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S1 Generative Model for Coupled HMMs

S1.1 Variable Definitions

Observation in time series n € {1... N} attime t € {1... T, }
x={xn} = {{xns}}

State of molecule # at time ¢
z={zn} = {{zn1}}

Parameters for time series n
0 ={0n} = {7mu> Ans prn> Au}

Initial probabilities: Prob that time series # starts in state k
My = {Tu i}t

Transition matrix: Prob of moving from state k to state |
An={{Anx}}

Errgr Observation mean for state k in time series n

muy = {pnr}

Erprer emissions precision (1/var) for state k in time series n

/\n = {An,k}

Hyperparameters for prior

vo = {{mo k> o > a0.k> box }> {0,k }> {po}}

Variational parameters for posterior of time series #

1//11 = {{mn,k>ﬁn,k: Ank> bn,k}) {‘xn,k}) {Pn}}

S1.2 Evidence

plxlwo) = [0 p(x.601y0)
- fdep(xle)pwll//o)

(D
= [0 T1 e 0,)p(64 1 90)
=TT [0 (e 102)p(60 1 90)
S1.3 Likelihood
p(x18) =TT (x| 6,)
:HZP(Xn,Zan) @)
=TT p(xnlzn, 04)p(2n | 64)



S1.4 Emissions model

p(xn |Zn) en) = Hp(xn,t | Zn,t> en)
t

z 3)
= TTITpGone ] i)™
£k
P(xn,t | en,k) = N(xn,t | WUn k> /ln,k) (4)
= (A i/2m)* exp[-1A7, 4]

Ai,t,k = An,k(xn,t - /"n,k)2 (5)

S1.5 Transition probabilities (HMM)

T,
P(Zn | 071) = Hp(zn,t | Zn,t-1> gn) p(zn,l | en) (6)
t=2
P(Zn,t | Zn,t-1> en) = H(An,k,l)zn’[_l’k Enid (7)
k.1
P(Zl | en) = H(”n,k)zm’k (8)
K
S1.6 Ensemble Distributions (Priors)
p(6nlwo) = p(mu [ w0) p(An [ w0) p(ttns An [ W0)
= p( | ¥0) [T P(Ani |¥0)P(ttior Ak | W0) ©)
k

7, ~ Dir(po) (10)
An,k ~ Dil‘(OC()k) (11)
Ank ~ Gamma(ag, boy) (12)
Wn,k NN(mOk’ﬁOkAn,k) (13)

S1.7 Evidence Lower Bound (ELBO)
Ly [‘J(Zn)) q(6,), V’O] = fd@,, ; q(2,)q(0,) ln[ 2(2)q(6,) (14)

S1.8 Algorithm Outline

Loop over iterations i until ), L, converges:

1. VB updates: obtain ¢ (0,), ¢ (z,), and L for each trace n, holding the prior
pU(6,, | wo) constant.

2. Empirical bayes updates: Holding q(z,) and q(6,) constant, solve for

yo = argmax 33 L (g (21), 47 (6,), yo]

As we will show, the variational posterior has the same analytical form as the prior ¢(6,) =
p(6, | v,) and its updates correspond to calculating a set of variational parameters y,. Cal-
culation of y, only requires knowledge of two sets of expectation values y, ;. x = Eg(z,)[Zn,0.k]
and &, s k.1 = Eq(z,)[2n.t41.1Zn,1,k ], Which can be calculated with a forward-backward algorithm
where expectation values of exp(Eg(g,)[In 6, ]) are substituted for the parameters. The empiri-
cal Bayes updates for y, can be calculated in terms of expectation values on g(6,,).
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S2 Conjugate-Exponential Forms

In a model where the prior and likelihood are in the exponential family, it is possible to parama-
terize these distributions as

p(x|n) =expln-T(x)-A(n) + B(x)], (15)
P(1 10 X0- $0) = exp [11- xo = voA(n) = A(vo, Xo» $0) + B(17¢0)] - (16)

Here # represents the remapped parameters 60, and {vy, Yo, ¢o } represent the remapped hyperpa-
rameters . The functions A are sometimes known as log-normalizers, whereas the functions B
can be seen as log base measure. As with parameter distributions, where p(#) is used to repre-
sent a different distribution than p(x), we here employ the convention that the log normalizers
A(n) and A(vo, xo, ¢0), as well as the log base measures B(x) and B(#, ¢o), take unique forms
for each set of parameters.

