15.13 Preparation of Thiols

Nomenclature of Thiols

- analogous to alcohols, but suffix is -thiol rather than -ol
- 2) final -e of alkane name is retained, not dropped as with alcohols

Nomenclature of Thiols

- analogous to alcohols, but suffix is -thiol rather than -ol
- final -e of alkane name is retained, not dropped as with alcohols

3-Methyl-1-butanethiol

Thiols are prepared from alkyl halides

$$H_2N$$
:
$$C=S + R-X - H_2N$$
:
$$H_2N$$
:
$$H_2N$$
:

S_N2 using thiourea as source of nucleophilic sulfur

the product is an isothiouronium salt

Thiols are prepared from alkyl halides

$$H_2N$$
:
$$C=0 + HS - R$$

$$H_2N$$

$$H_2N$$

$$H_2N$$

$$H_2N$$

hydrolysis in base converts the isothiouronium salt to the desired thiol

Example

$$CH_{3}(CH_{2})_{4}CH_{2}Br \xrightarrow{1. (H_{2}N)_{2}C=S} CH_{3}(CH_{2})_{4}CH_{2}SH \xrightarrow{2. NaOH} 1-Hexanethiol (84\%)$$

15.14 Properties of Thiols

Properties of Thiols

- 1. low molecular weight thiols have foul odors
- 2. hydrogen bonding is much weaker in thiols than in alcohols
- 3. thiols are stronger acids than alcohols
- thiols are more easily oxidized than alcohols; oxidation takes place at sulfur

Thiols are stronger acids than alcohols

have pK_a s of about 10; can be deprotonated in aqueous base

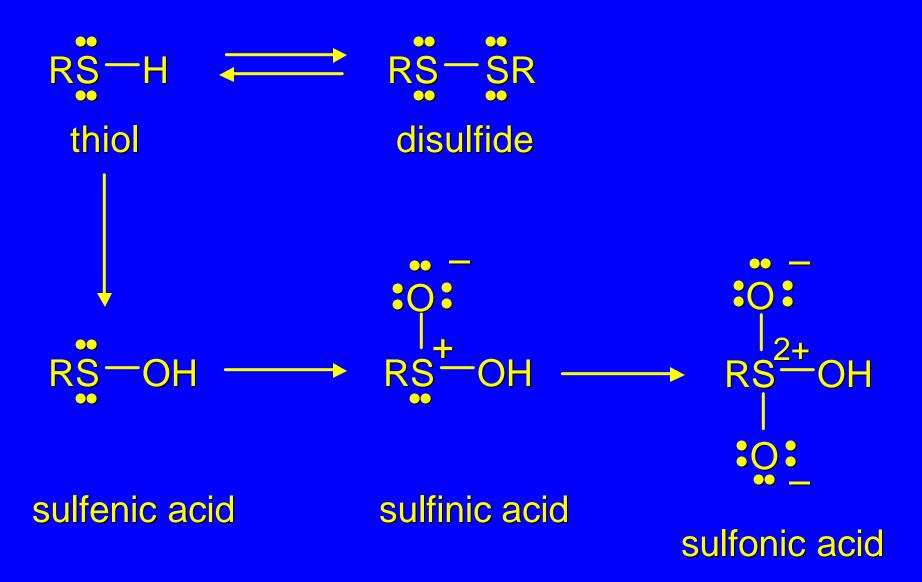
RS—H + OH

stronger acid

(p
$$K_a = 10$$
)

RS: + H—OH

weaker acid


(p $K_a = 15.7$)

Oxidation of thiols take place at sulfur

thiol-disulfide redox pair is important in biochemistry

other oxidative processes place 1,2, or 3 oxygen atoms on sulfur

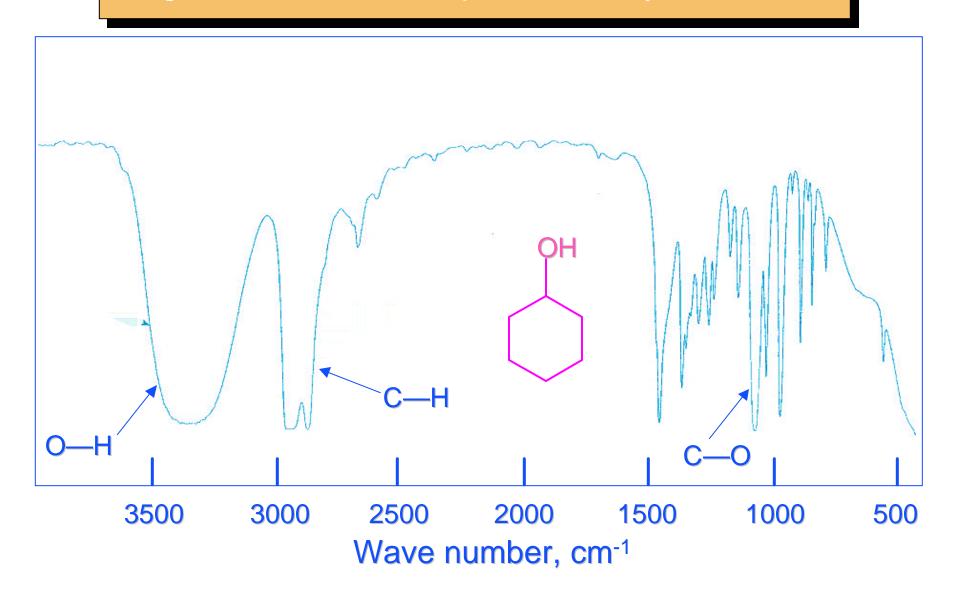
Oxidation of thiols take place at sulfur

