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ex determination, which depends on the sex-chromosome com-

 

plement of the embryo, is established by multiple molecular events that direct the
development of germ cells, their migration to the urogenital ridge, and the forma-

tion of either a testis, in the presence of the Y chromosome (46,XY), or an ovary in the
absence of the Y chromosome and the presence of a second X chromosome (46,XX).
Sex determination sets the stage for sex differentiation, the sex-specific response of tis-
sues to hormones produced by the gonads after they have differentiated in a male or fe-
male pattern. A number of genes have been discovered that contribute both early and late
to the process of sex determination and differentiation. In many cases our knowledge has
derived from studies of either spontaneous or engineered mouse mutations that cause
phenotypes similar to those in humans. We will examine how mutations in these genes
cause important clinical syndromes (Table 1 and Fig. 1) and discuss clinical entities that
continue to elude classification at the molecular level. Knowledge of the molecular basis
of disorders of sex determination and differentiation pathways will continue to have a
strong influence on the diagnosis and management of these conditions. Terminology,
when possible, adheres to that used in the Online Mammalian Inheritance in Man data
base developed by the National Center for Biotechnology Information of the National
Library of Medicine (http://www.ncbi.nlm.nih.gov).

Primordial germ cells, which eventually localize in the gonad, first appear in the proximal
epiblast, the outer ectodermal layer of the embryo, whence they migrate through the
primitive streak and then to the base of the allantois, where they can be identified by alka-
line phosphatase staining. The germ cells then migrate along the wall of the hindgut to
the urogenital ridge, the site of the future gonad (Fig. 2). Interesting factors that specify
the fate of these primordial germ cells have recently been elucidated in mice.

 

2

 

 Two genes
that are unique to the differentiating germ cells are 

 

Fragilis

 

 and 

 

Stella

 

. 

 

Fragilis

 

 is first de-
tected in the proximal epiblast, where its expression is influenced by the bone morpho-
genetic protein 4 (BMP4), then in the base of the allantois, where the expression of 

 

Stella

 

commences. On migration of the germ cell to the genital ridge, the expression of 

 

Fragilis

 

diminishes while that of 

 

Stella

 

 persists. Inactivation of BMP4 is associated with inhibi-
tion of the expression of 

 

Stella

 

 and 

 

Fragilis

 

 and results in the absence of germ cells, which
attests to the necessity of these genes in germ-cell formation and development.

 

2

 

 How-
ever, it is not clear how either 

 

Fragilis

 

 or 

 

Stella

 

 specifies the fate of germ cells. 

 

Fragilis

 

 be-
longs to an interferon-inducible family of transmembrane proteins involved in transduc-
ing antiproliferative signals and in adhesion, both of which may be important in the
coalescence of germ cells at the base of the allantois. 

 

Stella

 

 transcribes a novel protein,
the structure of which suggests that it may have a role in RNA processing and chromatin
modification. This protein is thought to maintain the pluripotent state of the migrating
primordial germ cells by silencing transcription of genes specific to somatic cells.
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 Only

s

germ cells
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the germ cells that reach the presumptive gonadal
region differentiate and survive; germ cells outside
this region undergo apoptosis, although some es-
cape and can later become germ-cell tumors.

 

4

 

male germ cells

 

The proliferation patterns of male and female germ
cells differ. XY germ cells undergo mitosis during
migration but soon after reaching the gonads, their
growth becomes arrested and they remain within
the testis in the quiescent (G

 

0

 

) phase of the cell cycle
until after birth under the influence of an unknown
inhibitory factor (referred to as meiosis inhibitory
factor) secreted by either Sertoli or myoid cells

 

5

 

(Fig. 2). After birth, the male germ cells resume the
cell cycle and undergo meiotic division, which halves
the number of chromosomes to produce haploid
spermatogonia. The Sertoli cells nurture the germ
cells, which complete spermatogenesis at puberty
under the influence of the gonadotropins follicle-
stimulating hormone and luteinizing hormone
from the pituitary. Important to this process are pro-
teins secreted by Sertoli cells, including cytokines,

müllerian inhibiting substance, inhibin, activin, and
insulin-like growth factor I.

