f (X
n
M , s) > 0.

We do a similar construction for Xn
m. Let

Xn
m+ ≡ (Qn

1,m, Q
n
2,m, Z

n
m+) and Xn

m− ≡ (Qn
1,m, Q

n
2,m, Z

n
m−),

where
Qn

1,m ≡ ‖Qn
1,b‖δ, Qn

2,m ≡ inft∈I(t1,δ)
Qn

2,a(t) ∨ 0,

Zn
m+ ≡ ‖Zn

+‖δ, Zn
m− ≡ inft∈I(t1,δ)

Zn
−(t).

with Zn
+(t) ≡ Zn

a (t) and Z
n
−(t) ≡ Zn

b (t) if µ2,2 ≥ µ1,2, and Z
n
+(t) ≡ Zn

b (t) and Z
n
−(t) ≡ Zn

a (t) otherwise
(the reverse of what is done inXn

M ). Let {Dn
f (X

n
m, s) : s ≥ 0} have the rates fromXn

m− whenDn
f (X

n
m, s) ≤

0, and the rates from Xn
m+ when Dn

f (X
n
m, s) > 0. By this construction, we achieve the ordering in (59).

We cover the rates of Dn
1,2(t) too because we can make the identification: the rates of Dn

1,2(t) given X
n(t)

coincide with the rates of Dn
f (X

n(t), ·).
It remains to find a δ such that both the processes {Dn

f (X
n
m, s) : s ≥ 0} and {Dn

f (X
n
M , s) : s ≥ 0}

are asymptotically positive recurrent. To do so, we use Lemma A.3, which concludes that the bounding
processes as functions of δ have fluid limits. By Lemma A.3, we can conclude that X̄n

m+ ≡ n−1Xn
m+ ⇒ x+m,

X̄n
m− ≡ n−1Xn

m− ⇒ x−m, X̄n
M+ ≡ n−1Xn

M+ ⇒ x+M and X̄n
M− ≡ n−1Xn

M− ⇒ x−M in D3, where xm+ , x−m,
x+M and x−M are all continuous with x+m(t1∨(t−δ)) = x−m(t1∨(t−δ)) = x+M (t1∨(t−δ)) = x−M (t1∨(t−δ)) =
x(t1 ∨ (t − δ)) ∈ A. Hence, we can find δ′ such that xm(δ) ∈ A and xM (δ) ∈ A for all δ ∈ [0, δ′]. Hence,
we can choose δ such that the constant vectors xm ≡ xm(δ) and xM ≡ xM (δ) both are arbitrarily close
to x(t1).

Finally, we use the linearity of the drift function to deduce the positive recurrence of the processes
depending upon n. As n→ ∞,

δn−(X
n
m−)/n ⇒ δ−(x

−
m), δn+(X

n
m+)/n⇒ δ+(x

+
m),

δn−(X
n
M−)/n ⇒ δ−(x

−
M ), and δn+(X

n
M+)/n⇒ δ+(x

+
M ) in R.

�

We immediately obtain the following corollary to Lemma 8.4, exploiting Corollary A.1.

Corollary 8.1 Let ζ ≡ (j ∨ k)− 1 using the QBD representation based on r1,2 = j/k in §6 of [38]. If,
in addition to the conditions of Lemma 8.4,

Dn
f (X

n
m, 0)− ζ ≤st Dn

f (X
n(0 ∨ t− δ), 0) ≤st D

n
f (X

n
M , 0) + ζ and

Dn
f (X

n
m, 0)− ζ ≤st Dn

1,2(0 ∨ t− δ) ≤st D
n
f (X

n
M , 0) + ζ in R, n ≥ 1, (61)

then, in addition to the conclusions of Lemma 8.4,

Dn
f (X

n
m, ·)− ζ ≤st Dn

f (X
n(t), ·) ≤st D

n
f (X

n
M , ·) + ζ,

Dn
f (X

n
m, t)− ζ ≤st Dn

1,2(t) ≤st D
n
f (X

n
M , t) + ζ in D([t1 ∨ (t− δ), (t+ δ) ∧ t2]). (62)

The following lemmas correspond to the QBD structure of the FTSP. These results hold for QBD
processes much more generally, but we state them in terms of the FTSP.
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Lemma 8.5 (continuity of the stationary distribution of the FTSP) The FTSP stationary random variable
D(γ,∞) is continuous in the metric (63) as a function the state γ in A and thus D(x(t),∞) is continuous
in the metric (63) as a function of the time argument t when x(t) ∈ A.

Proof. This result follows from Theorem 7.1 in [38], in particular from the stronger differentiability
of the QBD R matrix in an open neighborhood of each γ ∈ A, building on Theorem 2.3 in [17]. The
second statement follows from the first, together with the continuity of x(t) as a function of t. �

Remark 8.1 (continuity on S) Lemma 3.1 shows that the stationary distribution of the FTSP is well
defined on all of S provided that we extend the set of possible values of the FTSP to the space E ≡
Z ∪ {+∞} ∪ {−∞}, as in §7.2. Following Theorem 7.1 of [38], we can show that Lemma 8.5 holds, not
only on A, but also on S, but that extension is not needed here.

Let τ(t) ≡ inf{u > 0 : D(x(t), u) = s}, where s is a state in the state space of the QBD D. The
next lemma establishes the existence of a finite moment generating function (mgf) for τ(t) for a positive
recurrent FTSP.

Lemma 8.6 (finite mgf for return times) For x(t) ∈ A, let τ ≡ τ(t) be the return time of the positive
recurrent QBD D(x(t), ·) to a specified state s. Then there exists θ∗ > 0 such that φτ (θ) ≡ E[eθτ ] < ∞
for all θ < θ∗.

Proof. As for any irreducible positive recurrent CTMC, a positive recurrent QBD is regenerative,
with successive visits to any state constituting an embedded renewal process. As usual for QBD’s (see
[29]), we can choose to analyze the system directly in continuous time or in discrete time by applying
uniformization, where we generate all potential transitions from a single Poisson process with a rate
exceeding the total transition rate out of any state. In continuous time we focus on the interval between
successive visits to the regenerative state; in discrete time we focus on the number of Poisson transitions
between successive visits to the regenerative state.

Let N be the number of Poisson transitions (with specified Poisson rate). The number of transitions,
N , has the generating function (gf) ψN (z) ≡ E[zN ], for which there exists a radius of convergence z∗

with 0 < z∗ < 1 such that ψN (z) <∞ for z < z∗ and ψN (z) = ∞ for z > z∗.

The mgf φτ (θ) and gf ψN (z) can be expressed directly in terms of the finite QBD defining matrices.
It is easier to do so if we choose a regenerative state, say s∗, in the boundary region (corresponding to
the matrix B in (6.5)-(6.6) of [38]). To illustrate, we discuss the gf. With s∗ in the boundary level, in
addition to the transitions within the boundary level and up to the next level from the boundary, we
only need consider the number of transitions, plus starting and ending states, from any level above the
boundary down one level. Because of the QBD structure, these key downward first passage times are
the same for each level above the boundary, and are given by the probabilities Gi,j [k] and the associated
matrix generating function G(z) on p. 148 of [29]. Given G(z), it is not difficult to write an expression
for the generating function ψNn(z), just as in the familiar birth-and-death process case; e.g., see §4.3 of
[29]. �

The next lemmas establish results regarding distances between processes in a discrete state apace. In
particular, we consider the state-space E of the processes Dn

1,2 and the FTSP D, which is a countable
lattice. With the QBD representation (achieved by renaming the states in E) the state-space E is a
subset of Z. To measure distances between probability distributions on Z, corresponding to convergence
in distribution, we use the Lévy metric, defined for any two cumulative distribution functions (cdf’s) F1

and F2 by
L(F1, F2) ≡ inf {ǫ > 0 : F1(x− ǫ)− ǫ ≤ F2(x) ≤ F1(x+ ǫ) + ǫ for allx}. (63)

For random variables X1 and X2, L(X1, X2) denotes the Lévy distance between their probability distri-
butions. (The Lévy metric is defined for probability distributions on R, but we will use it for processes
defined on the discrete space E.)

Lemma 8.7 (uniform bounds on the rate of convergence to stationarity) For every t0 ∈ [t1, t2] there exist
ζ > 0 and constants β0 <∞ and ρ0 > 0, such that

L(D(x(t), s), D(x(t),∞)) ≤ β0e
−ρ0s in R (64)
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holds for all t ∈ [t1 ∨ (t0 − ζ), t0 + ζ] ⊂ [t1, t2].

For our proof of Lemma 8.7, we also introduce the concept of uniformly (u, α) − small sets on an
interval, which generalizes the concept of (u, α)-small sets; for background see, e.g., [27], [33] and [41].
For each (fixed) t ≥ 0 let P t

i,j(u) denote the transition probabilities of {D(x(t), u) : u ≥ 0}:

P t
i,j(u) ≡ P (D(x(t), u) = j | D(x(t), 0) = i), i, j ∈ Z.

Definition 8.1 A set C ⊆ Z is (u, α)-small, for a time u > 0 and for some α > 0, if there exists a
probability measure ϕt(·) on Z satisfying the minorization condition:

P t
i,j(u) ≥ αϕt(j), i ∈ C, j ∈ Z.

We say that a set C is uniformly (u, α)-small in the interval I, if C is (u, α)− small for each process in
the family {D(x(t), ·) : t ∈ I}, i.e., if C is (u, α)-small for each D(x(t), ·) with the same u and α, t ∈ I.

Note that the probability measure ϕt in the minorization condition is allowed to depend on t in the
definition of uniformly (u, α)-small.

Proof of Lemma 8.7. As above, let τ(t) denote the return time of the process D(x(t), ·) to the
regeneration state s∗, which, for concreteness, we take to be state 0, i.e., s∗ = 0. Consider the infinitesimal
generator matrix Q(t) of the process D(x(t), ·). In a countable state space, every compact set is small
(see, e.g., definition in pp. 11 in [27]) and, in particular, {0} is a small set. (We show in (66) below that
{0} is in fact uniformly (u, α)-small.) Moreover, by Theorem 2.5 in [27], the existence of a finite mgf for
the hitting time of the small set {0} is equivalent to the existence of a Lyapunov function V : Z → [1,∞)
which satisfies the exponential drift condition on the generator, Condition (V4) in [27]:

Q(t)V ≤ −ctV + dt1{0}, (65)

where ct and dt are strictly positive constants.

Consider the time t0 ∈ [t1, t2]. Then (65) holds at t0 with constants ct0 and dt0 . Since ct0 > 0 we can
decrease it such that (65) holds with strict inequality and the new ct0 is still strictly positive. We increase
dt0 appropriately, such that

∑

j q0,j(t)V (j) < −ct0V (0) + dt01{0}. The continuity of Q(t) on [t1, t2] as
a function of t, which follows immediately from the continuity of the rates (13)-(16) as functions of the
continuous function x(t), implies that there exist ζ > 0 and two positive constants c0 and d0, such that
(65) holds for all t ∈ [t0− ζ, t0 + ζ] with the same constants c0 and d0. However, this is still not sufficient
to conclude that the bounds in (64) are the same for all t ∈ [t0 − ζ, t0 + ζ]; see Theorem 1.1 in [6] (for
discrete-time Markov chains).

Recall that for each fixed t, P t
i,j(s) denotes the transition probabilities of the CTMC {D(x(t), s) : s ≥

0}. We can establish uniform bounds on the convergence rates to stationarity by showing that {0} is
uniformly (u, α)-small in an interval [t0 − ζ, t0 + ζ] for the family {D(x(t), ·) : t ∈ [t0 − ζ, t0 + ζ]}, as in
Definition 8.1. In particular, we need to show that

P t
0,j(u) ≥ αϕt(j), j ∈ Z. (66)

holds for all t ∈ [t0 − ζ, t0 + ζ] with the same α (but ϕt is allowed to change with t). This step, together
with the uniform bounds c0 and d0 in (65) established above, will be shown to be sufficient to conclude
the proof.

Hence, it is left to show that (66) holds for all t ∈ [t0 − ζ, t0 + ζ] with the same α > 0. This step is
easy because {0} is a singleton in a countable state space. Specifically, for each t we consider, we can fix
any u > 0 and define ϕt(j) ≡ P t

0,j(u). With this definition of ϕt we can take any α ≤ 1 in (66). As in the
discrete-time case in [6] (the strong aperiodicity condition (A3) in [6] is irrelevant in continuous time),
the bounds on the convergence rates in (64) depend explicitly on α in the minorization condition (66),
the bounds in the drift condition (65) and the Lyapunov function V in (65). This can be justified by
uniformization, but can also be justified directly for continuous-time processes, e.g., from the expressions
in Theorem 3 and Corollary 4 in [41].

The uniform bounds on the rate of convergence to steady state established above by applying [41]
are directly expressed in the total-variation metric. If the total variation metric can be made arbitrarily
small, then so can the Levy metric. Hence we have completed the proof. �
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Remark 8.2 (bounds on coupling times) The bounds on the rate of convergence to stationarity of Markov
processes satisfying (65) and (66) in [41] are obtained via the coupling inequality. In particular, we have
provided explicit bounds for the time it takes a positive recurrent FTSP D(γ, ·) (with γ ∈ A), initialized
at some finite time, to couple with its stationary version.

The final auxiliary lemma relates the Lévy distance L in (63) between Dn
e (X

n(u), s0) in (12) and the
FTSP D(x(u), s0) at a finite time s0.

Lemma 8.8 Suppose that x(t) ∈ A for t1 ≤ t ≤ t2. Then and for any fixed s0 > 0,

L(Dn
e (X

n(u), s0), D(x(u), s0)) → 0 as n→ ∞, uniformly in u ∈ [t1, t2]. (67)

Proof. If follows from the proof of Theorem 4.4 that, for the given ǫ > 0, there exists δ(t1), n0(t1)
and s0(t1) such that

L(Dn
e (X

n(v), s0(t1)), D(x(v), s0(t1))) < ǫ for all t1 ≤ v ≤ (t1 + δ(t1)) ∧ t2 and n ≥ n0(t1).

exploiting the convergence X̄n ⇒ x and Dn(Γn, 0) = Dn
1,2(t1) ⇒ D(x(t1), 0) = D(γ, 0) for Γn ≡ Xn(t1)

and γ ≡ x(t1). We can apply this reasoning in an open interval about each u ∈ [t1, t2]. In particular, for
the given ǫ > 0 and u ∈ [t1, t2], there exists δ(u), n0(u) and s0(u) such that

L(Dn
e (X

n(v), s0(u)), D(x(v), s0(u))) < ǫ for all (u− δ(u))∨ t1 ≤ v ≤ (u+ δ(u))∧ t2 and n ≥ n0(u).

However, since the interval [t1, t2] is compact and the family of intervals (t1 ∨ (u− δ(u), (u+ δ(u)) ∧ t2),
taken to be closed on the left at t1 and closed on the right at t2, is an open cover, there is a finite subcover.
Hence, all time points in [t1, t2] are contained in only finitely many of these intervals. Hence, we can
achieve the claimed uniformity. Moreover, since the conclusion does not depend on the subsequence used
at the initial time t1, the overall proof is complete. �

8.4 Proofs of Theorems 4.5 and 4.6. We apply the results in §8.3 to prove the theorems.

Proof of Theorem 4.5. First, if x(t0) ∈ A then there exists t2 such that x(t) ∈ A over [t0, t2]
because A is an open set and x is continuous. It is possible that the fluid limit never leaves A after time
t0, in which case x ∈ A over [t0,∞). In the latter case we can consider any t2 > t0.

(i) We begin by showing that there exists δ0 ≡ δ(t0) > 0, such that Dn
1,2(t1) is tight in R for all

t1 satisfying t0 < t1 < t0 + δ0. Henceforth, t1 denotes such a time point. We need to show that, for
any ǫ > 0, there exists a constant K such that P (|Dn

1,2(t1)| > K) < ǫ for all n ≥ 1. Overall we prove
the claim in three steps: in the first step we bound Dn

1,2 over [t0, t0 + δ0], in sample-path stochastic
order, with positive recurrent QBD’s but with random initial conditions. In the second step, we show
that these bounding QBD’s are tight for each t1 as above, by showing that they couple with stationary
versions rapidly enough. In the third step we show that we can extend the conclusion from the subinterval
[t1, t0 + δ0] to the entire interval [t1, t2].

Step One. We apply Lemma 8.4 to find a δ0 > 0 and construct random states Xn
m and Xn

M with the
properties stated there, such that rate order holds as in (59) in D([t0, t0+ δ0]), after we let D

n
f (X

n
m, t0) ≡

Dn
f (X

n
M , t0) ≡ Dn

1,2(t0). Next, for all sufficiently large n, we bound the upper bounding process above
and the lower bounding process below in rate order, each by a FTSP with fixed states x̃m and x̃M but
ordered so that strict rate order in Lemma A.4 holds. Since xm and xM are in A and A is open, these new
states x̃m and x̃M can be chosen to be sufficiently near the initial states xm and xM that they too are
in A. We let these FTSP’s be given the same initial conditions depending on n, consistent with above.
For that purpose, we put the initial condition in the notation; i.e., we let D(γ, b, ·) ≡ D(γ, ·) given that
D(γ, 0) = b. We combine the rate order just established with Corollary 8.1 to obtain the sample-path
stochastic order

D(x̃m, D
n
1,2(0), nt)− ζ ≤st D

n
1,2(t) ≤st D(x̃M , D

n
1,2(0), nt) + ζ (68)

for all n ≥ n0 for some n0.