Example: sulfide-disulfide redox pair

HSCH₂CH₂CH(CH₂)₄COH
$$O_2, \text{ FeCl}_3$$

$$S - S \qquad O$$

$$(CH2)4COH \qquad \alpha\text{-Lipoic acid (78\%)}$$


15.15 Spectroscopic Analysis of Alcohols

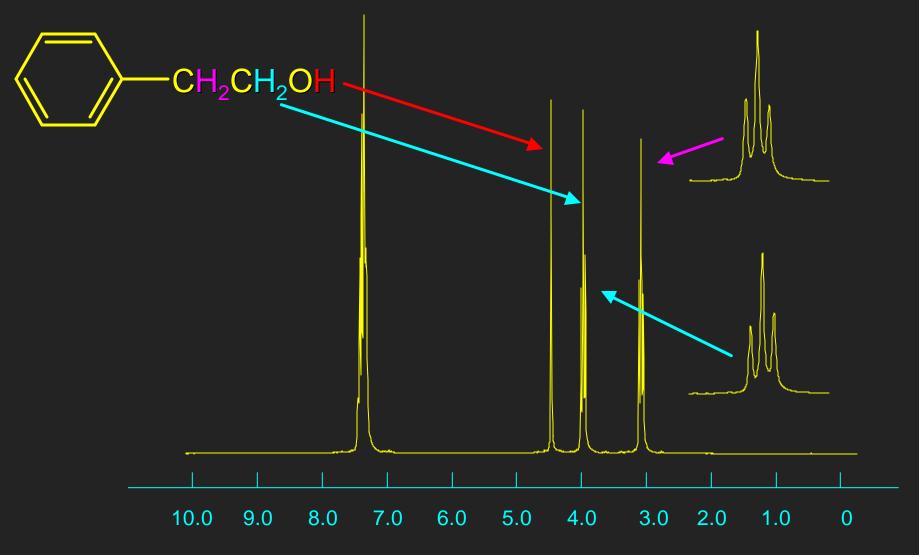
Infrared Spectroscopy

O—H stretching: 3200-3650 cm⁻¹ (broad)

C—O stretching: 1025-1200 cm⁻¹ (broad)

Figure 15.4: Infrared Spectrum of Cyclohexanol

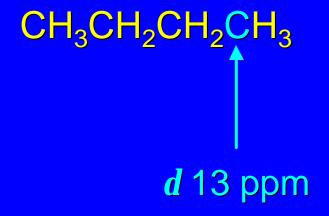
Francis A. Carey, Organic Chemistry, Fourth Edition. Copyright © 2000 The McGraw-Hill Companies, Inc. All rights reserved.

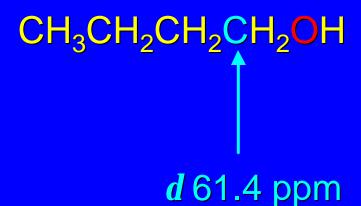

¹H NMR

chemical shift of O—H proton is variable; depends on temperature and concentration

O—H proton can be identified by adding D₂O; signal for O—H disappears (converted to O—D)

H—C—O signal is less shielded than H—C—H




Chemical shift (δ , ppm)

¹³C NMR

chemical shift of C—OH is d 60-75 ppm

C—O is about 35-50 ppm less shielded than C—H

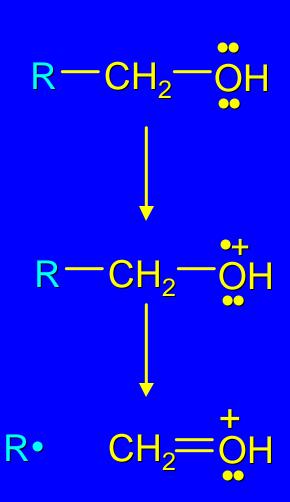
UV-VIS

Unless there are other chromophores in the molecule, alcohols are transparent above about 200 nm; λ_{max} for methanol, for example, is 177 nm.

Mass Spectrometry of Alcohols

molecular ion peak is usually small

a peak corresponding to loss of H₂O from the molecular ion (M - 18) is usually present


peak corresponding to loss of an alkyl group to give an oxygenstabilized carbocation is usually prominent

Mass Spectrometry of Alcohols

molecular ion peak is usually small

a peak corresponding to loss of H₂O from the molecular ion (M - 18) is usually present

peak corresponding to loss of an alkyl group to give an oxygenstabilized carbocation is usually prominent

