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Signal Propagation and Logic Gating in Networks of
Integrate-and-Fire Neurons

Tim P. Vogels and L. F. Abbott
Volen Center for Complex Systems and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110

Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and
accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in
which synchronous activity travels through feedforward layers of a neuronal network, and the propagation of fluctuations in firing rate
across these layers. In both cases, a sufficient amount of noise, which was added to previous models from an external source, had to be
included to support stable propagation. Sparse, randomly connected networks of spiking model neurons can generate chaotic patterns of
activity. We investigate whether this activity, which is a more realistic noise source, is sufficient to allow for signal transmission. We find
that, for rate-coded signals but not for synfire chains, such networks support robust and accurate signal reproduction through up to six
layers if appropriate adjustments are made in synaptic strengths. We investigate the factors affecting transmission and show that
multiple signals can propagate simultaneously along different pathways. Using this feature, we show how different types of logic gates can

arise within the architecture of the random network through the strengthening of specific synapses.
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Introduction

Cognitive processing involves signal propagation through multi-
ple brain regions and the activation of large numbers of specific
neurons. Computational approaches are useful for studying the
nature and mechanisms of this phenomenon. Two different
modes of signal propagation have been proposed. In synfire
propagation, the signal is carried by a wave of synchronous neu-
ronal activity within a subset of network neurons (Abeles, 1991;
Aertsen et al., 1996; Diesmann et al., 1999). In firing-rate propa-
gation, the wave of activity is an asynchronous elevation in the
firing rate of the neurons carrying the signal (van Rossum et al.,
2002). In both cases, it has proven surprisingly difficult to con-
struct networks that support stable and robust signal propagation
over a sufficiently wide dynamic range to support a significant
flow of information. Specifically, adjustments must be made to
keep the signal from dying out as it propagates through different
subsets of network neurons and also to keep the signal from
exploding and spreading to all of the neurons in the network. In
addition, large amounts of noise must be included for both forms
of propagation, in synfire chains to prevent synchronization
from spreading across the network (Diesmann et al., 1999; Aviel
et al., 2003; Mehring et al., 2003), and in firing-rate propagation
to prevent synchronization of the signal-carrying neurons them-
selves (van Rossum et al., 2002; Litvak et al., 2003; Reyes, 2003).
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Noise was included in early studies of signal propagation
(Diesmann et al., 1999; van Rossum et al., 2002) by injecting
random current into all of the neurons of the network. This cor-
responds to a source of noise that is external to the network.
Using an external noise source has the advantage that the level of
noise can be adjusted easily until a level appropriate for signal
propagation is found. The propagating signal and noise source
are also independent, so they do not interfere with each other.
However, an external source of noise is not biologically realistic.
Although neurons in real neural circuits show considerable irreg-
ularity and variability in their firing (Burns and Webb, 1976;
Dean, 1981; Softky and Koch, 1993; Holt et al., 1996; Anderson et
al., 2000), the source of this “noisy” activity is internal, not
external.

A number of studies have shown that networks of sparsely
connected spiking model neurons can produce highly irregular,
chaotic activity without any external source of noise (van
Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000; Mehring
etal., 2003; Lerchner et al., 2004; Vogels et al., 2005). These net-
works allow for the study of signal propagation without the un-
realistic injection of external noise. This has been done in the case
of synfire chains (Aviel et al., 2003; Mehring et al., 2003), but not
for firing-rate propagation. In studies of synfire propagation in
irregularly firing networks, a number of complications arose be-
cause of interactions between the propagating signal and the on-
going background activity of the network. Signal propagation can
be achieved in such networks, but the signals can produce
network-wide shock waves that can subsequently silence the
background activity of the network (Aviel et al., 2003; Mehring et
al., 2003). In light of these complications, we feel it is also impor-
tant to consider whether firing-rate coded signals can propagate
through spontaneously active networks. We must determine
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whether such networks generate sufficient internal “noise” to sup-
port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods

Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, 7 = 20 ms, and a resting membrane potential,
Viest = —60 mV. Whenever the membrane potential crosses a spiking
threshold of —50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M().

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:

v
T ar =(View=V) + gex(Eex_ Vies) + ginh(Einh_ Viesd) » (1)
whereas, in the COBA model, the membrane voltages are calculated as
follows:

dv
T W = (Vresli V) + gex(Eexi V) + ginh(Einhi V) . (2)

Reversal potentials are E,, = 0 mV and E,,;, = —80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) g., and g, are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
neuron fires, the appropriate synaptic variable of its postsynaptic targets
are increased, g, — g, + Ag., for an excitatory presynaptic neuron and
Qinh — &nn T Agnn for an inhibitory presynaptic neuron. Otherwise,
these parameters obey the following equations:

dgex
Tex W = “8ex (3)
and
dginh
Tinh dt = ~&inh > (4)

J. Neurosci., November 16, 2005 - 25(46):10786 —10795 « 10787

with synaptic time constants 7., = 5 ms and 7,,,;, = 10 ms. In most cases,
rather than reporting the values of Ag,, and Ag, ., which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
~10%. Except along the signaling pathway (see below), all excitatory
synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.

Input signals. To test signal propagation through the network, we gen-
erated a set of Poisson input spike trains with a firing rate r,(¢). These
form a Oth layer, L, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L,, by increasing their exci-
tatory synaptic conductances by g., — g., + Ag, whenever they received
an input spike from the layer 0 source. The synaptic strength Ag, was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r,(¢). To analyze propaga-
tion, we fed various signals r,(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers L; for i = 1, 2,..., 6. Finally, the
accuracy of signal propagation was examined by constructing r,(¢) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
1 neurons.

