

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full length article

In-situ DRIFTS study of two-step CO_2 capture and catalytic methanation over Ru,"Na₂O"/Al₂O₃ Dual Functional Material^{*}

Laura Proaño^a, Edisson Tello^a, Martha A. Arellano-Trevino^b, Shuoxun Wang^b, Robert J. Farrauto^b, Martha Cobo^{a,*}

^a Energy, Materials and Environment Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia

^b Earth and Environmental Engineering, Columbia University in the City of New York, United States of America

ARTICLE INFO

Keywords: Alkaline adsorbents CO₂ capture Catalytic CO₂ conversion to CH₄ Dual Function Materials In-situ DRIFTS

ABSTRACT

Dual Function Materials (DFM) are composed of an alkali or alkaline earth CO_2 adsorbent phase and a supported catalyst. It selectively captures CO_2 which is then methanated using renewable H_2 . Both the capture and methanation steps are conducted at about 320 °C so no temperature swings are required allowing for continuous operation using two parallel reactors operating in tandem. This process approaches carbon neutral power generation by recycling the CH_4 produced for re-combustion. This two-step process was studied by *in-situ* DRIFTS at 320 °C over 5%Ru-6.1%"Na₂O"/Al₂O₃ pFM and compared with the 5%Ru/Al₂O₃ traditional methanation catalyst. In the DFM the Na₂CO₃/Al₂O₃ pre-curser is reduced to "Na₂O" catalyzed by Ru metal. For both Ru/Al₂O₃ and DFM CO₂ adsorbs on Ru active sites and Al₂O₃ OH groups during the capture step. For DFM large amounts of CO₂ absorb on the Al-O⁻-Na⁺ species forming bidentate carbonates. During the H₂ reduction step (*i.e.*, methanation step), adsorbed bicarbonates and bidentate carbonates spill over onto the Ru-support interface, where methanation takes place through sequential hydrogenation with formates as reaction intermediaries. Although CO₂ was mainly adsorbed on the alkaline support methanation occurs over Ru, supporting the hypothesis that the reaction occurs at the Ru-support interface. Therefore, the multiple adsorption sites over the DFM explain the high CO₂ adsorption capacity by the formation of bidentate carbonates that spill over onto the Ru-support interface, during the two-step methanation process.

1. Introduction

World energy consumption has been increasing for the last decades; in 2015 energy consumption was about 1.17×10^{23} kWh and it is expected to be 2.15×10^{23} kWh by 2040 [1]. World energy demand is satisfied, mainly, from combustion of fossil fuels like coal, petroleum and natural gas. Among those, natural gas provides 24% in world energy production and has the fastest growing trend of about 1.4% per year [1]. Despite the least source of CO₂ emissions (\cong 181 kg CO₂/Wh), natural gas has a significant impact on greenhouse gas emissions, representing the 22% of CO₂ world emissions [2].

Fossil fuel will be continued to be used in the near future and thus CO_2 must be abated. To mitigate CO_2 emissions, different renewable energy sources have been studied and implemented around the world, primarily wind and solar energy [3]. However, these energy sources fluctuate and must be balanced for electric grid stability [3,4].

Consequently, large energy storage capacity is required; for which Power to Gas alternatives has been considered [3,5,6], especially Power to Methane (methanation or synthetic natural gas). Using renewable H_2 is the only source that makes methanation possible. Methanation processes have an advantage over the standard liquid amine capture, separation, transportation and sequestration because the process is performed at the site of CO₂ generation with no transportation of CO₂ to another site. Also, it utilizes the temperature of the flue gas, so no energy needs to be added [6,7]. As an example of its viability, Audi and Etogas inaugurated in 2013 the first methanation plant (Audi e-gas plant) in Wertle, Germany with a 6300 kW power input capacity, using renewable H_2 generated form water electrolysis fed by wind power, showing the potential and viability of implementing this technology for CO₂ capture and utilization.

Dual Function Materials (DFM) are novel materials for CO_2 capture from a flue gas followed by a methanation processes. The material is

https://doi.org/10.1016/j.apsusc.2019.01.281

Received 16 October 2018; Received in revised form 28 January 2019; Accepted 29 January 2019 Available online 31 January 2019 0169-4332/ © 2019 Elsevier B.V. All rights reserved.

^{*} Declarations of interest: none.

^{*} Corresponding author.

E-mail address: martha.cobo@unisabana.edu.co (M. Cobo).

composed of an alkali or alkaline earth CO_2 adsorbent phase and a catalyst supported on a high surface area carrier. DFM allows, at the same time, both residual renewable energy storage and CO_2 industrial emissions capture and utilization, by a two-step process. First, H_2 production from water electrolysis, using residual renewable energy and, second, its subsequent conversion to CH_4 by the methanation reaction (Eq. (1)) with CO_2 captured from industrial emission sources. Although H_2 could be used directly for energy storage, an infrastructure for CH_4 already exists and is well stablished [8] and the CO_2 emissions will continue to be a problem whenever fossil fuel is used for power generation. Recycling carbon *via* capture and methanation approaches carbon neutral power generation. This paper is designed to contrast the methanation process using Ru/Al_2O_3 with the newly developed DFM which includes an Al_2O_3 supported alkaline adsorbent as the primary site for CO_2 capture [7,9,10] in concert with Ru.

