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Where Are the Switches on This Thing?

L. F. Abbott

Introduction

Controlled responses differ from reflexes because they can be turned off and

on. This is a critical part of what distinguishes animals from automatons. How

does the nervous system gate the flow of information so that a sensory

stimulus that elicits a strong response on some occasions, evokes no response

on others? A related question concerns how the flow of sensory information is

altered when we pay close attention to something as opposed to when we

ignore it. Most research in neuroscience focuses on circuits that directly re-

spond to stimuli or generate motor output. But what of the circuits and

mechanisms that control these direct responses, that modulate them and turn

them off and on?

Self-regulated switching is vital to the operation of complex machines such

as computers. The essential building block of a computer is a voltage-gated

switch, the transistor, that is turned off and on by the same sorts of currents

that it controls. By analogy, the question of my title refers to neural pathways

that not only carry the action potentials that arise from neural activity, but

are switched off and on by neural activity as well. By what biophysical mech-

anisms could this occur?

In the spirit of this volume, the point of this contribution is to raise

a question, not to answer it. I will discuss three possible mechanisms—

neuromodulation, inhibition, and gain modulation—and assess the merits

and short-comings of each of them. I have my prejudices, which will become

obvious, but I do not want to rule out any of these as candidates, nor do I

want to leave the impression that the list is complete or that the problem is in

any sense solved.
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Neuromodulators versus Neurotransmitters

Neuromodulators can dramatically alter the responsiveness of neurons and

the transmission properties of synapses (Marder and Calabrese 1996). They

also have profound impacts on behavioral responsiveness—wakefulness and

sleep being a prime example. However, neuromodulators are thought to work

on a rather coarse scale, both temporally and spatially. Thus, while they

might be able to activate large numbers of neurons on a seconds time scale,

they may not be able to target small enough groups of specific neurons rapidly

enough to fulfill the switching role we seek. As a result, neuromodulation is

not generally considered to be a candidate mechanism for rapid and precise

switching of complex neural circuits and responses. Nevertheless, it is good to

keep in mind that this standard wisdom may be wrong (see Sherman and

Guillery 1998), and neuromodulation may play a bigger role in neuronal

switching than we currently suspect.

Neurons or Synapses

The state of a neural circuit and the information that it represents is generally

associated with the level and pattern of activity of its neurons. Following this

conventional view, as I do here, switching in neural circuits corresponds to

modifying that neural activity. However, it is worth mentioning an alterna-

tive way of thinking. Synapses are remarkably plastic over a large range of

time scales (see Abbott and Nelson, 2000, for example). This raises the pos-

sibility that a neural circuit might more appropriately be characterized by the

state of its synapses rather than by the state of its neurons. Neural activity

might then play a switching role by putting synapses into an appropriate

functional state, and switching might be accomplished primarily by modifying

the synapses within a neural circuit. In the examples I discuss later in this

chapter this is not the case; switching is accomplished by modifying neurons

not synapses.

Hard versus Soft Switches

Attention can have both modulatory and gating effects on neuronal re-

sponses. For some neurons, attention modulates response amplitude while

leaving selectivity unaltered (Connor et al. 1996; McAdams and Maunsell

1999; Treue and Martı́nez-Trujillo 1999). For other neurons, attention has a

more dramatic gating effect, making it difficult to evoke any response at all in

the absence of attention (Gottlieb, Kusunoki, and Goldberg 1998; Seidemann,
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Zohary, and Newsome, 1998). These two types of modification correspond to

what we might call soft and hard switching.

Due the existence of a threshold for action potential generation, hard

switching can be accomplished by strong inhibition. In other words, a neuron

can be switched from a responsive to a nonresponsive state by hyperpolarizing

it below threshold so it cannot fire any action potentials. Such a mechanism

has been proposed in the context of shifter circuits, an interesting discussion of

and proposal for switching in neural circuits by Anderson and Van Essen

(1987) and expanded upon by Olshausen, Anderson, and Van Essen (1993).

An observed correlate of this form of switching may be the up- and down-state

behavior seen in intracellular in vivo recordings (see Stern, Jaeger, and Wilson

1998, for example).

Using hard, on-off switching through strong inhibition requires us to

postulate that inhibitory neurons play a much more active and precise role in

cognitive processing than they are generally given credit for. The general

picture that emerges has circuits of excitatory neurons responding to stimuli

and generating motor responses, with a network of inhibitory neurons con-

trolling these excitatory networks and the responses they generate. A puzzle

here might be the relatively small fraction of inhibitory neurons in cortex

given that these are supposed to be responsible for controlling and switching

sensory pathways and motor responses in a precise manner.