Signaling pathways. Signal propagation is investigated along specific
pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
work, and we do not require all-to-all connectivity between pathway
layers. Instead, we look for existing pathways already in the network. To
do this, we look for the most likely candidates for neurons that will be
affected by layer 1 activity. A potential signal-propagation pathway is a
series of layers of neurons that are connected to each other in a feedfor-
ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three ~90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i = 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i — 1,
and receives no synapses from layersi — 2,7 — 3,.. ., 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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short-circuit” condition reduces the number in subsequent layers signif-
icantly. For layer 6, we predict only ~10 candidate neurons. These are, of
course, mean values. In the actual simulations, we take advantage of
fluctuations around the mean (there are 200 * 14 connections per neu-
ron) that allow for more cells in higher layers. The number 33 was chosen
as a compromise between maximizing the number of neurons in each
layer and the number of layers that satisfy the prescribed conditions
(sometimes for layer 6, or when multiple pathways were identified, <33
neurons were found that satisfied all of the conditions and a smaller layer
size was used). Usually there are not enough cells available to support a
seventh layer. Increasing the connectivity of the network decreases the
number of cells that fulfill the no short-circuit rule, and hence decreases
the number of layers. We call the neurons within layer 1-6 pathway
neurons and the synapses between them pathway synapses. We control
signal propagation along the pathway by modifying the excitability of
pathway neurons or the strength of the pathway synapses.

Logic gates. To study signal processing within the network, we search
for candidate subcircuits that fulfill conditions for the computation we
want to achieve. The circuits we discuss are not constructed by hand, but
instead are found within the random architecture of the network. Once a
candidate circuit is found, adjustments are made to the synapses within
the circuit, but no new connections are made nor are any existing con-
nections eliminated.

To identify a candidate NOT gate, we search for a group of inhibitory
cells that is highly connected (at least three synapses) to an output layer of
cells spontaneously firing at rates between 30 and 40 Hz. We also seek out
a third layer consisting of excitatory cells that have three or more syn-
apses to the inhibitory cell population. The entire candidate gate consists
of ~60 neurons. To make this candidate unit functional, excitatory syn-
apses are strengthened by sixfold and inhibitory synapses by twofold.

To identify a neuronal “switch,” we search for a regular pathway con-
sisting of three excitatory layers, as described above. Additionally, we
found an inhibitory cell population with three or more synapses per cell
to the output layer of the excitatory pathway. Driving these inhibitory
cells with a population of highly connected excitatory neurons makes it
possible to control propagation along the excitatory pathway. To make
this candidate unit functional, excitatory synapses are strengthened by
10-fold and inhibitory synapses by 2-fold.

The candidate pathway for an XOR gate uses two reciprocally con-
nected switches that funnel their outputs into a common layer of neu-
rons. In such XOR gates, two input layers drive layers of both excitatory
and inhibitory interneurons, with the inhibitory neurons synapsing onto
the excitatory interneurons of the other switch. Neurons are chosen to be
maximally connected, as discussed in the previous paragraph. Input into
one path, thus, drives the output layer while inhibiting propagation along
the other path of the gate. A functional XOR gate involves ~220 neurons.
To make such a candidate unit functional, excitatory synapses are
strengthened by 10-fold and inhibitory synapses by 2-fold.

To find a candidate “flip-flop,” two recurrently connected loops of
excitatory neurons are identified, with the additional requirement that
each loop synapses onto a layer of inhibitory interneurons that in turn
contacts the other loop. With sufficiently strengthened synapses, it is
possible to maintain an elevated firing rate in one loop while suppressing
itin the other, even in the absence of external input. A functional flip-flop
involves ~200 neurons. To make this candidate unit functional, excita-
tory synapses are strengthened by 10-fold and inhibitory synapses by
8-fold. For this network structure, fine-tuning that depends on the actual
connectivity of the given network is necessary.

Analysis. To characterize sustained asynchronous network activity, we
monitor individual neuronal membrane potentials, the population firing
rate (the average of the firing rates across the network), average mem-
brane potentials, and interspike intervals (ISIs). The asynchronous irreg-
ular network activity we seek has an approximately constant population
firing rate and coefficients of variation (CVs) near 1 for the ISI distribu-
tions of the neurons. The ISI CV for a neuron is the ratio of the SD of the
ISI distribution to its mean. CV values close to 0 indicate regular spiking
patterns, values near 1 indicate irregular spiking, and values >1 indicate,
in our simulations, burstiness in the firing pattern, in which a neuron is
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likely to fire several spikes in a short interval followed by a longer period
of silence.

Signal propagation is analyzed by determining how similar the firing
rates of the different layers along the propagation pathway are to the layer
0 input rate. To do this, we calculate the firing rates of pathway neurons
in 5 ms bins by counting their spikes. We use the notation r,(t) for the
average of the firing rates of all of the neurons in layer i for the time bin
centered at time £, and we denote the time average of this firing rate by 7,.
As a measure of similarity of the firing of neurons in layer i to those in
layer 0, we compute the correlation coefficient as follows:

((ro() =7)(ri(t + 1) =7)),
o) =7)?) (e + 1) =7,

where the brackets denote an average over t values. We use the activity of
layer O as a reference, rather than layer 1, to distinguish signal transmis-
sion from propagation of fluctuations arising spontaneously in layer 1.
Signal propagation up to layer i is characterized by reporting the maxi-
mum value of C,(7), which we call the similarity. The value of 7, where
this maximum occurs, is the propagation delay for that layer. To test for
the propagation of synfire chains, synchronous spikes are fed into layer 1.
Spike number conservation across layers is used as an estimate for prop-
agation success.