$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O \qquad \Delta H^\circ = -165 \text{ kJ/mol}$$
 (1)

While water electrolysis is a well-known process, methanation mechanisms related to active and stable catalysts, reactor design, process conditions and reaction mechanisms are still under investigation [5,8,11]. More detailed understanding can be used to develop rigorous kinetic models that could be employed into accurate methanation reactor design and methanation process simulation [11].

In-situ Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFTS) is widely used to characterize adsorption, desorption and intermediate formation over a catalyst surface to obtain qualitative information about the reaction mechanism. DRIFTS studies for Ni [12–16], Rh [17–20], Co [13,21] and Ru [22–29] methanation catalysts have been performed. Among these, Ru catalysts are the most studied due to its higher activity, selectivity and low deactivation rate. However, there is no agreement on CO₂ methanation mechanism over Ru catalysts and many authors have proposed different methanation mechanisms (Table 1). Dreyer et al. [23] proposed CO₂ dissociation as the initial step of methanation, then suggested that, either CO dissociates into C* and O* followed by hydrogenation to CH_x or it dissociates with the assistance of H* to form hydroxylmethylene (HCOH*) followed by O abstraction to form CH_x. Also, Eckle et al. [26] suggested CO₂ dissociation into CO and O, followed by the direct hydrogenation of CO to CH₄. Contrary, Garbariano et al. [27] and Marwood et al. [24] proposed a reaction mechanism that involves bicarbonates and formates as intermediates in the reaction (Table 1). According to Marwood et al. [24], first CO₂ adsorbs as bicarbonates on the support, then bicarbonate species react with H to form formate intermediates that rapidly spill over to the metal-support interface in order to methanation to occur.

The combination of CO₂ capture and subsequent methanation using Dual Functional Materials (DFM), has been developed to improve CO₂ capture and catalytic conversion to CH₄. Materials, including adsorbent phases of CaO [7,9,30,31], pre-reduced K₂CO₃ [9,31], pre-reduced Na₂CO₃ [9,10], MgO [9,31], Li₂CO₃, NaNO₃, KNO₃, CsNO₃ [32] and Kpromoted hydrotalcite [6] with an active phase of Ru [9,32] and Ni [6,31] supported on Al₂O₃ [9] and TiO₂ [32], have been developed. Duyar et al. [9] and Petala and Panagiotopoulou [32] reported activity enhancements of Ru when combined with CaO [9], pre-reduced Na₂CO₃ [10] and NaNO₃ [32]. Among these, sodium salts showed

Table 1

Proposed CO ₂	methanation	reaction	mechanisms
--------------------------	-------------	----------	------------

Reaction mechanism	Reference
$\rm CO_2 \rightarrow \rm CO^* - Ru + O^* - Ru$	[23]
$CO^* - Ru \rightarrow C^* + O^*$	
$C^* + H^* \rightarrow CH_x^*$ or $C^* + H^* \rightarrow HCOH^* \rightarrow CH_x^* + O^*$	
$\text{CO}_2 + (\text{OH})_{\text{s}} \rightarrow (\text{HCO}_3)_{\text{s}} + 2 \text{ H}_{\text{M}} \rightarrow (\text{HCOO})_{\text{I}} \rightarrow \text{CO}_{\text{M}} \rightarrow \text{CH}_4 + \text{H}_2\text{O}$	[24]
$CO_2 \rightarrow CO^* - Ru + O^* - Ru$	[26]
$CO^* - Ru + H^* \rightarrow CH_4^* + H_2O$	
$\rm CO_2 \rightarrow \rm HCO_3^- \rightarrow \rm HCOO \rightarrow \rm CH_4$	[27]

higher CO₂ uptake. Wang et al. [10] studied CO₂ adsorption capacity for different reduced Na₂CO₃ loadings on Al₂O₃ by TGA at 320 °C and reported the highest CO₂ adsorption capacity – about 0.11 mmol/g – and achieved 89.6% CO₂ conversion to CH₄ over the DFM. It has been reported that when Na₂CO₃ is deposited on Al₂O₃ it undergoes decomposition at T < 200 °C due to the Al-O⁻-Na⁺ reaction [33]. In our study, all RuOx,Na₂CO₃/Al₂O₃ were pre-reduced at 320 °C in 20% H₂/ N₂ to produce 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM. The pre-reduction of Na₂CO₃/Al₂O₃, in the presence of Ru metal, leads to the formation of the DFM surface which is speculated to be a mixture of surface aluminates and Na oxide species. The absence of a definitive Na ion structure leads us to designate "Na₂O" as the adsorbent.

Keturakis et al. [34] studied CO₂ adsorption and desorption over Na₂O/Al₂O₃ sorbent by *in-situ* DRIFTS. Their results reported the Na₂O decomposition to an ionic form when supported on Al₂O₃, allowing CO₂ adsorption over different Al₂O₃ and Na₂O sites; on Al₂O₃, CO₂ adsorption occurs by the interaction of CO₂ with OH groups. For Na₂O, CO₂ adsorption results in the formation of bidentate carbonates, with bands at about 1300 and 1600 cm⁻¹ and polydentate carbonates, evidenced by the appearance of bands between 1400 and 1580 cm⁻¹ [34]. In previous work, we studied DFM catalytic activity, stability, CO₂ adsorption capacity and methanation capacity [7,9,10,35,36]. However, there is little information of adsorption, desorption and intermediate species in the capture and methanation reactions over DFM and *in-situ* DRIFTS studies over 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM have not been performed.

