
Atmospheric Chemistry of

the Ozone Layer

NASA "Total Ozone Mapping Spectrometer" http://toms.gsfc.nasa.gov/

Levels of Atmospheric Ozone have been Dropping

EPA - http://www.epa.gov/docs/ozone/science/arosa.html

Decreasing Level of atmospheric ozone is harmful

There has been an increase in the number of cases of skin cancer and cataracts

Evidence of damage to plant and marine life

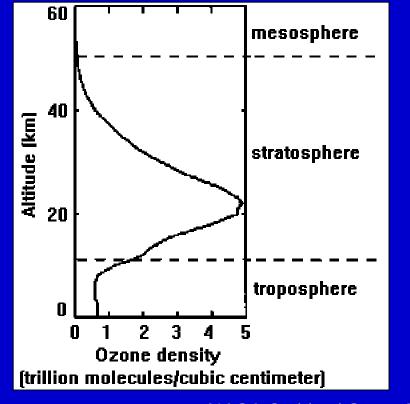
What is ozone?

Where in the atmosphere is it found?

What is its purpose in the atmosphere?

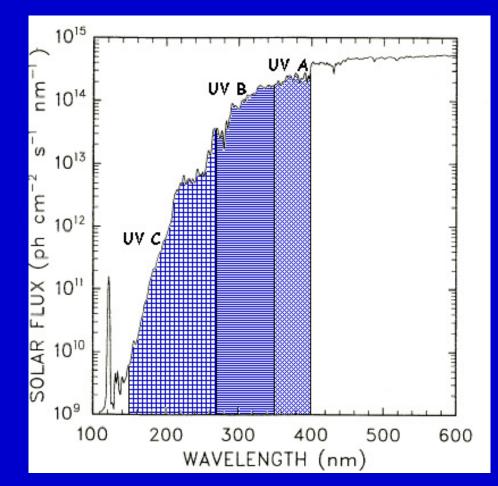
What is its chemistry?

Why are levels of atmospheric ozone dropping?

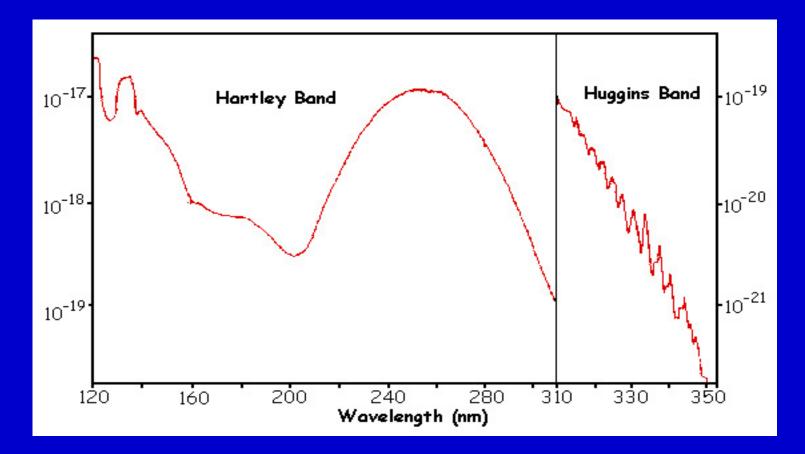

Finally, what is the Ozone Hole?

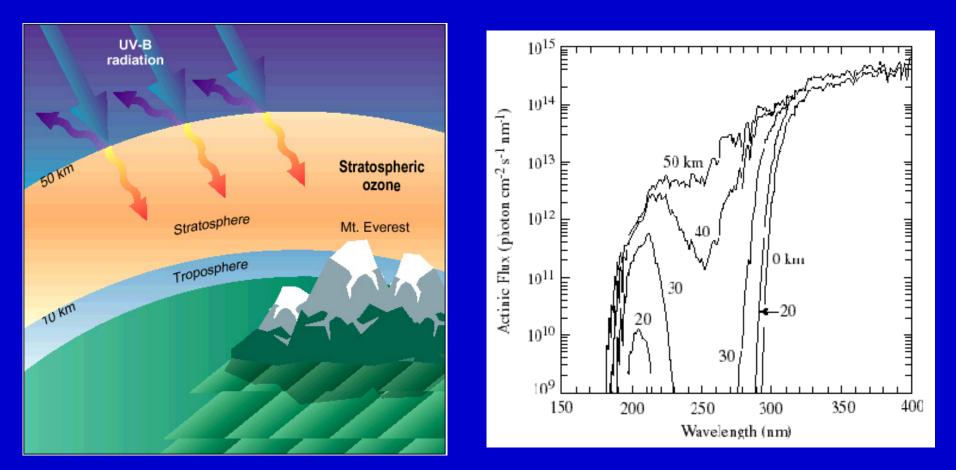
Structure of Ozone

O Atoms


Where is ozone found in the atmosphere ?