 

6

 

female germ cells

 

XX germ cells undergo mitosis as they migrate to the
female genital ridge and enter the ovary; the cells
then progress through the initial stages of the first
meiotic division, becoming arrested at prophase
1 by birth (Fig. 2). At this stage the surviving germ
cells become surrounded by a single layer of somatic
granulosa cells, and in mice, a stimulatory adenylcy-
clase maintains the oocyte in this primordial follicu-
lar state.

 

7

 

 Communication between oocytes and the
surrounding granulosa cells occurs when the rest-
ing primordial follicles are stimulated to grow at the
time of puberty as primary, secondary, and preovu-
latory follicles under the influence of follicle-stim-
ulating hormone.

 

8

 

 Also, oocyte-derived growth and
differentiation factor 9 and BMP15, along with zona
pellucida proteins 1, 2, and 3,

 

9

 

 act synergistically
with granulosa-cell products, surprisingly similar to
those secreted by Sertoli cells, to maintain the oocyte
and to control ovulation.

 

* Virilization may occur at puberty.

 

Table 1. Mutations in Genes Involved in Sex Determination and Development and Associated with Intersex Anomalies.

Gene (Locus) Protein and Proposed Function Mutant Phenotype

 

WT1

 

 (11p13) Transcription factor Frasier syndrome, Denys–Drash syndrome 
with Wilms’ tumor

 

SF-1

 

 (9q33) Transcription factor, nuclear receptor Gonadal and adrenal dysgenesis

 

SOX9

 

 (17q24) High-mobility-group transcription factor Campomelic dysplasia, male gonadal dys-
genesis or XY sex reversal

 

DAX1

 

 (Xp21.3) Transcriptional regulator, nuclear-receptor 
protein

Gonadal dysgenesis, congenital adrenal 
hypoplasia

 

SRY

 

 (Yp11) High-mobility-group transcription factor Gonadal dysgenesis

 

MIS,

 

 or 

 

AMH,

 

 type II 
receptor (12q12–13)

Serine threonine kinase receptor Persistent müllerian duct syndrome

 

MIS,

 

 or 

 

AMH

 

 (19p13) Secreted protein, causes regression of fetal 
müllerian duct; Leydig-cell inhibitor

Persistent müllerian duct syndrome

 

AR

 

 (Xq11–12) Androgen receptor, a ligand transcription 
factor

Male pseudohermaphroditism, complete or 
partial androgen insensitivity syndrome

 

HSD17B3

 

 (9q22) 17

 

b

 

-Hydroxysteroid dehydrogenase, 
17-ketosteroid reductase 3

Male pseudohermaphroditism

 

SRD5A2

 

 (5p15) 5

 

a

 

-Reductase type 2 Male pseudohermaphroditism*

 

CYP17

 

 (10q24–25) 17-Hydroxylase: 20–22 lyase Male pseudohermaphroditism

 

CYP21

 

 (6q21.3) 21-Hydroxylase Congenital adrenal hyperplasia, female 
pseudohermaphroditism

 

HSD3B2

 

 (1p13.1) 3

 

b

 

-Hydroxysteroid dehydrogenase type II Congenital adrenal hyperplasia

 

CYP11B1

 

 (8q24) 11

 

b

 

-Hydroxylase Congenital adrenal hyperplasia

 

StAR

 

 (8p11.2) Steroidogenic acute regulatory protein Congenital lipoid adrenal hyperplasia
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syndromes of absent germ cells 
and relation of germ cells to stem cells

 

Germ cells are absent in the mutant strain of pie-
bald mice

 

10

 

 and in “Sertoli-only”

 

11

 

 testes of infer-
tile men who have deletions in the long arm of the
Y chromosome in the azoospermia factor (

 

AZF

 

) re-
gions that control spermatogenesis.

 

12

 

 The recent
elucidation of the sequence of the human Y chromo-
some

 

13

 

 will provide a template to further our under-
standing of the structure and function of this chro-
mosome, particularly of the elusive long arm (q).
Stem-cell factor,

 

14

 

 a ligand also known as mast-cell
growth factor that is encoded by the steel locus on

chromosome 12q, acts through its receptor, c-kit,
and is important for the migration and survival of
germ cells. Stem-cell factor, basic fibroblast growth
factor,

 

15

 

 and the glycoprotein 130 (gp 130) ligands
lymphocyte inhibiting factor and interleukin-6 are
all essential in immortalizing germ cells in vitro.