An alternative to the hard switching provided by strongly inhibiting neu-

rons is a form of soft switching produced by modulating the gain of neurons.

Gain modulation appears to be a primary mechanism by which cortical neu-

rons nonlinearly combine input signals (reviewed by Salinas and Thier 2000).

It shows up in awide range of contexts including the gaze-direction dependence

of visual neurons in posterior parietal cortex (Andersen andMountcastle 1983;

Andersen, Essick, and Siegel 1985), and the effects of attention on neurons in

areas V4 (Connor et al. 1996; McAdams and Maunsell 1999) and MT (Treue

and Martı́nez-Trujillo 1999). Gain modulation has been proposed as a mecha-

nism for generating a variety of ‘‘nonclassical’’ receptive field properties of neu-

rons in primary visual cortex (Heeger 1992), and for the neural computation

of coordinate transformations relevant for tasks ranging from visually guided

reaching (Zipser and Andersen 1988; Salinas and Abbott 1995; Pouget and

Sejnowski 1997) to invariant object recognition (Salinas and Abbott 1997).

Although gain modulation is clearly associated with attentional effects, it is

not obvious how it could be used to generate switching in neuronal circuits.

Gain modulation is a more subtle effect, sometimes modify responses by only

10–20 percent, than the on-off switching we seek. Thus, for gain modulation

or any other soft switching mechanism to be a viable candidate for neuronal

switching, additional mechanisms must be introduced to amplify the effects

of modest gain modulations to provide all-or-none, on-off switching. The re-

maining sections are devoted to this issue.
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Amplifying Gain Modulation

How can a small amount of gain modulation lead to dramatic changes in

behavior? Here, in work done in collaboration with Jian Zhang (Zhang and

Abbott 2000), I discuss two possible answers to this question. These involve

the circuits shown in figure 21-1. In the model of figure 21-1A, responses in a

downstream neuron (the upper neuron in figure 21-1A) are normally sup-

pressed by a rather precise balance between excitatory and inhibitory input.

Gain modulation of the network neurons driving this downstream neuron

(the starred neurons in figure 21-1A) disrupts this balance allowing strong

excitatory input to drive the downstream neuron. Amplification arises due to

the cancellation of strong excitatory drive by an equally strong balanced

inhibitory input (see Shadlen and Newsome 1994; Troyer and Miller 1997,

for example).

The second example uses gain modulation to alter the effective recurrent

connections of a neural circuit. In the circuit of figure 21-1B, the synaptic

connections among the bottom row of neurons are funneled through the

upper row of neurons (such an architecture was studied in a different context

by Hahnloser et al. 1999). Neurons in the upper row are subject to gain

modulation (as indicated by the stars). Modifying the gain of the upper row of

neurons changes the synaptic connectivity among the lower row of neurons,

which can dramatically alter the selectivity and response amplitude of the

network activity evoked by feedforward input.

A B

* * *

* *

Figure 21-1. Two networks that amplify gain modulation effects. In both panels,
neurons subject to gain modulation are denoted by stars. Feedforward input
arising from a hypothetical stimulus enters the network through the afferents
indicated at the bottom of the circuit diagrams. (A) A network of recurrently
connected, gain-modulated neurons drives a downstream neuron. (B) A network
of neurons (lower row) is interconnected by pathways that pass through a set of
gain-modulated neurons (upper row).
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Switching through Modulation of Balanced Synaptic Input

In our implementation of the circuit of figure 21-1A, hundred recurrently

connected integrate-and-fire neurons with gain modulation (represented by

the starred units in figure 21-1A) drive a single downstream integrate-and-

fire neuron (the unstarred neuron in figure 21-1A). Feedforward inputs to the

recurrently coupled network neurons were chosen so that each of them is

tuned to a parameter characterizing the sensory input, which we refer to as

an image orientation angle in subsequent figures. The connections between

the recurrent network and the downstream neuron were developed by an

anti-Hebbian learning rule, which established a balance between excitatory

and inhibitory inputs to the downstream neuron (Zhang and Abbott 2000).