This paper reports an *in-situ* DRIFTS study of CO_2 adsorption and methanation at 320 °C over the pre-reduced 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM. Results were compared to the traditional 5%Ru/Al₂O₃ catalyst. Formation of reaction intermediate species was evaluated, and possible reaction pathways discussed.

2. Experimental

2.1. Materials preparation

All powder materials were prepared via incipient wetness impregnation on high surface area y-Al2O3 (SBA-150, BASF, Iselin, NJ, USA) support using ruthenium(III) nitrosyl nitrate (Ru(NO)(NO₃)₃ (Ru 31.3% min, Alfa Aesar, Tewksbury, MA, USA) and for DFM an aqueous 20 wt% solution of Na₂CO₃ (Sigma-Aldrich, St. Louis, MO, USA). The ruthenium nitrate salt on Al₂O₃ was dried at 120 °C for 2 h and calcined in air at 250 °C for 2 h. All Na₂CO₃/Al₂O₃ materials were dried at 120 °C for 2 h and calcined at 400 °C in air as precursors to Na⁺AlO⁻ species sorbent material. For DFM synthesis, Ru was deposited onto the sorbent materials, dried at 120 °C for 2 h and calcined at 250 °C for 2 h in air. Higher temperatures must be avoided to prevent RuO₂ volatilization. Prior to CO₂ adsorption and methanation DRIFTS tests, materials were heated at a rate of 10 °C min⁻¹ (Harrick ATC/low voltage temperature control unit) to 320 $^\circ\text{C}$ under N_2 and pre-reduced in 20% H_2 to give 5% Ru-6.1%"Na₂O"/Al₂O₃ (from the 10%Na₂CO₃/Al₂O₃ precursor). It should be noted that we use the nomenclature of "Na₂O"/Al₂O₃, since during calcination and pre-reduction some surface aluminate species and residual Na are formed. Thus, the "Na₂O" adsorbent includes both, aluminates and residual Na in the DFM surface. The "Na2O" molar content in the material was calculated stoichiometrically from the 10% Na₂CO₃ decomposition during calcination and pre-reduction after its impregnation.

2.2. In-situ DRIFTS measurements

 CO_2 adsorption, desorption and methanation intermediates were evaluated by *in-situ* DRIFTS test in a Nicolet iS10 spectrum unit (Thermo Scientific, Waltham, MA, USA) equipped with a diffuse reflection attachment reaction cell DRK-3 Praying Mantis (Harrik, USA) in the range of 4000–1200 cm⁻¹ with an average of 64 scans per

Table 2

Summary of experimentally detected bands.

Species	Structure	v(OCO) cm ⁻¹	ν(OH) cm ⁻¹	v(CO-Ru) cm ⁻¹	v(O-Ru) cm ⁻¹	ν(C-H) cm ⁻¹
CO_2	0	3700	-	-	-	-
	C	3600				
Disculture to a	0	2345	0740			
Bicarbonates	C H	1650	3740	-	-	-
		1440	3640			
Formates	0	1520	_	-	_	-
	HO	1320				
	Al	2035				
Bidentate	0 1	1600	-	-	-	-
carbonates	\sim	1370				
Bridged carbonates		1620	-	-	-	-
	Or O I I Al Al			0000		
adsorption		-	-	2020	-	-
Linear O	0	-	-	-	1940	-
adsorption	Ru					
CH ₄	H	-	-	-	-	3020
	н Н Н					

spectrum and a resolution of 4 cm⁻¹. About 35 mg of each powder sample was loaded into the high temperature Harrick reaction cell equipped with ZnSe windows. Each spectrum was obtained every 5 min by subtracting the background collected for the corresponded material at 320 °C under N₂ atmosphere. A total flow of carrier and reactive gases was fixed in 120 ml min⁻¹ in all tests.

With the aim of identifying the different CO_2 adsorption sites and reaction intermediates experiments over 5%Ru/Al₂O₃ catalyst, the sorbent phase (6.1%"Na₂O"/Al₂O₃), and the DFM (5%Ru-6.1%"Na₂O"/ Al₂O₃) were carried out at 320 °C. After pre-reduction, a 15% CO₂/N₂ stream was fed into the reaction cell and held for 1 h (CO₂ capture step), followed by a reduction step with 20% H₂/N₂ for 1 h (methanation step); following the methodology reported by Duyar et al. [9]. All raw and processed Excel data can be downloaded from [dataset] [37].

3. Results and discussion

Two-step capture and methanation process was studied by DRIFTS over several materials by feeding a stream of 15% CO_2/N_2 for 1 h (i.e., CO_2 capture step) and followed by the reduction step with 20% H_2/N_2 for 1 h (i.e., methanation step). Table 2 presents a summary of the most experimentally observed bands during those tests. Additionally, a band at 2345 cm⁻¹ corresponding to CO_2 molecular gas phase was observed [34,38,39]. Results are presented and analyzed for different materials in the following sections. Additionally, published raw and processed data are available in [dataset] [37].