 

15

 

These specialized germ cells, in turn, can form em-
bryoid bodies, which when injected into blastocysts
can colonize all cell lineages.

 

16

 

The isolation of embryonic germ cells led to the
development of immortalized germ cells and even-
tually to the immortalization of human and primate
embryonic pluripotent stem cells derived either

 

Figure 1. Clinical Examples of Intersex Abnormalities.

 

Panel A shows the internal structures of a 46,XY patient with pure gonadal dysgenesis. There are bilateral streak gonads 
with retained müllerian structures, fallopian tubes, and a midline uterus. Panel B shows severe clitoral hypertrophy 
caused by masculinization of the external genitalia of a 46,XX patient with female pseudohermaphroditism caused by 
congenital adrenal hyperplasia. Panel C shows incomplete masculinization of the external genitalia of a 46,XY patient 
with male pseudohermaphroditism. There is a microphallus with perineoscrotal hypospadias and bifid and prepenile 
scrota. Panel D shows internal genitalia of a 46,XY patient with persistent müllerian duct syndrome. There are müllerian 
structures (i.e., fallopian tubes and uterus) as well as wolffian structures (i.e., the vas deferens and epididymis). Panel B 
is reprinted from Donahoe and Crawford

 

1

 

 with the permission of the publisher.
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Streak gonads
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from fetal specimens

 

17

 

 or from excess blastocysts
generated by in vitro fertilization protocols.

 

18

 

 These
developments have increased our understanding of
factors affecting pluripotency and have fueled hopes
that therapeutic cloning can be used to create dif-
ferentiated cell types for replacement therapy. Thus,
germ-cell biology has contributed to the develop-
ment of stem-cell biology. In turn, discoveries re-
garding pluripotency have also led to myriad ethical
controversies

 

19

 

 and initiated steps to ensure that
cells will not be used unlawfully for reproductive
cloning of humans.

Investigations of the molecular events that occur
during sex determination, coupled with an analysis
of the phenotypes of mice in which candidate genes
have been inactivated by homologous recombina-
tion (knockout mice), have increased our under-
standing of the pathophysiology of some of the

clinical defects that are characterized by gonadal
dysgenesis. As germ cells are migrating, the urogen-
ital ridge forms from the intermediate mesoderm
under the influence of a number of factors, includ-
ing the transcription factors empty-spericles ho-
meobox gene 2 (

 

Emx2

 

), GATA-4, Lim1, and Lim ho-
meobox 9 (Lhx9) (Fig. 3). Mutations in the genes for
these factors produce abnormal gonads in mice, but
similar mutations have not yet been implicated in
gonadal-dysgenesis syndromes in humans. Howev-
er, three genes encode interacting proteins that are
critical for the formation of the urogenital ridge in
humans. The products of the Wilms’ tumor-sup-
pressor gene (

 

WT1

 

) are essential for both gonadal
and renal formation. The steroidogenic factor 1
(SF-1) and the duplicated in adrenal hypoplasia con-
genita on the X chromosome (DAX 1) proteins are
essential for gonadal and adrenal differentiation
(Fig. 3). Our discussion of the clinical gonadal-dys-
genesis syndromes will illustrate the important roles
that these molecules play in the pathogenesis of the
disorders.

syndromes of

gonadal dysgenesis

 

Figure 2. Migration and Proliferation of Germ Cells during Embryonic and Fetal Life.

 

Germ cells are first detected in the epiblast, where they are activated by bone morphogenetic protein 4 (BMP4) from the extraembryonic 
ectoderm. Migration occurs through the primitive streak to the base of the allantois, where alkaline phosphatase–positive cells can be detect-
ed. Subsequently, the cells migrate to the urogenital ridge, where the gonads form. The 46,XY and 46,XX germ cells undergo different patterns 
of mitosis and meiosis.
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gonadal and renal abnormalities

 

The Frasier Syndrome and 

 

WT1

 

The Frasier syndrome is characterized by both go-
nadal dysgenesis and renal abnormalities that result
in streak gonads coupled with the nephrotic syn-
drome (Fig. 3). If it occurs in the XY genotype then
there is sex reversal. Study of the phenotype of 

 

Wt1

 

-
knockout mice revealed that the gene is involved in
the early steps of the differentiation of both gonads
and kidneys, helping to explain the association of
gonad and kidney malfunction in the Frasier syn-
drome.