Ci(r) =

(5)

Results

We are interested in studying signal propagation within a net-
work that sustains, by itself, ongoing activity characterized by
irregular firing that is asynchronous across the network. This
pattern of firing generates the noise needed for propagation. We
begin by discussing the nature and properties of this irregularly
and asynchronously firing network, and then address how signals
propagate through it.

Sustained activity
Previous studies have shown that large networks of sparsely con-
nected integrate-and-fire model neurons can sustain irregular
asynchronous activity (van Vreeswijk and Sompolinsky, 1996,
1998; Amit and Brunel, 1997; Brunel, 2000; Mehring et al., 2003;
Lerchner et al., 2004; Vogels et al., 2005). In most of these studies,
synaptic connections between neurons were simulated by inject-
ing an exponentially decaying pulse of current into the postsyn-
aptic neuron whenever the presynaptic neuron fired an action
potential. We call such models CUBA for “current based.” An
alternative is to transiently change the conductance of the
postsynaptic neuron after a presynaptic action potential. We call
these models COBA for “conductance based.” Because biological
synapses involve conductance changes and not current injection,
it might appear that COBA models would inevitably be more
realistic than CUBA models, but this is not necessarily the case.
The individual neurons in large network simulations are typically
represented by single compartments that must approximate the
full dendritic structure of the real neurons being modeled. De-
pending on the placement of synapses on the dendritic tree, a
CUBA or a COBA single-compartment model, or a mixture of
the two, may be a more accurate representation. For this reason,
we consider both CUBA and COBA models in our studies. Most
of the results we show are for COBA models, but every effect
reported was also reproduced in an analogous CUBA model.
Large, sparsely coupled networks display self-sustained irreg-
ular asynchronous firing of the type needed to support signal
propagation if their parameters are adjusted appropriately. For
our purposes, three conditions need to be met: sustained activity
(for at least as long as it takes to examine signal propagation),
relatively low firing rates, and ISI CVs near 1. To find such activ-
ity, we performed a parameter search of a 10,000 neuron COBA



Vogels and Abbott e Signal Propagation and Logic Gating in Networks

a) Network Stability b) Firing Rates ¢) Coefficient of Variation

50

o
s

S
5

L silence sustained activity 1s = [Hz]T10

B o (=]
PR S S W T 1
PR

N
M
M

excitatory conductance [nS]

o

1000 20 40 60 80

0O 20 40 60 8 1000 20 40 60 80 100
inhibitory conductance [nS]
Figure 1. Parameter search. Excitatory and inhibitory conductances refer to the parameters Ag,, and Ag;,, converted to

nanosiemens assuming a resting neuronal membrane conductance of 100 M2 The black square shows the parameter values used
inall subsequent COBA simulations. a, Duration of network activity. Parameter pairs in which network activity was sustained over
the length of the simulation (1000 ms) are colored in orange. Pairs leading to silent networks are shown in yellow and the same
regions are denoted by a white mesh in b and c. b, Average network firing rates. Firing rates in configurations with sustained
activity range from 8 to 200 Hz. ¢, Average CV of ISIs. CVs range from 0 (very regular) to 3 (very bursty) over the range in which
activity was sustained.

a) 250+ e) 20
- ) %
2001 o p e e e 10 *
L1504 e
= : 0
9 0 10 20 30
1001 . Average Firing Rate  [Hz]
50 {- f)
. 20
0 - %
b .
) > time [ms] 10
£ 20 yy[Hz] *
©
<10 0
g WMWW 3 10 30 100 1000
<9 Inter Spike Interval [ms]
2
£20qH )
£ [Hz] 9 5 \/
< %
§ 10 20
2
S0 T T T 1 10
o)
= 0
14 1 3
5 ISl CV
v}
v
o]
a
g
S 10,
d)
=
& .-504[mV] 6
2-60 5
_2-70
80p 100 200 300 75 65
2 time [ms] Average Membrane Potential [mV]
Figure2. Background activityina COBA model. a, Spike raster forasample set of 250 neurons over a simulated time of 400 ms.

b, Average firing rate of the entire population and of a Poisson train. The black trace shows the rate computed from 0.1 ms bins,
and the white trace shows the same activity computed using 5 ms bins. The top panel is computed from the network, and the
bottom panel, for comparison, from an equivalent number of Poisson processes with a 5 ms refractory period producing spikes at
the same rate as the network. ¢, Membrane currents of a randomly chosen neuron. Inhibitory currents are in dark gray, excitatory
ones are in light gray, and the total synaptic current is shown in solid black. d, Membrane potential of a randomly chosen neuron.
e, Distribution of firing rates of the network neurons. f, Distribution of ISIs of the network neurons. g, Distribution of CVs of ISIs of
the network neurons. h, Distribution of average membrane potentials of the network neurons. e— h, The arrow marks the mean
of the distribution. Pop., Population; Pot., potential.