3.1. DRIFTS studies of the two-step methanation process over $5\% Ru/Al_2O_3$ catalyst

 CO_2 adsorption over 5%Ru/Al₂O₃ (Fig. 1a) shows bands at 3740, 3600, 1650 and 1440 cm⁻¹. Bands in the range between 3740 and 3600 cm⁻¹ have been assigned to different sources. Eckle et al. [26] and Abdel-Mageed et al. [22] assigned bands at 3740 and 3640 cm⁻¹ to OH vibration modes from bicarbonates. And Mageed et al. [22] and Garbarino et al. [27] assigned peaks at 3600 and 3700 cm⁻¹ to CO_2 overtones. Contrary, Baltrusaitis et al. [40] and Dreyer et al. [23]

Fig. 1. In-situ DRIFTS of CO₂ adsorption and H₂ reduction over reduced (a) 5% Ru/Al₂O₃ and (b) Al₂O₃ at 320 °C.

assigned bands at 3700 and 3600 cm⁻¹ only to OH in adsorbed bicarbonates species. We believe that the presence of multiple peaks in this region can be attributed to both CO2 overtones (3700 and 3600 cm^{-1}) and bicarbonates OH (3740 and 3640 cm^{-1}). On the other hand, bands at 1650 and 1440 cm⁻¹ can be assigned to the O-C-O stretch of bicarbonates (Table 2) [38,41,42]. All these bands are also observed during CO_2 adsorption over γ -Al₂O₃ (Fig. 1b), indicating that γ -Al₂O₃ is active for CO₂ adsorption as bicarbonates. These bicarbonates could be formed by the reaction between Al₂O₃ hydroxyl groups and CO₂, as reported by Baltrusaitis et al. [40] and Szanyi et al. [43] from their CO₂ adsorption studies over γ -Al₂O₃. Baltrusaitis et al. [40] also reported this by quantum chemical calculations of CO₂ adsorption on γ -Al₂O₃. On the other hand, bands at 2020 and 1940 cm⁻¹ in Fig. 1a, assigned to different vibrational modes of CO-Ru bonds (Table 2) [28], including the linear adsorption of CO on Ru⁰ [25,44,45] and the linearly CO adsorbed on Ru co-adsorbed with an adjacent O-Ru bond [45], appear during CO₂ adsorption. The appearance of these bands indicates CO₂ adsorption over Ru active sites. Therefore, CO₂ is interacting with both, Ru active sites [43,46] and Al₂O₃ OH groups [40,43] over 5%Ru/ Al₂O₃ catalyst.

During H₂ reduction (methanation step) over 5%Ru/Al₂O₃ (Fig. 1a),

O–H stretching of bicarbonate species (bands at 3640 and 3740 cm^{-1}) decrease, but O-C-O stretch signals (1650 and 1440 cm⁻¹) are still present, indicating that bicarbonates are partially desorbed from Al₂O₃. Bicarbonate desorption could be related to the appearance of bands at 3020, 1520, 1320 and 2035 cm^{-1} at the beginning of the methanation step. A slight band at 3020 cm^{-1} assigned to CH₄ C–H stretch vibrations [27,29,47] appears simultaneously with peaks at 1520 and 1320 cm⁻¹ which are assigned to formate species (HCOO) [24,27]. CH₄ and formates were also reported by Wang et al. [29] in their DRIFTS-MS studies of the two-step methanation over 5%Ru/Al₂O₃, with a He purge between CO_2 capture and H_2 reduction. Also, Garbariano et al. [27] and Marwood et al. [24] reported CH₄ and formates when they co-fed a mixture of CO₂, H₂ and N₂ during their *in-situ* DRIFTS studies over Ru/ Al₂O₃ and Ru/TiO₂, respectively. This implies that formate species are the reaction intermediates, where CO₂ is sequentially hydrogenated to CH₄.

Moreover, the band at 2020 cm⁻¹ formed during the CO₂ adsorption step and assigned to CO-Ru interactions, moves towards a smaller 2035 cm^{-1} band during H₂ reduction (Fig. 1a), showing a change in CO adsorption on Ru. We propose that this movement is related to the formate Ru-CO bond, that is formed when bicarbonates spill over onto the support-metal interface; where formate intermediaries form and convert to CH₄. The spillover of adsorbed bicarbonate species to Ru is necessary (Fig. 1b). Neither formates (band at 1320 cm⁻¹) nor CH₄ (band at 3020 cm^{-1}) are formed over the support in the absence of Ru. This was also proposed by Marwood et al. [24] from their in-situ DRIFTS studies of the co-fed CO2 methanation over Ru/TiO2. However, Marwood et al. [24] proposed that bicarbonates react with H₂ in a co-fed process to form adsorbed formates on the support; those formate species then move to Ru active sites in order for methanation to occur. Otherwise, our results suggest that the methanation step occurs over 5%Ru/Al₂O₃ catalyst when CO₂ is adsorbed as bicarbonates on Al₂O₃ OH groups. Then, with H₂ present, bicarbonates spill over onto the Rusupport interface to react with H₂, forming formates and then CH₄. In the absence of Ru, formates were not observed.