So far, we have succeeded in bounding Dn
1,2(t) above (and below) stochastically by a positive recurrent

FTSP with random initial conditions, in particular starting at Dn
1,2(0). It suffices to show that each
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bounding FTSP with these initial conditions in stochastically bounded at any time t1 ∈ (t0, t0 + δ0]. We
show that next.

Step Two. We now show that the two bounding processes in (68) are indeed stochastically bounded
at such t1. We do that by showing that they couple with the stationary versions of these FTSP’s with
probability converging to 1 as n → ∞. Since x(t0) ∈ A, we can apply Theorem 4.1 to deduce that
X̄n(t0) ⇒ x(0) as n → ∞, which implies that Dn

1,2(0) = o(n) as n → ∞. If we consider the FTSP
without the scaling by n in (68), it suffices to show, for t1 as above, the bounding processes recover from
the o(n) initial condition within o(n) time, which will be implied by showing that the coupling takes
place in time o(n).

We show that by applying Lemma 8.7 and Remark 8.2. They imply that the time until the FTSP
in (68) couples with its stationary version is bounded by constants depending on ct0 and dt0 in (65)
and α in (66), as well as the Lyapunov function V in (65). Now, D(x̃M , t0) = Dn

1,2(t0) by construction,
and x(t0) ∈ A, so that D(x̃M , t0) = o(n). Hence, V (D(x̃M , t)) = o(n) for all t ≥ t0, for V in (65). In
particular, we see that the time until D(x̃M , t0) couples with it stationary version, when initialized at
Dn

1,2(t0), is o(n). Together with (68), that implies the claim. That is, we have shown that Dn
1,2(t1) is

tight in R for all t1, t0 < t1 < t0 + δ0.

Step Three. To extend the result to the interval [t1, t2] we observe that we can repeat the reasoning
above for any starting point t ∈ [t1, t2] (since x(t) ∈ A for all t ∈ [t1, t2]), achieving an uncountably-infinite
cover for [t1, t2] of intervals of the form [t, t+ δ(t)]. Since the interval [t1, t2] is compact, the uncountably
infinite cover of these intervals, made open at the left unless the left endpoint is t1 and made open on the
right unless the right endpoint is t2, has a finite subcover. As a consequence, the entire interval [t1, t2] is
covered by only finitely many of these constructions, and we can work with the finite collection of closures
of these intervals.

In particular, since the sequence {Dn
1,2(t1) : n ≥ 1} is stochastically bounded, we can apply the

construction over an interval of the form [t1, t
′] for t1 < t′ ≤ t2. As a consequence we obtain stochastic

boundedness for each t in [t1, t
′]. If t′ < t2, then we continue. We then can choose a second interval

[t′′, t′′′] such that t1 < t′′ ≤ t′ < t′′′. We thus can carry out the construction over [t′′, t′′′]. Since t′′ ≤ t′,
we already know that the sequence of random variables {Dn

1,2(t
′′);n ≥ 1} is stochastically bounded from

the first step. Thus, in finitely many steps, we will deduce the first conclusion in (i). If x(0) ∈ A and we
take t0 = 0, then Dn

1,2(t0) is tight in R because Dn
1,2(0) ⇒ L by Assumption 3.2, so the result holds on

[t0, t2] ≡ [0, t2].

(ii) To prove the statement in (ii) we observe that Theorem 4.4 implies that the oscillations are
asymptotically too rapid for the sequence {Dn

1,2 : n ≥ 1} to be tight in D over any finite interval.
Moreover, there is a finite interval over which a single frozen-difference process serves as a lower bound,
by Lemma 8.4. Because of the scaling by n, the maximum in the lower bound QBD over this interval
will be unbounded above (actually of order O(log n) by reasoning as in Lemma A.6). Thus, the sequence
of stochastic processes {Dn

1,2 : n ≥ 1} is not even stochastically bounded over any finite subinterval of
[t0, t2].

(iii) We apply Lemma A.6 to establish (33). We can bound the supremum of Dn
1,2(t) over the interval

[t1, t2] by the supremum of the finitely many frozen queue-difference processes. Since the rates are of
order n, Lemma A.6 implies (33). Once again, the result can be extended to hold on [t0, t2] ≡ [0, t2] if
x(0) ∈ A by the assumed convergence Dn

1,2(0) ⇒ L in Assumption 3.2. �

Proof of Theorem 4.6. For any given t with t1 < t ≤ t2 and ǫ > 0, we will show that we can
choose n0 such that L(Dn

1,2(t), D(x(t),∞)) < ǫ for all n ≥ n0, where L is the Lévy metric in (63). Since
{Dn

1,2(t1) : n ≥ 1} is stochastically bounded, it is tight. Hence, we start with a converging subsequence,
without introducing subsequence notation. The result will not depend on the particular converging
subsequence we choose.

Hence, we start with Dn
1,2(t1) ⇒ L, where L is a proper (almost surely finite) random variable.

We will then let D(x(t1), 0) = L to obtain Dn
1,2(t1) ⇒ D(x(t1), 0), as required to apply Theorem 4.4

at t1. If t > t1, then for all sufficiently large n, t − (s/n) ≥ t1, in which case we can write Dn
1,2(t) =

Dn
1,2(t−(s/n)+(s/n)) = Dn

e (X
n(t−(s/n), s), where Dn

e is the expanded queue-difference process defined
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in (12), with t− (s/n) ≥ t1 so that x(t− (s/n)) ∈ A. Hence we can write

L(Dn
1,2(t), D(x(t),∞)) ≤ L(Dn

e (X
n(t− (s/n), s), D(x(t − (s/n)), s))

+L(D(x(t− (s/n)), s), D(x(t − (s/n)),∞)) + L(D(x(t − (s/n)),∞), D(x(t),∞)). (69)

For t and any ǫ > 0 given, we first choose δ so that t− δ ≥ t1 and x remains in A throughout [0, t+ δ],
which is always possible because x(t) ∈ A, t > t1, x is continuous and A is an open subset of S. (We use
the condition that t > t1 here.) In addition, we choose δ sufficiently small that the third term in (69) is
bounded as

L(D(x(u),∞), D(x(t),∞) < ǫ/3 for all u, t− δ ≤ u ≤ t+ δ,

which is possible by virtue of Lemma 8.5. Given t, ǫ and δ, we choose s0 sufficiently large that the second
term in (69) is bounded as

L(D(x(u), s0), D(x(u),∞) < ǫ/3 for all u, t− δ ≤ u ≤ t+ δ,

which is possible by Lemma 8.7. Finally, we choose n0 sufficiently large that s0/n < δ for all n ≥ n0 and
the first term in (69) is bounded as

L(Dn
e (X

n(u, s0), D(x(u), s0)) < ǫ/3 for all u, t− δ ≤ u ≤ t+ δ,

which is possible by Lemma 8.8. That choice of δ, s0 and n0 makes each term in (69) less than or equal
to ǫ/3 for all n ≥ n0, thus completing the proof. �

9. Conclusion and Further Research. In this paper we proved a FWLLN (Theorem 4.1) for
an overloaded X model operating under the fixed-queue-ratio-with-thresholds (FQR-T) control (§2.2),
with many-server heavy-traffic scaling (§2.3). Theorem 4.1 shows that the fluid-scaled version of the
six-dimensional Markov chain Xn

6 , whose sample-path representation appears in Theorem 5.1, converges
to a deterministic limit, characterized by the unique solution to the three-dimensional ODE (24), which
in turn is driven by the fast-time-scale stochastic process (FTSP) in §3.2. We also proved a WLLN for
the stationary distributions (Theorem 4.3) that justifies a limit interchange in great generality (Theorem
4.2).

Finally, in §4.3 we presented results regarding the queue difference process and SSC for the queues
when the fluid limit is in A. in particular, Theorem 4.5 proved statements regarding the tightness of
Dn

1,2(t) in R, and non-tightness in D. Corollary 4.1 shows that SSC for the queues hold under any scaling
larger than O(log n), depending only whether the fluid limit x is in A. Theorem 4.6 establishes a pointwise
AP result, which is not an immediate corollary of the AP in the FWLLN.

Proof of the FWLLN. We proved the FWLLN in three steps, showing that: (i) the sequence of pro-
cesses {X̄n

6 : n ≥ 1} is tight and every limit is continuous (Theorem 5.2); (ii) simplifying the rep-
resentation in Theorem 5.1 to the essentially three-dimensional representation in (45) (Corollary 6.4);
and (iii) characterizing the limit via the averaging principle (AP) (§7). Characterizing the fluid limit
of that three-dimensional process was challenging because the sequence of queue-difference processes
{{Dn

1,2(t) : t ≥ 0} : n ≥ 1} in (6) does not converge to any limiting process as n → ∞. Instead, we have
the AP, which can be better understood through Theorems 4.4-4.6.

Due to the AP, the indicator functions 1{Dn
1,2(s)>0} and 1{Dn

1,2(s)≤0} in the representation (45) are

replaced in the limit with appropriate steady-state quantities related to the FTSP D(x(t), ·), e.g.,
1{Dn

1,2(s)>0} is replaced in the limit with

π1,2(x(s)) ≡ P (D(x(s),∞) > 0) = lim
t→∞

1

t

∫ t

0

1{D(x(s),u)>0}du.

Our proof of the AP in §7 is based on the framework established by Kurtz in [28]. In the appendix
we present a different proof of the AP which is weaker, since it only characterizes the FWLLN in the set
A. However, it has the advantage of being intuitive, with an explicit demonstration of the separation of
time scales which takes place in A. Moreover, this proof continues the bounding logic of §§A and B, and
thus follows naturally from previous results established in the paper. Both proofs have merits, and can
be useful in other models where separation of time scales occur in the limit.

Results for QBD Processes. In the process of proving the SSC in Theorem 6.4 and Theorems 4.5
and 4.6, we established some general results for QBD’s, which are interesting in their own right. First,
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we established an extreme-value result in Lemma A.6. Then, in §8.3 we established the continuity of
stationary distributions (Lemma 8.5), finite mgf for return times (Lemma 8.6) and uniform ergodicity
for a family of ergodic QBD processes (Lemma 8.7). To the best of our knowledge, those results are not
stated in the existing literature.

The Control. The FQR-T control is appealing, not only because it is optimal during the overload
incident in the fluid limit [36], but also because the FQR-T control produces significant simplification of
the limit, since it produces a strong form of state space collapse (SSC). Specifically, by Theorem 6.4, the
four-dimensional service process is asymptotically one dimensional, with Zn

1,2 alone characterizing limits
under any scaling. By Theorem 4.5, the two-dimensional queue process is asymptotically one dimensional
under any scaling larger than O(log n) (in particular, under fluid and diffusion scaling). This latter result
holds unless class 1 is so overloaded, that there is not enough service capacity in both pools to keep
the desired ratio between the two queues (in which case the fluid limit will not be in A). Hence, the
six-dimensional Markov chain describing the system during overloads in the prelimit, is replaced by a
simplified lower dimensional deterministic function, which is easier to analyze. In addition, this SSC
results are crucial to proving the FCLT for the system [39].

Further Research. As Lemma B.1 and the proof of Theorem 6.4 reveal, one-way sharing, which we
suggested in [36] as a means to prevent unwanted simultaneous sharing of customers in finite systems
(where the thresholds themselves may not be sufficient to prevent two-way sharing) has shortcomings;
see Remark B.1. For example, in the limiting fluid model, if after some time the overload switches over,
so that queue 2 should start receiving help from pool 1, then the one-way sharing rule will not allow
class-2 customers to be sent to pool 1 since, as was shown in the proof of Theorem 6.4, z1,2(t) > 0 for all
t > 0. As a consequence, in large systems, a significant amount of time must pass before sharing in the
opposite direction is allowed. This problem with one-way sharing can be remedied by dropping that rule
completely, or by introducing lower thresholds on the service process; again see Remark B.1. We have
begun studying such alternative controls.

Appendix

This Appendix has six sections. In §A we establish important technical results to be used to prove the
results in §6. In §B we apply the results in §A to prove the results in §6. In §C we present an alternative
proof of Lemma 7.2 and thus an alternative proof of the FWLLN in Theorem 4.1. In §D we show how
to present the process Dn

∗ in step one of the proof of Lemma B.3 as a QBD for each n. In §E we explain
why Assumption 3.2 about the initial conditions is reasonable. Finally, in §F we list all the acronyms
used in this paper.

Appendix A. Supporting Technical Results. In this section we establish supporting technical
results that we will apply to prove the results in §6. In §A.1 we introduce a frozen queue difference
process, which ‘freezes” the state of the slow process (X̄n in (45)), so that the fast process (the queue
difference process Dn

1,2 in (6)) can be considered separately. Like the FTSP in §3.2, the frozen process is
a pure-jump Markov process. To carry out the proofs, we exploit stochastic bounds. Hence, we discuss
them next in §§A.2, A.3 and A.4. Since the FTSP and the frozen processes can be represented as QBD
processes, as indicated in §6 of [38], we next establish extreme value limits for QBD’s in §A.5. We
establish continuity results for QBD’s, used in the alternative proof of characterization, in §C.3.

A.1 Auxiliary Frozen Processes. Our proof of Theorem 6.1 will exploit stochastic bounds for
the queue difference process Dn

2,1. Our alternative proof of Theorem 4.1 in the appendix we will exploit
similar stochastic bounds for the queue difference process Dn

1,2. These processes Dn
2,1 and Dn

1,2 are non-
Markov processes whose rates at each time t are determined by the state of the system at time t, i.e.,
by Xn

6 (t), and is thus hard to analyze directly. In order to circumvent this difficulty, we consider related
auxiliary processes, with constant rates determined by a fixed initial state Γn ≡ Xn

6 (0). The construction
is essentially the same for the two processes Dn

2,1 and Dn
1,2. Since we are primarily concerned with Dn

1,2,
we carry out the following in that context, with the understanding that there is a parallel construction
for the process Dn

2,1.

When we work with Dn
1,2, we exploit the reduced representation involving Xn in (45). Let Dn

f (Γ
n) ≡

{Dn
f (Γ

n, t) : t ≥ 0} denote this new process with fixed state Γn ≡ (Qn
1 , Q

n
2 , Z

n
1,2). Conditional on Γn,

Dn
f (Γ

n) is a QBD with the same fundamental structure as the FTSP defined in §3.2. We use the subscript
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f because we refer to this constant-rate pure-jump Markov process as the frozen queue-difference process,
or alternatively, as the frozen process, thinking of the constant transition rates being achieved because
the state has been frozen at the state Γn.

As in §3.2, the rates of the frozen process are determined by Γn ≡ (Qn
1 , Q

n
2 , Z

n
1,2) and by its position.

Also, as in §3.2, let r ≡ r1,2. The frozen process Dn
f (Γ

n) has jumps of size +r,+1,−r,−1 with respective

rates λ
(r)
+ (n,Γn), λ

(1)
+ (n,Γn), µ

(r)
− (n,Γn), µ

(1)
− (n,Γn) when Dn

f ≤ 0, and jumps of size +r,+1,−r,−1 with

respective rates λ
(r)
+ (n,Γn), λ

(1)
+ (n,Γn), µ

(r)
+ (n,Γn), µ

(1)
+ (n,Γn) when Dn

f > 0.

Analogously to (13)-(16), in the non-positive state space these rates are equal to

λ
(1)
− (n,Γn) ≡ λn1 and λ

(r)
− (n,Γn) ≡ µ1,2Z

n
1,2 + µ2,2(m

n
2 − Zn

1,2) + θ2Q
n
2 ,

µ
(1)
− (n,Γn) ≡ µ1,1m

n
1 + θ1Q

n
1 and µ

(r)
− (n,Γn) ≡ λn2 ,

(70)

and in the positive state space, these rates are equal to

λ
(1)
+ (n,Γn) ≡ λn1 and λ

(r)
+ (n,Γn) ≡ θ2Q

n
2 ,

µ
(1)
+ (n,Γn) ≡ µ1,1m

n
1 + µ1,2Z

n
1,2 + µ2,2(m

n
2 − Zn

1,2) + θ1Q
n
1 and µ

(r)
+ (n,Γn) ≡ λn2 .

(71)

Using these transition rates, we can define the drift rates for Dn(Γn), paralleling (19). Let these drift
rates in the regions (0,∞) and (−∞, 0] be denoted by δn+(Γ

n) and δn−(Γ
n), respectively, Then

δn+(Γ
n) ≡ [λn1 − µ1,1m

n
1 + (µ2,2 − µ1,2)Z

n
1,2(t)− µ2,2m

n
2 (t)− θ1Q

n
1 (t)]− r[λn2 − θ2Q

n
2 (t)],

δn−(Γ
n) ≡ [λn1 − µ1,1m

n
1 − θ1Q

n
1 (t)]− r[λn2 + (µ2,2 − µ1,2)Z

n
1,2(t)− µ2,2m

n
2 − θ2Q

n
2 (t)].