Alternative splicing of the 

 

Wt1

 

 gene in mice can
result in up to 24 protein isoforms. Mutations of two
of these isoforms lead to striking clinical manifes-
tations, thereby demonstrating their importance in
human sex determination. They are the ¡KTS and
the +KTS variants, in which there is deletion (¡) or

maintenance (+), respectively, of three amino acids,
lysine (K), threonine (T), and serine (S) between the
third and fourth zinc fingers of the DNA-binding
domain of this transcription factor. Hammes et al.

 

20

 

found that altering the expression of KTS in mice in-
fluences both kidney and testicular function. In the
Frasier syndrome, the splice site of 

 

WT1

 

 that nor-
mally preserves the KTS triplet is mutated; therefore,
patients with the syndrome produce only WT1 pro-
tein without KTS. Gonads lacking KTS have de-
creased production of the sex-determining region of
the Y chromosome (SRY), a urogenital ridge protein
that is critical for testicular differentiation. In these
¡KTS gonads there is also a decrease in müllerian
inhibiting substance, a glycoprotein hormone de-
rived from Sertoli cells that causes regression of the
male müllerian ducts and whose presence is an early
marker of testicular differentiation.

 

21

 

 The findings

 

Figure 3. Syndromes of Dysgenesis during the Development of the Urogenital Ridge.

 

Mutations in various genes can lead to a variety of syndromes of dysgenesis involving the müllerian or wolffian ducts, gonads, kidneys, and 
adrenal glands as a result of a deficiency or excess of the proteins shown. 

 

DAX1

 

 denotes the gene for duplicated in adrenal hypoplasia con-
genita on the X chromosome 1; 

 

Emx2

 

 the empty spericles homeobox gene 2; 

 

GATA-4

 

 the gene encoding a protein that binds to a GATA DNA 
sequence; HOXA homeobox protein; 

 

Lim1

 

 a homeobox gene important for limb development; 

 

Lhx9

 

 a lim homeobox family member; 

 

PAX2

 

 
paired box homeotic gene; 

 

SF-1

 

 the gene for steroidogenic factor 1; SRY sex-determining region of the Y chromosome; SOX9 SRY homeobox 9; 
Wnt-4 a protein that induces the development of the müllerian mesenchyme; and 

 

WT1

 

 Wilms’ tumor-suppressor gene 1.
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in the Frasier syndrome indicate that the +KTS WT1
isoform must be produced either at the same time or
before the urogenital ridge produces the SRY that
will induce gonadal differentiation. Persons with a
46,XY karyotype will have a female phenotype with
retained müllerian ducts as well as nephropathy.
The severity of the nephropathy varies, however,
with the position of the mutation that disrupts the
KTS region; some genotypes lead to renal failure in
infancy, whereas others cause milder forms of ne-
phrotic syndrome compatible with increased lon-
gevity. Patients with the Frasier syndrome who have
a mutation that inactivates KTS, however, are not
susceptible to Wilms’ tumor.

 

The Denys–Drash Syndrome and 

 

WT1

 

Mutations outside the KTS region result in a WT1
protein that affects gonads later in development,
leading to the Denys–Drash syndrome, in which go-
nads differentiate more completely than the gonads
of patients with the Frasier syndrome. Thus, affect-
ed patients have a less severe functional deficiency.
For example, male gonads are sufficiently developed
to produce müllerian inhibiting substance, which
ensures that regression of the müllerian ducts is
normal, but the synthesis of testosterone is im-
paired. Although persons with a 46,XY karyotype
have a predominantly male phenotype, low testos-
terone levels can cause male pseudohermaphrodit-
ism with various degrees of hypospadias and unde-
scended testes.

 

22

 

 Patients with the Denys–Drash
syndrome also have a high incidence of Wilms’ tu-
mors and a nephropathy characterized by focal glo-
merular and mesangial sclerosis, which often re-
sults in end-stage renal disease and ultimately renal
transplantation in the second or third decade of life.

