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Development of Adaptive Modeling Techniques for Nonlinear
Hysteretic Systems

Abstract

Adaptive estimation procedures have gained significant attention by the research community to perform
real-time identification of nonlinear hysteretic structural systems under arbitrary dynamic excitations. Such
techniques promise to provide real-time, robust tracking of system response as well as the ability to track
time-variation within the system being modeled. An overview of some of the authors’ previous work in
this area is presented, along with a discussion of some of the emerging issues being tackled with regard to
this class of problems. The trade-offs between parametric based modeling and nonparametric modeling of
nonlinear hysteretic dynamic system behavior are discussed. Particular attention is given to 1) the effects
of over- and under-parametrization on parameter convergence and system output tracking performance, 2)
identifiability in multi-degree-of-freedom structural systems, 3) trade-offs in setting user-defined parameters
for adaptive laws, and 4) the effects of noise on measurement integration. Both simulation and experimental
results indicating the performance of the parametric and nonparametric methods are presented and their
implications are discussed in the context of adaptive structures and structural health monitoring.

1 Introduction and Background
1.1 Motivation

Problems involving the identification of structural systems exhibiting inelastic restoring forces with heredi-
tary characteristics are widely encountered in the applied mechanics field. Representative examples include
buildings under strong earthquake excitations, aerospace structures incorporating joints, and computer disk
drives. Due to the hysteretic nature of the restoring force in such situations, the nonlinear force cannot be
expressed in the form of an algebraic function involving the instantaneous values of the state variables of the
system. Consequently, much effort has been devoted by numerous investigators to develop models of hys-
teretic restoring forces and techniques to identify such systems. Noteworthy contributions in this area have
been made by Caughey (1960 [10], 1963 [11]), Jennings (1964 [24]), Iwan (1966 [19]), Bouc (1967 [8]),
Karnopp and Scharton (1966 [25]), Iwan and Lutes (1968 [20]), Kobori et al. (1976 [26]), Wen (1976 [50]),
Masri and Caughey (1979 [32]), Baber and Wen (1981 [4], 1982 [5]), Grossmayer (1981 [14]), Spanos (1981
[44]), Toussi and Yao (1983 [48]), Andronikou and Bekey (1984 [1]), Park et al. (1985 [35]), Spencer and
Bergman (1985 [45]), Sues et al. (1985 [46], 1988 [47]), Powell and Chen (1986 [38]), Iwan and Cifuentes
(1986 [21]), Vinogradow and Pivovarov (1986 [49]), Jayakumar and Beck (1987 [23]), Peng and Iwan (1987
[36], 1992 [37]), Roberts (1987 [39]), Wen and Ang (1987 [52]), Yar and Hammond (1987a [55], 1987b
[56]), Worden and Tomlinson (1988 [54]), Capecchi (1990 [9]), Roberts and Spanos (1990 [40]), Masri et
al.(1991 [33]), Loh and Chung (1993 [31]), Benedettini ef al. (1995 [7]), Chassiakos et al. (1995 [12]), Iwan
and Huang (1996 [22]), and Ni et al. (1999 [34]).
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One of the challenges in actively controlling the nonlinear dynamic response of structural systems un-
dergoing hysteretic deformations is the need for rapid identification of the nonlinear restoring force so that
the information can be utilized by on-line control algorithms for determining the proper actuator forces
needed to ensure stable response control of the oscillating flexible structure. Consequently, the availability
of a method for the on-line identification of hysteretic restoring forces is crucial for the practical implemen-
tation of structural control concepts (Housner et al. 1994 (1WCSC [17]), Housner et al., 1997 [16], Kobori

et al., 2WCSC 1998), whether in the context of adaptive structures or for structural condition assessment.

This paper presents an overview of work by the authors on the development of two broad classes of
nonlinear system identification approaches (one parametric and the other nonparametric) that are suitable
for on-line applications involving the monitoring and control of systems exhibiting hysteretic behavior that
cannot be adequately treated as an equivalent linear system. The paper explains the basic concept and
features of each approach, and it illustrates their respective strengths and limitations through several realistic
examples composed of simulation studies as well as tests on physical structures undergoing time-varying

hysteretic deformations.

1.2 Scope

The most basic system under consideration is the single-degree-of-freedom (SDOF) system whose forced
vibration is governed by:
mi(t) + r(z(t), 2(t),r(t)) = u(t) (1

where xz(t) is the displacement of mass m, r(x(t), Z(t), r(t)) is the nonlinear restoring force and u(t) is the

system’s external excitation. A simple diagram showing this system is presented in Fig. 1(a).

Several studies tackled the modeling problem as a “force-state mapping” problem. In other words,
models were developed to determine how the states — (typically displacement = and velocity &) — were
mapped to the nonlinear restoring force r. The surface which defined r in the x and & space were fitted
using basis functions of the states. For example, Masri and Caughey ([32]) used Chebyshev polynomials as
the basis to yield models for the nonlinear force-state mapping problem which were equivalent nonlinear
models in the case of hysteretic problems. The term equivalent nonlinear is important, because in reality the
hysteresis restoring force is not simply a function of the states = and z, but also of the past restoring force
r. (This was written generically as r(z(t), Z(t), r(t)) in Eq. (1)). In other words, for hysteresis there is not

a unique surface in the = and & space which defines the restoring force.

One of the more widely used models for hysteretic nonlinearities, because it can capture many com-

monly observed types of hysteretic behavior, is the Bouc-Wen model (Wen, 1980).
i = (1/n) [Az = w(Bi][r["~'r — yalr|™)] )

This model will be considered in more detail later in the paper for parametric modeling. A sample of the

achievable forms of nonlinear hysteretic behavior for this model is shown in Fig. (2). The different hysteretic
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Figure 1: Model of hysteretic systems. a) SDOF system, b) chain-like MDOF system, c¢) general continuous
MDOF system with multiple supports and force excitations, and d) discrete reduced order representation of
general system shown in c).

loops correspond to different combinations of critical parameters in the model. When discussing the force-
state mapping problem, one of the immediately noticeable benefits of the Bouc-Wen’s model form in Eq. (2)
is that the derivative of the restoring force can be defined by two states; the velocity & and the restoring force

r itself.