Given this parameterization, the posterior p(# | x, vo, X0, $o) is now proportional to

(1] x,v0, X0, $0) o< p(x | 1) p(n | vo, X0 o) (17)
=exp[n- (xo+ T(x)) = (vo + 1)A(17)]/Z(x, Vo> X0» Po) (18)

In other words, the posterior has the same analytical form as prior

p(n 1%, v0, 0, $0) = p(1] v, x> $o) (19)
with an updated set of hyperparameters

v=vy+1 (20)
X=X+ T () @b

We see that the hyperparameter v can be interpreted as scale factor that tracks the number
of previously observed samples. The hyperparameter vector y in turn takes the role of the
aggregate sufficient statistics 7 associated with these samples.

In any pair of conjugate distributions #, x and 7 (x) must have the same dimensionality. This
means that if 4 has D components, the hyperparameters {v, x} have dimensionality D+1. In gen-
eral a prior distribution need not have D + 1 parameters. For example, the Dirichlet distribution
lacks v and ¢y parameters. For a Normal-gamma prior p(u, A|mq, B9, ao, bo ), 4 hyperparam-
eters encode a distribution on 2 variables. In this case an extra hyperparameter ¢,, which can
be thought of as the difference in number of initial observations for the precision and mean,
remains invariant in light of new data.

Our derivation of the EB estimation algorithm on coupled HMMs will assume that the prior
and likelihood are conjugate exponential family. This means the approach derived here could
be adapted to model any experiment where the measurement signal can be represented with an
exponential family likelihood, though the corresponding updates for posterior parameters and
hyperparameters would have to be re-derived.

S2.1 Normal-Gamma

This Normal-Gamma distribution is a joint prior on the mean and precision of a Gaussian like-
lihood, where the aggregate statistics for the mean are equivalent to v observations and the
statistics for the precision are equivalent to v + ¢ observations.

p(x|mA) = N(x|u 1) (22)
p(u,A|m,B,a,b) =Norm(u |m, fA)Gamma(A | a,b) (23)
n={-31Au} (24)
v=; (25)
x=A{2b+pm*, pm} (26)
$p=2a-p 27



T(x)= {xz,x} (28)

AGn) = =3 [1n - /) 2 (1) 29)
B(1.6) = —5(¢+Dln (-1 / ) (30)

AW 19) = =5 [In() + (v + - 2) In(2r)
+(v+ ) In[30a - 6/v)] -2 T[S (v + 9)]] 31

= —%ln(ﬁ) -(a-1)1In(27) - aln(b) +InT(a)

Note: a Normal-gamma distribution is equivalent to a 1-dimensional Normal-Wishart
p(u, A m, B, W,v) = Norm(u | m, BA)Wish(A | W,v) (32)

with parameters v = 2a and W =1/(2b).

S2.2 Dirichlet

p(z|m) = Cat(z| m) = [ n}* (33)
k
Y] _ I‘(Z:k Pk) Pr—1
p(xlp) =Dir(rlp) = g 5 S 11 (34)
n={lnn} (35)
x={p} (36)
T(z) ={z} (37)
A(n) =n (38)
B(n) =-1 (39)
A(x) =1ogI'(Xk xx) — Xk log xx (40)

S3 Variational Bayes Expectation Maximization (VBEM)

Note: We will omit the n-subscript in this section, since VBEM is performed on one trace at a
time.