NASA Goddard Space Flight Center

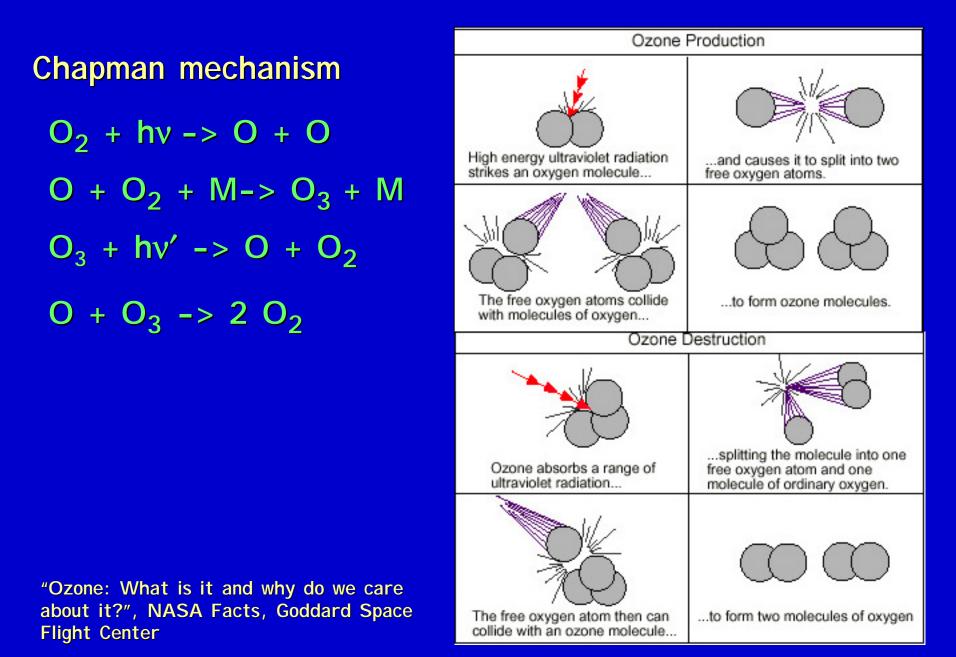

Note, higher concentration in stratosphere, compared with troposphere


Solar Flux

Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling – JPL Publication97–4

Absorption Spectrum of Ozone

"The Ozone Depletion Phenomenon", Beyond Discovery, National Academy of Sciences


UV A (~400 to 350 nm) not absorbed by earth's atmosphere

UV B (~ 350 to 270 nm) partially absorbed by earth's atmosphere

UV C (~270 to 150 nm) completely absorbed by earth's atmosphere

UV B is harmful to life on earth

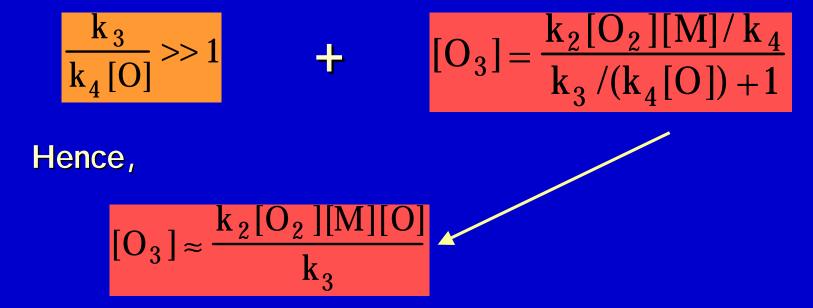
How is ozone production and destruction?

 $O_2 + hv \rightarrow O + O$ k_1 $O + O_2 + M \rightarrow O_3 + M$ k_2 $O_3 + hv' \rightarrow O + O_2$ k_3 $O + O_3 \rightarrow 2 O_2$ k_4

Rate of formation of O and O₃ $d[O]/dt = 2k_1[O_2]-k_2[O][O_2][M] + k_3[O_3] - k_4[O][O_3]$ $d[O_3]/dt = k_2[O][O_2][M] - k_3[O_3]-k_4[O][O_3]$ Steady-State Approximation $d[O]/dt = d[O_3]/dt = 0$

$d[O_{3}]/dt = k_{2}[O][O_{2}][M] - k_{3}[O_{3}] - k_{4}[O] [O_{3}] = 0 - \frac{1}{2} + \frac{1}{2}[O][O_{2}][M] = \{ k_{3} + k_{4}[O] \} [O_{3}]$

$k_{2}[O][O_{2}][M]/\{k_{3}+k_{4}[O]\} = [O_{3}]$


Can re-write [O₃] as:

$[O_3] = k_2[O][O_2][M] / \{ k_3 + k_4[O] \}$

(Divide by k₄[O])

 $[O_3] = \frac{k_2[O_2][M]/k_4}{k_3/(k_4[O])+1} \leftarrow$

Since the rate constants and concentration of species are known, can show that:

$$[O_3] \approx \frac{k_2[O_2][M][O]}{k_3}$$

 $[O_3]$ depends on rate of reaction 2 and the intensity of light (k₃)

Reaction 2 is slow (termolecular); makes ozone "vulnerable" to ozone-depleting reactions

$$O_2 + hv \rightarrow O + O$$
 k_1
 $O + O_2 + M \rightarrow O_3 + M$ k_2
 $O_3 + hv' \rightarrow O + O_2$ k_3
 $O + O_3 \rightarrow 2 O_2$ k_4

Competing Reactions

HO_x cycle

H, OH and HO_2 species formed by reaction of excited O atoms with H-containing atmospheric species like H_2O and CH_2

 $O_3 + hv' -> O + O_2$ $O + H_2O -> OH + OH$ $O + CH_4 -> CH_3 + OH$ $H_2O + hv -> H + OH$

Reactions of HO_x species with O_3

$$OH + O_3 -> HO_2 + O_2$$

 $HO_2 + O -> OH + O_2$

Net Reaction

 $O + O_3 -> 2O_2$

"Ozone Depletion"

Competing Reactions

NO_x Cycle

NOx species are produced during the reaction of O atoms with N_2O (produced in the soil by bacteria)

 $O + N_2 O -> 2 NO$

Reactions of NO_x species with O_3

$$NO + O_3 -> NO_2 + O_2$$

 $NO_2 + O -> NO + O_2$

Net Reaction

 $O + O_3 -> 2O_2$

"Ozone Depletion"

Competing Reactions

CIO_x cycle

 CIO_{x} species are produced from chlorofluorocarbons (CFC's) and methyl chloride

CFC's are artificially produced; methyl chloride is a naturally occuring chemical.

Examples of CFC's : Freons (CFCl₃, CF₂Cl₂)

 $CCl_2F_2 + hv \rightarrow CF_2Cl + Cl$ $CCl_2F_2 + O \rightarrow CF_2Cl + ClO$ Reactions of CIO_x species with O_3

 $CI + O_3 \rightarrow CIO + O_2$

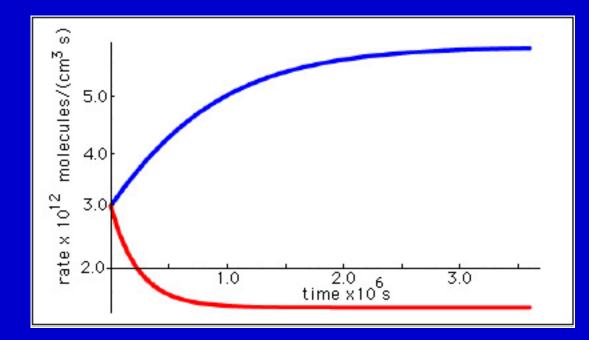
 $CIO + O -> CI + O_2$

Net Reaction

$$O + O_3 -> 2O_2$$

"Ozone Depletion"

1995 Nobel Prize in Chemistry


Consequences of Competing Reactions

Catalytic Reactions catalyst intermediate $CI + O_3 \xrightarrow{->} CIO + O_2$ $CIO + O \xrightarrow{->} CI + O_2$ intermediate catalyst

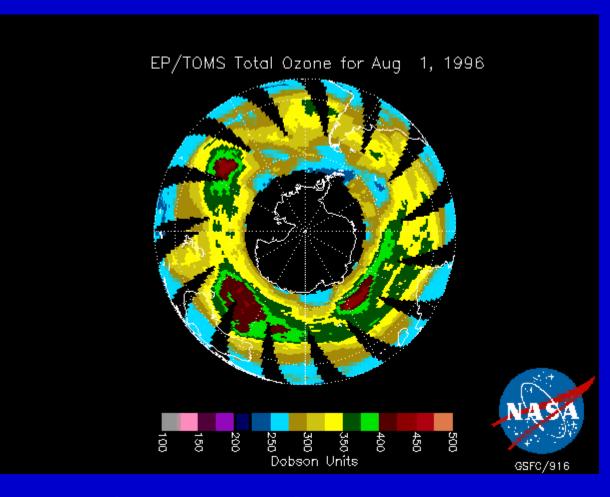
- lower activation energy E_a for Chapman mechanism = 17.1 kJ/mol E_a for ClO_x reaction = 2.1 kJ/mol

Consequences of Competing Reactions

Effect of competing reaction on rate of ozone formation

Depleting reactions are NOT independent of each other; in fact all occur simultaneously

NET LOSS OF OZONE


Sources of ozone depleting molecules Naturally occuring species (H_2O, N_2O, CH_4) Artificial, "man-made" species CFC's (CCl₃F,CCl₂F₂, etc.) CCI_4 , $CHCI_3$ HBFC (CHFBr₂, CHF₂Br) **CH**₃Br **NO from supersonic aircrafts**

The artificial compounds have the most severe effect

What is the "Ozone Hole"?