One of the main motivations for exploring adaptive techniques, in the context of active control appli-
cations, comes from the recognition that since structures behave in unexpected forms and often exhibit
nonlinear hysteretic behavior when excited by strong-ground motions, the implementation of conventional
fixed controller strategies may prove to be naive. Often the governing response properties only exhibit
themselves for the first time when subjected to strong shaking. As a result of this, active control strategies
should incorporate flexible adaptive identification schemes which can quickly capture and emulate the es-
sential response signature of a structural system and react accordingly. Of course, another key feature of
adaptive techniques is that they can model time-varying behavior, for example, structural deterioration is

often observed during the course of strong excitation.

Adaptive identification schemes can be employed in either the form of a parametric or nonparametric
model. Parametric adaptive identification schemes have been investigated in the context of strong non-
stationary excitations (Smyth et al.[42], Sato and Qi[41]). However, this work is limited by the chosen
parametric model to identifying certain classes of nonlinearities. In this paper, the parametric modeling will
be reviewed, and the motivation for moving to nonparametric techniques in the context of active control

will be discussed. Recently the authors have developed a new type of adaptive artificial neural network
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Figure 2: Comparison of the restoring force vs. displacement phase-plane plots for Bouc-Wen’s models
with different v and § combinations. Note that each column of plots has a fixed § value, and each row, a
fixed v value.
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identification technique for the real-time hysteretic modeling problem (Kosmatopoulos et al., [28]). This
approach can cope with a much broader family of unknown nonlinear response behaviors. Some details of
the approach will be reviewed, and the general methodology will be discussed with a view toward future

development in this area of research.

2 Problem Formulation

The fundamental problem which will be considered here is the prediction of the restoring force of nonlinear
hysteretic structural elements, and the adaptive estimation of either a nonparametric or parametric model
which describes the elements’ dynamic behavior. The prediction and parameter estimation is conducted

based on the system’s measured dynamic response (usually acceleration measurements).

The structural topologies which will be considered range in complexity from the simple SDOF system
shown in Fig. 1(a), to the very general continuous system shown in Fig. 1(c). For the nonlinear SDOF
system shown in Fig. 1(a), the equation of motion was given in Eq. (1). The identification problem may be
formulated in several ways, depending upon which system parameters are known. For example, it will be
shown that if the mass of this system is considered unknown a priori, it can still be identified as one of the

system parameters under some conditions.

As mentioned in the introduction, identification approaches can be divided into two categories: paramet-
ric and nonparametric. Parametric identification is the most desirable, because if successful, the parameters
in a model for the restoring force will have some physical meaning. A simple example of this would be the
stiffness k& or damping ¢ parameters in a linear restoring force problem. As will be shown later, while para-
metric approaches have this obvious benefit, they suffer from the fact that, to obtain each of these parameters
which have physical meaning, the corresponding restoring force signal must be measurable, and an appro-
priate phenomenological form of the model must be selected. This often heavy requirement that signals be
measurable has led researchers (out of necessity) to turn to nonparametric models. While such models may
be able to model response behavior accurately and with considerable flexibility, their parameters usually

have little or no physical meaning.

2.1 Parametric Modeling

As previously mentioned, the Bouc-Wen model was chosen for its ability to capture, in a continuous func-
tion, a range of shapes of hysteretic loops which resemble the properties of a wide class of real nonlinear
hysteretic systems (Vinogradov and Pivovarov[49]). The shape of the hysteretic loop is governed by the
combination of the parameters 1, A, v, 3, v and n, and it can be made to assume a wide range of qualita-

tive features spanning the range from purely polynomial-like nonlinearity to a fully elastoplastic system.

The parametric modeling of a nonlinear element can be made quite flexible by incorporating additional

terms into the model. For example (Smyth ef al.[42]), the Bouc-Wen model may be complemented by a
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linear damping parameter c and a cubic term parameter d. In the SDOF Mass Known case (i.e., it is assumed

that the value of m is available) the variable of interest r could be related to an auxiliary variable z by

Z=r=u—max

z = kx4 ci+dad 3
— [ /) [Blal =t =yl de

t

0
The signal to be predicted, z in Eq. (3), can be rewritten in a more generic form as a linear combination
of the product of the unknown parameter clusters (in vector ) and the corresponding nonlinear observed

signal combinations (in vector ¢):

z=0"¢ 4

It should be noted that if the power n which appears in the model is an unknown parameter to be identified, it
will be difficult to identify directly since it appears nonlinearly in the equation. The way this problem is
circumvented is by making a short series of terms with powers of n = 0,1, 2, ..., and then identifying the
corresponding coefficient clusters. If the cluster is zero, then one can assume that that particular power term
does not appear in the model of the system. It was found that terms of up to n = 3 are more than adequate
for most applications encountered in the applied mechanics field. The parametric model with its series terms

would then look something like:

n=N
3 = sz = k(sx) + c(si) + d(sz®) — (1/) Z anv (B 2|7 r — yi|r|") 5)

n=1

where s is the Laplace operator, and N is a user-specified model-order parameter.