When performing (structured) VBEM on a Hidden Markov Model, we introduce an approxi-
mating factorization for the posterior p(z, 8 | x,vy) ~ q(z)q(0), that allows calculation of a
lower bound on the log-evidence (using Jensen’s inequality):

inp(x o) =1n| [0 3 p(.2.01v0) |

) p(x,2,0y0)
_1n[fd9 2.4(=a(0)=_ 5 ]

p(x,z,60|yo)
> [a8 S ateya(en KEET |
= L[q(z),q(0)]

(41)



The lower bound L is tight if g(z)q(8) = p(z, 0| x, yp):

Lq(=),a(0)] = [do Zq(z)q(9>ln[W]

- [a6 szp(zamx’w)ln[p(z,@X,V’O)]

_ p(2,0|x,y0)p(x | yo)
= fd@ ZZ:p(z,9|x,1//0)ln[ (20| x,v0) ] @

_ fde > p(2,0]x,y0) In p(x | yo)

~Inp(x|yo) [d0 3 p(z0]%.y0)

=Inp(x|yo)

In general we can we write the lower bound in terms of the evidence p(x | ) and a Kullback-
Leibler divergence

L[q(2),q(6)] = Inp(x|yo) ~ Dxr[q(2)q(0) | p(2, 0| x, 90)] , (43)

which is defined as

Duala(a(6) 1265, v0)] = fa0 Laa(o)n| LD a

The Dy, term is > 0 and is 0 only when q(z)q(0) = p(z,0 | x,vo) and L = In p(x | o). We can
use g(z) and g(0) to approximate p(z, 8]x, ¥, ) by minimizing the Kullback-Leibler divergence,
which is equivalent to maximizing the lower bound L.

S3.1 Updates

Loop until L converges. For i-th iteration:

1. E-step: keeping q()(0) fixed, solve for

q(i+l)(z) - argr;?;;(L[q(z), q(i) (9)]

2. M-step: keeping q(i) (z) fixed, solve for
4" (6) = argmax L[q"" (). 4(6)]

S3.2 E-step

To maximize L w.r.t. q(z), we solve V,(;)L = 0, introducing a Lagrange multiplier A, to ensure
normalization:

0=V [L[q(Z% q(0)]+ 2. (1 - Z q(z'))]

(45
| [0 4(0) (n p(x.2. 6] yo) - Ing(2) - lna(6) -1 | - 2.
We can pull In g(z) out of the integral, since it has no dependence on 6. This yields
Ing(2) = | 46 (6) [1n p(x,2]6) + Inp(8 | yo) - Inq(6) ~1] | - 1.
(46)

= Eq(o)[Inp(x. 2 0)] - Dxe[q(8) | (6 w0)] = (1+ 49)
= Eq(o)[In p(x, 2| 6)] - In Z[4(0)]

6



here we have absorbed all terms without a z-dependence into a constant In Z[g(6)]. The ap-
proximate posterior q(z) is obtained by taking the exponent of the above equation

1
q(z) = Z[4(0)] exp [Eg(oy[In p(x,2]6)]] 47
where normalization of g(z) implies
Z[a(0)] = Lexp [Eqo)[In p(x:2[ 0)]] (48)

The z-dependent terms can be written as:

E,o)[lnp(x|20)] = Zztkfdﬂq 0)[L1n (A¢ / 27) - 147]

(49)

—Zz, Ego)[31n (A [ 27) = 34%]

and
T
Eqo)[Inp(2]0)] :Zzzt Zt1kfd9q )In Ay,
t=2 k.1
+ Yz fde q(8)In, 50)
k
T
= Z Z-tr—l : Eq(G) [lnA] "zt ZI : Eq(e) [ln 7'[]

-
Il

2

We see that the posterior q(z) is parametrized by expectation under q(8) of the squared Maha-
lanobis distance Eqgy[A7 ], and the logarithm of the parameters E,(g)[In 1], E4(g)[In A] and
Eq(gy[In7]. This allows us to define

1,

q(z) = ml’ (x,2) (51)
with

P (02) = [H p*(xt|zt)]p*<z| 6) 52)

p*(xe|ze = k) = (Aj/2m) ' exp [-1A7% ] (53)

P (2|0) = p(z|A*, ") (54)

where point estimates for the parameters are defined as

A*? = Eg0)[A7] (55)
A" = exp(Eqeg)[In1]) (56)
A" = exp(Eqg)[In A]) (57)
" = exp(Eqg)[Inn]) (58)

This result is a specific example of a general property of all exponential family models with
conjugate likelihood/prior pairs [?]. We can always find a set of point-estimates #* such that

1 1 %
q(z) = mexp[Eq(n)[lnp(x,z,n)]] = mp(x)z’ﬂ ) (59)

In our specific case, this result implies that we could in principle compute some #* for the
natural parameters for the Normal-Wishart distribution # = {A,Au}, such that p(x | ;) =
(A;/2m)"? exp[-1A*2]. However for the purposes of implementing the VBEM algorithm, this
step is not required to calculate g(z).