J. Neurosci., November 16, 2005 - 25(46):10786 —10795 « 10789

model with 2% connectivity by systemat-
ically varying the strengths of its excitatory
and inhibitory synapses (Fig. 1). Figure 1a
indicates how long activity was sustained
in the network after a brief period of initial
stimulation, Figure 1b gives the average
firing rate of the network neurons (for the
period while the activity lasted in the case
of transiently active networks), and Figure
1c shows the ISI CV averaged over all net-
work neurons. The black square in these
figures denotes a state that satisfies the re-
quirements listed above (actually, the
“sustained” activity in the COBA network
lasts for as long as our simulations run, but
it will not last indefinitely) with conduc-
tances that correspond, on average, to 1
mV EPSPs and —2.6 mV IPSPs within the
active network. This state is used for the
remaining figures in which a COBA model
appears.
With the parameters described by the
black square in Figure 1, the network stays
active with an average firing rate of 9 Hz
and an average ISI CV of 1.2 (Fig. 2e,9).
Network activity for these parameters is
asynchronous. Neither the raster plot of
the spike times of 250 sample cells (Fig. 2a)
nor the average population activity (Fig.
2b, top) shows obvious temporal structure,
and autocorrelations also do not reveal any
obvious firing patterns (data not shown).
To quantify the asynchronous nature of the
firing, we compared the population firing
rate obtained from the network (Fig. 2b,
top) with equivalent fire rates derived from
a Poisson process generating spikes at the
same rate (Fig. 2b, bottom). The Poisson
spikes produce a smoother firing rate than
the network, indicating that there is some
temporal structure in the network activity,
but the overall levels of the fluctuations are
similar. For example, the variance of the
firing rate measured in 0.1 ms bins for the
network is 1.5 times that of the Poisson
train.

Excitatory and inhibitory currents are
balanced and tend to cancel each other
(Fig. 2¢), keeping the average membrane
potential of the network neurons at —70
mV (Fig. 2h). The sample single-neuron
membrane potential trace in Figure 2d
shows that spiking is irregular but tends to
come in bursts. This is further revealed by
the distribution of ISIs (Fig. 2f), which has
a peak at small intervals reflecting this
bursting and a second local maximum at a
larger interval indicating the typical inter-
burst interval.

It is possible to obtain activity similar,
but not identical, to that shown for the
COBA model in Figure 2 using a CUBA
model (Fig. 3a) with 0.25 mV EPSPs and
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Figure 3.

Differences in the background activity of the CUBA (a) and COBA (b) models. Distribution of ISls in each model plotted on a semilog scale is shown (left). The arrow marks the mean of

each distribution. Membrane potentials of a randomly chosen neuron in each model are shown (right). Note that the two models are operating in different parameter regimes (see Results).

—2.25 mV IPSPs. Although both the CUBA (Fig. 3a) and COBA
(Fig. 3b) models shown have the same average firing rate and
both display irregular asynchronous activity, they differ in two
important respects. First, spiking in the CUBA model shows
much less bursting than in the COBA model. This is revealed by
the absence of both a short-interval peak and a long-interval
interburst peak in the ISI distribution of the CUBA model (Fig.
3a,b, compare left panels) as well as being apparent in the sample
membrane potential traces (Fig. 3a,b, right panels). Interspike
intervals in the CUBA model approximately follow a Poisson
distribution, except for small ISIs that are suppressed by the im-
posed refractory period. Another important distinction is that
the CUBA model includes a constant current injected into all of
the neurons of the network sufficient to depolarize them by 11
mV. This causes the average membrane potential in the active
network to be —55 mV, whereas the average membrane potential
for the COBA models is —70 mV. Without this additional input,
the CUBA network does not sustain activity. In contrast, the
COBA model sustains activity without any injected current. Note
that the two network configurations shown differ significantly in
the sizes of their postsynaptic potentials. It is possible to build a
COBA model very similar to the CUBA model shown in Figure
3a, but only a COBA model can produce reasonable results in the
high synaptic-strength regimen shown in Figure 3b.

The ability of the COBA model to generate and sustain asyn-
chronous activity without current injection is attributable to the
voltage dependence of the EPSP and IPSP amplitudes for
conductance-based synapses (Kuhn et al., 2004; Kumar et al.,
2005; Moreno-Bote and Parga, 2005). In the CUBA model, EPSP
and IPSP amplitudes are voltage independent, but in the COBA
model, driving-force effects cause EPSPs to shrink and IPSPs to
grow with increased depolarization, or EPSPs to grow and IPSPs
to shrink with increased hyperpolarization. This provides a sta-
bilization mechanism that holds the membrane potential much
steadier than it is in the CUBA model. The resulting buffering
protects the network against excessively low or high firing rates
and creates enough stability to sustain activity.

Signal propagation

We study signal propagation by randomly choosing a set of 33
neurons, called layer 1 or L,, and injecting an input signal into
them (see Materials and Methods). For Figure 4, the input was a

square pulse of presynaptic activity from layer 0 (shown as the
blue raster under the axis in Fig. 4b—e), large enough to signifi-
cantly elevate firing in the L, neurons (Figs. 4b—e, red raster). We
then examined the effect that this layer 1 firing had on other
network neurons. We chose to monitor the neurons most likely
to be affected by defining a set of layer 2 neurons that were con-
nected to the layer 1 neurons by at least three synapses. We de-
fined layer 3 neurons as a set connected to the layer 2 neurons by
at least three synapses and proceeded in this manner to define
six layers of neurons along the potential signal propagation
pathway (see Materials and Methods). Figure 4a shows the
structure of such a pathway, and the activities of the neurons
in its different layers are indicated by the different colored
rasters in Figure 4b—e.

If we make no modifications to the synapses or neurons along
the candidate pathway in the network, firing-rate signals fail to
propagate beyond layer 1 (Fig. 4b). The way the network is set up,
only three synapses typically extend from layer 1 to a particular
neuron in layer 2. In addition to the input from layer 1, each cell
of layer 2 receives input from ~140 excitatory and 40 inhibitory
neurons. Even accounting for the elevation in the firing rates of
layer 1 neurons above the average activity of 10 Hz within the
network, the signal from layer 1 represents a small minority of the
EPSPs that a layer 2 neuron receives. With such a signal-to-noise
ratio, it is not surprising that signals fail to propagate.