Therefore, based on our *in-situ* DRIFTS studies, two-step methanation mechanism over 5%Ru/Al₂O₃ is schematically represented in Fig. 2 (right side). During the CO₂ adsorption step, Al₂O₃ OH groups and Ru active sites adsorb CO₂. In steps (1a) and (2a), CO₂ is adsorbed over Al₂O₃ OH groups which results in the formation of adsorbed bicarbonate intermediates (bands at 3740, 3640 1650 and 1440 cm⁻¹). In step (3a) the proposed bicarbonates spill over; where C and O atoms from bicarbonates adsorb onto Ru active sites. During H_2 reduction (methanation step or step (4) in Fig. 2), H_2 is dissociated into hydrides over Ru to form Ru–H species [16,21–23]. These hydrides are easily added into the bicarbonate structure; therefore, in step (5), formate species (bands at 2035, 1520 and 1320 cm⁻¹) are formed. In the same step, C-OH bond is cleaved by the introduction of a hydride from Ru–H to form H_2O . Finally, in steps (6) to (9), hydrides are sequentially added to the formates until the CH₄ molecule is completely formed and the Ru actives sites are regenerated along with Al_2O_3 hydroxyl groups for a further adsorption-methanation cycle. At this point, methanation follows the hydrogenation pathway from formates that are formed over Ru. These formates are produced when CO₂ is adsorbed over Al_2O_3 as bicarbonates and spill over onto Ru to react with dissociated hydrides during the methanation step.

3.2. DRIFTS studies of the two-step methanation process over 5%Ru-6.1%"Na₂O"/Al₂O₃ DFMs

CO2 adsorption and further methanation was studied over 5%Ru-6.1%"Na2O"/Al2O3 DFM, which has been reported as a promising methanation material with an enhanced CO₂ adsorption capacity of 0.48 mmol/g DFM [10] compared to the 5%Ru/Al₂O₃ adsorption capacity of 0.32 mmol/g catalyst [48]. Results are shown in Fig. 3a. During CO₂ adsorption, large bands at 1600 and 1370 cm⁻¹ appear and are related to bidentate carbonate vibrational modes adsorbed on Al-O⁻-Na⁺ species of the sorbent surface (Table 2). The Al-O⁻-Na⁺ species were proposed by Keturakis et al. [34] due to the interaction of the Na^+ ions from the "Na₂O" and the Al₂O₃ support. Na^+ ions create an electronic discoordination observed by FTIR, which results in the formation of some surface aluminates with residual Na species. Nguyen et al. [33] performed X-ray Diffraction (XRD) characterizations of Na₂CO₃ supported on Al₂O₃, where they did not observe the characteristic peaks of sodium crystalline phases, which could indicate that sodium is present either as an amorphous phase interacting with alumina support or as "Na₂O" nano-dispersed crystallites. This was also reported by Wang et al. [36] for DFM XRD characterizations, where the lack of sharp peaks indicates the absence of any sodium crystalline phase. For this, we feel this "Na₂O" designation is acceptable. In the Al-O⁻-Na⁺ species, the O⁻ is very reactive for CO₂ adsorption, due to its high basic nucleophilic character. Consequently, CO2 adsorption is likely occurring by a nucleophilic attack from the O^- to the C in CO_2 . Moreover, bands at 3640 and 3740 cm⁻¹ indicate CO₂ adsorption over

Fig. 2. Proposed CO₂ methanation mechanism over 5%Ru/Al₂O₃ (right side) and extended (left and right sides) for over 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM.

Fig. 3. In-situ DRIFTS of CO₂ adsorption and H₂ reduction over reduced (a) 5% Ru-6.1%"Na₂O"/Al₂O₃ and (b) 6.1%"Na₂O"/Al₂O₃ at 320 °C.

Al₂O₃ as bicarbonates (Fig. 3a), but O-C-O bicarbonates bands at 1650 and 1440 cm⁻¹ are covered by larger bidentate carbonate peaks at 1600 and 1370 cm⁻¹. Also, a weak signal between 1990 and 2000 cm⁻¹ [25,44,45], assigned to Ru-CO vibrational modes was observed. Therefore, CO₂ is largely adsorbed as bidentate carbonates (Table 2) rather than as bicarbonates on Al₂O₃ hydroxyl groups or over Ru active sites. Consequently, *in-situ* DRIFTS results showed that DFM has multiple CO₂ adsorption sites, *i.e.*, Al-O⁻-Na⁺ species, Al₂O₃ OH groups and Ru active sites.

During H₂ reduction (methanation step) on 5%Ru-6.1%"Na₂O"/ Al₂O₃ DFM (Fig. 3a), bidentate carbonate bands (1600 and 1370 cm⁻¹) disappear simultaneously with the appearance of the characteristic peak of CH₄ at 3020 cm⁻¹ [25,26,28] and the intense formation of formate characteristic peaks at 1520 and 1320 cm⁻¹ [22–29]. Otherwise, over the sorbent phase (Fig. 3b) neither formate nor CH₄ signals appear, which indicates again that Ru is required for H₂ dissociation and formate species formation. Thus, over DFM, and similar to Ru/ Al₂O₃, adsorbed bidentate carbonates species as reaction intermediates. Accordingly, on DFM the presence of multiple CO₂ adsorption sites is related with the previously DFM enhanced CO₂ adsorption (50% more than 5% Ru/Al₂O₃ catalyst [9,40]). This enhanced adsorption capacity produced a methanation activity of 1.05 CH₄ g mol/kg DFM [7]. Therefore, these tests revealed that, over 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM, the "Na₂O" presence drives a large CO₂ adsorption as bidentate carbonates due to nucleophilic interaction between CO₂ with AlO⁻-Na⁺ species in the support. Fig. 2 shows the multiple CO₂ adsorption sites of 5%Ru-6.1%"Na₂O"/Al₂O₃ DFM, where not only Al₂O₃ is capable of adsorbing CO₂ (right side), but also the "Na₂O" sorbent (left side) adsorbs CO₂ in larger amounts. Therefore, DFM is capable of adsorbing CO₂ on AlO⁻-Na⁺ sites, Al₂O₃ OH groups and on Ru active sites. In the methanation step, it is proposed that bidentate carbonates spill over to the Ru-support interface, where they are methanated with formate species as intermediates through a sequential hydrogenation. This process is explained as follows.