(72)

Just as for the FTSP, Dn
f (Γ

n) is, conditional on Γn, a positive recurrent QBD if an only if

δn+(Γ
n) < 0 < δn−(Γ

n). (73)

The constant-rate pure-jump Markov process Dn
f (Γ

n) will frequently appear with Γn being a state of
some process, such as Xn(t), We then write Dn

f (X
n(t)) ≡ {Dn

f (X
n(t), s) : s ≥ 0}, where it is understood

that Dn
f (X

n(t))
d
= Dn

f (Γ
n) under the condition that Γn d

= Xn(t). It is important that this frozen
difference process Dn

f (Γ
n) can be directly identified with a version of the FTSP defined in §3.2, because

both are pure-jump Markov processes with the same structure. Indeed, the frozen-difference process can
be defined as a version of the FTSP with special state and basic model parameters λni and mn

j , and
transformed time. In order to express the relationship, we first introduce appropriate notation. Let
D(λi,mj , γ, s) denote the FTSP defined as in §3.2 with transition rates in (13)-(16) as a functions of the
arrival rates λi, i = 1, 2 and the staffing levels mj , j = 1, 2, as well as the state γ, where s is the time
parameter as before. (We now will allow the parameters λi and mj to vary as well as the state.) With
that new notation, we see that the frozen process is equal in distribution to the corresponding FTSP with
new parameters, in particular,

{Dn
f (λ

n
i ,m

n
j ,Γ

n, s) : s ≥ 0} d
= {D(λni /n,m

n
j /n,Γn/n, ns) : s ≥ 0}, (74)

with the understanding that the initial differences coincide, i.e.,

D(λni /n,m
n
j /n,Γn/n, 0) ≡ Dn

f (λ
n
i ,m

n
j ,Γ

n, 0).

This can be checked by verifying that the constant transition rates are indeed identical for the two pro-
cesses, referring to (13)-(16) and (70)-(71). Since λni /n→ λi, i = 1, 2 and mn

j /n→ mj , j = 1, 2, by virtue
of the many-server heavy-traffic scaling in (3), we will have the transition rates of D(λni /n,m

n
j /n,Γn/n, ·)

converge to those of D(γ) ≡ D(λi,mj , γ, ·) whenever Γn/n→ γ.

A.2 Bounding Processes. We will use bounding processes in our proof of Theorem 6.1 and later
results. We construct the bounding processes so that they have the given initial conditions at time 0 and
satisfy FWLLN’s with easily determined continuous fluid limits, coinciding at time 0. We thus control
the initial behavior.

We first construct w.p.1 lower and upper bounds for Zn
1,2. Recall that Ns

i,j , i, j = 1, 2, are the
independent rate-1 Poisson processes used in (34). Let

Zn
a (t) = Zn

1,2(0)−Ns
1,2

(

µ1,2

∫ t

0

Zn
a (s) ds

)

,

Zn
b (t) = Zn

1,2(0) +Ns
2,2

(

µ2,2

∫ t

0

(mn
2 − Zn

b (s)) ds

)

.

(75)
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Lemma A.1 For all n ≥ 1 and t ≥ 0, Zn
a (t) ≤ Zn

1,2(t) ≤ Zn
b (t) w.p.1.

Proof. The bounding processes Zn
a and Zn

b are both initialized as Zn
1,2(0) at time 0. They are defined

in terms of the same rate-1 Poisson processes as Zn
1,2, so that the three processes can be compared for each

sample path. The lower-bound process Zn
a is the pure death process obtained by routing no new class-1

customers to pool 2 and letting all initial ones depart after receiving service. Hence, Zn
a is decreasing

monotonically to 0. The upper-bound process Zn
b is a pure birth process obtained by having pool 2 not

serve any of its initial class 1 customers and by assigning every server in pool 2 that completes service of
a class 2 customer to a new class 1 customer, assuming that such customers are always available. Hence,
Zn
b is increasing monotonically to mn

2 . The given process Zn
1,2 necessarily falls in between, where Zn

1,2

is defined in (43) with the asterisk omitted. That is so because, whenever Zn
1,2 is equal to Zn

b , every
jump up in Zn

1,2 is also a jump up in Zn
b , but not vice versa; whenever Zn

1,2 is equal to Zn
a every jump

down in Zn
1,2 is also a jump down in Zn

a , but not vice versa. This is because jumps are generated by the
same Poisson processes, but for Zn

1,2 jumps occur only if the indicator functions in the respective Poisson
processes are equal to 1. �

We next construct w.p.1 lower and upper bounds for Qn
i . The upper bound processes will have the

specified arrivals but no departures, while the lower bound process will have no arrivals but maximum
possible departures. Both processes will start at the initial values.

Let Na
i , N

s
i,j and Nu

i be the previously specified independent rate-1 Poisson processes used in (34).
Let

Qn
i,a(t) = Qn

i (0)−
2
∑

i=1

2
∑

j=1

Ns
i,j(µi,jm

n
j t)−Nu

i (θiQ
n
i (0))t),

Qn
i,b(t) = Qn

i (0) +Na
i (λ

n
i t), t ≥ 0. (76)

Lemma A.2 For all n ≥ 1 and t ≥ 1,

(Qn
1,a(t), Q

n
2,a(t)) ≤ (Qn

1 (t), Q
n
2 (t)) ≤ (Qn

1,b(t), Q
n
2,b(t)) w.p.1.

Proof. Just as in Lemma A.1, we get a w.p.1 comparison because we construct both systems
using the same rate-1 Poisson processes. The upper bound is immediate, because the two systems being
compared have the same initial value and the same arrivals, but the upper bound system has no service
completions or abandonments. For the lower bound, we separately consider the fate of new arrivals,
customers initially in service and customers initially in queue. However, we allow the identity of departing
customers to shift, which does not affect the result. In the lower bound system new arrivals never enter, so
they necessarily leave sooner. Allowing for identity shift, customers initially in queue abandon as rapidly
as possible in the lower bound system, since the rate is fixed at the initial rate θiQ

n
i (0). Of course, some

customers from queue may enter service. But all customers in service leave at least as quickly in the
lower bound system because all servers are working continuously. In the lower bound system we act as if
all servers in each pool are simultaneously serving customers of both classes. Hence, we do not need to
pay attention to the service assignment rule. The identity of customers may change in this comparison,
but the order will hold for the numbers. Hence the proof is complete. �

Unlike the processes in Corollary 6.1, we can easily establish stochastic-process limits for the as-
sociated fluid-scaled bounding processes, and these continuous limits coincide at time 0. Let Xn

a,b ≡
(Qn

1,a, Q
n
2,a, Z

n
a , Q

n
1,b, Q

n
2,b, Z

n
b ).

Lemma A.3 as n → ∞, X̄n
a,b ⇒ xa,b in D6, where xa,b ≡ (q1,a, q2,a, za, q1,b, q2,b, zb) is an element of C6

with

za(t) = z1,2(0)− µ1,2

∫ t

0

za(s) ds,

zb(t) = z1,2(0) + µ2,2

∫ t

0

zb(s) ds, (77)

qi,a(t) = qi(0)−
2
∑

i=1

2
∑

j=1

µi,jmjt+ θiqi(0))t,

qi,b(t) = qi(0) + λit, t ≥ 0. (78)
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Proof. The stated convergence is a relatively simple application of the continuous mapping theorem.
In particular, we first exploit the continuity of the integral representation, Theorem 4.1 in [35], to establish
the convergence (Z̄n

a , Z̄
n
b ) ⇒ (za, zb). The queue length bounds are simple linear functions. �

We will apply the bounding results above in §B.1, starting with the proof of Lemma 6.1.

A.3 Rate Order for FTSP’s. Given that we can represent frozen processes as FTSP’s with ap-
propriate state parameters γ, as shown in (74) above, it is important to be able to compare FTSP’s with
different state parameters. We establish such a comparison result here for the FTSP in §3.2 using rate
order. We say that one pure-jump Markov process Y1 is less than or equal to another Y2 in rate order,
denoted by Y1 ≤r Y2, if all the upward transition rates (with same origin and destination states) are
larger in Y2 and all the downward transition rates (with same origin and destination states) are larger
for Y1. The following lemma is an immediate consequence of the definition of rates in (13)-(16).

Lemma A.4 (rate order for FTSP’s) Consider the FTSP in §3.2 for candidate states γ(i) ≡
(q

(i)
1 , q

(i)
2 , z

(i)
1,2), i = 1, 2. (a) If µ1,2 ≥ µ2,2 and

(−q(1)1 , q
(1)
2 , z

(1)
1,2) ≤ (−q(2)1 , q

(2)
2 , z

(2)
1,2) in R

3,

then
D(γ(1), ·) ≤r D(γ(2), ·).

(b) If µ1,2 ≤ µ2,2 and

(−q(1)1 , q
(1)
2 ,−z(1)1,2) ≤ (−q(2)1 , q

(2)
2 ,−z(2)1,2) in R

3,

then
D(γ(1), ·) ≤r D(γ(2), ·).

We will apply the rate order to get sample path stochastic order, involving coupling; see [20, 45],
Ch. 4 of [31] and §2.6 of [34]. We briefly discuss those bounds for a sequence of stochastic processes
{Y n : n ≥ 1}. We will bound the process Y n, for each n ≥ 1, by a process Y n

b ; i.e., for each n, we will
establish conditions under which it is possible to construct stochastic processes Ỹ n

b and Ỹ n on a common
probability space, with Ỹ n

b having the same distribution as Y n
b , Ỹ n having the same distribution as Y n,

and every sample path of Ỹ n
b lies below (or above) the corresponding sample path of Ỹ n. We will then

write Y n
b ≤st (≥st)Y

n. However, we will not introduce this “tilde” notation; Instead, we will use the
original notation Y n and Y n

b . As a first step, we will directly give both processes, Y n and Y n
b identical

arrival processes, the Poisson arrival processes specified for Y n. We will then show that the remaining
construction is possible by increasing (decreasing) the departure rates so that, whenever Y n = Y n

b , any
departure in Y n also leads to a departure in Y n

b . That is justified by having the conditional departure
rates, given the full histories of the systems up to time t, be ordered.

When r1,2 = 1, rate order directly implies the stronger sample path stochastic order, but not more
generally, because the upper (lower) process can jump down below (up above) the lower (upper) process
when the lower process is at state 0 or below, while the upper process is just above state 0. Nevertheless,
we can obtain the following stochastic order bound, involving a finite gap. For the following we use the
rational form r1,2 = j/k, j, k ∈ Z+ and the associated integer-valued QBD, as in §6 of [38]. (Recall
Assumption 3.3.) There is no gap when r1,2 = 1 because then j = k = 1 and the jump Markov process
and associated QBD process both are equivalent to a simple birth-and-death process.

Corollary A.1 (stochastic bounds from rate order for FTSP’s) Consider the FTSP in §3.2 with QBD

representation based on r1,2 = j/k as in §6 of [38], for candidate states γ(i) ≡ (q
(i)
1 , q

(i)
2 , z

(i)
1,2), i = 1, 2.

(a) If µ1,2 ≥ µ2,2 and

(−q(1)1 , q
(1)
2 , z

(1)
1,2) ≤ (−q(2)1 , q

(2)
2 , z

(2)
1,2) in R

3,

then
D(γ(1), ·) ≤st D(γ(2), ·) + (j ∨ k)− 1.

(b) If µ1,2 ≤ µ2,2 and

(−q(1)1 , q
(1)
2 ,−z(1)1,2) ≤ (−q(2)1 , q

(2)
2 ,−z(2)1,2) in R

3,

then
D(γ(1), ·) ≤st D(γ(2), ·) + (j ∨ k)− 1.



40 : An Averaging Principle
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Proof. We can do the standard sample path construction: Provided that the processes are on the
same side of state 0 in the QBD representation, we can make all the processes jump up by the same
amount whenever the lower one jumps up, and make all the processes jump down by the same amount
whenever the upper one jumps down. However, there is a difficulty when the processes are near the state
0 in the QBD representation (which involves the matrix B for the QBD). When the upper process is
above 0 and the lower process is at or below 0, the lower process can jump over the upper process by at
most (j ∨ k) − 1, and the upper process can jump below the lower process by this same amount. But
the total discrepancy cannot exceed (j ∨ k)− 1, because of the rate order. Whenever the desired order is
switched, no further discrepancies can be introduced. �

The complexity of the proof in Appendix C is primarily due to the fact that we allow general rational
ratio parameters. If r1,2 = r2,1 = 1, the proof can be much shorter, directly exploiting the sample path
stochastic order in Corollary A.1 above (where there is no gap).

Remark A.1 (rate order comparisons for queue difference processes) In the rest of this paper, in partic-
ular in the proof of Lemma B.3 in §B.1, Theorem 4.1 in §C and Theorem 4.5 in §8.4, we will combine the
results in this subsection and earlier subsections to establish rate order and sample path stochastic order
comparisons between queue difference processes and associated frozen difference processes. A typical
initial rate order statement will be of the form

Dn
1,2 ≤r D

n
f (Γ

n) in D([0, δ]) (79)

for some δ > 0, which we now explain. First, Dn
1,2 is a function of the Markov process Xn

6 , which has
state-dependent rates. Thus the “transition rates” of Dn

1,2 are understood to be functions of time t and
Xn

6 (t), the state of the Markov process Xn
6 at time t, which includes the value of Dn

1,2(t). However,
the right side of (79) is interpreted quite differently. We regard Dn

f (Γ
n), conditional on the random

state vector Γn, as a homogenous pure-jump Markov process constructed independently of Xn
6 , with new

rate-1 Poisson processes, as in §5.1. However, we deliberately construct the random fixed state vector
Γn as a function of Xn

6 in order to facilitate comparison of rates. Thus, Dn
f (Γ

n) and Xn
6 , and thus Dn

1,2,
are dependent, but they are conditionally independent given the random state vector Γn. Thus, the
conclusion in (79) means that the transition rates at each time t for each value of Xn

6 (t) are ordered. If
the two processes are in the same state at some time t, then the two processes can make transitions to
the same states, and each upward transition rate of Dn

f (Γ
n) is greater than or equal to the corresponding

upward transition rate of Dn
1,2, while each downward transition rate of Dn

f (Γ
n) is less than or equal to

the corresponding downward transition rate of Dn
1,2. That rate ordering then allows the sample path

stochastic order comparisons, as in Corollary A.1.

A.4 A Sample Path Stochastic Order Bound. For the proof of Theorem 4.3 in §8, we also need
an upper bound process, unlike Qn

i,b(t) in (76), that does not explode as t→ ∞. Hence, we now establish
an elementary sample path stochastic order bound on the queue lengths that is stronger than the w.p.1
upper bound in Lemma A.2. Each of the two upper bound stochastic processes has the structure of the
queue length in an M/M/∞ model, with a service rate equal to the abandonment rate here, for which
asymptotic results have been established [35].

Lemma A.5 (sample path stochastic order for the queue lengths) For i = 1, 2 and n ≥ 1, let

Qn
i,bd(t) = Qn

i (0) +Na
i (λ

n
i t)−Nu

i (θi

∫ t

0

Qn
i,bd(s) ds), t ≥ 0.

Then
Qn

i,bd(t) ⇒ Qn
i,bd(∞) as t→ ∞,

where Qn
i,bd(∞) has a Poisson distribution with mean λni /θi and

Q̄n
i,bd ≡ n−1Qn

i,bd ⇒ qi,bd in D([0,∞)) as n→ ∞,

where qi,bd evolves deterministically according to the ODE q̇i,bd(t) = λi − θiqi,bd(t), starting at qi,bd(0) ≡
qi(0) for qi(0) part of x(0) in Assumption 3.2. Thus,

qi,bd(t) ≤ qi,bd(∞) ≡ qi(0) ∨ (λi/θi).

Moreover,
(Qn

1 , Q
n
2 ) ≤st (Q

n
1,bd, Q

n
2,bd) in D2([0,∞)).
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Proof. We apply Assumption 3.2 to get the intial queue lengths to converge. Just as for Qn
i,b in

Lemma A.2, the upper bound system here provides no service completion at all. However, unlike the
upper bound Qn

i,b in Lemma A.2, here abandonment from queue is allowed. Here we have sample path
stochastic order because we can construct the two systems together, keeping the upper bound system
greater than or equal to Qn

i (t) for all t. Whenever the constructed processes are equal, they can have the
same abandonments, because the abandonment rate in both systems will be identical. �

A.5 Extreme-Value Limits for QBD Processes. In order to prove Theorem 6.1 in §B.1, we
exploit extreme-value limits for QBD processes. Since we are unaware of any established extreme-value
limits for QBD processes, we establish the following result here. Recall that a QBD has states (i, j),
where i is the level and j is the phase. If we only consider the level we get the level process; it is an
elementary function of a QBD.

Lemma A.6 (extreme value for QBD) If L is the level process of a positive recurrent (homogeneous) QBD
process (with a finite number of phases), then there exists c > 0 such that

lim
t→∞

P (‖L‖t/ log t > c) = 0.