From the analytical forms of the priors, we can express the point estimates as:

A*z = (l/ﬁk)+ak(x—mk)2/bk (60)
In1* =¥(a;) —Inby (61)
InAy ;=¥ (ak:) =¥ (X ak1) (62)
Inzy =¥ (pr) - ¥ (Zk pr) (63)

Here ¥ (x) = I'(x)/T(x) is the digamma function.

In practice, we do not calculate g(z) for all KT possible paths through the state space (which
would be numerically unfeasible). Rather, we show in the next section that the updates for
q(8) only require knowledge of expectation values yx = Eq(z)[zik] and &ix1 = Eq(zy[Zi-1,k201]
which can be calculated with a standard forward-backward algorithm.

S3.3 M-step

In the m-step we maximize L w.r.t. q(0). Again Ag is a Lagrange multiplier. We now take the
functional derivative instead of a gradient, but the steps are essentially the same.

0= 5oqgs | Ha(a(0)] 35 1 a0 o) e
[Z 4(2) (In p(x,2,0] o) - Ing(2) - Ing(0) —1)] Y (©5)

like in the E-step, this reduces to
1ng(6) = [ T a(2) (092,010 - ng(e) 1) - (66)
- EyiolIn (2,01 90)] - Eyo[Ing()] - (14 10) )
- By lIn p(x. 2.0 y0)] - In Z[g(2)] (8)

Again we have absorbed all terms without a 6 dependence into a normalization constant Z[q(z) ],
which in fact does not need to be calculated explicitly in order to derive our updates. The ex-
pectation term expands to:

Egy[Inp(x,2,0 | yo)] =Eq(o)[Inp(x | 2,0) + Eqy[In p(2] 0)]

(69)
+Inp(6 [ yo)
where the z-dependent terms become:
Eg(5)[lnp(x|z,0)] = Zt: Zk:Eq(@ [z04] [51n (A / 2) = 348 ] (70)
T
Eq(z) [lnp(z | 0)] = Z ZEq(Z) [Zt,lztfl,k] lnAk]
t=2 k,1 (71)

+ ; Eq(z) [Zl,k] In T

The variational posterior q(6) is therefore parameterized in terms of two sets of expected pos-
terior statistics:

Yik = Eqz)[21k] (72)
ikl = Eq(o)[zi-142101] (73)

The expression for g(0) can now be rewritten as:

_p(6lyo) 12 Lo T\
q(0) ~2[4(2)] I_;! ((/\k/Zﬂ) exp [_EAz,k]) -

Z)1
(Akl)fnkz H (n.k))’l,k
k

t=2,k,1



Note also that the following decomposition for q(6) holds without further need for approxima-
tion:

q(0) = q(u 1)q(A)gq(m) (75)
This in turn means we can write:

q(p, 1) o< gp(xz | s Ak )Y p(prs Ak | Mo, Bos ao» bo) (76)

q(A) o< tI;k 1 (Ak) ™ p(Ax | aor) (77)

q(m) o< Hny”‘p(nlpo (78)

Note that in each of these equations we now have a product of an exponential family likelhood
with an exponential family prior, since the the normal likelhood is conjugate to a normal-gamma
prior, and a multinomial distribution is conjugate to a Dirichlet prior. The variational posterior
distribution is therefore in the same family as the prior, and the m-step updates reduce to calcu-
lating a set of posterior parameters y

For the distribution on q(y, A) the exponential form for these updates is simply
Vi =VE+ D Yik (79)
t