These multiple molecular 

 

WT1

 

 variants resulting
from alternative splicing of the KTS amino acid trip-
let have different clinical implications. Study of pa-
tients with the ¡KTS mutation has alerted clinicians
to the fact that phenotypic girls with focal glomeru-
lar sclerosis or the nephrotic syndrome should be
screened for XY sex reversal. Also, phenotypic girls
with XY sex reversal who retain müllerian structures
because the gonadal dysgenesis occurs before the
production of müllerian inhibiting substance
should be screened for the nephrotic syndrome. In
addition, boys with mild undervirilization charac-
terized by hypospadias and undescended testes
who also have proteinuria may have the Denys–
Drash (+KTS) variant and should be monitored

carefully for focal glomerular nephropathy and
Wilms’ tumor.

Wilms’ tumor can be associated with aniridia,
genitourinary anomalies, and mental retardation —
the WAGR syndrome.

 

23

 

 These complex phenotypic
associations are thought to occur because of the
proximity of 

 

WT1

 

 on chromosome 11p13 to the
paired box homeotic (

 

PAX6

 

) gene and two other
genes in that region that are expressed in the embry-
onic brain. Patients with the Beckwith–Weidemann
syndrome of hemihypertrophy,

 

24

 

 caused by muta-
tions of a gene on chromosome 11p15, are also
prone to Wilms’ tumor.

 

gonadal and adrenal abnormalities

 

Steroidogenic Factor

 

Another important gene in early gonadal develop-
ment is 

 

SF-1,

 

25

 

 which encodes a transcription fac-
tor homologous to steroid hormone receptors, but
whose ligand is unknown, placing the receptor in a
class of orphan nuclear hormone receptors. SF-1
binds DNA and regulates the expression of a num-
ber of genes that participate in sexual development.
These include müllerian inhibiting substance

 

21,26-28

 

and all the cytochrome P-450 steroid hydroxylase
enzymes

 

29

 

 and 3

 

b

 

-hydroxysteroid dehydrogen-
ase,

 

30

 

 which are required for the synthesis of sex
steroid hormones. 

 

Sf-1

 

–knockout mice fail to devel-
op adrenal glands and gonads and die at birth.

 

31

 

 A
human with adrenal insufficiency and 46,XY sex re-
versal was found to have a mutation in 

 

SF-1

 

.

 

32,33

 

Wt1

 

 and 

 

Sf-1

 

 have been shown to interact in mice,
with 

 

Wt1

 

 enhancing the effect of 

 

Sf-1

 

 on down-
stream genes.

 

34

 

DAX1

 

The 

 

DAX1

 

 gene codes for a member of the nuclear-
receptor family of proteins. Since this protein lacks
a DNA-binding domain but does have a ligand-bind-
ing domain, it presumably regulates gene expres-
sion through protein–protein interaction.

 

35 

 

DAX1

 

mutations are associated with adrenal hypoplasia
congenita,

 

36

 

 a syndrome of adrenal insufficiency
due to impaired development of the adrenal cortex,
and hypogonadotropic hypogonadism as a result of
impaired development of the pituitary and the go-
nads (Fig. 3). Dax1 antagonizes the synergy between
Sf-1 and Wt1

 

34

 

 in mice, thereby inhibiting the tran-
scription of 

 

Sf-1

 

 downstream genes, most likely by
recruiting corepressors

 

37

 

 or by blocking binding of
Sf-1 to DNA.

 

38
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A Potential Role for DAX1 in Mixed Gonadal 
Dysgenesis
An intersex disorder resulting in dysgenetic and of-
ten asymmetric gonads is the enigmatic syndrome
of mixed gonadal dysgenesis, which is most often
associated with a mosaic 45,X/46,XY karyotype,39