Proof. Our proof is based on regenerative structure. The intervals between successive visits to the
state (0, j) constitute an embedded renewal process for the QBD. Since the QBD is positive recurrent,
these cycles have finite mean. Given the regenerative structure, our proof is based on the observation
that, if the process L were continuous real-valued with an exponential tail, instead of integer valued
with a geometric tail, then we could establish the conventional convergence in law of ‖L‖t − c log t to
the Gumbel distribution, which implies our conclusion. Hence, we bound the process L above w.p.1
by another process Lb that is continuous real-valued with an exponential tail and which inherits the
regenerative structure of L.

We first construct the bounding process Lb and then afterwards explain the rest of the reasoning.
To start, choose a phase determining a specific regenerative structure for the level process L. let Si be
the epoch cycle i ends, i ≥ −1, with S−1 ≡ 0, and let L(n) be the set of states in level n. For each
cycle i, we generate an independent exponential random variable Xi and take the maximum between
L(t) and Xi for all Si−1 ≤ t < Si such that L(t) /∈ L(0); i.e., letting {Xi : i ≥ 0} be an i.i.d. sequence
of exponential random variables independent of L and letting C(t) be the cycle in progress at time t,
Lb(t) ≡ L(t)∨XC(t)1{L(t)/∈L(0)}. Clearly, Lb inherits the regenerative structure of L and satisfies L ≤ Lb

almost surely. Moreover, by the assumed independence, for each x > 0 and t ≥ 0,

P (Lb(t) > x) = P (L(t) > x) + P (X > x) − P (L(t) > x)P (X > x),

where X is an exponential random variable distributed as Xi that is independent of L(t). We now
consider the stationary version of L, which makes Lb stationary as well. We let the desired constant c be
the mean of the exponential random variables Xi. If we make c sufficiently large, then we clearly have
P (Lb(t) > x) ∼ e−x/c as x → ∞, because the first and third terms become asymptotically negligible as
x→ ∞. (We choose c to make L(t) asymptotically negligible compared to X .)

It now remains to establish the conventional extreme-value limit for the bounding process Lb. For that,
we exploit the exponential tail of the stationary distribution, just established, and regenerative structure.
There are two approaches to extreme-value limits for regenerative processes, which are intimately related,
as shown by Rootzén [42]. One is based on stationary processes, while the other is based on the cycle
maxima, i.e., the maximum values achieved in successive regenerative cycles. First, if we consider the
stationary version, then we can apply classical extreme-value limits for stationary processes as in [30].
The regenerative structure implies that the mixing condition in [30] is satisfied; see Section 4 of [42].

However, the classical theory in [30] and the analysis in [42] applies to sequences of random variables
as opposed to continuous-time processes. In general, the established results for stationary sequences in
[30] do not extend to stationary continuous-time processes. That is demonstrated by extreme-value limits
for positive recurrent diffusion processes in [9, 11]. Proposition 3.1, Corollary 3.2 and Theorem 3.7 of
[9] show that, in general, the extreme-value limit is not determined by the stationary distribution of the
process.

However, continuous time presents no difficulty in our setting, because the QBD is constant between
successive transitions, and the transitions occur in an asymptotically regular way. It suffices to look at
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the embedded discrete-time process at transition epochs. That is a standard discrete-time Markov chain
associated with the continuous-time Markov chain represented as a QBD. Let N(t) denote the number
of transitions over the interval [0, t]. Then Lb(t) = Ld(N(t)), where Ld(n) is the embedded discrete-time
process associated with Lb. Since N(t)/t → c′ > 0 w.p.1 as t → ∞ for some constant c′ > 0, the results
directly established for the discrete-time process Dd are inherited with minor modification by Lb. Indeed,
the maximum over random indices already arises when relating extremes for regenerative sequences to
extremes of i.i.d. sequences; see p. 372 and Theorem 3.1 of [42]. In fact, there is a substantial literature
on extremes with a random index, e.g., see Proposition 4.20 and (4.53) of [40] and also [43]. Hence, for
the QBD we can initially work in discrete time, to be consistent with [30, 42]. After doing so, we obtain
extreme-value limits in both discrete and continuous time, which are essentially equivalent.

So far, we have established an extreme-value limit for the stationary version of Lb, but our process
Lb is actually not a stationary process. So it is natural to apply the second approach based on cycle
maxima, which is given in [42, 2] and Section VI.4 of [3]. We would get the same extreme-value limit for
the given version of Lb as the stationary version if the cycle maximum has an exponential tail. Moreover,
this reasoning would apply directly to continuous time as well as discrete time. However, Rootzén [42]
has connected the two approaches (see p. 380 of [42]), showing that all the versions of the regenerative
process have the same extreme-value limit. Hence, the given version of the process Lb has the same
extreme-value limit as the stationary version, already discussed. Moreover, as a consequence, the cycle
maximum has an exponential tail if and only if the stationary distribution has an exponential tail. Hence,
we do not need to consider the cycle maximum directly. �

Appendix B. Proofs of Three Theorems from §6. In this section we prove the three theorems
in §6.

B.1 Proof of Theorem 6.1. Theorem 6.1 is an immediate consequence of the following three
lemmas: Lemmas B.1, B.2 and B.3.

Lemma B.1 If z1,2(0) > 0, then, for all T > 0, P (inf0≤t≤T Z̄
n
1,2(t) > 0) → 1 as n → ∞. As a

consequence, Zn
2,1 ⇒ 0 as n→ ∞.

Proof. By Assumption 3.2, Z̄n
1,2(0) ⇒ z1,2(0). From Lemma A.1 we know that Zn

1,2 ≥ Zn
a in

D for all n ≥ 1 w.p.1. From Lemma A.3, we know that Z̄n
a ⇒ za in D as n → ∞, for za in (77).

However, the integral equation for za in (77) is equivalent to the ODE ża(t) = −µ1,2za(t) with initial
value za(0) = z1,2(0). Since z1,2(0) > 0 by assumption, it follows that za(t) ≥ za(0)e

−µ1,2t > 0 for all
t ≥ 0. Thus P (inf0≤s≤t Z

n
a (s) > 0) → 1 as n → ∞. Lemma A.1 implies that the same is true for Zn

1,2,
which proves the first claim of the lemma. The second claim that Zn

2,1 ⇒ 0 as n → ∞ follows from the
first together with the one-way sharing rule. �

Remark B.1 (implications for one-way sharing rule) The conclusion of Lemma B.1 reveals a disadvan-
tage of the one-way sharing rule for very large systems. The lemma concludes that, for large n, if for
some ǫ > 0 and t0 ≥ 0 Zn

1,2(t0) > ǫn, then Zn
1,2(t) is very likely not to reach 0 for a long time, thus

preventing sharing in the opposite direction, even if that would prove beneficial to do so at a later time,
e.g., because there is a new overload incident in the opposite direction.

In practice, we thus may want to relax the one-way sharing rule. One way of relaxing the one-way
sharing rule is by dropping it entirely, and relying only on the thresholds kn1,2 and kn2,1 to prevent sharing
in both directions simultaneously (at least until the arrival rates change again). Another modification is
to introduce lower thresholds on the service processes, denoted by sni,j , i 6= j, such that pool 2 is allowed
to start helping class 1 at time t if Dn

2,1 > kn2,1 and Zn
1,2(t) < sn1,2, and similarly in the other direction.

We do not analyze either of these modified controls in this paper.

Given Lemma B.1, it remains to consider only the case z1,2(0) = 0. Hence, we assume that z1,2(0) = 0
for the rest of this section. Here is the outline of the proof: We first prove (Lemmas B.2 and B.3 below)
that Zn

2,1 is asymptotically null over an interval [0, τ ], for some τ > 0. We then prove that Z̄n
1,2(t) must

become strictly positive before time τ in fluid scale. By Assumption 2.2, the optimal ratios for FQR-T
satisfy r1,2 ≥ r2,1. In Lemma B.2 we consider the cases (i) x(0) ∈ A ∪ A

+ with r1,2 > r2,1 and q1(0) > 0
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and (ii) x(0) ∈ S
+; in Lemma B.3 we consider the remaining cases, i.e., x(0) ∈ A ∪ A

+ with r1,2 = r2,1
or q1(0) = 0. Unlike the definition of Dn

1,2 in (6), let Dn
2,1 be defined by

Dn
2,1(t) ≡ r2,1Q

n
2 (t)−Qn

1 (t), t ≥ 0. (80)

Lemma B.2 Assume that z1,2(0) = 0. If either one of the following two conditions hold: (i) x(0) ∈
A ∪ A

+, r1,2 > r2,1 and q1(0) > 0, or (ii) x(0) ∈ S
+, then there exists τ , 0 < τ ≤ ∞, such that

lim
n→∞

P

(

sup
t∈[0,τ ]

Dn
2,1(t) ≤ 0

)

= 1

for Dn
2,1 in (80), so that ‖Zn

2,1‖τ ⇒ 0 as n→ ∞.

Proof. We first show that the appropriate conditions hold in fluid scale at the origin. We start by
assuming that x(0) ∈ A ∪ A

+, which implies that d1,2(0) ≡ q1(0) − r1,2q2(0) = 0. Since q1(0) > 0 by
assumption, q2(0) > 0 too. Since r1,2 > r2,1 by assumption, d2,1(0) = r2,1q2(0) − q1(0) < r1,2q2(0) −
q1(0) = 0, so that we also have d2,1(0) < 0. If (ii) holds, so that x(0) ∈ S

+, then d2,1(0) < 0 by definition
of S+

Given Assumption 3.2, we also have X̄n(0) ⇒ x(0) in A ∪ A
+ ∪ S

+. Hence, the fluid-scaled queueing
processes converge to these initial values. In particular, we necessarily have Dn

2,1(0)/n ⇒ d2,1(0) < 0 as
n→ ∞. Hence, there exists c > 0 such that P (Dn

2,1(0) < −cn) → 1 as n→ ∞. Our goal now is to show
that there exists τ > 0 such that P (sup0≤t≤τ D

n
2,1(t) > 0) → 0. That will imply the desired conclusion.

It only remains to show that the change in these quantities has to be continuous in fluid scale. For the
purpose of bounding Dn

2,1 = r2,1Q
n
2 −Qn

1 above, it suffices to bound Qn
2 above and Qn

1 below, as we have
done in Corollary A.1. HenceDn

2,1 ≤st D
n
u,2,1 ≡ r2,1Q

n
2,b−Qn

1,a. By Lemma A.3, D̄n
u,2,1 ⇒ du2,1 ≡ r2,1q2,b−

q1,a, where the limit function du2,1 evolves continuously, starting with du2,1(0) = d2,1(0) < 0. Hence there is
a time τ ′ such that du2,1(t) < 0 for all 0 ≤ t ≤ τ ′. Asymptotically, by the FWLLN, the same will be true for
the fluid scaled queue difference process D̄n

u,2,1. Hence, we deduce that P (sup0≤t≤τ {Dn
u,2,1(t)} > 0) → 0

as n → ∞ for any τ with 0 < τ < τ ′. Since Dn
2,1 ≤st D

n
u,2,1, the same is true for Dn

2,1. That completes
the proof. �

The proof of Lemma B.2 relies on a fluid argument since, under its assumptions and Assumption
3.2, Dn

2,1(0)/n converges to a strictly negative number as n → ∞. In particular, the difference Dn
2,1(0)

without centering by kn2,1 is order OP (n) away from the threshold kn2,1. That fluid reasoning fails when
r2,1 = r1,2 ≡ r or when q1(0) = 0 since in either of these cases, q1(0)− r1,2q2(0) = q1(0)− r2,1q2(0) = 0.
(By Assumption 3.2, q2(0) = 0 if q1(0) = 0.) In these cases we will rely on the threshold kn2,1 to prevent
class-2 customers to be sent to pool 1, and construct a finer sample-path stochastic-order bound for the
stochastic system. Below we remove the centering by the threshold in Dn

2,1.

Lemma B.3 Assume that z1,2(0) = 0 and that q1(0)− r2,1q2(0) = 0 (necessarily, x(0) /∈ S
+, i.e., x(0) ∈

A ∪ A
+). In this case, there exists τ , 0 < τ ≤ ∞, such that

lim
n→∞

P

(

sup
t∈[0,τ ]

Dn
2,1(t) ≤ kn2,1

)

= 1,

for Dn
2,1 in (80). Hence, ‖Zn

2,1‖τ ⇒ 0 as n→ ∞.

Proof. We start by showing that P (Dn
2,1(0) ≤ 0) → 1 as n → ∞. That follows because, by

Assumption 2.2 and the definitions (6) and (80),

Dn
2,1(0) ≡ r2,1Q

n
2 (0)−Qn

1 (0) ≤ r1,2Q
n
2 (0)−Qn

1 (0) = −Dn
1,2(0)− kn1,2.

Assumptions 2.4 and 3.2 then imply that Dn
1,2(0) ⇒ L and kn1,2 → ∞ as n → ∞, which together imply

the initial conclusion. Going forward, it suffices to assume that we initialize by Dn
2,1(0) = 0.

The rest of our proof follows three steps: In the first step, paralleling Lemma A.4 and Corollary A.1, we
construct a QBD that bounds Dn

2,1 (without centering by kn2,1) in rate order, which enables us to obtain a
stochastic order bound for Dn

2,1; see Remark A.1. The bound is constructed over an interval [0, τ ]. In the
second step, we show how to choose τ small enough so that the QBD bound is asymptotically positive
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recurrent. In the third step, we “translate” the QBD bound to a time-accelerated QBD, in the spirit of
(74), and employ the extreme-value result for the time-accelerated QBD in Lemma A.6 to conclude the
proof.

Step One: We construct a stochastic-order bound for Dn
2,1, building on rate order. For τ > 0, let

Xn
∗ (t) ≡ (Qn

1,b(t), Q
n
2,a(t), Z

n
b (t)) and Γn

τ ≡ Xn
τ ≡ (Qn

1,τ , Q
n
2,τ , Z

n
τ ), (81)

where
Qn

1,τ ≡ ‖Qn
1,b‖τ , Qn

2,τ ≡ inf
0≤t≤τ

Qn
2,a(t) ∨ 0 and Zn

τ ≡ ‖Zn
b ‖τ .

using the processes defined in (75) and (76). By Lemmas A.1 and A.2, for all n ≥ 1,

(Qn
1 (t),−Qn

2 (t), Z
n
1,2(t)) ≤ (Qn

1,τ ,−Qn
2,τ , Z

n
τ ) in R3 for all t ∈ [0, τ ] w.p.1. (82)

As in §A.1, let Dn
f (Γ

n
τ ) be the frozen difference process associated with Dn

2,1 and Γn
τ in (81). (Recall that

we are considering Dn
2,1 here and not Dn

1,2.) However, to obtain positive results, we want to consider the
process Dn

f (Γ
n
τ ) only for nonnegative values. We obtain such a process by working with the associated

reflected process, denoted by

Dn,∗
f ≡ Dn,∗

f (Γ) ≡ {Dn,∗
f (Γ, t) : t ≥ 0}, Γ ∈ R3

obtained by imposing a reflecting lower barrier at 0, where Γ specifies the fixed rates of Dn,∗
f (Γ). We

omit Γ from the notation for statements that hold for all Γ ∈ R3. The reflected process Dn,∗
f is always

nonnegative and has the same state space as the nonnegative part of the state space of Dn
2,1. Within the

QBD framework used in §6 of [38], we obtain the reflected process by omitting all transitions down below
level 0; the specific QBD construction is given in Appendix D.

It follows from (82) and Theorem A.4 that we have rate order. By the analog of Lemma A.1, there
exists a constant K such that we have sample path stochastic order in D([0, τ ]), i.e.,

Dn
2,1 ≤st D

n,∗
f (Γn

τ ) +K in D([0, τ ]) for all n ≥ 1, (83)

for Γn
τ in (81).

Step Two: We now show that we can choose τ > 0 so that there exist sets En in the underlying
probability space such that Dn,∗

f (Γn
τ ) is positive recurrent in En and P (En) → 1 as n → ∞. Paralleling

(73) (for the frozen process associated with Dn
1,2), the set En here is

En ≡ {δ∗(Γn
τ ) < 0}, (84)

where δ∗ is the drift for Dn,∗
f . To find τ > 0 such that P (En) → 0 for En in (84), we analyze the

asymptotic behavior of Γn
τ ≡ Xn

τ in (81).

First, by Lemma A.3, X̄n
∗ ⇒ x∗ ≡ (q1,b, q2,a, zb) in D3 as n→ ∞, where the components of x∗ are given

in (78) and x∗(0) = x(0) by construction. Then, by the continuous mapping theorem for the supremum
function, e.g., Theorem 12.11.7 in [48],

X̄n
τ ≡ Xn

τ /n⇒ xτ ≡ (q1,τ , q2,τ , zτ ) in R3, as n→ ∞, (85)

where
q1,τ ≡ ‖q1,b‖τ , q2,τ ≡ inf

0≤t≤τ
q2,a(t) ∨ 0 and zτ ≡ ‖zb‖τ .

Since x(0) ∈ A ∪ A
+ by the assumption of the lemma, δ−(x(0)) > 0, where δ− is the drift for the FTSP

in (19) associated with Dn
1,2.