Xk =X+ 2, yexT (xr) (80)
t

and can now substitute

V= [50 (81)
x = {2b+pm*, pm} (82)
T(x) = {x*,x} (83)
and define
Ni=>"yux (84)
t
(X)k =D yexxs (85)
t
(X2 =D yexxt (86)
t

to obtain the following expressions for the variational parameters y

mi =Xk2/vk = (Bogmox + (X)x)/(Boj + Ni) (87)
Bi =Poj + Ni (88)
ar =aok + 3Nk (89)
bk =Xk1 — Xi2 / (2vk)
1 (Bo,moy + (X)x)? (90)
_bOk + ﬂokmok <X2) Okﬁookk+ N, k

Finally, the updates for «( and p, can be obtained by substitution of the terms in equation (74)
into equations (77) and (78):

T

Wkt = @01 + D &kl 1)
t=2

Pk = Poj + VYn,Lk 92)

We now proceed to derive how y and & can be calculated using the Forward-backward algorithm.
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S3.4 Forward-Backward Algorithm

The forward-backward algorithm is a method to calculate expectation values under the posterior
p(z]x, 8), or in our case, the approximate posterior q(z) of a Hidden Markov Model:

Yk = Eq(2) [zek] = p" (21| 21)p" (1) 93)
§eki = Eq(oy[ze-1k2e1] = p*(ze-1 = ks zeey = 1| x0r) 04

to do so we calculate two variables:

Qe = p*(xl:bzt = k) (95)
Bek = P*(Zt =k | Xt41:T) (96)
such that
* oy kﬁt k
= =k|xpr) = —— 97
Yk =P (2t = k| xp.1) > () o7
Eiki=p (zie1 =k, zey = 1] x17) (98)
_ p*(xr | 21, 20-1) P (245 2021) _ Beip*(x | zi = DAk, k 99)
p* (xur) p*(xur)
and exploit the following recursive relationships:
ark = p (X 21)
= * = k * = k 1= l * t=1><t—-1 — l
El:p (xi|ze=k)p*(ze = k| zemr = D) p* (X115 201 = 1) (100)
= ZP*(xz |z = k)AJ i1,
I
Bk = P (xesrr | 2¢)
= zp*(tz:T | Zi41 = l)p*(le | Zt+l = l)P*(zwl =1 | Zy = k)
1 (101)

= Brenp” (e | 2 = DAY,
I

We can now loop forward in time to recursively calculate a; from «,_; and backward in time to
calculate f3; from f;;. The boundary conditions on these passes are:

ae=p (x,21) = p (x| 2)p*(21) = [[ " (| 21 = k) 7} (102)
k
Bri=1 (103)

In practice, it proves more convenient to calculate a normalized version of & and f3. To do so,
we introduce a set of scaling factors c;:

Cr = P*(xt ‘ Xl:t—l) (104)

such that normalized forward and backward variables can be defined as:

N [L7N Ll
Atk = 2 (1) = ?“t,k
1:t =1 Ct/
[3 o - (105)
5 Jk
ﬂt,k = T N : = *ﬁz,k
P (Xeenr [ X1e) it O
This choice of normalization implies:
ok PBik ok Pk LA
k== —— = A kPik (106)
Tk = e ) 9 e |xn)p G kP
£ = Beip*(xi|ze = DAgiari ke  cofrap™ (%] ze = DAk (107)
Lkl = =
P*(xl:T) p*(xlzT)

10



The following recursion relations hold for & and ﬁ
Crbip g = ZP*(M |zt = k)AL &1 (108)
I

ctiBer =D Pranip” (Xe1 | zen = 1A, (109)
1

We can now solve for ¢, from the recursion relation for & using that )", &, = 1:

Ct=1¢Cy Z&t,k = ZP*(xt |z = k)Ajja 1, (110)
k k,l

So the scale factors ¢, are nothing but the normalization constant for &; and can therefore es-
sentially be obtained for free during the forward pass. Note that these also give us an estimate
for p*(x):

pr(x)=p (x) =[] (111)
t

which gives us the normalization constant for g(z)