After some manipulation, and defining the following terms

sz
5 6
® (s + ) ©)
0" = [ku ¢, d7 _(1/77)0’1V67 (1/77)(111/77 _(1/77)0’2Vﬂ7 .. ']T (7)

and T
5| = e | S e N 1 = ®

St a) (sta) (sta) (s+a) (s+a) (s+a) (s+a)
one may re-write Eq. (5) as a parametric model which is linear in 8* as follows

z=6"¢ ©)

This result is noteworthy because it means that the estimation of the desired parameters contained in the 8*
vector can be done using the filtered signals Z and ¢ and be expressed in the form of a linearly parameter-
ized estimator. Any low-pass filtering of signals %, r and u to remove measurement noise should be done
independently before inserting the signals into the parametric model. Note, that the parameter o should be

carefully chosen and should in general be quite small (Smyth et al. [42]).
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Figure 3: Block diagram of the Volterra Wiener Neural Network
2.2 Nonparametric Modeling

An alternative parameterization whose parameters do not have any physical meaning is also explored. The
nonparametric model which the authors developed in a recent study is the Volterra/Wiener Neural Network
(VWNN) (Kosmatopoulos [27], Kosmatopoulos et al. [28]) which is linear-in-the-weights, and can hence
be written just like Eq. (4). Such a parameterization requires very little a priori information about the
system properties, and will potentially require fewer measurement quantities to be available. These are two
very significant advantages over physical model based identification techniques, because a system may not
behave within the class of models initially assumed. The VWNN model allows the system nonlinearities to
be extremely general and completely unknown at the outset. When the system becomes more complex than
the SDOF system shown in Fig. 1(a), with many interconnected elements, such as the general system shown
in Fig. 1(c), parametric modeling approaches to this problem require more signals to be measurable than is
realistic in civil applications. In the case of nonparametric identification, the internodal restoring forces are
not estimated because of insufficient sensor information, and therefore, the internodal elements parameters
remain unknown. Rather, the resultant force which each node experiences due to the elements to which it

may be connected is estimated.

The details of the VWNN can be found in the authors’ recent work Kosmatopoulos et al.([28]), however
for this overview paper it is sufficient to focus on its basic structure. The VWNN has the same very general
function approximation properties of the Volterra/Wiener series expansion. Its neural network architecture is
designed so that it can be trained adaptively without highly costly back-propagation or other computationally
heavy training methods. In short, this architecture is achieved through the use of two basic modules; 1) a
dynamic module consisting of a bank of stable transfer functions whose parameters are user-defined, and 2)
a high-order neural network (HONN) which combines outputs of the transfer functions in polynomial cross-
terms and whose parameters need to be trained. A schematic representation of the two modules is shown
in Fig. (3). Notice that the notation of the second module is reminiscent of the parametric notation 87 ¢.
Similarly, this single-layer network has unknown parameters contained in a matrix W, and the observation
vector ¢ is actually a vector composed of a nonlinear activation function applied to the output signals of the
dynamic module H (s). The H (s) bank of stable transfer functions serves as a memory operator allowing the
overall model to be able to handle hysteresis. The ( vector is simply the vector of raw (directly or indirectly)

measured quantities used as input to the model, and z, as before is the objective function one wishes to track.
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2.3 Adaptive Laws

The adaptive law which tracks the measured restoring force and correspondingly updates the parameter
vector @ is driven by the error between the predicted force and the measured force at the previous time-step.
This is mathematically written as

0 = Peg (10)

where the normalized tracking error ¢ = (Z — 2)/A?, and 2 =estimate of Z using the current estimate 6 of
the exact 8*. P is what is called the gain matrix, and this can be a constant (positive semi-definite) matrix in

the case of the gradient method or it can be time-varying, e.g., in the case of the least-squares adaptive law.

The authors have found that both least-squares based, and gradient projection algorithms obtain very
good performance in the context of civil structural elements. Recently, additional effort has been made to
refine the rate of adaptation in optimal ways (Lin et al.[29]), without a priori information about the level of

excitation or type of excitation, and the corresponding response.

Although the authors have worked with several adaptive laws including the gradient method [13], from
experience, it was found ([42]) that the least-squares adaptive law with a forgetting factor had several desir-
able properties of tracking performance, parameter convergence, and requiring relatively few user-defined
parameters of its own. There are typically trade-offs between adaptability for tracking purposes, and smooth
parameter convergence; i.e., high gains can yield excellent tracking, but relatively unstable (and overly
sensitive) parameter convergence. Ideally, because the goal is adaptive identification, it is important to min-
imize the number of user-defined parameters in an adaptive law, because one wishes to make the law as
autonomous as possible. In its most basic form, the least-squares law with forgetting factor simply has two
design coefficients which must be chosen before use. The other necessary feature of all adaptive laws is their
computational efficiency. The least-squares adaptive law (which can be related to the Kalman filter), has an
adaptive gain matrix (often termed the covariance matrix in Kalman filter applications) which depends only
on the measurements in the observation vector ¢. No matrix inversion is required because the algorithm can

be written in a recursive form.

For the VWNN identification model, a gradient adaptive law with projection was used simply because
it was most convenient in these early stages of development of the VWNN to formulate the necessary

convergence proofs with a gradient based adaptive law.

It should be noted that, in contrast to off-line or “batch”-mode identification of linear or nonlinear
systems, the “output-error” approach is not realistically possible within the constraints of computational
efficiency required by online applications. For the “output-error” approach one would determine error based
upon a simulated response (from the beginning of the dynamic event) with the parameter values under
consideration (e.g., Beck [6]) . In contrast, the “equation-error” approach which is adopted here, differs
in that to determine error for given parameters, the measured states, for example displacement or velocity

which may appear in a model are those which are measured, and are not re-simulated with the parameter
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values.

3 Applications

Several applications of parametric and nonparametric identification are presented in the context of civil

structures during strong excitations.