For γ ≡ γ(t) ≡ (q1,b(t), q2,a(t) ∨ 0, zb(t)) let λ̂r(γ) ≡ λ2, µ̂r(γ) ≡ µ2,2(m2 − zb(t)) + θ2(q2,a(t) ∨ 0),

λ̂1(γ) ≡ µ1,1m1 + µ1,2zb(t) + θ1q1,b(t) and µ̂1(γ) ≡ λ1. Let D∗(γ) be the reflected FTSP corresponding

to Dn,∗
f (Γn

τ ). The process D∗(γ) ≡ {D∗(γ, t) : t ≥ 0} has upward jumps of size r2,1 with rate λ̂r(γ) and

downward jumps of size r with rate µ̂r(γ). It has upward jumps of size 1 with rate λ̂1(γ), and downwards
jumps of size 1 with rate µ̂1(γ). By Theorem 7.2.3 in [29], D∗(γ) is positive recurrent if and only if
δ∗(γ) < 0, where

δ∗(γ) ≡ r2,1(λ̂r(γ)− µ̂r(γ)) + (λ̂1(γ)− µ̂1(γ)), γ ∈ R3. (86)

Replacing γ with γτ ≡ xτ , we have that D∗(γτ ) is positive recurrent if and only if δ∗(γτ ) < 0. Hence, it
suffices to show that δ∗(xτ ) < 0 for some τ > 0. We do that next.
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We consider the two possible cases of the condition imposed in the lemma: (i) r2,1 = r1,2 and (ii)
q1(0) = q2(0) = 0 (with zb(0) = z1,2(0) = 0 in both cases). First, in case (i), δ∗(x∗(0)) = −δ−(x(0))
for δ−(γ) in (19), δ∗(γ) in (86) and γ = x(0). Since we have already observed that δ−(x(0)) > 0, we
necessarily have δ∗(x∗(0)) < 0.

In case (ii) with r1,2 > r2,1 and q1(0) = q2(0) = 0 (and again z1,2(0) = 0), δ∗(x∗(0)) = r2,1(λ1 −
µ1,1m1) + (λ2 − µ2,2m2), so that δ∗(x∗(0)) < 0 if and only if (λ1 − µ1,1m1) + r2,1(λ2 − µ2,2m2) < 0.
However, this inequality must hold because, by Assumption 3.2, δ−(x(0)) > 0, so that δ−(x(0)) =
(λ1 − µ1,1m1)− r1,2(λ2 − µ2,2m2) > 0. Since r2,1 < r1,2, it follows that here too δ∗(x∗(0)) < 0.

Finally, the continuity of x∗ and δ∗(x∗) imply that we can find τ > 0 and η > 0 such that
sups∈[0,τ ] δ∗(x∗(s)) < −η < 0. In particular, for that choice of τ , δ∗(xτ ) < −η. Hence, P (En) =

P (δ∗(Γ
n
τ ) < 0) → 1, because δ∗(X̄

n
∗ ) ⇒ δ∗(x∗) in D and δ∗(Γ

n
τ ) ⇒ δ∗(γτ ) in R as n → ∞ by the

continuous mapping theorem.

Step Three: Finally, we apply the extreme-value result in Lemma A.6 to the stochastic upper bound
K +Dn,∗

f (Γn
τ ) in (83) for Γn

τ in (81). For that purpose, observe that, paralleling (74), {Dn,∗
f (Γn

τ , s) : s ≥
0} d

= {D∗(Γn
τ /n, ns) : s ≥ 0} for Dn,∗

f and D∗ defined above, with Γn
τ /n ⇒ xτ in (85). For the rest of

the proof, we apply the Skorohod representation theorem to replace the convergence in distribution by
convergence Γn

τ /n→ xτ w.p.1, without changing the notation.

By the arguments above

P (‖Dn
2,1‖τ/ logn > c) ≤ P ((K + ‖Dn,∗

f (Γn
τ )‖τ )/ logn > c) = P ((K + ‖D∗(Γn

τ /n)‖nτ)/ logn > c). (87)

In order to apply Lemma A.6 to the final term in (87), we want to replace Γn
τ /n ≡ X̄n

τ by a vector
independent of n, say xǫ, such that D∗(xǫ) is positive recurrent and, for some n0, X̄

n
τ ≤ xǫ for all n ≥ n0.

Then we can apply Lemma A.6 to get, for n ≥ n0,

P ((K + ‖D∗(Γn
τ /n)‖nτ)/ logn > c) ≤ P ((2K + ‖D∗(xǫ)‖nτ )/ logn > c) → 0 as n→ ∞.

That implies the claim because of the way the thresholds are scaled in Assumption 2.4.

We conclude by showing how to construct the vector xǫ such that D∗(xǫ) is positive recurrent and,
for some n0, Γ

n
τ /n = X̄n

τ ≤ xǫ for all n ≥ n0. If q2,τ > 0, then choose ǫ such that 0 < ǫ < q2,τ and let
xǫ ≡ (q1,ǫ, q2,ǫ, zǫ) ≡ (q1,τ + ǫ, q2,τ − ǫ, zb + ǫ). Otherwise, let xǫ ≡ (q1,τ + ǫ, 0, zb + ǫ). Clearly xǫ ≤ xτ for
all ǫ > 0, so that {D∗(xτ , t) : 0 ≤ t ≤ τ} ≤st K + {D∗(xǫ, t) : 0 ≤ t ≤ τ} and, by the choice of τ , we can
find ǫ > 0 small enough so that δ∗(xǫ) < 0, so that D∗(xǫ) is positive recurrent. �

B.2 Proof Theorem 6.2. Define the processes

Ln
1 ≡ Qn

1 + Zn
1,1 + Zn

1,2 −mn
1 and Ln

2 ≡ Qn
2 + Zn

2,1 + Zn
2,2 −mn

2 , (88)

representing the excess number in system for each class. Note that (Ln
i )

+ = Qn
i , i = 1, 2. For all n

sufficiently large, we will bound the two-dimensional process (Ln
1 , L

n
2 ) below in sample-path stochastic

order by another two-dimensional process (Ln
1,b, L

n
2,b), n ≥ 1.

We construct the lower-bound process (Ln
1,b, L

n
2,b) by having Ln

i,b(0) = Ln
i (0) ∧ kn1,2, i = 1, 2, and

by increasing the departure rates in both processes Ln
1 and Ln

2 , making it so that each goes down at
least as fast, regardless of the state of the pair. First, we place reflecting upper barriers on the two
queues. This is tantamount to making the death rate infinite in these states and all higher states. We
place the reflecting upper barrier on Ln

i at kn1,2, where kn1,2 ≥ 0. This necessarily produces a lower
bound for all n. By the initial conditions assumed for the queue lengths in Assumption 3.2, we have
P ((Ln

1,b(0), L
n
2,b(0)) = (kn1,2, k

n
1,2)) → 1 as n→ ∞.

With the upper barrier at kn1,2, the departure rate of Ln
1 (t) at time t > 0 is bounded above by

µ1,1m
n
1 + µ1,2Z

n
1,2(t) + θ1k

n
1,2, based on assuming that pool 1 is fully busy serving class 1, that Ln

1 (t)
is at its upper barrier, and that Zn

1,2(t) agents from pool 2 are currently busy serving class 1 in the
original system. With the upper barrier at kn1,2, the departure rate of Ln

2 (t) at time t is bounded above
by µ2,2(m

n
2 −Zn

1,2(t)) + θ2k
n
1,2, based on assuming that pool 2 is fully busy with Zn

1,2(t) agents from pool
2 currently busy serving class 1, and that Ln

2 (t) is at its upper barrier k
n
1,2. Thus, we give Ln

1,b and Ln
2,b

these bounding rates at all times.
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As constructed, the evolution of (Ln
1,b, L

n
2,b) depends on the process Zn

1,2 associated with the original
system, which poses a problem for further analysis. However, we can avoid this difficulty by looking at
a special linear combination of the processes. Specifically, let

Un ≡ µ2,2(L
n
1 − kn1,2) + µ1,2(L

n
2 − kn1,2) and Un

b ≡ µ2,2(L
n
1,b − kn1,2) + µ1,2(L

n
2,b − kn1,2). (89)

By the established sample-path stochastic order (Ln
1,b, L

n
2,b) ≤st (L

n
1 , L

n
2 ), the initial conditions speci-

fied above and the monotonicity of the linear map in (89), we get the associated sample-path stochastic
order Un

b ≤st U
n. The lower-bound stochastic process Un

b has constant birth rate λnb = µ2,2λ
n
1 + µ1,2λ

n
2

and constant death rate

µn
b ≡ µ2,2(µ1,1m

n
1 + µ1,2Z

n
1,2(t) + θ1k

n
1,2) + µ1,2(µ2,2m

n
2 − µ2,2Z

n
1,2(t)) + θ2k

n
1,2)

= µ2,2(µ1,1m
n
1 + θ1k

n
1,2) + µ1,2(µ2,2m

n
2 + θ2k

n
1,2).

In particular, unlike the pair of processes (Ln
1,b, L

n
2,b), the process Un

b is independent of the process
Zn
1,2. Consequently, Un

b is a birth and death process on the set of all integers in (−∞, 0]. Since
P ((Ln

1,b(0), L
n
2,b(0)) = (kn1,2, k

n
1,2)) → 1 as n→ ∞, P (Un

b (0) = 0) → 1 as n→ ∞.

The drift in Un
b is

δnb ≡ λnb − µn
b = µ2,2(λ

n
1 −mn

1µ1,1 − θ1k
n
1,2) + µ1,2(λ

n
2 −mn

2µ2,2 − θ2k
n
1,2). (90)

Hence, after scaling, we get δnb /n→ δ (recall that kn1,2 is o(n)), where

δb ≡ µ2,2(λ1 −m1µ1,1) + µ1,2(λ2 −m2µ2,2) > 0, (91)

with the inequality following from Assumption 3.1.

Now we observe that −Un
b is equivalent to the number in system in a stable M/M/1 queueing model

with traffic intensity ρn∗ → ρ∗ < 1, starting out empty, asymptotically. Let Q∗ be the number-in-system
process in an M/M/1 system having arrival rate equal to λ∗ ≡ µ2,2µ1,1m1 + µ1,2µ2,2m2, service rate
µ∗ ≡ µ2,2λ1 + µ1,2λ2 and traffic intensity ρ∗ ≡ λ∗/µ∗ < 1. Observe that the scaling in Un

b is tantamount
to accelerating time by a factor of order O(n) in Q∗. That is, {−Un

b (t) : t ≥ 0} can be represented as
{Q∗(cnt) : t ≥ 0}, where cn/n → 1 as n → ∞. We can now apply the extreme-value result in Lemma
A.6 for the M/M/1 queue above (since the M/M/1 birth and death process is trivially a QBD process)
to conclude that ‖Q∗‖t = OP (log(t)). This implies that −Un

b / log(n) is stochastically bounded.

From the way that the reflecting upper barriers were constructed, we know at the outset that Ln
1,b(t) ≤

kn1,2 and Ln
2,b(t) ≤ kn1,2. Hence, we must have both Ln

1,b − kn1,2 and Ln
2,b − kn1,2 non-positive. Combining

this observation with the result that (−Un
b )/ logn is stochastically bounded, we deduce that both (kn1,2−

Ln
1,b)/ logn and (kn1,2 −Ln

2,b)/ logn are stochastically bounded, i.e., the fluctuations of Ln
i,b below kn1,2 are

OP (logn). The result follows because −Ln
i ≤st −Ln

i,b, i = 1, 2, and from the choice of kn1,2, which satisfies
kn1,2/ logn→ ∞ as n→ ∞ by Assumption 2.4.

B.3 Proof of Theorem 6.4. We now show that the interval [0, τ ] over which the conclusions in §6
are valid can be extended from [0, τ ] to [0,∞) after Theorem 4.1 has been proved over the interval [0, τ ].

For this purpose, we use the processes Ln
1 and Ln

2 defined in (88). By Lemma B.1, we only need to
consider the case z1,2(0) = 0. By Lemmas B.2 and B.3, there exists τ > 0 such that

lim
n→∞

P
(

‖Dn
2,1‖τ < kn2,1

)

= 1.

Hence, the claim of the theorem will follow from Lemma B.1 if we show that for some t0 satisfying
0 < t0 ≤ τ it holds that z1,2(t0) > 0, where z1,2 is the (deterministic) fluid limit of Z̄n

1,2 as n→ ∞, which
exists by Theorem 4.1. We will actually show a somewhat stronger result, namely that for any 0 < ǫ ≤ δ,
where δ is chosen from Lemma C.1 and thus Theorem 4.1, there exists t0 < ǫ such that z1,2(t0) > 0. We
prove that by assuming the contradictory statement: for some 0 < ǫ ≤ δ and for all t ∈ [0, ǫ], z1,2(t) = 0.

By our contradictory assumption above, Z̄n
1,2 = oP (1), i.e., ‖Zn

1,2/n‖ǫ ⇒ 0. Recall also that Zn
2,1 =

oP (1) over [0, ǫ] (since ǫ ≤ τ , and τ is chosen according to Lemmas B.2 and B.3). Hence, by our
contradictory assumption and by our choice of ǫ, there is negligible sharing of customers over the interval
[0, ǫ]. We can thus represent Ln

i in (88), i = 1, 2 by

Ln
i (t) = Ln

i (0) +Na
i (λ

n
i t)−Ns

i,i

(

µi,i

∫ t

0

(Ln
i (s) ∧ 0) ds

)

−Nu
i

(

θi

∫ t

0

(Ln
i (s) ∨ 0) ds

)

+ oP (n), (92)
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for i = 1, 2 and 0 ≤ t ≤ δ as n → ∞, where Na
i , N

s
i,i and N

u
i are independent rate-1 Poisson processes.

The oP (n) terms are replacing the (random-time changed) Poisson processes related to Zn
1,2 and Zn

2,1,
which can be disregarded when we consider the fluid limits of (92). The negligible sharing translates into
the oP (n) term in (92) by virtue of the continuous mapping theorem and Gronwall’s inequality, as in §4.1
of [35].

Letting L̄n
i ≡ Ln

i /n, i = 1, 2, and applying the continuous mapping theorem for the integral repre-
sentation function in (92), Theorem 4.1 in [35], (see also Theorem 7.1 and its proof in [35]), we have
(L̄n

1 , L̄
n
2 ) ⇒ (L̄1, L̄2) in D([0, ǫ]) as n→ ∞, where, for i = 1, 2,

L̄i(t) = L̄i(0) + (λi − µi,imi)t−
∫ t

0

[µi,i(L̄i(s) ∧ 0) + θi(L̃i(s) ∨ 0)] ds, 0 ≤ t ≤ ǫ,

so that

L̄′
i(t) ≡

d

dt
L̄i(t) = (λi − µi,imi)− µi,i(L̄i(t) ∧ 0)− θi(L̃i(t) ∨ 0), 0 ≤ t ≤ ǫ.

By Assumption 3.2, both pools are full at time 0, so that Li(0) ≥ 0. Moreover, for i = 1, 2, L̄e
i ≡

(λi − µi,i)/θi is an equilibrium point of the ODE L̄′
i, in the sense that, if L̄i(t0) = L̄e

i , then L̄i(t) = L̄e
i

for all t ≥ t0. (That is, L̄
e
i is a fixed point of the solution to the ODE.) It also follows from the derivative

of L̄i that L̄i is strictly increasing if L̄i(0) < L̄e
i , and strictly decreasing if L̄i(0) > L̄e

i , i = 1, 2.

Recall that ρ1 > 1, so that λ1 − µ1,1m1 > 0. Together with the initial condition, L1(0) ≥ 0, we see
that, in that case, L̄1(t) ≥ 0 for all t ≥ 0. First assume that ρ2 ≥ 1 . Then, by similar arguments,
L̄2(t) ≥ 0 for all t ≥ 0. In that case, we can replace L̄i with qi(t) = (L̄i(t))

+, i = 1, 2, where qi is the
fluid limit of Q̄n

i over [0, ǫ]. We can then write, for t ∈ [0, ǫ],

q1(t) = q1(0)− (λ1 − µ1,1m1)t− θ1

∫ t

0

q1(s) ds,

q2(t) = q2(0)− (λ2 − µ2,2m2)t− θ2

∫ t

0

q2(s) ds,

so that, for t ∈ [0, ǫ],

d1,2(t) = qa1 + (q1(0)− qa1 )e
−θ1t − r

(

qa2 + (q2(0)− qa2 )e
−θ2t

)

= (qa1 − rqa2 ) + (q1(0)− qa1 )e
−θ1t − r(q2(0)− qa2 )e

−θ2t.
(93)

First assume that x(0) ∈ A ∪A
+, so that d1,2(0) = 0. From (93),

d′1,2(t) ≡
d

dt
d1,2(t) = −θ1(q1(0)− qa1 )e

−θ1t + rθ2(q2(0)− qa2 )e
−θ2t.

Hence, d′1,2(0) = λ1 −µ1,1m1− θ1q1(0)− r(λ2 −µ2,2)+ rθ2q2(0). If follows from (19) and the assumption
z1,2(0) = 0, that d′1,2(0) = δ−(x(0)). By Assumption, x(0) ∈ A ∪ A

+, so that d′1,2(0) = δ−(x(0)) > 0
(that follows from the definition of A and A

+ in (20) and (21), and the fact that δ− > δ+). Hence, d1,2
is strictly increasing at 0. Now, since d1,2(0) = 0, we can find t1 ∈ (0, ǫ], such that d1,2(t) > 0 for all
0 < t < t1. This implies that P (inf0<t≤t1 D

n
1,2(t) > 0) → 1 as n→ ∞. The same is true if x(0) ∈ S

+.