Zyy =lnp*(x) =Y Ing (112)
t

S3.5 Calculation of the Evidence

The lower bound for the evidence

Laa®) - X [40 Faterao)n| L5010 ] (113)

can be decomposed into the terms

L[4(2),q(0)] = 3 Eq(z)q(0) [In p(x, 2] 0)]

(114)
= Dx1[q(0) | p(0]v0)] - Eq(z) [Inq(2)]
Now note from equation (51) that E,(;) [Inq(z)] can be written as:
Eq(z) [lnq(z)] = Eq(z)q(@) [lnP(x,Z ‘ 9)] —an[q(G)] (115)
So
L[q(2),4(6)] =InZ[q(0)] - D[q(8) | p(6 | yo)] (116)

The term In Z[q(6)] is obtained from the forward backward algorithm. The Kullback-Leibler
divergence between g(60) and p(6) decomposes into:

Diq(0) [ p((16))] = Zk:DKL[q(Mk,)tk) | (s> Ai)]

+ Dx1[q(A) || p(A)] + Dxrlq(m) || p()]

The Kullback-Leibler divergence of two exponential family distributions is

(117)

Dxw[q(n]v X, $0) || (1] V05 05 $0) ]
= Egop - (x = x0) = A (v = v0) = A(v, x ) + A(vo, x0 $0) ] (118)
= Eq(n)[’ﬂ (X x0) - Eq(q)[A(ﬂ)](V =) = AV, x> $0) + A(vo» Xo» o)

The two required expectation values can be obtained from the relationships

p)
0=5fd17 q(nlv, x> ¢) (119)

0=fod'1 q(nlv, x- ¢) (120)

11



which yield

EyiplA(1)] = =V A(v, X, $o) (121)
Eqpln] = VA, x> o) (122)
For a Normal-Gamma distribution we may now substitute the exponential forms
v=p

x={2b+pm?, pm}
A, .9) = =3[ I0() + (v + 9~ 2) In(2n)
+(v+ @) In[3 (0 - 3] -2 T3 (v+ 9)]]
- —%111(/3) _(a-1)In(27) - aln(b) + InT(a)

after which the expressions for expectation values are given by

Eyon[An)] = % [; . "Tmz +In(27) - ¥(a) +ln(b)] (123)
Eqpln] = { - % %} (124)

The KL divergences for A and 7 have simple closed-form expressions:
Dii[q(Ax) || p(Ax)] = ZI:[“k,l = aok,1][wo(ak,1) = Yo(aok,1)] (125)
Dxi[q(m) [l p(m)] =3 [p1 = poy[wo(p1) = vo(po;)] (126)

I

S4 Empirical Bayes Updates

In (parametric) empirical Bayes estimation, we construct a generalized EM algorithm that ob-
tains a point estimate y,. The quantity optimized is the summed lower bound log evidence over
the ensemble of time series:

Inp(x|yo) > ) Ly (127)
P(xn, 20, 0y |1//0)):|

=> E, ., In|————F— "~ 128

; q( n)Q(gn)[n( q(zn)q(en) ( )

= Zlnp(x,, lvo) - DKL[‘](Zn)Q(en) || p(21, 0 |me/0)] (129)

= > Eqza0n) [ 10 (%0 |20, 6,)] = Dxi[9(2)9(6,) | p(20 62 [ W0)]  (130)

In the E-step the posterior p(z,, 8, | x,, ¥o) is approximated by maximizing the lower bound
with respect to q(z,) and q(6,). In the M-step the prior p(z,, 0, | ¥o) is used to approximate
the variational posterior g(z,)q(0,) by maximizing the lower bound with respect to v

0="Vy, ) L (131)
= V4 3 [0, q(68. 1w In p(6, | v0) (132)
= fden (0, | W) Vo In (8, | v0) (133)

From section 3.3 we note that p(6) factorizes without need for further approximation

p(0]wo) = p(p, A | mo, Bo, Wo, vo) p(Alao)p(m|po) (134)

so the updates for {, 1}, A, and 7 can be computed separatedly.
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S4.1 Conjugate-Exponential Form

If we rewrite p(6 | wo) to its conjugate exponential form p(# | vo, Yo, ¢o), the expression in
equation (133) becomes