We tried several different strategies to promote propagation:
depolarizing neurons along the pathway, increasing their re-
sponse gain, or increasing the strengths of the excitatory synapses
between pathway neurons. Depolarization of the pathway neu-
rons leads to a general increase in their firing rates, but the signal
fails to propagate beyond layer 1 (Fig. 4c). Increasing the gain of
neurons, which is usually thought of as changing the slope of the
input/output function to modulate intrinsic excitability, is, in the
case of the integrate-and-fire neurons we use, equivalent to in-
creasing the strengths of all of the synapses (excitatory and inhib-
itory) that they receive. This sensitizes the pathway neurons to all
of their inputs, not just the signal-carrying ones. In this case, the
average firing rate does not increase significantly, because the
depolarizing and hyperpolarizing membrane currents remain
balanced. Even with gain modulation of pathway neurons, the
signal fails to propagate beyond layer 1 (Fig. 4d).

Propagation of the firing-rate signal through all six pathway
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Figure4. Signal propagation. a, Network diagram showing the layers of a candidate pathway. Input (blue) is fed into the network through strong synapses onto layer 1 neurons (red). In this and
the following diagrams, layers 16 are indicated by the colors green, yellow, dark blue, orange, and light blue, respectively. The gray-filled circles denote nonpathway neurons of the network. For
this figure, layer 0 activity consists of a 30 ms pulse of activity at ~180 Hz. b, In a network with uniform excitatory and inhibitory synaptic strengths and neuronal parameters, no propagation occurs.
¢, Depolarization of pathway neurons by 15 mV fails to induce propagation, although firing rates in all affected cells increase. d, Gainincrease of pathway neurons. Because gain modulation maintains

the excitatory/inhibitory balance, firing rates do not increase significantly, but activity fails to propagate. e, Strengthening of pathway synapses by ~10-fold results in signal propagation.

layers without synchronization can be achieved by increasing the
strengths of the synapses that carry the signal from one layer of
pathway neurons to the next by ~10-fold (Fig. 4e). Other net-
work synapses not along the propagation pathway are not altered.
We define the synapse enhancement factor, or synapse factor, for
short, as the ratio of the strength of excitatory pathway synapses
to excitatory synapses not along the pathway minus 1. In other
words, for a synapse enhancement factor x, the strength of an
excitatory pathway synapse is 1 + x times that of an excitatory
nonpathway synapse. The result in Figure 4e indicates that the
spontaneous activity within the network is sufficient to support
signal propagation.

To further investigate the effects of strengthening pathway
synapses, we fed a constant input signal from layer 0 into the
network. Figure 5, a and b, shows the firing rates induced in layers
1-6 (different colored lines) of a COBA network by this constant
input for two different layer 0 rates (a, 50 Hz; b, 170 Hz). The
background firing rate of neurons not along the propagation
pathway is also shown (lowest blue line). The induced layer 1
firing rate (red curve) is close to the layer O firing rate and is
approximately independent of the synapse enhancement factor,
because the synapses from layer 0 to layer 1 are held fixed. For low
values of pathway synaptic strength (synapse enhancement fac-
tors not much greater than 0), the firing rates in layers 2—6 are
unaffected by the layer 0 input, and they remain near background
levels. As the strength of pathway synapses is increased, layers 2— 6
increasingly respond to the input. Eventually, at the point in
Figure 5, a and b, at which all of the different colored curves cross
(other than the curve for the background rate), all of the layers
respond to the input by firing at approximately the same rate.
Such agreement in the firing rates indicates faithful rate propa-
gation through the pathway layers of the network. We call the
synaptic factor at which this crossing occurs the optimal synapse
enhancement factor. If the synapse enhancement is further in-
creased beyond the optimal value, spontaneous as well as evoked
activity is transmitted along the pathway, which drowns out the
signal.

We extracted optimal synapse enhancement factors for differ-
ent layer 0 firing rates from sets of curves similar to those in
Figure 5, a and b, for both COBA and CUBA models. For the
COBA model, the curve of optimal synapse factor versus firing
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Figure 5.  Optimal synaptic enhancement. a, b, Average firing rates of layer 1 (red), 2
(green), 3 (yellow), 4 (dark blue), 5 (orange), and 6 (light blue) in response to a constant layer 0
rate of 50 Hz (a) or 170 Hz (b). The background rate of nonpathway neurons is indicated by the
straight black line at the bottom. The ratio of the strength of pathway synapses to nonpathway
synapses is 1 plus the synapse factor. The optimal synapse enhancement factor is indicated by
the vertical dashed line. ¢, The optimal synapse enhancement factors in COBA and CUBA models
for different layer 0 firing rates. The examples shown in @ and b are filled in red. d, The proba-
bility of a postsynaptic spike within a 5 ms window of a presynaptic single spike (open symbol)
or a synchronous triplet of presynaptic spikes (solid symbols), plotted as a function of the
synapse factor for both COBA and CUBA models.