although a 46,XY karyotype is found in 40 percent of
patients.40 The mosaicism is characterized by the
presence of at least two gonadal germ-cell lines with
different chromosomal complements.41 The per-
centage of cells with an intact XY genotype dictates
the degree of testicular differentiation. In the classic
form, there is a streak gonad on one side and a dys-
genetic fibrotic testis with disordered tubular archi-
tecture on the other, retained müllerian ducts caused
by a deficiency of müllerian inhibiting substance,
and incomplete genital masculinization as a result
of a deficiency of testosterone. It is not clear why
gonadal asymmetry is such a prominent feature of
mixed gonadal dysgenesis, but it is probably related
to sex-chromosome mosaicism. The streak gonad,
resembling those seen in patients with Turner’s syn-
drome, is thought to result from a loss of the Y chro-
mosome owing to embryonic nondysjunction, the
failure of paired chromosomes to migrate to oppo-
site poles during mitosis or meiosis. The phenotype
of patients with mixed gonadal dysgenesis can vary,
with gonads that are more normal at birth than
those in patients with pure gonadal dysgenesis (see
below) but that undergo early degeneration,39 which
may progress to dysgenesis and subsequent neo-
plastic transformation. Because of the possibility
of neoplastic transformation, early removal of the
gonads is recommended.39,40 Less severe pheno-
types can occur if the same 46,X/46,XY karyotype is
found in a relatively small percentage of chimeric
cells. In fact, 45,X/46,XY karyotypes are now being
found incidentally in phenotypically normal males
owing to the increased frequency of prenatal genet-
ic testing.41

An X-linked molecule like DAX1 may have a role
in mixed gonadal dysgenesis (Fig. 3 and 4), since
DAX1 suppresses testicular differentiation.35 The
presence of two X chromosomes, albeit in different
cells, one from 45,XO and the other from 46,XY, may
be sufficient to prevent sustained testicular growth
and differentiation by providing excessive DAX1
(or another inhibiting molecule), which suppresses
testicular development. This concept is supported
by the observation that the presence of a second
X chromosome in XXY humans with Klinefelter’s

syndrome and in XXY mice leads to abnormalities
of germ-cell development with early entry into
meiosis.42

sry and sry homeobox genes in pure 
gonadal dysgenesis

Patients with pure gonadal dysgenesis have bilater-
al streak gonads that fail to differentiate. Analysis of
these patients and animal models led to the discov-
ery of the SRY gene located on the distal short arm of
the Y chromosome and to the detection on auto-
somes of SRY homologues, such as the SRY ho-
meobox gene SOX9. The molecular basis for tes-
ticular differentiation became more clear when
phenotypic males were produced after an Sry trans-
gene was introduced into XX mice, confirming the
role of Sry as a genetic switch that induces testicular
differentiation.43 Mutations in the DNA-binding re-
gion of the SRY gene, which is a member of a large
high-mobility-group family, were found in a sub-
group of 46,XY sex-reversed females with pure go-
nadal dysgenesis. These patients have characteristic
bilateral streak gonads, which are small and fibrot-
ic, without the typical germ-cell or supporting-cell
morphology of testes or ovaries.44 Campomelic dys-
plasia, a severe disorder characterized by 46,XY sex
reversal, streak gonads, and severe skeletal malfor-
mation, occurs in patients with a translocation in
the distal arm of chromosome 9p near the SRY-relat-
ed SOX9 gene45 and other genes associated with sex
reversal in lower organisms.46 SOX9 and SRY are co-
expressed in the male but not the female urogenital
ridge, implicating the two genes in testis determina-
tion (Fig. 3). The fact that SOX9 activates the tran-
scription of müllerian inhibiting substance28,47 fur-
ther supports the idea that it has a crucial role in
male gonadal development.

true hermaphroditism
An unusual cause of ambiguous genitalia is true her-
maphroditism; in this syndrome, both ovarian and
testicular tissue is present either in the same or in a
contralateral gonad. This disorder is rare in North
and South America but quite common in Africa and
the Middle East. Asymmetry of gonads and subse-
quently of reproductive ducts and external genita-
lia is common, with testes, ovaries, and ovotestes
present in various combinations in patients with a
predominantly 46,XX karyotype.48 The sex of rear-
ing is dictated by the phenotype, which is directed by
the predominant gonad. In true hermaphroditism,
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the gonads have less severe dysgenesis49 than do the
gonads of patients with mixed gonadal dysgenesis.
The molecular events leading to this unique disorder
have not been elucidated, but a few cases have been
attributed to translocation of a fragment contain-
ing the SRY gene to a cryptic site on the X chromo-
some.50

müllerian agenesis
The undifferentiated gonad coexists with both male
and female reproductive ducts. The parameso-
nephric, or müllerian, duct forms the uterus, fallo-
pian tubes, and the upper vagina, and under the
influence of testosterone, the mesonephric, or wolf-
fian, duct forms the vas deferens, seminal vesicles,

Figure 4. Functional Abnormalities of the Synthesis and Action of Hormones.