0= Egy)[ Vvorroudo [1- o = A(n) - vo + B(11, $0) = A(vo, xo0» $0)] | (135)

The empirical Bayes updates for the hyperparameters therefore reduce to finding solutions for
3 sets of equations

1
ViAo, X0, $0) = =57 2 Eqn [A(1)] (136)
1
Vo A(vo, X0, $0) = N > Eqn 4] (137)
1
Vo A(vo, Xo0s $0) = N > Eqn) [V B(1n5 ¢0)] (138)

where each of the 3 expectation values can be calculated for a given q(8, |, v, ) in terms of the
derivatives of the posterior log normalizer A(v,, xu, $o):

Eq(q)[A(1n)] = =V, A(Vas Xn> $0) (139)
Eg(n[11n] = V3, A(vos X0, $0) (140)
Eg(n) [V B(1n> $0)] = Vo A(Va> Xn> $0) (141)

S4.2 State Distributions (Dirichlet)

Empirical Bayes updates for a Dirichlet distribution simply match the log expectation values
1
Epco,)[log Ak] = - Eq(o,) [log Ak,

1
EP(Bn) [log 7'[] = NEq(gn) [log 7'[].
These log expectation values can be expressed in terms of the digamma function ¥
Y[, 00.km | — P eto,x1]

1
=3 Z \P[Zm‘xn,km] - \P[‘xn,kl]-
N5
While equations above have no closed-form solution, their stationary point can be found effi-
ciently with a Newton iteration method [?].
S4.3 Emission Distribution (Normal-Gamma)

For a 1-dimensional Normal-Gamma distribution substituation of the conjugate exponential
forms (section 2.1) yields a set of update equations take the form

mok = Y Eqco) [k Ank ]/ Y Eq(o,) [Ank]s (142)

1 1
1/Bok = NEq(en)[#ﬁMnk] - ﬁEq(en)[lnkﬂnk]z/Eq(en)Unk]> (143)

1 1
‘I’(aok) - ln(aok) = NEq(O")[ln /lnk] - N lnEq(Qn)[AnkL (144)
Nak
b= — 0k (145)
7 Eygo [Ae]

As with the Dirichlet distribution, a Newton iteration method can be used to obtain aq;. The
prerequisite expectation values can be calculated from

Eq0,)[Ank] = ank/bn k> (146)
Eqe0,)[10g Auk] = v(an k) —log(bai), (147)
Eq0,)[nkAnk] = My k@ni/buis (148)
Eq(on) [HaxAnk] = 1Bk + Mo xani/bn k- (149)
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S4.4 Inital State and Transition Probabilities (Dirichlet)

For a Dirichlet distribution the conjugate exponential forms (section 2.2) are given by:

n = {lnm} (150)
X ={poi} (151)

Hk F(Xk + 1)
h(y) = =¥—"~——=< (152)

R FTES))

And the log expectation value of 7 is:
Eq0,)[11] = Eqe,) [In 7] = yo(pui) = w0 (] puk) (153)
k

which again leads to a coupled set of implicit equations that must be solved numerically:
1
Yolpor) ~vo(2 por) = 5 2 ¥olpnk) = ¥o (2 puk) (154)
k n k
The updates for each row of the transition matrix are performed in the same manner

o (o) = vo(D aoxr) = % Yo wo(@nir) = vo(D dnkr) (155)
1 n 1

S4.5 Mixtures of Priors

Empirical Bayes estimation can be extended to perform inference over unlabeled subpopulations
by defining a mixture model p(x,, y, | ¥o, ) on the evidence

p(x|yo) = p(x |y, y)p(y[0) (156)
=TT (p(x [ vom)im)™ (157)
> [T (exp(Lom)Cn )™ (158)

where Ly, > In p(x, | Wom) is the lower bound log evidence for trace n with respect to mixture
component m. An expectation maximization procedure can be constructed for this mixture
model by introducing a variational posterior q(z,, 0., ¥n) = (2 | ¥1)9(61 | y1)q(y») for each
time series. The update equations for this EM procedure are

oL oL oL oL oL
= — = — =0, — =0 —=0. (159)
8q(yn) 8q(zn | yn) 8q(6n|yn) Wom a¢
The E-step of this EM procedure calculates a set of posterior responsibilities
()1
i exp | Lym |Cm
o) = By Lyun] = 2] (160)