3.1 Applications of Parametric Identification

The authors’ results from Chassiakos et al. ([13]) of an adaptive identification using the parametric Bouc-
Wen model with N = 2 in Eq. (5), is shown in Fig. 4 for actual experimental data from a cyclic test of
a steel beam-column connection. The time-variation of the system’s stiffness can be clearly seen in the
progressive decrease in the identified 6 parameter. In addition to the experimental data from the steel beam
column connection, an additional adaptive identification was performed on data collected from a shake-
table test of a reinforced concrete beam-column connection (Smyth et al. [42]). The tracking and parameter
convergence is shown in Fig. 5. Clearly the nonlinearity is quite different from the previous example, and a
distinct ‘dead-space’ nonlinearity (due to concrete cracking) can be seen. Notice also, that in this case most
of the parameters have not converged, even though restoring force tracking is quite good. (In this case ¢

was the mass, and can clearly be seen to converge rapidly to its true value.)
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Figure 4: Adaptive identification of structural steel sub-assembly undergoing cyclic testing. (a) Phase plane
plot of restoring force prediction vs. exact measured force; (b) evolution of the estimated parameters.

Beyond the experimental data cases which clearly demonstrate the real-world potential of the method,
careful studies were performed using simulated data generated from a Bouc-Wen model with known param-

eters.
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Figure 5: Adaptive identification of structural reinforced concrete sub-assembly undergoing cyclic testing.
(a) Phase plane plot of restoring force prediction vs. exact measured force; (b) evolution of the estimated
parameters.

3.1.1 Opver- and Under-Parameterization

An important issue to consider, is that to model a system’s response, the model needs to be complex enough
to cope with the type of system behavior exhibited. While this may seem obvious, it is useful to know what
happens when one chooses models which are either too simplistic (under-parameterized) or too complex
(over-parameterized) in the context of adaptive identification. The first concern is perhaps the former case
when one has a model which is under-parameterized. A simulation was conducted in Chassiakos et al. [13]
where a Bouc-Wen’s model was simulated with a value of n = 2, however the model (Eq. (5)- Eq. (9))
used to identify the system was only expanded up to n = 1 in the series. The tracking performance and the
parameter convergence are shown in Fig. (6). It is interesting to note in this case that, although tracking of
the response is good, the one parameter (fy = k) which actually is in the simulated model, is converging
to the wrong value (the exact value is 5 while the estimated value is ~ 6). This occurs as the estimation
model compensates for its incorrect parameterization. In this case, the three estimation parameters 6y = (k),
01 = (—(1/n)arvp), and 62 = ((1/n)a1vy) appear to be converging to fixed values, indicating that even

with the incorrect parameterization, good tracking can be closely mimicked for this range of response.

For over-parameterization, one is less concerned that one will be able to track the system output, because
of course the real system will be simpler than the capabilities of the model. It is interesting to note, however,
that assuming certain criteria about the richness of the excitation and the response (as will be discussed later)
that the unnecessary parameters will converge to zero. If those criteria are not satisfied, then the parameters
may not go to their true values, but will typically still yield a model which performs well from an output

standpoint.
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Figure 6: (a) On-line estimates of the identified hysteretic system parameters. The parameterization ex-
cluded the m, ¢ and d terms, and is of order N = 1, i.e. under-parameterized for this example. (b)
Phase-plane plots of restoring force z vs. the response displacement x. The solid line represents the exact
response, and the dashed line is the tracking obtained by algorithm with N = 1 parameterization. Only the
first 40 seconds of the simulation are shown for added resolution.

3.1.2 Simulation studies of MDOF Chain-Like Systems

In addition to the experimental results from SDOF systems, the methodology may also be used for the iden-
tification of MDOF nonlinear structural systems, assuming that sufficient sensor data is available. MDOF
chain-like structures (a typical simplification made to analyze multi-story buildings) can be decomposed
into a series of SDOF elements whose response parameters can be identified as outlined above. A simula-
tion study was conducted on a support-excited, chain-like MDOF system of the form shown in Fig. 1(b).
In the context of civil structures, this would be analogous to a building experiencing earthquake loading.
Each inter-story element was intentionally given a different type of structural nonlinearity to demonstrate

15¢ story element is a pure Bouc-

the range of behavior which the identification method can handle. The
Wen element, the 2"¢ story is a purely linear element, and the 3" is a hardening Duffing oscillator. The
phase-plane plot of these elements subjected to a random base excitation is shown in Fig. 7(a). In 7(b) the
rapid convergence to the correct @ values can be seen. The exact parameter values which correspond to the
identification parameterization are listed as follows:

Element #1: Bouc-Wen Type Nonl. 65 = 5,07 = —0.01,05 = 0,03 = —0.1,05 = —0.5

Element #2:  Linear 05=3,01 =0.1,05=0,05 =0,0; =0 (11)

Element #3:  Duffing Oscillator 05 = 0.125,07 = —0.05,05 = 0.1,05 = 0,0; =0

where 0" = [k, c,d, —(1/n)arvp, (1/n)aivy, —(1/n)agvs, .. " (12)
3.1.3 Time-varying model identification

The strength of adaptive identification approaches, beyond obtaining good tracking performance for control

purposes, is also the ability to detect changes in structural parameters. This was demonstrated by the authors
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Figure 7: 3DOF chain-like system and the on-line estimates of hysteretic parameters for each inter-story
element for the base-excited case.

for the experimental data set in Fig. (4) which exhibited gradual stiffness degradation (Chassiakos et al.,
[13]).