rate has a long plateau at a value of 12, stretching from a layer 0
firing rate of 30 Hz to 160 Hz (Fig. 5¢, solid symbols). This means
that a wide range of firing rates can be transmitted across a path-
way using a fixed factor for the enhancement of pathway syn-
apses. When the layer 0 rate is too low, the signal gets lost in the 9
Hz background firing of the network, and network neurons can-
not fire faster than 200 Hz because of the imposed refractory
period. Thus, transmission occurs pretty much over the entire
range in which signal propagation could have been expected,
using a single value of synapse enhancement. The plateau value of
the optimal enhancement was ~13-fold stronger than the non-
pathway network synapses. In the active network, these synapses
create average EPSPs of 8 mV. In the CUBA model (Fig. 5¢, open
symbols), no plateau exists, indicating that the range of firing
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Figure6.  Astudy of synfire wavesin response to a synchronous signal fed into layer 1. @, No propagation occurs in the unaltered network. b, For synapse factor 9, the signal propagates up to layer
3 but then gets washed out by spontaneous activity. ¢, For synapse factor 12, the signal evokes a response in all layers, but packet length increases with every layer because of secondary spiking. d,
When the pathway neurons are gain modulated to decrease their responsiveness by 10-fold and the synapse factor is 30, the difference between pathway and nonpathway synapses can be increased
enough to propagate a synfire wave through six layers. Mod + x, Gain modulated and synapses strengthened. e, Average number of active cells in the first propagated wave front of a synfire event,
plotted for the different cases described in a— d. f, Probability of evoking a secondary spike within 5 ms of the end of the refractory period of the first spike, plotted for presynaptic singlets (solid) and
triplets (open). Each point is calculated from 5000 stimuli delivered to randomly chosen neurons. g, Secondary spikes are evoked when the postsynaptic conductance is large. h, Rise-time delays for
on (solid) and off (open) signals consisting of pulses between 0 and 100 Hz at synapse factor 12. Higher layers have slower rise times, because they are affected by the rise times of their precursors as well.

rates that can be transmitted in the CUBA model is much more
restricted than in the COBA model for a fixed enhancement of
pathway synapses.

As an alternative measure of synaptic strength, we determined
the average probability that a spike from a neuron in the propa-
gation pathway evoked a spike within 5 ms in one of its postsyn-
aptic targets in the next layer of the pathway (Fig. 5d). Over the
range of synapse enhancement factors considered, this increased
from near 0 to 0.4. Synchronous triplets of presynaptic inputs
increase the probability of postsynaptic spiking by approximately
threefold, similar to a linear summation of three separate events.

In addition to firing-rate propagation, we tested for synfire
propagation within the network by evoking synchronous events
in layer 0, with submillisecond precision. In the unaltered net-
work, a synfire wave failed to propagate beyond layer 1 (Fig. 6a),
as expected from earlier results, in which many more than three
“spike units” were needed for successful synfire propagation
(Diesmann et al., 1999). Strengthening pathway synapses by a
factor of 9 produces pulses of activity in the first few layers, but
the synfire wave ultimately gets dispersed by the background ac-
tivity of the network (Fig. 6b). At a synaptic enhancement of 12,
propagation occurs but a different problem arises (Fig. 6¢). The
initial tight synfire packet expands as it propagates through the
layers. This phenomenon is somewhat reminiscent of what has
been described as synfire explosions (Mehring et al., 2003), a
surge of high activity that holds the entire network hostage and
subsequently silences it completely. Explosions like these do not
occur in our network, probably because of its sparse and random
connectivity. The activity stays confined to the pathway, but the
duration of the synfire packet increases across the layers.

It is possible to achieve synfire propagation in the network by
combining a negative gain modulation along the pathway (i.e.,
weakening all synapses onto pathway neurons) with a strength-
ening of pathways synapses (Fig. 6d). This decreases the effect of
the background activity along the pathway but keeps the rest of
the network from becoming synchronized with the synfire pulse
by maintaining high noise levels for nonpathway neurons. Figure
6e summarizes the results of Figure 6a—d in terms of the percent-
age of spiking neurons within each layer during the propagation
(or nonpropagation) of the leading edge of the synfire wave.

The problem of lengthening synfire packets seen in Figure 6¢is
a general property of network propagation. The same kind of
lengthening can be seen for a firing-rate pulse in Figure 4e. The
probability to evoke a postsynaptic spike with a synchronous
triplet increases linearly with the number of synchronous presyn-
aptic spikes (Fig. 5d), but the total number of evoked spikes grows
faster because second and third postsynaptic spikes are evoked
(Fig. 6f,¢). With sufficiently strong synapses, a single synchro-
nous volley evokes a train of two or three synchronous spikes in
the next layer, which in turn evoke an even longer train in subse-
quent layers (Fig. 6¢). Packet lengthening limits the frequency
response for firing-rate propagation (but to realistic levels) (Fig.
7¢), but it is fatal to synfire propagation, because this requires the
faithful reproduction of a signal containing substantial high-
frequency components. The same synaptic enhancement factor
that allows the leading edge of the synfire packet to propagate
causes the trailing edge to lag more and more from one layer to
the next. Figure 6k shows the rise time delays for on and off
signals from 0 to 100 Hz and vice versa as solid and open symbols,
respectively. The longer rise time delay for off-signals is attribut-
able to this packet-lengthening effect.

We further tested firing-rate propagation by generating a
time-varying firing rate in layer 0 from filtered white noise (see
Materials and Methods) (Fig. 7a). Figure 7b shows average firing
rates in three of the six pathway layers. The firing rates in different
layers clearly track each other, but occasionally the network
transmits “ghost signals” [as for example at t =~ 500 ms (Fig. 7b)]
that arise spontaneously. Figure 7c shows that the induced fluc-
tuations along the pathway do not significantly modify the over-
all firing rate of the entire network.