Srexp (1,16

In the M-step we hold q('*)(y,) fixed and maximize L relative to v, and {. This amounts
to performing EB analysis for subpopulation. In other words we first obtain VB estimates for
q(8, | Wum) and then obtain a weighted update of for the hyperparameters

i i+1
ozwzgwﬁﬁl)%. (161)
The updates in equations (136-138) now become
Vou A(Vom> Xom> Pom) = = Z @umEq(y,) [A(1a)]/ Z Onm » (162)
Y ton A(Vom> Xom> $om) = ;wnmEqwn)[nn] , (163)
Vg0 A(Voms Xoms $om) = ;wnmEm)[me(m,¢0m)]/ Z Wn - (164)

Finally the mixture weights {¢*1) are obtained from

(i+1)
(i+1) _ Zn Wpm
s S (165)

an wnm
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S5 Calculation of Derivative Kinetic Quantities

S5.1 Kinetic Rates

The kinetic rates x define a differential equation for the evolution of the probabality yy (t) that
a molecule is in state k at time ¢

Ielt) > wuyi(t) . (166)
a2

The transition matrix A and measurement time interval At define a discretized version of this
differential equation

i[)’k(t"' At) = y(t)] = Ait zl:AszI(f) _)’k(t)] =y [AIZ;H] yi(t) . (167)

l

In general, the transition matrix Ag; can be expressed in terms of of xi; and At through the
relationship

A = exp[kAt] . (168)

While any given x value uniquely determines A, the equation « = In[A]/At does not necessarily
have a unique solution. However in the limit of small At we may truncate the series expansion
of the matrix exponent to first order

A =T+ (kAt) + O[(xAt)*], (169)
to obtain the same relationship

Kk~ (A-T)/At. (170)
S5.2  Life Time
In order to obtain a distribution on the state life time 7, we define

Ay = exp(-1/7¢) . (171)

The marginal distribution on Ay is a Beta distribution

p(Akk| &) = Beta(Agk [ ax, bi) (172)
_ Tak+by) ar-177 _ b1
= T(an)T(by) (Ape) ™ (A= Age) (173)
with
A = Okk (174)
b= (> anr) — ok - (175)

The probability density function for the life time is now given by

0A
5 “ p(Are(Ti) | ax. by (176)
Tk

= r(ak +bk) 1 ak br-1
_Wg(exp[—l/rk]) (1-exp[-1/74]) (177)

p(ti | ak, bi) =

S5.3 Free Energy

In the limit t — oo, the markov chain for a set of probablities y, will converge to the stationary
distribution vy, which is given by the solution to the eigenvalue equation

Vg = ZAlkUl . (178)
1
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In other words, the stationary distribution v is the normalized eigenvector of AT with eigenvalue
1. This quantity is related to the free energy Gy of each state through

vg o< exp[-Gy/kpT] . (179)

For a 2-state, system the eigen-vector of the transition matrix can be calculated trivially from
the off-diagonal elements

A:[ (1—66) (11) ] uoc[ g] G =kpTIn[8/e] (180)
We approximate Gy for each state by calculating a marginal

p(Okex | ax, by, cx, di) = Beta(Sx | by, ax)Beta(e | cx, di) - (181)
with

ag = Kk (182)

by = (Zl:kal)—“kk (183)

Ck = (lealk)_“kk (134)

dk:“kk+(%:“kl)_bk‘ck (185)

In other words, for each state k we collapse all states I # k and calculate Gy based on the
resulting prior on a 2 x 2 transition matrix. We will now define gx = Gx/(kgT) to calculate the
marginal

p(gk | ak, bi, cx di) = ]d6k|](8k>gk)|p(8k:eXP[—gk]Sk|akybk,5k,dk), (186)
where the Jacobian term is given by

[7(Sk> gk)| = Ok exp[—gk] (187)

The integral has no closed-form solution, but can be integrated numerically.
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