In steps (1a) and (2a), CO_2 is adsorbed over Al_2O_3 OH groups, but alongside, in step (1b) the nucleophilic attack from the AlO⁻-Na⁺ surface species to CO2 takes place, forming bidentate carbonates (bands at 1600 and 1370 cm⁻¹) in step (2b). In the presence of H₂ (step (3b) to (5b) in Fig. 2), bidentate carbonates spill over onto Ru. In step (3b) the newly Al–O bond, which is formed during CO₂ adsorption as bidentate carbonate, is cleaved and hydrides are added to O forming H₂O. Then, in step (4b) C bidentate carbonates adsorb on Ru active sites, which produces formate intermediates adsorbed on the support-metal interface. Then, C-O bond is cleaved and a hydride is added to adsorbed C. At this point, methanation follows the hydrogenation cycle in step 7 and AlO⁻-Na⁺ species are regenerated and became active to adsorb more CO₂ in cycle of absorption-methanation. Therefore, we observe that the larger CO₂ adsorption capacity is the main feature that makes DFM more active during the two-step methanation, but once CO_2 is adsorbed, either as bicarbonates or bidentate carbonates, it spills over onto the Ru-support interface to produce CH4 through the formate intermediates pathway.

4. Conclusions

The novel two-step CO₂ capture and methanation process was studied over a 5%Ru/Al2O3 catalyst and 5%Ru-6.1%"Na2O"/Al2O3 DFM by in-situ DRIFTS. Differences between both materials were observed in the amount and nature of CO2 adsorbed species. Over 5%Ru/Al2O3, CO₂ is adsorbed over Al₂O₃ OH groups (bands at 3740, 3640, 1650 and 1440 cm^{-1}) and over Ru sites (bands at 2020 and 1940 cm^{-1}) during CO₂ capture. Instead, over DFMs, the Al-O⁻-Na⁺ species allows CO₂ adsorption by the formation of bidentate carbonates over the sorbent surface, evidenced by the bands at 1600 and 1370 cm^{-1} . This type of adsorption over the sorbent is possible due to "Na2O" interaction with Al₂O₃ hydroxyl groups in the support which leads to Al-O⁻-Na⁺ species formation over the DFM surface. Therefore, DFM exhibits CO2 adsorption on Ru active sites, Al₂O₃ OH groups and bidentate carbonates. During H₂ reduction step (*i.e.*, methanation step), all the CO₂ adsorbed behaves similarly, in that they spill over onto catalytic Ru sites, where they are sequentially hydrogenated forming CH₄, with formates as reaction intermediates. The enhanced methanation capacity reported for DFM was then attributed to its larger CO₂ absorption capacity during the capture step.

Acknowledgments

The authors acknowledge the Universidad de La Sabana for its support in financing project ING-192-2016 and Columbia University in the City of New York whose authors would also like to thank Anglo American Platinum (London, UK) for financial support and SASOL (Hamburg, Germany) for providing the Al_2O_3 samples. L. Proaño acknowledges the Universidad de La Sabana for the Teaching Assistant Scholarship for her master's studies.

References

^[1] EIA, International Energy Outlook 2017 Overview, 143 U.S. Energy Inf. Adm.

IEO2017, 2017, http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.