The chain-like MDOF system example which is presented above, was repeated, however this time with
the assumption that the first story element undergoes a sudden stiffness drop after 5 seconds. Specifically the
element’s stiffness parameter drops from 5 to 3. Figure 8(a) shows the parameter convergence, and Fig. 8(b)
shows the phase plane plot of the exact and estimated restoring force versus inter-story displacement. Notice
that the 6 value drops at ¢t = 5 seconds, however not perfectly to the value of 3. This has to do with several
factors. The first is the current value of the adaptive gains in the covariance matrix P which relate to 6.
These would often tend to decrease after a simulation begins. The forgetting factor is used to limit this
covariance wind-up effect. If the forgetting factor is not large enough to cope with such a sudden parameter
shift then, in general, the algorithm will converge to the new value more slowly than if the identification
scheme had been initially activated (i.e., with initial Pg) at ¢ = 5 seconds. This result is by no means meant
to represent the best performance obtainable by this method, rather it is presented to illustrate some of the
issues in algorithm autonomy which still need to be addressed. Lin et al.([29]) made some progress with
regard to this type of problem by incorporating a variable forgetting factor in the adaptive identification of

these types of time-varying systems.
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Identification of Element #1, where stiffness shifts from 5 to 3 at t=5 sec.
8 T T T T T T T T T

0 Parameters for Element #1

Restoring Force

— — — Estimated Force
Actual Rest. Force

4 | | | | | | | | |
15 1 0.5 0 0.5 1 15 2 25 3 3.5

(b) Interstory Displacement for Element #1

Figure 8: Identification results for the 3DOF system’s first story element under base-excitation, and with a
time varying stiffness parameter. Att = 5 sec. 0 for the element drops from 5 to 3.

3.1.4 Identifiability and Parametric Modeling

The limitations of the parametric approach can be shown for system identification purposes, when either the
model is phenomenalogically different from the assumed class of models, or when insufficient measurements

are available.

As mentioned previously, there are limitations to using the parametric identification approach for certain
system topologies. This is best seen by the following simple example. Given the SDOF system configuration
shown in Fig. (9), and the response of the mass to some force excitation, one may wish to identify the
properties of both of the elements. If one were to attempt to solve this problem with the method presented
here, one would write:

2 =s52= m(s&) +ki(sz1) + c1(s21) + di(s23)
n=N

— (1/m) > ararr (Bulda||re ]ty — yadalre]™)

=l 3 (13)
+ ka(sxa) + ca(sia) + da(sz3)

n=N
— (1/m2) Y asnva(Baldalra]"'ra — yada|ra|™)

n=1
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Figure 9: (a) Simple SDOF system which exhibits limitations of on-line hysteretic identification method,
(b) free-body diagram of dynamic system.

For example, in the Mass Unknown case, z = u and the mass m becomes a parameter to be identified in
the @ vector. Here, all the necessary signals are available for measurement except the element restoring
forces 71 and 75 themselves. Without the restoring force signal information, the ¢ signal vector cannot
be generated, and therefore the identification scheme cannot be used. Even if the mass were known, one
would only be able to indirectly measure r; + 79, i.e., the resultant force. The single element SDOF case
and the chain-like MDOF examples were solvable because the system topologies permitted an indirect
means of obtaining each hysteretic elements’ restoring force. Of course, if sensors are installed into a
structural system to measure element restoring forces, then such a system would be solvable by this online
identification technique. Alternatively, the system’s behavior could be parameterized, not in terms involving
restoring force response, but in terms of its motion responses only. This may yield satisfactory tracking, but

may be of limited use for anything other than control applications.

3.2 Application of Nonparametric Identification

The adaptive neural network modeling technique can be applied to nonlinear systems with increased com-
plexity in the inter-connections of the nonlinear elements. An example of such a complex interconnected
system is shown in Fig. 1(d) which is a reduced-order approximation of the extremely general continuous
system in Fig. 1(c). In this paper, however, for comparison with the previous MDOF example, the VWNN
approach is applied to the simulated 3DOF chain-like system, which is a simplistic representation of a three
story building. In this case, all of the interstory elements are hysteretic. Figure 10 shows the real-time
adaptation of the algorithm to yield accurate estimates of the interstory element restoring forces. In this case
the network was not trained at all before the simulated event, therefore the model is completely unknown a

priori. Despite this, the network adapts within a few cycles.
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Time-history of Restoring Forces and their Estimates
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Figure 10: Time History of actual (solid curve) and estimated (dashed curve) restoring forces when adapta-
tion is on for the VWNN adaptive identification approach.

While tracking performance is important, another consideration as mentioned before is the convergence
of the model parameters. Figure (11) shows the convergence properties of a subset of the many parameters
to be trained in the network. While there are many parameters (and this is a disadvantage), one important
advantageous property of this network architecture is clearly demonstrated: that is, that the parameters
converge. This is not necessarily to be expected because most neural networks will give non-unique solutions
for nonlinear systems. Because this network however is basically a single-layer network, with some pre-
defined processing on the front-end, it has very similar convergence properties of regular parametric adaptive
models that are linear-in-the-weights. These common conditions for convergence are that the system be
Persistently Excited. Loosely speaking, Persistence of Excitation (P.E.) exists if the components of ¢ (or ¢)
are linearly independent, in other words, each component has distinctive signature information (Ioannou &
Sun, 1996). This P.E. property is related to the Sufficient Richness conditions of the system excitation. White

noise excitation is an ideally rich input, which, parameterization permitting, will yield P.E. conditions.

4 Discussion
4.1 Integration of Measured Data and a priori Assumptions

The adaptive identification schemes discussed here depend on measured data from the structural system
response. Generally, only one of these signals is measured (usually acceleration), and the other two are
obtained by integration and/or differentiation schemes. This is an old problem in the identification of both

linear and nonlinear systems, and has been considered by others. The problem is particularly important in
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Figure 11: Time History of a subset of the VWNN adjustable parameters.

the context of nonlinear identification, because the nonlinear restoring forces are often modeled as nonlinear

functions of velocity and displacement.