To quantify the quality of signal transmission, we calculated
the correlation coefficients between the firing rate of layer 0 and
the average firing rates of the neurons in the six network pathway
layers (see Materials and Methods). The resulting six correlation
coefficients depend on the time delay at which the firing rate
correlation is computed, peaking at a value that gives the time
delay for propagation up to each layer (Fig. 7d, different colored
lines). These delays vary from 0 in layer 1 to 20 ms in layer 6. In
Figure 7e—h, we plot the value of the correlation coefficient at its
maximum, which we call the similarity. Figure 7, e and f, reiter-
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Transmission of time-varying signals in a COBA network. a, Raster of the propagation of a randomly varying layer 0 firing rate through all six layers. b, Average firing rates, calculated

in 5 ms bins, for layers 1, 3, and 6 responding to a randomly varying layer 0 rate. ¢, Average network firing rates (black trace, 0.1 ms bins; white trace, 5 ms bins) are relatively unaffected by the
propagating fluctuations. d, Correlations of layer 1 (red), 2 (green), 3 (yellow), 4 (dark blue), 5 (orange), and 6 (light blue) firing rates with the layer 0 rate computed at various time delays. e,
Similarity values of layer 16 firing rates with the layer 0 rate as a function of the synaptic enhancement factor in the COBA model. Optimal transmission occurs at a synapse factor of 12,
corresponding to a 13-fold increase in synaptic strength. f, Same as e, but for the CUBA model. g, Similarity values for layer 0 rates oscillating sinusoidally at different frequencies. h, Similarity values

when different numbers of signals propagate through the network along 10 different pathways.

ates the point made in Figure 5 about optimal synapse enhance-
ments and show that the tuning of this factor is most critical for
propagation through the later layers of the pathway in both
COBA (Fig. 7e) and CUBA (Fig. 7f) models. In the COBA model
with optimally strengthened synapses, the firing rate in layer 6
matches the layer 0 rate with a similarity value of 60%. Similarity
values are somewhat smaller in the CUBA model than in the
COBA model because of the plateau in the optimal synaptic en-
hancement curve for the COBA model in Figure 5c.

We next tested transmission using sinusoidally varying layer 0
firing rates and found that transmission fidelity depends on sig-
nal frequency (Fig. 7¢). Transmission is most accurate at ~5 Hz,
and accuracy falls off rapidly beyond ~20 Hz. The reason for this
can be seen in the raster of Figure 4e (see also Fig. 6¢,h). The
network is a poor temporal edge detector. As discussed above,
the duration of the response to a square wave input grows as the
signal propagates through the layers, and it is significantly length-
ened by layer 6. Figure 6/ shows that it takes each layer ~15 ms to
adjust the layer 6 firing rate from background activity to a steady
state of 100 Hz, and even longer to return to the background level.
This translates into a maximum change of ~6 Hz/ms. Once the
signal changes faster than this, responses start to wash into each
other and the signal gets lost. The peak at 5 Hz occurs because
oscillations at this frequency best mask spontaneously arising

ghost signals. The frequency maximum and fall-off seen in Figure
7g match quite well with frequency responses measured in corti-
cal neurons (Movshon et al., 1978; Orban et al., 1985; Hawken et
al., 1996).

With 10,000 network neurons and ~200 pathway cells, it is
possible to find several different signaling pathways within a net-
work and feed different signals into them simultaneously. Figure
7h shows similarity values for the six layers along from 1 to 10
pathways. Although transmission quality drops with multiple
pathways because of interference between them, it is still possible
to transmit signals at levels greater than the noise along multiple
pathways. With this many pathways, the probabilistic nature of
network connectivity does not allow us to find 33 neurons that
satisfy all of the conditions for layer 6. If we use the average
similarity value in layer 5, rather than layer 6, as a criterion for
transmission quality to compensate for this, we see that the accu-
racy of the reproduced spike patterns in layer 5 falls below 50%
for four simultaneously active pathways. With ~200 neurons
involved in each pathway, this corresponds to using 8% of the
network neurons for signal propagation.

Signal processing
Signal propagation is a prerequisite for signal processing, and we
now show that with signal propagation accomplished, the net-
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Processing units constructed by synaptically tuning existing network subcircuits.

work we are studying can also perform computations. To do this,
we identify candidate processing circuits within the existing ar-
chitecture of the network (by procedures discussed in Materials
and Methods), just as we identified candidate pathways previ-
ously. Also, as before, we then strengthen synapses within the
identified circuit to turn a candidate processing unit into a func-
tioning one. A common feature of all four circuits shown in Fig-
ure 8, already discussed for the excitatory pathway in Figure 7h, is
their relatively sluggish responses, amplified further by the longer
inhibitory synaptic time constant.

Figure 8a illustrates the structure for a candidate NOT gate, in
which a set of inhibitory interneurons controls an upstream layer,
so that driving the inhibitory layer silences the otherwise active
output layer. In Boolean terms, this represents an output of 1 for
input 0 and an output of 0 for input 1. Figure 8b shows an exten-
sion of the strategy used to trace out the NOT gate, to create a
switch that controls propagation along an excitatory pathway.
Driving the inhibitory cell population of the circuit impedes any
signal propagation along the excitatory pathway. Although the
example shown is an on/off switch, the same circuit can be used to
modulate a propagating signal in an analog manner by varying
the firing rate along the inhibitory pathway (data not shown).

To create an XOR gate (an exclusive OR gate that propagates
signals when either one of two pathways is active but not both),
two entwined switches synapsing onto the same output layer
are identified. When all synapses are strengthened sufficiently,
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the output layer fires above 60 Hz for single inputs and well
below 40 Hz for simultaneous inputs along both paths. Trans-
lated into Boolean terms, this represents the output of an XOR
gate (Fig. 8¢).