After the gonads have formed, reduced hormonal activity or signaling of specific receptors can lead to functional abnormalities of the repro-
ductive tract, including persistent müllerian duct syndrome; male pseudohermaphroditism, causing undervirilization; and müllerian agene-
sis. After adrenal development, reduced enzymatic activity can result in female pseudohermaphroditism with excessive virilization. HSD 
denotes hydroxysteroid dehydrogenase, MIS müllerian inhibiting substance, MISRII müllerian inhibiting substance type II receptor, SF-1 the 
gene for steroidogenic factor 1, SRY the gene for the sex-determining region of the Y chromosome, SOX9 the gene for SRY homeobox 9, 
and AR androgen receptors.
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and epididymides. A transcription factor gene com-
mon to the development of both müllerian and wolf-
fian systems is PAX2. This gene is required for nor-
mal intermediate development of the mesoderm in
both sexes; mutations in mice lead to müllerian-
duct, wolffian-duct, and renal agenesis.51 A muta-
tion in the PAX2 gene has been reported in a family
with the renal-coloboma syndrome,52 which par-
tially reproduces the results seen in mice. Failure of
müllerian development occurs in 46,XX female pa-
tients with Mayer–Rokitansky–Küster–Hauser syn-
drome, which is characterized by vaginal or com-
plete müllerian agenesis and kidney abnormalities,
including a pelvic kidney or the more severe agene-
sis of the kidney.53 Inactivation of Wnt-4, the gene
encoding a member of the Wingless family of pro-
teins, may be implicated in this disorder. Wnt is an
acronym for a drosophila homologue of the Wing-
less family of proteins that is found in the mouse ge-
nome at a site where the mouse mammary tumor
virus growth factor often integrates. The Wnt-4 pro-
tein is secreted by the müllerian-duct epithelium and
induces the development of the müllerian mesen-
chyme. Early inactivation of Wnt-4 causes failure of
the formation of müllerian-duct derivatives in both
sexes; however, a functional effect is manifested
only in females, since in normal males, the mülle-
rian duct regresses under the influence of müllerian
inhibiting substance. Coincident kidney defects are
lethal at birth in mice,54,55 but humans with less se-
vere phenotypes can survive.

Homeobox (Hox) transcription factors 9, 10, 11,
and 13 are necessary for normal uterine and vaginal
development; abnormalities in the expression of the
genes for these factors account for some uterine and
vaginal atresias.56 Mutations in a Hoxa13 allele are
the cause of the hand–foot–genital syndrome, in
which there are deformities of the hands and feet,
vaginal abnormalities in females or hypospadias in
males, spinal abnormalities, and extrophy of the
bladder and cloaca.57 Transfection of constructs
with this mutation into the chicken-hindgut region
reproduced these abnormalities.58 Diethylstilbestrol
has been known since 197159 to alter müllerian de-
velopment. The fact that diethylstilbestrol suppress-
es another Wnt gene — Wnt-7a — and alters Hox
gene expression in müllerian ducts in mice60 pro-
vides a plausible molecular mechanism for the uter-
ine abnormalities, vaginal adenosis, and rarely, car-
cinoma observed in patients who were exposed to
diethylstilbestrol in utero.59

After normal morphologic development of the go-
nads, loss-of-function mutations of testicular pro-
teins such as müllerian inhibiting substance or the
müllerian inhibiting substance receptor can lead to
the development of disorders characterized by re-
tained müllerian ducts. Failure to produce testoster-
one or mutations in the testosterone receptor can
produce 46,XY phenotypic females or phenotypic
males with various degrees of diminished masculin-
ization. Conversely, patients with congenital adrenal
hyperplasia produce an excess of adrenal andro-
gens, which can cause female pseudohermaphro-
ditism in 46,XX patients.