Relatively sophisticated methods exist which will yield an accurate displacement and velocity record
from an original noise-contaminated acceleration record; however such methods cannot be employed in an
efficient, causal regime required by on-line applications. For example, no forwards/backwards filtering can
be used to negate effects of phase distortion. No frequency domain filtering can be conducted, because the
entire response record must be available. Unfortunately, precisely those discrete time-domain integration
schemes which are accurate for integrating the true (uncontaminated) part of a signal, also amplify the noise

component in the signal (particularly low-frequency noise). The converse is also true.

To show the effect of distorted measurements on the identification problem, consider the following

simple example of a SDOF linear system:
mIy + cxy, + kxp = uy (14)

where the subscript k£ denotes the discrete sample at ¢t = ;. With measured and integrated acceleration data

one will actually be performing identification on the following system:
m(Zg + k) + c(@r + G(2)nk) + k(xg + GQ(Z)T]k) = Uug (15)

miy + cxp + kxg = up — (mng + cG(2)nk + k:GQ(z)nk) (16)
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where G(z) is the discrete transfer function of the integration rule which is used. Notice that if the param-
eters to be identified are c and k, then they will actually be identified from Eq. (16) rather than from the
true system in Eq. (14). The difference between these two equations is the bracketed term on the right of
Eq. (16) which could be considered to be like an unknown exogenous input. Clearly, without knowing the
noise 7, one will not be able to identify the true parameters c and k because one is in effect working with

the wrong system equation.

In mechanical engineering applications, often one has the luxury of exciting a structure with a desir-
ably banded input signal, thus not aggrevating some of the low-frequency noise problems discussed above.
Unfortunately, in civil engineering applications one has little control over the excitation spectral proper-
ties. This integration problem is largely ignored in the literature. However, a few notable exceptions are by
Worden [53], Hamming [15], Audenino & Belingardi [2] , Xistris & Kumar [57], Smyth and Pei [43], and
others. The issue was explored in Lin et al.([30]) for adaptive identification of hysteretic systems, where
increasing parameter drift was observed with increased measurement noise level. In that study a third order

predictor-corrector integration scheme was used.

In addition to difficulties arising from integrating noise contaminated acceleration measurements, an
additional complication often arises when an erroneous a priori mass estimate is assumed. The reason for
this, is that in nonlinear systems, often the only way of “measuring” the restoring force is indirectly by
r(t) = u(t) — m&(t). In this case, the accuracy of the restoring force is highly dependent on the mass
estimate m. It has been shown in Smyth et al. (1999)([42]), that small errors in the mass estimate can
greatly skew the identified parameters. In that study, a 3 story building with nonlinear inter-story elements
was studied, and the effects on identification results of erroneous assumed mass were investigated. A Monte
Carlo simulation was conducted where the identification was performed with an uncorrelated Gaussian error
distribution on each individual mass. The identification model used was a 7 parameter model based on the
Bouc-Wen hysteretic model. As the error approached about 5%, clear skewness was exhibited in several

identified parameter distributions.

4.2 Trade-offs in setting user-defined parameters in adaptive laws

As illustrated in section 3.1.3, the choice of certain user-defined variables within the adaptive law, e.g.,
the forgetting factor might have yielded better performance in adapting to sudden changes in the structural
model parameters. This forgetting factor, for example, depending upon its value, can place more or less
emphasis on recent errors corresponding to the current parameter estimate 8. When the user chooses the
necessary design variables within the adaptive law, it is typically not known exactly what the level of system
response will be, how drastic and sudden parameter changes will be, and what the measurement noise levels
will be. If these were known a priori one might be able to choose an optimal adaptive law. Unfortunately
this is not generally possible; however, some additional autonomy can be built into the adaptive law, so that

it adjusts its own critical variables according to certain criteria. As previously mentioned, a good example
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of this is the variable forgetting factor implemented in Lin ef al.([29]), where a balance was struck between

smoothness of parameter convergence, and model output tracking.

5 Conclusions

The authors’ work in the area of adaptive modeling of nonlinear hysteretic systems has been reviewed in
general terms, with an emphasis on fundamental concepts which dictate needed developments in this im-
portant area of research. The advantages and disadvantages of parametric and nonparametric modeling
approaches are presented and their complementary features discussed. The need for additional sensor in-
formation, such as direct velocity or displacement data in addition to the usual acceleration measurements,
would go a long way towards helping with real-world data pre-processing problems such as the integra-
tion problem discussed earlier. While nonparametric schemes appear to be extremely promising, the model
unknown approach adopted with the VWNN implementation may be a more severe restriction (in that the
method assumes that virtually no information is available concerning the nature of the system being mod-
eled) than real-world applications dictate. If the user had an idea of the class of nonlinearities to be expected
in advance of a severe dynamic event, then they could choose a pared down version of what would otherwise
be an over-complicated (or stated more technically, an over-parameterized) model. To achieve this, better
understanding is required of how nonparametric models are able to match certain types of nonlinearities. In
some sense, this means bringer them closer to parametric models, where each parameter has a recognizable

meaning.

6 Acknowledgments

This study was supported in part by grants from the U.S. Air Force Office of Scientific Research, the National

Science Foundation, and the Federal Emergency Management Agency.



Adaptive Hysteretic ID ijnl"25jun2001 21 April 2004 17:02 19

7 References

References

[1] Andronikou, A. M., and Bekey, G. A., (1984), “Identification of Hysteretic Systems,” Proc. of the 18th
IEEE Conf. on Decision and Control, Dec., pp. 1072-1073.

[2] Audenino, A.L., and Belingardi, G., (1996), “Processing of Simultaneous Mechanical Random Re-
sponse Signals: Integration, Differentiation and Phase Shift Correction,” Mechanical Systems and Sig-
nal Processing, vol. 10, pp. 277-291.