Figure 84 shows the result of strengthening synapses within a
candidate flip-flop circuit as a basic memory unit. A flip-flop
must maintain high firing rates in one of two recurrent loops,
even in the absence of an external signal, while suppressing activ-
ity in the other through a set of inhibitory interneurons. When
one of the two loops is driven by an external source, the loop
sustains its firing rate even after the input is shut off. The flip-flop
can reverse its state when the other loop is stimulated. Such ac-
tivity is seen in Figure 8d. Although the circuit can function as a
flip-flop, it is not perfect. Because of fluctuations in the back-
ground activity, the inhibitory activity from one loop is some-
times insufficient to silence the other. Such a failure is seen ~800
ms into the simulation of Figure 84, at which the flip-flop spon-
taneously changes its state, thus failing to maintain a memory.
Elevated and asynchronous sustained firing rates in such units are
possible only because of sufficient background activity, but this
activity can cause failures too.

Discussion

We studied signal propagation in two different types of network
models, COBA and CUBA. For the CUBA network, we used ir-
regular asynchronous activity as observed in previous work, and
for the COBA network, we chose parameters that also created
irregular asynchronous but, more importantly, self-sustained ac-
tivity. In such a network configuration, the size of postsynaptic
events is approximately one magnitude larger than in the CUBA
network, the average membrane potentials are lower, and the
resulting activity has a more burst-like character. In addition, we
tested some of our results in the low conductance regimen of the
COBA network, with similar outcomes. Both models provide an
internal, nonadjustable source of noise sufficiently large to pre-
vent synchronization but not large enough to destroy signals and,
thus, support rate-mode signal propagation. Furthermore, inter-
ference between the propagating signal and the background ac-
tivity did not prove problematic. Signal transmission in the
COBA model is more accurate, in the sense that a wider range of
firing rates can be transmitted across the layers of the signaling
pathway without parameter adjustment. This is because of the
presence of conductance-based synapses, rather than the fact that
the CUBA and COBA models operate in different parameter
regimens.

With sufficiently strengthened pathway synapses, a rate-
coded signal can travel through at least six synaptic stages with a
transmission delay of ~20 ms. A 13-fold increase in synapse
strength was needed to optimally transmit signals through a net-
work. This corresponds to evoked EPSPs, within the active net-
work, of ~8 mV, which is relatively large but not unheard of
(Song et al., 2005). In the 10,000 neuron, randomly connected
networks we studied, propagation involved only three pathway
synapses. One way to get more synapses involved in the signal
propagation and, thus, to lessen their strength, is to use a struc-
tured architecture, more like the real cortex, with columns and
targeted branching axons. This is a topic of ongoing research.

The optimal synapse enhancement depends on the nature of
the transmitted signal, especially in the CUBA model. The critical
factors seem to be the ratio of silent to active periods and the
distribution of firing rates within the active signal. A signal with
long silences or low firing rates requires a smaller optimal synapse
enhancement than one with large amounts of high-frequency
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firing. The poorer performance of the CUBA model may be at-
tributable to the fact that the membrane potential for CUBA
neurons hovers close to the threshold, which increases the prop-
agation of ghost signals, as well as the decreased membrane time
constant in the COBA model.

Signal propagation in the networks studied falls off as a func-
tion of frequency much as it does in the real cortex (Movshon et
al., 1978; Orban et al., 1985; Hawken et al., 1996). The failure of
the network to transmit high-frequency signals is the root of its
problems in supporting synfire waves. Although the probability
to evoke a single postsynaptic response to an input rises linearly
with the number of presynaptic spikes, the probability of evoking
asecond spike increases as well. Thus, synapses sufficiently strong
to propagate the leading edge of a synfire wave create a wake of
secondary spikes. Achieving synfire propagation requires a fine
balance between noise and synaptic strength. For synfire chain
propagation to succeed in the network we studied, gain modula-
tion had to be used to decrease the effect of noise along the path-
way. The parameter regimen over which synfire propagation is
possible is rather small.

A useful way to think about propagation is as an avalanche in
which each presynaptic neuron triggers activity in a postsynaptic
neuron with a certain probability (Harris, 1963; Zapperi et al.,
1995; de Carvalho and Prado, 2000; Beggs and Plenz, 2003). A
critical cascade occurs when, on average, each presynaptic neu-
ron fires one of its postsynaptic targets. In the pathways we con-
sider, the average number of synaptic targets of pathway neurons
is three, so we would expect the probability that a presynaptic
spike generates a postsynaptic spike in any one of these targets to
be 0.33 at criticality. Figure 5d shows that the spiking probability
is ~0.25 at the optimal synaptic strength. This is somewhat lower
than the critical value; even synchronous stimulation with three
spikes evokes a postsynaptic spike only 80% of the times. The
reason for this discrepancy is the probability of evoking a second-
ary spike (Fig. 6f,¢). The added probabilities for primary and
secondary spikes are ~0.3, close to the critical value. Although
this does not take into consideration the temporal slurring that
must occur as a result of delivering 20% of the stimulus 5 ms late,
it is reassuring that these numbers are fairly close to criticality,
guaranteeing spike number conservation.

The existence of multiple pathways in a network introduces
the possibility of gating interactions between them. Finding can-
didate pathways makes it possible to create logic gates, switches,
and memory units by strengthening selective synapses. Noise was
required for the logic gates to function properly, but it also caused
them to fail sometimes. Remarkably, all of these circuits could be
found within the random network, so only synaptic enhance-
ment was required to make them functional. We did this
strengthening by hand, but it would be interesting to investigate
whether various synaptic plasticity mechanisms could do this
autonomously.

The problem we address, how to get signals over a wide dy-
namic range to propagate reliably across neural circuits, is an
important element for understanding any sort of brain function.
We showed that networks based on our understanding of back-
ground activity provide a sufficient source of noise to support
signal propagation and that useful computations can be per-
formed by interacting pathways found within such networks.
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