Since ‖Zn
1,2/n‖ǫ ⇒ 0, as a consequence of our contradictory assumption, it follows from the represen-

tation of Zn
1,2 in Theorem 5.1 that

Z̄n
1,2(t) = n−1Ns

2,2 (µ2,2m
n
2 t) + oP (1) as n→ ∞. (94)

However, by the FSLLN for Poisson processes, the fluid limit z1,2 of Z̄
n in (94) satisfies z1,2(t) = µ2,2m2t >

0 for every 0 < t ≤ t1. We thus get a contradiction to our assumption that z1,2(t) = 0 for all t ∈ [0, ǫ].

For the case ρ2 < 1 the argument above still goes through, but we need to distinguish between two
cases: L̄2 = 0 and L̄2 > 0. In both cases L̄2 is strictly decreasing. In the first case, this implies that L̄2 is
negative for every t > 0. It follows immediately that q1(t)− rq2(t) > 0 for every t > 0. If L̄2(0) > 0, then
necessarily L̄1(0) > 0, and we can replace L̄i with qi, i = 1, 2, on an initial interval (before L̄2 becomes
negative). We then use the arguments used in the case ρ2 ≥ 1 above. �

In the proof of Theorem 6.4 we have shown that, if z1,2(0) = 0, then z1,2(t) > 0 for all t > 0. We prove
in Appendix E that the two queues must also become strictly positive right after time 0, if they are not
strictly positive at time 0.
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Appendix C. Alternative Proof of Characterization Using Stochastic Order Bounds. In
this appendix we present an alternative proof of Lemma 7.2 and thus an alternative proof of the FWLLN
in Theorem 4.1. At the beginning of §7 we observed that it suffices to characterize the limiting integral
terms in (47); i.e., it suffices to prove Lemma 7.2. In §7 we accomplished that goal by using the martingale
argument of [18, 28]. Here we show that same goal can be achieved with stochastic bounds, exploiting
Lemma 8.4 and similar reasoning. However, we prove less than the full Theorem 4.1 here. Our proof
here is under the special case of Assumption 3.2 for which x(0) ∈ A. For this special case we carry out
the characterization over the full interval [0,∞) if x(t) remains within A for all t ≥ 0. Otherwise, we
complete the characterization proof over [0, TA], where

TA ≡ inf {t > 0 : x(t) 6∈ A}. (95)

Since x is continuous and A is an open subset of S, we know that TA > 0. A first step is to do the
characterization over an interval [0, δ] for some δ > 0. We start in §C.1 by indicating how the interval
of convergence can be extended given that the first step has been carried out. Next in §C.2 we prove
Theorem 4.1 subject to Lemma C.2, establishing convergence of integral terms over the interval [0, δ]. For
that purpose, we state Lemma C.4 establishing a sample path stochastic order bound that we will use
to prove Lemma C.2. in §C.3 we establish continuity results for QBD processes. We then prove Lemmas
C.2 and C.4, respectively, in §C.4 and §C.5.

C.1 Extending the Interval of Convergence. Unlike the first proof, with this second proof we
only establish convergence in D14([0, TA]) if TA < ∞, for TA in (95). We now show how we achieve this
extension.

As in the first proof, after establishing the convergence over an initial interval [0, δ] with δ ≤ τ , we
apply Theorem 6.4 to conclude that any limit point of the tight sequence X̄n

6 is again a limit of the tight
sequence X̄n,∗

6 in (10) over the entire half line [0,∞), showing that τ places no constraint on expanding
the convergence interval. Moreover, by part (ii) of Theorem 5.2 in [38], any solution to the ODE, with a
specified initial condition, can be extended indefinitely, and is unique. Hence that places no constraint
either.

However, for this second method of proof, we do critically use that fact that x(t) ∈ A, 0 ≤ t ≤ δ, in
order to prove the characterization. (This is proved in Lemma C.1 below.) However, we can extend the
interval of convergence further. Given that we have shown that X̄(t) = x(t) ∈ A for A in (20) over a time
interval [0, δ], and thus established the desired convergence X̄n ⇒ x over that time interval [0, δ], we can
always extend the time interval to a larger interval [0, δ′] for some δ′ with δ′ > δ. To do so, we repeat
the previous argument treating time δ as the new time origin. That directly yields X̄(t) = x(t) ∈ A,
and thus convergence X̄n ⇒ x, over the time interval [δ, δ′]. However, we can combine that with the
previous result to obtain X̄(t) = x(t) ∈ A, and thus convergence X̄n ⇒ x, over the longer time interval
[0, δ′]. Let ν be the supremum of all δ for which the expansion of convergence to [0, δ] is valid. We
must have X̄(t) = x(t) ∈ A, and thus convergence X̄n ⇒ x, over the interval [0, ν), open on the right.
The interval is [0,∞) if ν = ∞. Suppose that ν < ∞. In that case, we can next apply continuity
to extend the interval of convergence to the closed interval [0, ν]. Since X̄(t) = x(t), 0 ≤ t < ν, x is
continuous and X̄ is almost surely continuous, we necessarily have X̄(ν) = x(ν) w.p.1 as well. We claim
that ν ≥ TA ≡ inf{t ≥ 0 : x(t) /∈ A}. If not, we can do a new construction yielding X̄(t) = x(t), first for
ν ≤ t < ν′ and then for 0 ≤ t ≤ ν′, ν′ > ν, contradicting the definition of ν. Hence, we have extended
the domain of convergence to [0, TA] if TA <∞ and to [0,∞) otherwise, as claimed.

C.2 Reduction to Convergence of Integral Terms. Since each of these integrals in (47) can be
treated in essentially the same way, we henceforth focus only on the single term Īq,1,1(t) and establish
(48).

Recall that X̄ is the limit of the converging subsequence of {X̄n : n ≥ 1} in D3([0, τ ]) for τ in Theorem
6.3. An important first step is to identify an initial interval [0, δ], 0 < δ < τ, over which X̄ ∈ A. We
apply the proof of Lemma 8.4 to prove the following lemma.

Lemma C.1 (state in A over [0, δ]) There exists δ with 0 < δ ≤ τ for τ in Theorem 6.3 such that

P (X̄n(t) ∈ A, 0 ≤ t ≤ δ) → 1 as n→ ∞,

for A in (20), so that P (X̄(t) ∈ A 0 ≤ t ≤ δ) = 1.



: An Averaging Principle
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 49

Proof. Recall that we have assumed that Assumption 3.2 holds with x(0) ∈ A. We can apply the
first step of the proof of Lemma 8.4 to obtain the stochastic bound over an initial interval [0, δ] for some
δ > 0. Since the FTSP D(γ, ·) is positive recurrent if and only if γ ∈ A for A in (20). By Lemma 8.4,
Df (X

n
m, ·) and Df (X

n
M , ·) are positive recurrent on Bn(δ, η) in (60). Thus, by Corollary 8.1, Df(X

n(t), ·)
is positive recurrent on Bn(δ, η) as well for 0 ≤ t ≤ δ. Hence, the claim holds. �

The next important step is the following lemma, proved in §C.4, after establishing preliminary bound-
ing lemmas.

Lemma C.2 (convergence of the integral terms) There exists δ with 0 < δ ≤ τ for τ in Theorem 6.3,
such that for any ǫ > 0 and t with 0 ≤ t < δ, there exists σ ≡ σ(ǫ, δ, t) with 0 < σ < δ − t and n0 such
that

P

(

| 1
σ

∫ t+σ

t

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds− π1,2(X̄(t))Z̄1,2(t)| > ǫ

)

< ǫ for all n ≥ n0. (96)

In order to apply Lemma C.2 to prove Lemma 7.2, we exploit the absolute continuity of Īq,1,1, estab-
lished now.

Lemma C.3 (absolute continuity of Īq,1,1) The limiting integral term Īq,1,1 almost surely satisfies

0 ≤ Īq,1,1(t+ u)− Īq,1,1(t) ≤ m2u for all 0 ≤ t < t+ u < τ, (97)

and so Īq,1,1 is the cumulative distribution function corresponding to a finite measure, having a density
h depending on X̄. As a consequence, for all ǫ > 0, there exists u0 > 0 such that

∣

∣

∣

∣

Īq,1,1(t+ u)− Īq,1,1(t)

u
− h(t)

∣

∣

∣

∣

< ǫ (98)

for all u < u0.

Proof. Since

Īnq,1,1(t+ u)− Īnq,1,1(t) =

∫ t+u

t

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds ≤ umn

2/n,

Inq,1,1(t) is a nondecreasing function with 0 ≤ Inq,1,1(t + u) − Inq,1,1(t) ≤ mn
2 for all 0 ≤ t < t + u ≤ τ .

Hence, Inq,1,1(t) is a a cumulative distribution function associated with a finite measure. The convergence
obtained along the subsequence based on tightness then yields

0 ≤ Īq,1,1(t+ u)− Īq,1,1(t) ≤ m2u for all 0 ≤ t < t+ u ≤ τ.

Hence, Īq,1,1 has a density with respect to Lebesgue measure, as claimed. �

Proof of Lemma 7.2. Given Lemma C.2, for any ǫ > 0, we can find σ and n0 such that (96) is
valid for all n ≥ n0. Hence, we can let n→ ∞ and conclude that, for any ǫ > 0, we can find σ such that

P

(

| 1
σ
(Īq,1,1(t+ σ)− Īq,1,1(t))− π1,2(X̄(t))Z̄1,2(t)| > ǫ

)

< ǫ. (99)

However, given that (98) and (99) both hold, we conclude that we must almost surely have h(t) =
π1,2(X̄(t))Z̄1,2(t), which completes the proof. �

We now apply bounds to prove Lemma C.2. The comparisons in Lemma 8.4 and Corollary 8.1 are
important, but they are not directly adequate for our purpose. The sample-path stochastic order bound
in Corollary 8.1 enables us to prove Lemma C.2, and thus Theorem 4.1, for the special case of r1,2 = 1,
because then ζ = 0, where ζ is the gap in Corollary 8.1, but not more generally when the gap is positive.
However, we now show that an actual gap will only be present rarely, if we choose the interval length
small enough and n big enough. We use the construction in the proof of Lemma 8.4. exploiting the fact
that we have rate order, where the bounding rates can be made arbitrarily close to each other by choosing
the interval length suitably small. We again construct a sample path stochastic order, but for the time
averages of the time spent above 0. We prove the following lemma in §C.5. We use it to prove Lemma
C.2 in §C.4.
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Lemma C.4 Suppose that conditions of Lemma 8.4 hold. Then, for any ǫ > 0, there exists n0 and ξ
with 0 < ξ ≤ δ for δ in Lemma 8.4, such that, in addition to the conclusions of Lemma 8.4 and Corol-
lary 8.1, the states xm, xM ∈ A and random vectors Xn

m, X
n
M and associated frozen processes Dn

f (X
n
m)

and Dn
f (X

n
M ) can be chosen so that on Bn(ξ, η) (defined as in (60) with ξ instead of δ and necessarily

P (Bn(ξ, η)) → 1 as n→ ∞), first

Dn
f (X

n
m, 0) = Dn

f (X
n
M , 0) = Dn

1,2(0) (100)

and, second,

1

t

∫ t

0

1{Dn
f (Xn

m,s)>0} ds− ǫ ≤st
1

t

∫ t

0

1{Dn
1,2(s)>0} ds ≤st

1

t

∫ t

0

1{Dn
f (Xn

M ,s)>0} ds+ ǫ (101)

for n ≥ n0 and 0 ≤ t ≤ ξ; i.e., there is sample path stochastic order in D([0, ξ]) for n ≥ n0.

C.3 Continuity of the FTSP QBD. In the current proof of Lemma 7.2 and thus Theorem 4.1, we
will ultimately reduce everything down to the behavior of the FTSP D. First, we intend to analyze the
inhomogeneous queue-difference processes Dn

1,2(Γ
n) in (6) in terms of associated frozen processes Dn

f (Γ
n)

introduced in §A.1, obtained by freezing the transition rates at the transition rates in the initial state
Γn. In (74) above, we showed that the frozen-difference processes can be represented directly in terms
of the FTSP, by transforming the model parameters (λi,mj) and the fixed initial state γ and scaling
time. We will appropriately bound the queue-difference processes Dn(Γn) above and below by associated
frozen-queue difference processes, and then transform them into versions of the FTSP D. For the rest of
the proof of Theorem 4.1 in §7, we will exploit a continuity property possessed by this family of pure-jump
Markov processes, which exploits their representation as QBD processes using the construction in §6 of
[38]. We will be applying this continuity property to the FTSP D.

To set the stage, we review basic properties of the QBD process. We refer to §6 of [38] for important
details. From the transition rates defined in (13)-(16), we see that there are only 8 different transition
rates overall. The generatorQ (in (65) of [38]) is based on the four basic 2m×2mmatrices B, A0, A1, and
A2, involving the 8 transition rates (as shown in (66) of [38]). By Theorem 6.4.1 and Lemma 6.4.3 of [29],
when the QBD is positive recurrent, the FTSP steady-state probability vector has the matrix-geometric
form αn = α0R

n, where αn and α0 are 1 × 2m probability vectors and R is the 2m × 2m rate matrix,
which is the minimal nonnegative solutions to the quadratic matrix equation A0 +RA1 +R2A2 = 0, and
can be found efficiently by existing algorithms, as in [29]; See [38] for applications in our settings. If the
drift condition (20) holds, then the spectral radius of R is strictly less than 1 and the QBD is positive
recurrent (Corollary 6.2.4 of [29]). As a consequence, we have

∑∞
n=0R

n = (I − R)−1. Also, by Lemma
6.3.1 of [29], the boundary probability vector α0 is the unique solution to the system α0(B + RA2) = 0
and α1 = α0(I −R)−11 = 1. See §6.4 of [38] for explicit expressions for π1,2(γ) for γ ∈ A.

As in Lemma 8.6, we also use the return time to a fixed state, τ , and its mgf φτ (θ) with a critical
value θ∗ > 0 such that φτ (θ) < ∞ for θ < θ∗ and φτ (θ) = ∞ for θ > θ∗. We will be interested in the
cumulative process

C(t) ≡
∫ t

0

(f(D(s)) − E[f(D(∞))]) ds t ≥ 0, (102)

for the special function f(x) ≡ 1{x≥0}. Cumulative processes associated with regenerative processes
obey CLT’s and FCLT’s, depending upon assumptions about the basic cycle random variables τ and
∫ τ

0 f(D(s)) ds, where we assume for this definition that D(0) = s∗; see §VI.3 of [3] and [13]. From [8],
we have the following CLT with a Berry-Esseen bound on the rate of convergence (stated in continuous
time, unlike [8]): For any bounded measurable function g, there exists t0 such that

|E[g(C(t))/
√
t]− E[g(N(0, σ2))]| ≤ K√

t
for all t > t0, (103)

where

σ2 ≡ E

[

(∫ τ

0

f(D(s))− E[f(D(∞))] ds

)2
]

, (104)

again assuming for this definition that D(0) = s∗. The constant K depends on the function g (as well as
the function f in (102)) and the third absolute moments of the basic cycle variables defined above, plus
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the first moments of the corresponding cycle variables in the initial cycle if the process does not start in
the chosen regenerative state.

There is significant simplification in our case, because the function f in (102) is an indicator function.
Hence, we have the simple domination:

∫ τ

0

|f(D(s)| ds =
∫ τ

0

f(D(s)) ds ≤ τ w.p.1 (105)

As a consequence, boundedness of absolute moments of both cycle variables reduces to the moments of
the return times themselves, which are controlled by the mgf.

We will exploit the following continuity result for QBD’s, which parallels previous continuity results
for Markov processes, e.g., [23, 44].

Lemma C.5 (continuity of QBD’s) Consider a sequence of irreducible, positive recurrent QBD’s having
the structure of the fundamental QBD associated with the FTSP in §3.2 and §6 in [38] with generator
matrices {Qn : n ≥ 1} of the same form. If Qn → Q as n→ ∞ (which is determined by the convergence
of the 8 parameters), where the positive-recurrence drift condition (20) holds for Q, then there exists n0

such that the positive-recurrence drift condition (20) holds for Qn for n ≥ n0. For n ≥ n0, the quantities
(R,α0, α, φτ , θ

∗, ψN , z
∗, σ2,K) indexed by n are well defined for Qn, where σ

2 and K are given in (103)
and (104), and converge as n→ ∞ to the corresponding quantities associated with the QBD with generator
matrix Q.