[3] Baber, T.T., and Noori, M.N., (1984), “Random Vibration of Pinching, Hysteretic Systems,” J. Eng.
Mech Div. ASCE 110(7), 1036-1049.

[4] Baber, T.T., and Wen, Y.K, (1981), “Random Vibration of Hysteretic Degrading Systems,” J. Eng.
Mech. Div. ASCE 107(EM6), 1069-1087.

[5] Baber, T.T., and Wen, Y.K., (1982), “Stochastic Response of Multistory Yielding Frames,” Earthquake
Eng. Struct. Dyn 10, 403-416.

[6] Beck,J.L., (1998), “System Identification Methods Applied to Measured Seismic Response,” Proceed-
ings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, June.

[7] Benedettini, F., Capecchi, D. and Vestroni, F., (1995), “Identification of hysteretic oscillators under
earthquake loading by nonparametric models,” J. of Eng. Mech. 121, 606-12.

[8] Bouc, R., (1967), “Forced Vibration of Mechanical Systems with Hysteresis, Abstract,” Proceedings,
4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.

[9] Capecchi, D., (1990), “Accurate Solutions and Stability Criterion for Periodic Oscillations in Hys-
teretic Systems,” Meccanica, vol 25, pp 159-167.

[10] Caughey, T.K., (1960), “Random Excitation of a System with Bilinear Hysteresis,” J. Appl Mech.,
Trans ASME 27, pp. 649-652.

[11] Caughey, T.K., (1963), “Equivalent Linearization Techniques,” J. Acoustical Soc of America, 35, pp.
1706-1711.

[12] Chassiakos, A.G, Masri, S.F., Smyth, A., and Anderson, J.C., (1995), “Adaptive Methods for Identi-
fication of Hysteretic Structures,” Presented at the 1995 American Control Conference, Westin Hotel,
Seattle, Washington, 21-23 June 1995; (Proc ACC).

[13] Chassiakos, A.G., Masri, S.F., Smyth, A.W., and Caughey, T.K., (1998), “On-Line Identification of
Hysteretic Systems,” ASME Jo. of Applied Mechanics, vol. 65, no. 1, pp. 194-203.

[14] Grossmayer, R.L., (1981), “Approximate Stochastic Analysis of Elasto-Plastic Systems,” J. Eng. Mech.
Div. ASCE 107 (EM1), 97-116.

[15] Hamming, R.W. (1989), Digital Filters, 3rd ed., Prentice-Hall Signal Processing Series.

[16] Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton,
R.E., Soong, T.T., Spencer, B.F., and Yao, J.T.P., (1997),“Structural Control: Past, Present and Future,”
ASCE Journal of Engineering Mechanics, (Special Issue), Vol 123, No 9, Sept 1997, pp 897-971.

[17] Housner, G.W., Masri, S.F., and Chassiakos, A.G., (Editors), (1995), Proceedings of the First World
Conference on Structural Control, 3-5 August 1994, Los Angeles, CA.; Civil Engineering Dept, Univ
Southern Calif., Los Angeles, CA; ISBN 0-9628908-3-9.

[18] Ioannou, P.A. and Sun, J., (1996), Robust Adaptive Control, Prentice-Hall, Upper Saddle River, NJ.



Adaptive Hysteretic ID ijnl"'25jun2001 21 April 2004 17:02 20

[19] Iwan, W.D., (1966), “A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Re-
sponse,” J. Appl Mech. 33(4), 893-900.

[20] Iwan, W.D. and Lutes, L.D., (1968), “Response of the Bilinear Hysteretic System to Stationary Ran-
dom Excitation,” J. Acoust Soc. Am 43(3), 545-552.

[21] Iwan, W.D. and Cifuentes, A.O., (1986), “A Model for System Identification of Degrading Structures,’
Jnl Earthquake Engineering and Structural Dynamics, vol 14, No 6, pp 877-890.

[22] Iwan, W D; Huang, C.-T., (1996), “On the dynamic response of non-linear systems with parameter
uncertainties,” International journal of non-linear mechanics, 31, no. 5, pp. 631.

[23] Jayakumar, P., and Beck, J.L., (1987), “System Identification Using Nonlinear Structural Models,’
Proceedings, Structural Safety Evaluation Based on System Identification Approaches, Lambracht,
Germany, pp. 82-102.

[24] Jennings, P.C., (1964), “Periodic Response of a General Yielding Structure, ” Journal of Engineering
Mechanics Division, ASCE 90(EM2), pp. 131-166.

[25] Karnopp, D. and Scharton, T.D., (1966), “Plastic Deformation in Random Vibration,” J. Acost Soc Am
39, 1154-1161.

[26] Kobori, T., Minai, R, and Suzuki, Y., (1976), “Stochastic Seismic Response of Hysteretic Structures,’
Bull Disaster Prevention Res Inst 26 (part 1), pp. 55-70.

[27] Kosmatopoulos E.B. (1999), “Neural controllers for output feedback control,” IEEE Transactions on
Automatic Control.

[28] Kosmatopoulos, E.B., Smyth, A.W., Masri, S.F. and Chassiakos A.G., (2001), “Robust Neural Estima-
tion of Restoring Forces in Nonlinear Structures Under Nonstationary Random Excitation,” ASME Jo.
of Applied Mechanics, [accepted for publication].

[29] Lin, J.-W., Betti, R., Smyth, A.W., and Longman, R.W., “On-Line Identification of Nonlinear Hys-
teretic Structural Systems using a Variable Trace Approach,” ASCE Jo. of Engineering Mechanics,
[submitted in February, 2000].

[30] Lin, J.-W., (2001), PhD Thesis, Columbia University.

[31] Loh, C. and Chung S., (1993), “A three-stage identification approach for hysteretic systems,” Earth-
quake Engineering & Structural Dynamics 22, 129-50.