Gain modulation is applied to the neurons in the recurrent network by

adjusting the effective membrane time constant of the integrate-and-fire

model. Figure 21-2A shows the effect of the gain modulation on the response

of one network neuron to different stimulus angles. This is a typical gain-

modulated response tuning curve similar to those seen experimentally (see

McAdams and Maunsell 1999, for example). The modulation is multiplicative,

and the modulated neurons retain their selectivity when their response am-

plitudes are modified. When the network is gain modulated, different neurons

are modulated differently. Figure 21-2B shows the effect of modulation on the

entire population response of the network to a single stimulus orientation. The

amount of modulation is small for all network neurons.
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Figure 21-2. Gain modulation of the network neurons of figure 21-1A. Left, each
network neuron is tuned to the orientation of the stimulus as indicated by its firing
rate in response to different image orientations. Solid curve is without gain
modulation and dashed curve is with gain modulation. Right, the entire
population response to a given stimulus orientation is plotted by graphing the
firing rate of each neuron as a function of its identifying index. Gain modulation
shifts the responses indicated by the solid curve to responses indicated by the
dashed curve.
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Figure 21-3 shows that modest gainmodulation of the network neurons has

a large impact on the response of the downstreamneuron.Withoutmodulation,

the downstream neuron responds weakly, if at all, to the stimulus (upper panel

of figure 21-3). When the population activity of the network neurons is slightly

modified by gain modulation, the cancelation of balanced excitatory and in-

hibitory inputs responsible for this weak response is disrupted, and the down-

stream neuron responds to the stimulus vigorously and in a selective manner

(lower panel of figure 21-3).
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Figure 21-3. Responses of the network and downstream neurons to different
stimulus orientations without and with gain modulation. Stimulus orientations
are indicated at left. Population responses of the network neurons are plotted
in the left column of graphs in the same format as in the right panel of figure 21-2.
The membrane potential of the downstream neuron is shown in the right
column of plots. Top, without gain modulation, the downstream neuron responds
weakly to the stimulus. Bottom, with gain modulation, the downstream neuron
shows a strong, tuned response to the stimulus.
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Any system for attention-based switching must distinguish attended stimuli

from large-amplitude (i.e., high-contrast) stimuli. In another words, wewant to

pay attention to stimuli because they are significant, not simply because they

are intense. This is a potential problem with switching achieved by hyperpo-

larizing a neuron below its action potential threshold. For a given level of

hyperpolarization, an intense enough stimulus might evoke a response. In the

model with balanced input, increasing image intensity (contrast) raises the level

of both excitatory and inhibitory input to the downstream neuron, so the net

effect is small (left column of figure 21-4). A strong, contrast-dependent re-

sponse is only generated when gain modulation throws off this balance (right

column of figure 21-4).

Switching through Gain Modulation of Recurrent Pathways

A recurrent network can selectively amplify specific aspects of the input it

receives, with selectivity determined by the synaptic connections within the

network (Abbott, 1994; Douglas et al., 1995). When recurrent excitation is

strong (near the limit of instability), the network amplifies by a large factor,

and it becomes highly selective. The amplitude of the network response in this

case is very sensitive to the overall level of excitation within the network.
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Figure 21-4. Effect of contrast on the responses of the downstream neuron. The
level of contrast of the stimulus is indicated at left. The left column of plots shows
the membrane potential of the downstream neuron in the absence of gain
modulation of the network neurons. The response is weak and independent of
contrast. The right column of plots shows that the responses of the downstream
neuron are strong and sensitive to contrast when the network neurons are gain
modulated.
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In the architecture of figure 21-1B, the recurrent connections among the

network neurons are affected by the gain of the gain-modulated neurons.

Suppose that we label the neurons in the lower row of figure 21-1B with

indices i or j and those in the upper row with an index a. Let Ma
i denote the

strength of a synapse from gain-modulated neuron a to network neuron i and

Na
j denote the strength of a synapse from network neuron j to gain-modulated

neuron a. In a linear approximation, the matrix of synaptic weights for the

network neurons is proportional to
P

a M
a
i N

a
j . If neuron a is gain modulated

by a factor ga, this connectivity matrix is modified to
P

a gaM
a
i N

a
j . Thus, gain

modulation modifies the connectivity of the network. This can have a large

effect on the response of the network, especially if it is operating with a high

degree of amplification.

Discussion

To extend our understanding of neural circuits from the representation of

information to cognitive processing, we must face complex issues of neural

control and switching of neural circuits. At the present time, we are more in a

gathering than a ruling-out situation, and any reasonable candidate switching

mechanism for controling sensory and motor circuits is worth studying and

analyzing.
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