Proof. First, continuity of R, α0 and α follows from the stronger differentiability in an open
neighborhood of any γ ∈ A, which was shown to hold in the proof of Theorem 5.1 in [38], building on
Theorem 2.3 in [17]. The continuity of σ2 follows from the explicit representation in (104) above (which
corresponds to the solution of Poisson’s equation). We use the QBD structure to show that the basic cycle
variables τ and

∫ τ

0
f(D(s)) ds are continuous function of Q, in the sense of convergence in distributions

(or convergence of mgf’s and gf’s) and then for convergence of all desired moments, exploiting (105) and
the mgf of τ to get the required uniform integrability. Finally, we get the continuity of K from [8] and
the continuity of the third absolute moments of the basic cycle variables, again exploiting the uniform
integrability. We will have convergence of the characteristic functions used in [8]. However, we do not
get an explicit expression for the constants K. �

We use the continuity of the steady-state distribution α in §C.4; specifically in (113) . In addition, we
use the following corollary to Lemma C.5 in (112) in §C.4. We use the notation in (74).

Corollary C.1 If (λ̄ni , m̄
n
j , γ̄n) → (λi,mj, γ) as n → ∞ for our FTSP QBD’s, where (20) holds for

(λi,mj , γ), then for all ǫ > 0 there exist t0 and n0 such that

P

(

|1
t

∫ t

0

1{D(λn
i ,m

n
j ,γn,s)>0} ds− P (D(λi,mj , γ,∞) > 0)| > ǫ

)

< ǫ

for all t ≥ t0 and n ≥ n0.

Proof. First apply Lemma C.5 for the steady-state probability vector α, to find n0 such that
|P (D(λni ,m

n
j , γn,∞) > 0)| − P (D(λi,mj, γ,∞) > 0)| < ǫ/2 for all n ≥ n0. By the triangle inequality,

henceforth it suffices to work with P (D(λni ,m
n
j , γn,∞) > 0) in place of P (D(λi,mj , γ,∞) > 0) in the

statement to be proved. By (103), for any M , there exists t0 such that for all t ≥ t0,

P

(

|1
t

∫ t

0

1{D(λn
i ,m

n
j ,γn,s)>0} ds− P (D(λni ,m

n
j , γn,∞) > 0)| > M√

t

)

< P (|N(0, σ2(λni ,m
n
j , γn))| > M) +

K(λni ,m
n
j , γn)√
t

.

(106)

We get (106) from (103) by letting f(x) = 1(0,∞)(x) in (102) and letting g(x) = 1{|x|>M}(x) in (103).

Next, choose M so that P (|N(0, σ2(λi,mj , γ))| > M) < ǫ/2. Then, invoking Lemma C.5, increase
n0 and t0 if necessary so that |σ2(λni ,m

n
j , γn)) − σ2(λi,mj , γ))| and |K(λni ,m

n
j , γn) − K(λi,mj , γ)| are

sufficiently small so that the right side of (106) is less than ǫ/2 for all n ≥ n0 and t ≥ t0. If necessary,
increase t0 and n0 so that M/

√
t0 < ǫ/2. With those choices, the objective is achieved. �
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C.4 Proof of Lemma C.2. In this subsection we give the first of two long proofs of previous
lemmas. We now prove Lemma C.2, which completes the alternate proof of Theorem 4.1 in the case
r1,2 = 1, because then Corollary 8.1 holds with gap ζ = 0. In that case, Corollary 8.1 directly implies
that Lemma C.4 holds with ǫ = 0. Lemma C.4, which is proved in the following subsection, is required
to treat more general r1,2.

First, let δ > 0, ǫ > 0 and t with 0 < t < δ be given, where the δ is chosen as in Lemma 8.4 (with
δ ≤ τ for τ in Theorem 6.3). Here we will be introducing a new interval [t, t+ σ], where 0 < σ ≡ σ(t) ≡
σ(t, ǫ, δ) < δ − t, so that [t, t + σ] ⊂ [0, δ]. Moreover, we will make σ < ξ for ξ existing via Lemma C.4.
Lemmas 8.4 and C.4 hold on the interval [t, t + ξ], where ξ ≡ ξ(t) satisfies 0 < ξ < δ − t. We will be
choosing σ with 0 < σ < ξ.

Before we started with regularity conditions at time 0 provided by Assumption 3.2. We now will exploit
tightness to get corresponding regularity conditions at time t here. In particular, before we started with
the convergence X̄n(0) ⇒ x(0) in R

3 where x(0) ∈ A based on Assumption 3.2. Now, instead, we
base the convergence X̄n(t) ⇒ X̄(t) at time t on the convergence established along the converging
subsequence (without introducing new subsequence notation). We apply Lemma C.1 to deduce that
P (X̄(t) ∈ A) = 1. Since the frozen processes to be constructed are Markov processes, we can construct the
processes after time t, given only the value of Xn(t), independently of what happens on [0, t]. Before, we
also started with Dn

1,2(0) ⇒ L, where L is a finite random variable. Instead, here we rely on the stochastic
boundedness (and thus tightness) of {Dn

1,2(t) : n ≥ 1} in R provided by Theorem 4.5. As a consequence,
the sequence {(Xn(t), Dn

1,2(t)) : n ≥ 1} is tight in R2. Thus there exists a convergent subsequence of
the latest subsequence we are considering. Hence, without introducing subsequence notation, we have
(X̄n(t), Dn

1,2(t)) ⇒ (X̄(t), L(t)) in R2 as n → ∞, where (X̄(t), L(t)) is a finite random vector with
P (X̄(t) ∈ A) = 1.

We use the same construction used previously in the proofs of Lemmas 8.4 and C.4, letting σ decrease
to achieve new requirements in addition to the conclusions deduced before. We now regard t as the time
origin for the frozen difference processes. Given Dn

1,2(t), let the two associated frozen difference processes

be {Dn
f (X

n
M , s) : s ≥ t} and {Dn

f (X
n,ξ
m , s) : s ≥ 0}. We directly let

Dn
f (X

n
M , t) = Dn

f (X
n
m, t) = Dn

f (X
n(u), t) = Dn

1,2(t), u ≥ t, (107)

so that we can invoke property (100) at time t in our application of Lemma C.4 here. As before, the
initial random states Xn

M and Xn
m and their fluid-scaled limits are chosen to achieve the goals before and

here.

We now successively decrease upper bounds on σ and increase lower bounds on n until we achieve
(96) in Lemma C.2. First, we can apply Lemma 8.4 to find an n1 such that P (Bn(δ, ǫ) > 1 − ǫ/6 for
n ≥ n1. We next apply Lemma C.4 to conclude that there exists σ1 such that the following variants of
the integral inequalities in (101) hold with probability at least 1− ǫ/6 as well:

1

σ

∫ t+σ

t

1{Dn
f
(Xn

m,s)>0} ds−
ǫ

6m2
≤ 1

σ

∫ t+σ

t

1{Dn
1,2(s)>0} ds ≤

1

σ

∫ t+σ

t

1{Dn
f
(Xn

M ,s)>0} ds+
ǫ

6m2
. (108)

for all σ ≤ σ1 (We divide by m2 because we will be multiplying by z1,2(t).)

We now present results only for Xn
M , with the understanding that corresponding results hold for Xn

m.
We represent the bounding frozen queue-difference processes directly in terms of the FTSP, using the
relation (74), with the notation introduced there:

{Dn
f (λ

n
i ,m

n
j , X

n
M , t+ s) : s ≥ 0} d

= {D(λni /n,m
n
j /n,X

n
M/n, t+ sn) : s ≥ 0}. (109)

Upon making a change of variables, the bounding integrals in (108) become

1

σ

∫ t+σ

t

1{Dn
f
(λn

i ,m
n
j ,X

n
M ,s)>0} ds

d
=

1

nσ

∫ t+nσ

t

1{D(λn
i /n,m

n
j /n,X

n,σ
m /n,s)>0} ds. (110)

For each integer k, we can apply Lemma C.5 to obtain the iterated limits

lim
n→∞

lim
s→∞

P (D(λni /n,m
n
j /n,X

n
M/n, s) = k) = lim

s→∞
lim
n→∞

P (D(λni /n,m
n
j /n,X

n
M/n, s) = k), (111)

where the limit is P (D(xM ,∞) = k) ≡ P (D(λi,mj , xM ,∞) = k). In particular, the limit for the model
parameters first implies convergence of the generators. The convergence of the generators then implies
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convergence of the processes. Finally Lemma C.5 implies convergence of the associated steady-state
distributions.

By Corollary C.1, we also have the associated double limit for the averages over intervals of length
O(n) as n→ ∞. As n→ ∞,

1

nσ

∫ t+nσ

t

1{D(λn
i /n,m

n
j /n,X

n
M/n,s)>0} ds ⇒ P (D(λi,mj , xM ,∞) > 0) ≡ π1,2(xM ). (112)

Invoking Lemma C.5, choose σ2 less than or equal to the previous value σ1 such that

|π1,2(xm)− π1,2(X̄(t))| ≤ ǫ

6m2
for all σ ≤ σ2. (113)

For that σ2, applying (112), choose n2 ≥ n1 such that for all n ≥ n2,

P

(

| 1

nσ2

∫ t+nσ2

t

1{D(λn
i /n,m

n
j /n,X

n
M/n,s)>0} ds− π1,2(xM )| > ǫ

6m2

)

<
ǫ

6
. (114)

We now use the convergence of X̄n along the subsequence over [0, t] together with the tightness of the
sequence of processes {X̄n : n ≥ 1} to control Z̄n

1,2 in an interval after time t. In particular, there exists
σ3 ≤ σ2 and n3 ≥ n2 such that

P ( sup
u:t≤u≤t+σ3

{|X̄n(u)− X̄(t)|} > ǫ/6) < ǫ/6 for all n ≥ n3. (115)

For the current proof, we will use the consequence

P ( sup
u:t≤u≤t+σ3

{|Z̄n
1,2(u)− Z̄1,2(t)|} > ǫ/6) < ǫ/6 for all n ≥ n3. (116)

We let the final value of σ be σ3. We now show the consequences of the selections above. We will directly
consider only the upper bound; the reasoning for the lower bound is essentially the same. Without loss of
generality, we take ǫ ≤ 1∧m2. From above, we have the following relations (explained afterwards) holding
with probability at least 1− ǫ (counting ǫ/6 once each to achieve ‖xM − X̄(t)‖ ≤ ǫ/6, ‖xm− X̄(t)‖ ≤ ǫ/6,
(108), (116) and twice for (114)):

(a)

∫ t+σ

t

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds ≤

(

Z̄1,2(t) +
ǫ

6

)

∫ t+σ

t

1{Dn
1,2(s)>0} ds

(b) ≤
(

Z̄1,2(t) +
ǫ

6

)

(∫ t+σ

t

1{Dn
f
(λn

i ,m
n
j ,X

n
M

,s)>0} ds+
ǫσ

6m2

)

(c)
d
=
(

Z̄1,2(t) +
ǫ

6

)

(∫ σ

0

1{D(λn
i /n,m

n
j /n,X

n
M

/n,t+sn)>0} ds+
ǫσ

6m2

)

(d)
d
=
(

Z̄1,2(t) +
ǫ

6

)

σ

(

1

nσ

∫ nσ

0

1{D(λn
i /n,m

n
j /n,X

n
M

/n,t+s)>0} ds+
ǫ

6m2

)

(e) ≤
(

Z̄1,2(t) +
ǫ

6

)

σ

(

π1,2(xM ) +
2ǫ

6m2

)

(f) ≤
(

Z̄1,2(t) +
ǫ

6

)

σ

(

π1,2(X̄(t)) +
3ǫ

6m2

)

(g) ≤ Z̄1,2(t)π1,2(X̄(t))σ +
π1,2(X̄(t))

6
ǫσ +

1

2
ǫσ +

σǫ2

12m2

(h) ≤ Z̄1,2(t)π1,2(X̄(t))σ +
3

4
ǫσ

≤ (Z̄1,2(t)π1,2(X̄(t)) + ǫ)σ for all n ≥ n0 ≡ n3.

(117)

We now explain the steps in (117): First, for (a) we replace Z̄n
1,2(s) by Z̄1,2(t) for t ≤ s ≤ t + ξ by

applying (116). For (b), we apply Lemma C.4. For (c), we use the alternative representation in terms of
the FTSP in (109). For (d), we use the change of variables in (110). For (e), we use (114), exploiting the
convergence in (112). For (f), we use (113). Step (g) is simple algebra, exploiting Z̄1,2(t) ≤ m2. Step (h)
is more algebra, exploiting π1,2(X̄(t)) ≤ 1, and ǫ ≤ 1∧m2. That completes the proof of the lemma. �
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C.5 Proof of Lemma C.4. We will directly show how to carry out the construction of the sample
path order for stochastic processes having the same distributions as the terms in (101). We will show that
the interval [0, ξ] can be divided into a large number (O(n)) of alternating subintervals, each of length
O(1/n), such that full sample path order holds on one subinterval, and then the processes are unrelated
on the next subinterval. We will then show, for an appropriate choice of ξ, that these intervals can be
chosen so that the first intervals where order holds are much longer than the second intervals where the
processes are unrelated. Hence we will deduce for this construction that the inequalities in (101) holds
w.p.1 for all n sufficiently large. We will specify the steps in the construction and explain why they
achieve their goal, while minimizing the introduction of new notation. We highlight twelve key steps in
the argument.

An integer state space. We exploit Assumption 3.3 to have r1,2 be rational, and then use the integer
state space associated with the QBD representation in §6 of [38]. However, we do not directly exploit the
QBD structure; instead we directly work with the CTMC’s with transitions ±j and ±k, where j and k
are positive integers. We will reduce the analysis to consideration of homogeneous CTMC’s.

Exploiting Lemma 8.4, but reducing the length of the interval. We construct the states xm, xM ∈ A

and random vectors Xn
m, X

n
M and associated frozen processesDn

f (X
n
m) and Dn

f (X
n
M ) exactly as in Lemma

8.4, but we adjust the specific values to make them closer together at time 0 as needed by choosing ξ to
be suitably smaller than the δ needed in Lemma 8.4. It is significant that here ξ can be arbitrarily small;
we only require that ξ > 0.

Initializing at time 0. By Assumption 3.2, we have X̄n ⇒ x(0) ∈ A ⊂ R3 and Dn
1,2(0) ⇒ L ∈ R.

Since x(0) is deterministic, we immediately have the joint convergence (X̄n, Dn
1,2(0)) ⇒ (x(0), L) ∈

R4; apply Theorem 11.4.5 of [48]. We then apply the Skorohod representation theorem to replace the
convergence in distribution with convergence w.p.1., without changing the notation. Hence, we can start
with (X̄n, Dn

1,2(0)) → (x(0), L) ∈ R4 w.p.1. With that framework, we condition on Dn
1,2(0). We then

initialize the processes Dn
f (X

n
m, 0) and Dn

f (X
n
M , 0) to satisfy Dn

f (X
n
m, 0) = Dn

f (X
n
M , 0) = Dn

1,2(0), as in
(100).

Coupling over an initial random interval. Given identical initial values, we can apply the rate order
in Lemma 8.4 to construct versions of the processes that will be ordered w.p.1 over an initial interval
of random positive length, just as in Corollary 8.1. Let νn be the first time that the sample path order
is violated. The rate order implies that νn > 0 w.p.1 for each n ≥ 1. The coupling is performed over
the interval [0, νn]. At random time νn, we must have all three processes in the boundary set of states
{j : −β + 1 ≤ j ≤ β}, where β ≡ j ∨ k. That is so, because violation of order only need occur when,
just prior to the order violation, we have −β < Dn

f (X
n
m) ≤ 0 < 1 ≤ Dn

f (X
n
M ) < β, where the rates are

no longer ordered properly, because the processes are in different regions. At time νn, either the upper
process jumps down below the lower process or the lower process jumps up over the upper process.

A new construction using independent versions when order is first violated. At time νn, the order is
first violated and would remain violated over an interval thereafter. However, at this time νn, we alter
the construction. At this random time νn we temporarily abandon the coupling based on rate order.
Instead, going forward from time νn, we construct independent versions of the three processes being
considered. More precisely, the three processes are conditionally independent, given their initial values
at time νn. The idea is to let them evolve in this independent manner until the three processes reach
a state in which the desired sample path ordering does again hold. We do this in a simple controlled
manner. We wait until, simultaneously, the upper bound process Dn

f (X
n
M , νn+ t) exceeds a suitably high

threshold, the lower bound process Dn
f (X

n
m, νn + t) falls below a suitably low threshold, and the interior

processes Dn
1,2(νn + t) is in a middle region. At such a random (stopping) time, the three processes will

necessarily be ordered in the desired way. After that time, we can use the coupling again.

Avoiding working directly with Dn
1,2. However, since Dn

1,2(νn + t) is an inhomogeneous CTMC, and
thus difficult to work with, we avoid working with it directly. Instead, we simultaneously construct
new upper and lower bound frozen processes, D̃n

f (X
n
M ) and D̃n

f (X
n
m) starting at time νn, coupled with

{Dn
1,2(νn + t) : t ≥ 0}, initialized by stipulating that D̃n

f (X
n
M , νn) = D̃n

f (X
n
m, νn) = Dn

1,2(νn). These
new processes are coupled with {Dn

1,2(νn + t) : t ≥ 0}, but conditionally independent of the independent
versions of the other two processes {Dn

f (X
n
M , νn+ t) : t ≥ 0} and {Dn

f (X
n
m, νn+ t) : t ≥ 0}. We again can

apply Lemma 8.4 to obtain rate order, but again we cannot have full sample path order, because of the
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gap. Nevertheless, we can now apply Corollary 8.1 to conclude that we have the sample path stochastic
order

D̃n
f (X

n
m, νn + t)− β ≤st D

n
1,2(νn + t) ≤st D̃

n
f (X

n
M , νn + t) + β in D([νn, δ]).