Every year, in October, a huge "hole" in atmospheric levels of ozone is observed over the Antarctic.

You will have to wait to see this movie in class.

August 1 '96 - Dec 15 '96

NASA Goddard Space Flight Center

Why does the Ozone Hole form over the Antarctic and why in spring?

The Antarctic Vortex

Polar Stratospheric Clouds

Concentrations of Active Chlorine

The Antarctic Vortex

In the winter, the air around the S. Pole cools and circulate west creating a "vortex"

Air is trapped in the vortex along with ozone depleting species

Heat from outside is "shut off", prolonging the duration of low stratospheric temperatures.

Polar Stratospheric Clouds

Low stratospheric temperatures result in "ice clouds" called Polar Stratopsheric Clouds

> The surface of the ice clouds serve as reaction sites for heterogeneous gas-surface reactions

 $CIONO_2 + HCI -> HNO_3 + CI_2$ $CIONO_2 + H_2O -> HNO_3 + HOCI$ **Concentrations of Active Chlorine**

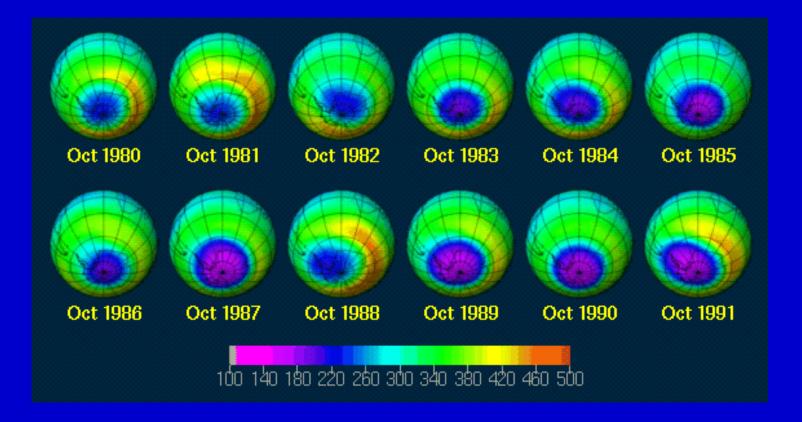
The Cl₂ and HOCI formed photodissociate to yield reactive Cl atoms

 $Cl_2 + hv -> Cl + Cl$ HOCl + hv -> Cl + OH

 $CI + O_3 -> CIO + O_2$

OZONE DEPLETION

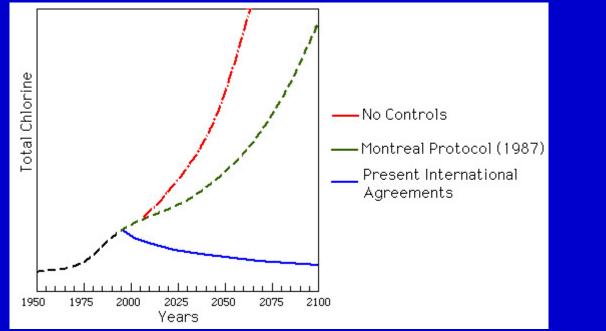
"Ingredients" for the formation of the Ozone Hole


The Antarctic vortex traps CFC's

The low polar temperatures results in ice particles on which gas-solid reactions can occur efficiently

The same reactions in the gas phase have much higher activation energies. The higher E_a and low temperatures result in very slow rates.

The onset of spring corresponds to higher light intensities and hence photolysis of Cl containing species


Annual growth in the Antarctic Ozone Hole

University of Cambridge "The Ozone Hole Tour" http://www.atm.ch.cam.ac.uk

What is being done to reduce ozone depletion?

Montreal Protocol and subsequent treaties ban worldwide usage of ozone depleting substances

http://www.nobel.se/announcement-95/announcement95chemistry.html

Assuming full compliance expect that ozone levels will return to "natural" levels ~2050

References

- NASA Goddard Space Flight Center (http://www.gsfc.nasa.gov/)
- EPA (www.epa.gov)
- Center for Atmospheric Science, Cambridge University
- www.atm.ch.cam.ac.uk/tour/index.html
- Chemical Kinetics and Dynamics, Ch 15, J. Steinfeld, J. Francisco, W. Hase