- U.S Energy Information Administrations, International Energy Statistics, (n.d.). https://www.eia.gov/beta/international/data/browser (accessed April 11, 2018).
- [3] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: a technological and economic review, Renew. Energy 85 (2016) 1371–1390, https://doi.org/10.1016/j.renene.2015.07.066.
- [4] F.D. Meylan, F. Piguet, S. Erkman, F. David, F. Piguet, S. Erkman, Power-to-gas through CO2 methanation: assessment of the carbon balance regarding EU directives, J. Energy Storage 11 (2017) 16–24, https://doi.org/10.1016/j.est.2016.12. 005.
- [5] M. Bailera, P. Lisbona, L.M. Romeo, S. Espatolero, Power to Gas projects review: lab, pilot and demo plants for storing renewable energy and CO2, Renew. Sust. Energ. Rev. 69 (2017) 292–312, https://doi.org/10.1016/j.rser.2016.11.130.
- [6] C.V. Miguel, M.A. Soria, A. Mendes, L.M. Madeira, A sorptive reactor for CO2 capture and conversion to renewable methane, Chem. Eng. J. 322 (2017) 590–602, https://doi.org/10.1016/J.CEJ.2017.04.024.
- [7] M.S. Duyar, M.A.A. Treviño, R.J. Farrauto, Dual function materials for CO2 capture and conversion using renewable H2, Appl. Catal. B Environ. 168–169 (2015) 370–376, https://doi.org/10.1016/j.apcatb.2014.12.025.
- [8] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation - from fundamentals to current projects, Fuel 166 (2016) 276–296, https://doi.org/10.1016/j.fuel.2015.10.111.
- [9] M.S. Duyar, S. Wang, M.A. Arellano-Treviño, R.J. Farrauto, CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: an update, J. CO₂ Util. 15 (2016) 65–71, https://doi.org/10. 1016/j.jcou.2016.05.003.
- [10] S. Wang, E.T. Schrunk, H. Mahajan, R.J. Farrauto, The role of ruthenium in CO2 capture and catalytic conversion to fuel by dual function materials (DFM), Catalysts 7 (2017) 88, https://doi.org/10.3390/catal7030088.
- [11] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Supported catalysts for CO2 methanation: a review, Catalysts 7 (2017) 1–28, https://doi.org/10.3390/catal7020059.
- [12] J. Yang, J. Mcgregor, A.J. Sederman, J.S. Dennis, Kinetic studies of the methanation of CO over a Ni/γ-Al2O3 catalyst using a batch reactor catalyst surface catalyst surface, Chem. Eng. Sci. 146 (2016) 316–336, https://doi.org/10.1016/j.ces.2016. 02.001.
- [13] J. Ren, X. Qin, J. Yang, Z. Qin, H. Guo, J. Lin, Z. Li, Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: effect of addition of a second metal, Fuel Process. Technol. 137 (2015) 204–211, https://doi.org/10.1016/j.fuproc. 2015.04.022.
- [14] J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: influence of preparation methods, Catal. Today 281 (2017) 304–311, https://doi.org/10.1016/i.cattod.2016.07.020.
- [15] D. Lorito, H. Li, A. Travert, F. Maugé, F.C. Meunier, Y. Schuurman, C. Mirodatos, Understanding deactivation processes during bio-syngas methanation: DRIFTS and SSITKA experiments and kinetic modeling over Ni/Al2O3 catalysts, Catal. Today 299 (2018) 172–182, https://doi.org/10.1016/j.cattod.2017.06.041.
- [16] A. Solis-Garcia, J.F. Louvier-Hernandez, A. Almendarez-Camarillo, J.C. Fierro-Gonzalez, Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni, Appl. Catal. B Environ. 218 (2017) 611–620, https://doi.org/10.1016/j.apcatb.2017.06.063.
- [17] A. Karelovic, P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal. 301 (2013) 141–153, https://doi.org/10.1016/j.jcat. 2013.02.009.
- [18] A. Karelovic, P. Ruiz, CO2 hydrogenation at low temperature over Rh/Al2O catalysts: effect of the metal particle size on catalytic performances and reaction mechanism, Appl. Catal. B Environ. 113–114 (2012) 237–249, https://doi.org/10. 1016/j.apcatb.2011.11.043.
- [19] M. Jacquemin, A. Beuls, P. Ruiz, Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism, Catal. Today 157 (2010) 462–466, https://doi.org/10.1016/j.cattod.2010.06.016.
- [20] P. Panagiotopoulou, Hydrogenation of CO2 over supported noble metal catalysts, Appl. Catal. A Gen. 542 (2017) 63–70, https://doi.org/10.1016/j.apcata.2017.05. 026.
- [21] T. Das, G. Deo, Effects of metal loading and support for supported cobalt catalyst, Catal. Today 198 (2012) 116–124, https://doi.org/10.1016/j.cattod.2012.04.028.
- [22] A.M. Abdel-Mageed, S. Eckle, H.G. Anfang, R.J. Behm, Selective CO methanation in CO2-rich H₂ atmospheres over a Ru/zeolite catalyst: the influence of catalyst calcination, J. Catal. 298 (2013) 148–160, https://doi.org/10.1016/j.jcat.2012.11. 001.
- [23] J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.-L.H.L. Sit, W.Y. Teoh, Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts, Appl. Catal. B Environ. 219 (2017) 715–726, https://doi.org/10.1016/j. apcatb.2017.08.011.
- [24] M. Marwood, R. Doepper, A. Renken, In-situ surface and gas phase analysis for kinetic studies under transient conditions - the catalytic hydrogenation of CO2, Appl. Catal. A Gen. 151 (1997) 223–246, https://doi.org/10.1016/S0926-860x(96) 00267-0.
- [25] S. Eckle, Y. Denkwitz, R.J.J. Behm, Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformate

gases on supported Ru catalysts, J. Catal. 269 (2010) 255-268, https://doi.org/10. 1016/j.jcat.2009.10.025.