We thus can do a sample path construction to achieve

D̃n
f (X

n
m, νn + t)− β ≤ Dn

1,2(νn + t) ≤ D̃n
f (X

n
m, νn + t) + β for 0 ≤ t ≤ δ − νn w.p.1. (118)

Stopping times for desired order to be achieved. We now define stopping times for the order to be
achieved. Let

φn ≡ inf {t > 0 : Dn
f (X

n
M , νn + t) > 2β, Dn

f (X
n
m, νn + t) < −2β, −β < D̃n

f (X
n
M , νn + t) < β}, (119)

with the three processes Dn
f (X

n
M ), Dn

f (X
n
m) and D̃n

f (X
n
M ) in (119) being mutually conditionally indepen-

dent, given that all three are initialized at time νn with the final values there obtained from the evolution
of the coupled processes up until time νn. (We have conditional independence given the vector of initial
values at time νn.) We can combine (119) with (118) to conclude that we have the appropriate order at
time νn + φn, in particular,

Dn
f (X

n
m, νn + φn) ≤ Dn

1,2(νn + φn) ≤ Dn
f (X

n
M , νn + φn) w.p.1.

We not only obtain the desired order at time νn + φn, but the stopping time φn depends on the three
processes {Dn

f (X
n
M , νn+ t) : t ≥ 0}, {Dn

f (X
n
m, νn+ t) : t ≥ 0} and {D̃n

f (X
n
M , νn+ t) : t ≥ 0}, which are are

independent homogeneous CTMC’s conditional on their random state vectors Xn
M and Xn

m, respectively.
Thus the stopping time is with respect to the three-dimensional vector-valued CTMC (conditional on the
random state vectors Xn

M and Xn
m).

Alternating Cycles using coupled and independent versions. Going forward after the time νn + φn for
φn in (119), we again construct coupled processes just as we did at time 0. However, now we initialize
by having the specified states coincide at time νn + φn; i.e., D

n
f (X

n
M , νn + φn) = Dn

f (X
n
m, νn + φn) =

Dn
1,2(νn + φn). Hence, we can repeat the coupling done over the initial interval [0, νn]. In particular, we

can apply the ordering of the initial states and the rate ordering to construct new coupled versions after
time νn + φn. We can thus repeat the construction already done over the time interval [0, νn] after time
νn + φn. The coupled construction beginning at time νn + φn will end at the first subsequent time that
the order is violated. At this new random time (paralleling νn), we must have all three processes in the
boundary set of states {j : −β+ 1 ≤ j ≤ β}. In this way, we produce a sequence of alternating intervals,
where we perform coupling on one interval and then create independent versions on the next interval.

Applying a FWLLN after scaling time by n. Since the transition rates of Dn
1,2 and all the other

processes are O(n), there necessarily will be order O(n) of these cycles in any interval [0, ξ]. However, we
scale time by n, replacing t by nt, just as in (74), (109) and (110) to represent all processes as FTSP’s
with random parameters depending on n, converging to finite deterministic limits. Once, we scale time
by n in that way, the scaled transition rates converge to finite limits as n → ∞, but the relevant time
interval becomes [0, nξ] instead of [0, ξ], as in (110). We can thus apply a FWLLN to complete the proof.

Regenerative Structure as a basis for the FWLLN. As a formal basis for the FWLLN, we can apply
regenerative structure associated with successive epochs of order violation starting from coupling, but a
regenerative cycle must contain more than two successive intervals; we do not have an alternating renewal
process. Such order-violation epochs necessarily occur in the boundary region {j : −β + 1 ≤ j ≤ β},
where β ≡ j ∨ k. Hence, there are at most (2β)3 vectors of values for the three processes. Moreover,
there necessarily will be one of these vectors visited infinitely often. Successive visits to that particular
state vector after coupling thus serve as regeneration points for the entire process. That is, there is an
embedded delayed renewal process. We next ensure that the times between successive regeneration times
have finite mean values, with the correct asymptotic properties as n→ ∞. That justifies the FWLLN. In
particular, we can apply a FWLLN for cumulative processes, as in [13]. For the particular QBD processes
being considered, there is continuity of the asymptotic parameters, as indicated in Lemma C.5.

Finite mean time between regenerations of order O(1/n). From basic CTMC theory, it follows that
the first passage times φn in (119) have finite mean values which are of order O(1/n). In particular,
E[φn] < cn,1 <∞, where ncn,1 → c1 > 0. It is more difficult to treat the mean time over which the order
is valid during a single coupling, i.e., the initial time νn and the subsequent random times that which
the order is valid during the coupling. However, we can truncate the variables at finite constant times in
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order to ensure that the FWLLN reasoning can be applied; e.g., we replace νn by ν̃n ≡ νn ∧ cn,2 < ∞,
where ncn,2 → c2 > 0. We can later choose c2 large enough so that the inequalities in (101) hold for
the specified ǫ. Finally, the total number of these cycles until the designated initial state vector appears
again is a random variable. Since the successive vector of initial state vectors visited on successive cycles
is a finite-state discrete-time Markov chain, the random number of cycles within a regeneration interval
is a random variable with finite mean, say cn,3, with cn,3 → c3 > 0 as n → ∞. As a consequence, the
mean time between successive regenerations is cn,4 <∞, where ncn,4 → c4 > 0 as n→ ∞.

The proportion of time that order holds. Finally, it is important that we can control the proportion
of time that order holds in any interval [0, t], 0 < t ≤ ξ, as stated in (101), for an appropriate choice
of ξ. As a basis for that control, we exploit the fact that the distribution of φn, the length of the first
interval during which order violation is allowed, and the random lengths of all subsequent intervals on
which the desired sample path order is violated, depend on the states of the three processes at time νn,
i.e., upon Dn

f (X
n
m, νn), D

n
f (X

n
M , νn) and D

n
1,2(νn). However, because the violation necessarily occurs in

the boundary region {j : −β + 1 ≤ j ≤ β}, where β ≡ j ∨ k, there are at most 2β possible values for
each process, and thus at most (2β)3 vectors of values for the four processes. Since this number is finite,
the violation interval lengths (like φn) can be stochastically bounded above, independent of the specific
values at the violation point. Moreover, this can be done essentially independently of ξ. On the other
hand, the length of the intervals on which the coupling construction remains valid necessarily increases
as we decrease ξ and appropriately increase c2 and cn,2 in the paragraph above. Thus, for any ǫ > 0, we
can achieve the claimed ordering in (101) for all n ≥ n0 by an appropriate choice of ξ, c2 and n0. �

Appendix D. The Bounding QBD in Lemma B.3. We now describe how to present the process
Dn

∗ in Step One of the proof of Lemma B.3 as a QBD for each n. We assume that r2,1 = j/k for j, k ∈ Z+,
and let m ≡ j ∨ k. We define the process D̃n

∗ ≡ kQn
2,∗ − jQn

1,∗. Thus, D̃n
∗ is Dn

∗ with an altered state
space. In particular, each process is positive recurrent if and only if the other one is.

We divide the state space Z+ ≡ {0, 1, 2, . . .} into level of size m: Denoting level i by L(i), we have

L(0) = (0, 1, . . . ,m− 1), L(1) = (m,m+ 1, . . . , 2m− 1) etc.

The states in L(0) are called the boundary states. Then the generator matrix Q(n) of the process Dn
∗ has

the QBD form

Q(n) ≡

















B(n) A
(n)
0 0 0 . . .

A
(n)
2 A

(n)
1 A

(n)
0 0 . . .

0 A
(n)
2 A

(n)
1 A

(n)
0 . . .

0 0 A
(n)
2 A

(n)
1 . . .

...
...

...
...

















.

(All matrices are functions of Xn
∗ . However, to simplify notation, we drop the argumentXn

∗ , and similarly
in the example below.)

For example, if j = 2 and k = 3, then

B(n) =





−σn + µ̂n
Σ 0 λ̂n2

µ̂n
Σ −σn 0
µ̂n
Σ 0 −σn



 , A
(n)
0 =





λ̂n3 0 0

λ̂n2 λ̂n3 0

0 λ̂n2 λ̂n3



 ,

A
(n)
1 =





−σn 0 λ̂n2
0 −σn 0
µ̂n
2 0 −σn



 , A
(n)
2 =





µ̂n
3 µ̂n

2 0
0 µ̂n

3 µ̂n
2

0 0 µ̂n
2



 ,

where µ̂n
Σ ≡ µ̂n

3 + µ̂n
2 and σn ≡ µ̂n

Σ + λ̂n2 + λ̂n3 .

Let A(n) ≡ A
(n)
0 +A

(n)
1 +A

(n)
2 . Then A(n) is an irreducible CTMC infinitesimal generator matrix. It is

easy to see that its unique stationary probability vector, ν(n), is the uniform probability vector, attaching
probability 1/m to each of the m states. Then by Theorem 7.2.3 in [29], the QBD is positive recurrent

if and only if νA
(n)
0 1 < νA

(n)
2 1, where 1 is the vector of all 1’s. This translates to the stability condition

given in the proof of Lemma B.3.
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Appendix E. Positivity of Fluid Limit. In this appendix we explain why Assumption 3.2 about
the initial conditions is reasonable. First, the assumed convergence Dn

1,2(0) ⇒ L if x(0) ∈ A is natural,
since that convergence holds whenever x(t) ∈ A, provided that t is not a hitting time of the set A from
S−A, by virtue of Theorem 4.6 and Remark 4.2. We can take time 0 to be a time shortly after a hitting
time of A.

We now elaborate on another part of Assumption 3.2, namely the assumed initial values for each n.
Observe that, given the convergence X̄n ⇒ x established in Theorem 4.1, we necessarily have Zn

1,2(t) =
OP (n) (and thus Zn

2,1(t) = 0) and Qn
i (t) = OP (n), i = 1, 2, if z1,2(t) > 0 and qi(t) > 0, i = 1, 2, where

x ≡ (q1, q2, z1,2) is the fluid limit. However, in general we may not have such strict positivity in the
components of the fluid limit at time 0. (Recall that Assumption 3.2 allows Qn

i (0) = o(n), i = 1, 2, and
Zn
1,2(0) is allowed to be 0.) Nevertheless, we now show that we do necessarily have strict positivity of the

components of x(t) for all t > 0 small enough, even if that property does not hold at time 0.

For a vector y ∈ R3, we write y > 0 if the (strict) inequality holds componentwise.

Proposition E.1 The fluid limit x satisfies x(t) > 0 for all t > 0 sufficiently small.

Proof. The statement follows immediately for the case x(0) > 0 because of the continuity of x. We
thus assume that at least one component of x(0) is not strictly positive. If z1,2(0) = 0, then it was shown
in the proof of Theorem 6.4 that z1,2(t) > 0 for all t > 0. Now note that, by the assumption on the initial
condition x(0) in Assumption 3.2, q1(0) ≥ rq2(0), so that if q1(0) = 0, then we must have q2(0) = 0 as
well. We prove the result for the three possible regions of x(0) in Assumption 3.2, namely S

+, A+ and
A, separately.

(i) x(0) ∈ S
+. In this case, q1(0) > 0 and π1,2(x(0)) = 1, so we need to consider the case q2(0) = 0.

Plugging these values of π1,2(x(0)) and q2(0) in the equation for q̇2 in (24), we see that q̇2(0) = λ2 > 0,
so that q2 is strictly increasing at time 0, and the result follows.

(ii) x(0) ∈ A
+. It is shown in Lemma 7.2 in [38] that if x(0) ∈ A

+, then for all t > 0 sufficiently
small, x(t) ∈ S− S

− −A
−, i.e., q1(t) ≥ rq2(t) for all t ∈ (0, ǫ1], for some ǫ1 > 0. As in the previous case,

π1,2(x(0)) = 1 and, assuming q2(0) = 0, we have that q2 is strictly increasing at time 0, so that q2(t) > 0
for all t satisfying 0 < t ≤ ǫ2, for some ǫ2 > 0. Then, with ε ≡ ǫ1 ∧ ǫ2, q1(t) > 0 for all t ∈ (0, ε].

(iii) x(0) ∈ A. By Theorem 5.2 in [38], the fluid limit x is right differentiable at 0 and is differentiable
on an open interval (0, ε) for some ε > 0. For i = 1, 2, if qi(t) = 0, then q̇i(t) cannot be negative by
Theorem 5.1 in [38]. Hence, since we are considering the case qi(0) = 0, we have two possibilities: Either
q̇i(0) = 0 or q̇i(0) > 0.

Our proof builds on the fact that ẋ(t) is itself a continuous function of t. That is so because the right-
hand side of each component of ẋ(t) in (24) includes the system’s parameters, the Lipschitz-continuous
fluid limit x(t), and the function π1,2(x(t)). However, π1,2(x) is locally Lipschitz continuous as a function
of x by Theorem 7.1 in [38], and in particular, π1,2(x(t)) is a continuous function of x(t), which is itself a
continuous function of t. Hence, π1,2(x(t)) is continuous in t, and so is q̇i(t), i = 1, 2. As a consequence, if
q̇i(0) > 0, then q̇i(t) > 0 for all t in some neighborhood of 0, so that qi is strictly increasing on a positive
interval, i = 1, 2.

Hence it remains to consider the case in which q̇i(0) = 0 for i = 1 or i = 2. Assuming that to be the
case, we will show that q̇j(0) = 0 for j 6= i, j = 1, 2. Indeed, if q̇j(0) > 0, then qj must be increasing
at a neighborhood of time 0, so that x(t) /∈ A for all t > 0 small enough, contradicting the fact that A

is an open set. Hence, the proof of the proposition for the case x(0) ∈ A will follow if we assume that
qi(0) = q̇i(0) = 0 for both i = 1 and i = 2, and show that we reach a contradiction. We consider two
subcases, depending on whether µ1,2 > µ2,2 or µ1,2 ≤ µ2,2.

If µ1,2 > µ2,2, then define the function V (x(t)) = q1(t)+ q2(t). It is shown in the proof of Theorem 5.1
in [38] that V is strictly increasing whenever x(t) ∈ A, so that at least one queue is increasing at time 0.
Once again, this means that the second queue must also be strictly increasing, for otherwise x will leave
A immediately after time 0, so the statement is proved.
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If µ1,2 ≤ µ2,2, then define the function V (x(t)) = (1+ ǫ)q1(t)+ q2(t)+ ǫz1,2(t), for arbitrary ǫ > 0. We
again use the proof of Theorem 5.1 in [38] to conclude that V is strictly increasing at time 0. However,
in that case, even though q̇i(0) = 0, i = 1, 2, V can be increasing because ż1,2(0) > 0. Assume that is the
case, and consider the ODE (24). (Recall that qi(0) = q̇i(0) = 0, i = 1 and 2.)

It follows from the assumption ż1,2(0) > 0 and the equation for ż1,2 in (24), that

π1,2(x(0))(µ1,2z1,2(0) + µ2,2z2,2(0)) > µ1,2z1,2. (120)

Then, by the assumption q̇1(0) = q1(0) = 0, we have

0 = q̇1(0) = λ1 − µ1,1m1 − π1,2(x(0))(µ1,2z1,2(0) + µ2,2z2,2(0)) < λ1 − µ1,1m1 − µ1,2z1,2(0),

where the inequality follows from (120). Hence, µ1,2z1,2(0) > λ1 − µ1,1m1, which further implies that

z1,2(0) > sa2 , (121)

for sa2 in (8). From the equation for q̇2(0) in (24) (recalling that q2(0) = 0 by assumption), we get

q̇2(0) = λ2 − µ1,2z1,2(0)− µ2,2z2,2(0) + π1,2(x(0))(µ1,2z1,2(0) + µ2,2z2,2(0)) > λ2 − µ2,2z2,2(0),

where again, the inequality follows from (120). Now, since z2,2(0) = m2 − z1,2(0), we have

q̇2(0) > λ2 − µ2,2m2 + µ2,2z1,2(0) > λ2 − µ2,2m2 + µ2,2s
a
2 ≥ 0,

where the second inequality follows from (121), and the third from Assumption 3.1. This contradicts the
assumption that q̇2(0) = q̇1(0) = 0. Hence the proof is complete. �

Appendix F. List of Acronyms In this appendix we list all the acronyms used in the paper, and
refer to the sections where they are introduced and discussed.

AP – averaging principle (§1 and [37, 38])

CTMC – continuous time Markov chain (§1)
FCLT – functional central limit theorem (§1)
FQR-T – fixed queue ratio control with thresholds (§1 and §2.2)
FSLLN – functional strong law of large numbers (§6)
FTSP – fast-time-scale process (§1 and §3.2)
FWLLN – functional weak law of large numbers (§1 and §4.1)
ODE – ordinary differential equation (§1 and §3.3)
QBD – quasi birth and death process (§3.3 and [38])

QR-T – not fixed queue ratio control with thresholds (§1 and [36])

SSC – state-space collapse (§1 and §6)
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