[32] Masri, S.F., and Caughey,T.K., (1979), “A Nonparametric Identification Technique for Nonlinear Dy-
namic Problems”, Journal of Applied Mechanics, ASME 46(2), pp. 433-447.

[33] Masri, S.F., Miller, R.K., Traina, M.-1., and Caughey, T.K., (1991), “Development of Bearing Friction
Models From Experimental Measurements,” Journal of Sound and Vibration 148(3), pp 455-475.

[34] Ni, Y.Q., Ko, J. M., Wong, C.W.,, (1999) “TECHNICAL PAPERS - Nonparametric Identification of
Nonlinear Hysteretic Systems,” Journal of engineering mechanics, 125, no. 2, pp. 206-215.

[35] Park, Y.J., Ang, A. H-S. and Wen, Y.K, (1987), “Seismic Damage Analysis of Reinforced Concrete
Buildings,” J. Struct. Eng. ASCE 111(4), 740-757.

[36] Peng, C.Y. and Iwan, W.D., (1987), “Identification of Hysteretic Structural Behavior from Strong
Motion Accelerograms,” Proceedings, Structural Safety Evaluation Based on System Identification
Approaches, Lambrecht, Germany, Friedr. Viewg & Sohn., Braunchweig/Wiesbaden F.R.G. pp. 103-
117.

[37] Peng, C.Y. and Iwan, W.D., (1992), “An identification methodology for a class of hysteretic structures,’
Earthquake Engineering & Structural Dynamics 21, 695-712.

[38] Powell, G.H. and Chen, P. F-S, (1986), “3-D Beam-Column Element with Generalized Plastic Hinges,”
J. Eng. Mech, ASCE 112(76), pp. 627-641.



Adaptive Hysteretic ID ijnl"'25jun2001 21 April 2004 17:02 21

[39] Roberts, J.B., (1987), “Application of Averaging Methods of Randomly Excited Hysteretic Systems,”
Proceedings, IUTAM Symposium on Nonlinear Stochastic Dynamic Engineering Systems, Innsbruck,
Austria, pp. 361-380.

[40] Roberts, J.B., and Spanos, P.D., (1990), Random Vibration and Statistical Linearization, John Wiley
& Sons, New York, NY.

[41] Sato, T. and Qi, K., (1998), “Adaptive H, filter: its applications to structural identification,” J. Eng.
Mech., ASCE.

[42] Smyth, A.W., Masri, S.F. & Chassiakos, A.G., (1999), “On-Line Parametric Identification of MDOF
Non-Linear Hysteretic Systems,”ASCE Journal of Engineering Mechanics, , February.

[43] Smyth, A.W., and Pei, J.-S., (2000), “Integration of Measured Signals for Nonlinear Structural Heaslth
Monitoring,” Third US-Japan Workshop on Nonlinear System Identification and Health Monitoring,
Los Angeles, CA, October 20-21.

[44] Spanos, P.D., (1981), “Stochastic Linearization in Structural Dynamics,” Appl Mech Rev 34(1).

[45] Spencer, B.F., and Bergman, L.A., (1985), “On the Reliability of a Simple Hysteretic System,” J. Eng.
Mech. Div. ASCE III, 1502-1514.

[46] Sues, R.H., Wen, Y.K., and Ang, A. H-S., (1985), “Stochastic Evaluation of Seismic Structural Perfor-
mance,” J. Struct. Eng. ASCE 111(6), pp. 1204-1218.

[47] Sues, R.H., Mau, S.T. and Wen, Y.K., (1988), “Systems identification of degrading hysteretic restoring
forces,” J. Eng. Mech., ASCE 114, 833-46.

[48] Toussi, S. and Yao J.T.P., (1983), “Hysteretic Identification of Existing Structures,” Jnl Engrg. Mech.
Div., Trans ASCE, vol 109, No 5, pp 1189-1202.

[49] Vinogradov, O. and Pivovarov, 1., (1986), “Vibrations of a System with Non-Linear Hysteresis,” Jn/
Sound and Vibration, vol 111, No 1, pp 145-152.

[50] Wen, Y.K., (1976), “Method for Random Vibration of Hysteretic Systems,” J. Eng. Mech. Div. ASCE
102(EM2), 249-263.

[51] Wen, Y.K., (1980), “Equivalent Linearization for Hysteretic Systems Under Random Excitations,” J.
Appl. Mech. ASME 47(1), 150-154.

[52] Wen, Y.K. and Ang, A. H-S., (1987), “Inelastic Modeling and System Identification,” Proceedings,
Structural Safety Evaluation Based on System Identification Approaches, International Workshop,
Lambrecht, Germany, pp. 142-160.

[53] Worden, K., (1990), “Data Processing and Experiment Design for the Restoring Force Method, Part I:
Integration and Differentiation of Measured Time Data,” Mechanical Systems and Signal Processing,,
vol. 4, pp. 295-319.

[54] Worden, K., and Tomlinson, G.R., (1988), “Identification of Linear/Nonlinear Restoring Force Sur-
faces in Single- and Multi-Mode Systems,” Proc 3rd Int Conf on Recent Advances in Structural Dy-
namics, Southampton, U.K., pp 299-308.

[55] Yar, M. and Hammond, J.K., (1987a), “Modelling and response of bilinear hysteretic systems,” J. Eng.
Mech., ASCE 113, 1000-13.

[56] Yar, M. and Hammond, J.K., (1987b), “Parameter Estimation for Hysteretic Systems,” Jnl Sound and
Vibration, Vol 117, No 1, pp 161-172.

[57] Xistris, G.D., and Kumar, A.S., (1991), “Digital processing of mechanical transient response signals-
digital filter approach,” Mechanical Systems and Signal Processing, vol. 5, pp.447-459.