- [26] S. Eckle, H.-G. Anfang, R.J. Behm, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H₂-rich reformate gases, J. Phys. Chem. C 115 (2011) 1361–1367, https://doi.org/10.1021/jp108106t.
- [27] G. Garbarino, D. Bellotti, E. Finocchio, L. Magistri, G. Busca, Methanation of carbon dioxide on Ru/Al2O3: catalytic activity and infrared study, Catal. Today 277 (2016) 21–28, https://doi.org/10.1016/j.cattod.2015.12.010.
- [28] J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang, T. Zhang, Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation, J. Catal. 333 (2016) 227–237, https://doi.org/10.1016/j.jcat.2015.10.025.
- [29] X. Wang, Y. Hong, H. Shi, J. Szanyi, Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts, J. Catal. 343 (2016) 185–195, https://doi.org/10.1016/j.jcat.2016.02.001.
- [30] P. Gruene, A.G. Belova, T.M. Yegulalp, R.J. Farrauto, M.J. Castaldi, Dispersed calcium oxide as a reversible and efficient CO2 - sorbent at intermediate temperatures, Ind. Eng. Chem. Res. 50 (2011) 4042–4049, https://doi.org/10.1021/ie102475d.
- [31] A. Al-Mamoori, A.A. Rownaghi, F. Rezaei, Combined capture and utilization of CO2 for syngas production over dual-function materials, ACS Sustain. Chem. Eng. 6 (2018) 13551–13561, https://doi.org/10.1021/acssuschemeng.8b03769.
- [32] A. Petala, P. Panagiotopoulou, Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity, Appl. Catal. B Environ. 224 (2018) 919–927, https://doi.org/10.1016/J.APCATB.2017. 11.048.
- [33] T.S. Nguyen, L. Lefferts, K.B. Saisankargupta, K. Seshan, Catalytic conversion of biomass pyrolysis vapours over sodium-based catalyst: a study on the state of sodium on the catalyst, ChemCatChem 7 (2015) 1833–1840, https://doi.org/10. 1002/cctc.201500236.
- [34] C.J. Keturakis, F. Ni, M. Spicer, M.G. Beaver, H.S. Caram, I.E. Wachs, Monitoring solid oxide CO2 capture sorbents in action, ChemSusChem 7 (2014) 3459–3466, https://doi.org/10.1002/cssc.201402474.
- [35] Q. Zheng, R. Farrauto, A. Chau Nguyen, Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: a parametric study, Ind. Eng. Chem. Res. 55 (2016) 6768–6776, https://doi.org/10.1021/acs.iecr.6b01275.
- [36] S. Wang, R.J. Farrauto, S. Karp, J.H. Jeon, E.T. Schrunk, Parametric, cyclic aging and characterization studies for CO2 capture from flue gas and catalytic conversion to synthetic natural gas using a dual functional material (DFM), J. CO₂ Util. 27 (2018) 390–397, https://doi.org/10.1016/j.jcou.2018.08.012.
- [37] L. Proaño, M. Cobo, E. Tello, In-situ DRIFTS Data of CO2 Capture and Methanation Over 5% Ru/Al2O3 and 5%Ru,6.1"Na2O"/Al2O3 DFM, 1 (2018), https://doi.org/ 10.17632/YYD38GX4BY.1.
- [38] H. Takano, Y. Kirihata, K. Izumiya, N. Kumagai, H. Habazaki, K. Hashimoto, Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation, Appl. Surf. Sci. 388 ((2016) 653–663, https://doi.org/10.1016/j.apsusc.2015.11.187.
- [39] P. Deshlahra, B. Tiwari, G.H. Bernstein, L.E. Ocola, E.E. Wolf, FTIR sensitivity enhancement on Pt/SiO2/Au layered structures: a novel method for CO adsorption studies on Pt surfaces, Surf. Sci. 604 (2010) 79–83, https://doi.org/10.1016/J. SUSC.2009.10.011.
- [40] J. Baltrusaitis, J.H. Jensen, V.H. Grassian, FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3, J. Phys. Chem. B 110 (2006) 12005–12016, https://doi.org/10. 1021/jp057437j.
- [41] W. Zhou, Z. Ma, S. Guo, M. Wang, J. Wang, M. Xia, L. Jia, B. Hou, D. Li, Y. Zhao, Comparative study of CO adsorption on zirconia polymorphs with DRIFT and transmission FT-IR spectroscopy, Appl. Surf. Sci. 427 (2018) 867–873, https://doi. org/10.1016/J.APSUSC.2017.08.113.
- [42] I. Tankov, W.H. Cassinelli, J.M.C. Bueno, K. Arishtirova, S. Damyanova, DRIFTS study of CO adsorption on praseodymium modified Pt/Al2O3, Appl. Surf. Sci. 259 (2012) 831–839, https://doi.org/10.1016/J.APSUSC.2012.07.138.
- [43] J. Szanyi, J.H. Kwak, Dissecting the steps of CO2 reduction: 1. The interaction of CO and CO2 with γ-Al2O3: an in situ FTIR study, Phys. Chem. Chem. Phys. 16 (2014) 15117–15125, https://doi.org/10.1039/C4CP00616J.
- [44] A.A. Davydov, A.T. Bell, An infrared study of NO and CO adsorption on a silicasupported Ru catalyst, J. Catal. 49 (1977) 332–344, https://doi.org/10.1016/0021-9517(77)90273-1.
- [45] V.P. Londhe, V.S. Kamble, N.M. Gupta, Effect of hydrogen reduction on the CO adsorption and methanation reaction over Ru/TiO2 and Ru/Al2O3 catalysts, J. Mol. Catal. A Chem. 121 (1997) 33–44, https://doi.org/10.1016/S1381-1169(96) 00449-9.
- [46] X. Wang, H. Shi, J.H. Kwak, J. Szanyi, Mechanism of CO2 hydrogenation on Pd/ Al2O3 catalysts: kinetics and transient DRIFTS-MS studies, ACS Catal. 5 (2015) 6337–6349, https://doi.org/10.1021/acscatal.5b01464.
- [47] M. Foster, M. Furse, D. Passno, An FTIR study of water thin films on magnesium oxide, Surf. Sci. 502–503 (2002) 102–108, https://doi.org/10.1016/S0039-6028(01)01906-9.
- [48] M.S. Duyar, A. Ramachandran, C. Wang, R.J. Farrauto, Kinetics of CO2 methanation over Ru/Al2O3 and implications for renewable energy storage applications, J. CO₂ Util. 12 (2015) 27–33, https://doi.org/10.1016/j.jcou.2015.10.003.