persistent müllerian duct syndrome
Persistent müllerian duct syndrome occurs in 46,XY
males as a rare form of male pseudohermaphrodit-
ism that is caused by a defect in either the gene for
the müllerian inhibiting substance,21,61-63 located
on chromosome 19p13,64 or its type II receptor, lo-
cated on chromosome 12q1365 (Fig. 4). Patients
with this syndrome61 have retained müllerian ducts
and unilateral or bilateral undescended testes, and
they may also have crossed testicular ectopia caused
by herniated uterine structures, which drag the con-
tralateral gonad into one scrotum66 with its ipsilat-
eral gonad.

male pseudohermaphroditism
Another important cause of male pseudoher-
maphroditism with sexual ambiguity is failure of
androgen production or an inadequate response
to androgen, both of which can cause incomplete
masculinization of persons with the 46,XY karyo-
type. The clinical spectrum varies from mild failure
of masculinization, with hypospadias and unde-
scended testes, to complete sex reversal (Fig. 4)
with a female phenotype. Androgen-receptor muta-
tions67,68 result in the androgen insensitivity syn-
drome in which testes can be intraabdominal or in
the inguinal canals, but wolffian structures and
external genitalia fail to respond to high levels of
testosterone and its target-tissue metabolite dihy-
drotestosterone. Adequate müllerian inhibiting sub-
stance produced by the otherwise normal testes,
however, results in complete regression of mülleri-
an ducts.

Another cause of undervirilization arises from

functional abnormalities 

in sexual development
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defects in the synthesis of testosterone in patients
with mutations in the steroidogenic enzymes re-
sponsible for the conversion of cholesterol to di-
hydrotestosterone — namely, steroidogenic acute
regulatory protein,69 cytochrome P-450 17-hydroxy-
lase,70 3b-hydroxysteroid dehydrogenase,71 and
17-ketosteroid reductase.72 These defects cause
low levels of androgen. Mutations in the 5a-reduc-
tase type 2 gene73 result in low levels of dihydrotes-
tosterone, which cause penoscrotal hypospadias,
prepenile scrota, and an enlarged prostatic utri-
cle,73,74 often requiring surgical reconstruction.75

As in the androgen insensitivity syndrome, regres-
sion of the müllerian duct occurs because the normal
Sertoli cells produce normal or even elevated76-78

levels of müllerian inhibiting substance. Many ge-
netic males with a deficiency of 5a-reductase type 2
are born with female external genitalia and are raised
as females. The curious virilization that occurs in
these patients at puberty often leads to a change
in sexual identity.79 This paradox is explained by a
normal increase at puberty in the activity of the 5a-
reductase type 1 isoform, which results in sufficient
dihydrotestosterone to complete the virilization of
these genetic males.

congenital adrenal hyperplasia
Congenital adrenal hyperplasia is caused by the in-
ability of the adrenal to synthesize80 sufficient cor-
tisol, leading to excess testosterone and resulting in
severe masculinization in 46,XX females. More se-
vere forms involve decreased aldosterone produc-
tion and salt wasting.80 The most common muta-
tion occurs in the cytochrome P-450 21-hydroxylase
enzyme81-83; a less common form (5 percent of cas-
es) results from a loss-of-function mutation in 3b-
hydroxysteroid dehydrogenase.71 Rarer still is 11b-
hydroxylase deficiency, which can also result in
prenatal or postnatal virilization.84,85 Insufficient
production of cortisol and the resultant failure of
negative feedback in the hypothalamic–pituitary–
adrenal axis causes excess corticotropin production,
leading to adrenocortical hyperplasia. In addition,
cortisol precursors are shuttled to other steroid
pathways, causing high levels of adrenal androgen-

ic steroids, which masculinize the female external
genitalia to form a glans penis, rather than a clitoris,
and scrota, rather than labia majora (Fig. 4). Under
the influence of the excess androgens, the vagina
fails to complete its descent to the perineum, caus-
ing a common urogenital canal or sinus with incom-
plete separation of the vagina and urethra. Ovaries
and müllerian structures are otherwise normal, be-
cause their development is independent of sex ste-
roids at this stage. The diagnosis can be made in ute-
ro, and early maternal dexamethasone therapy can
ameliorate the masculinized phenotypes.80,83,86

Surgical reconstruction can be performed in infancy
to restore the female phenotype.87

The study of patients with syndromes characterized
by ambiguous genitalia and associated anomalies,
together with analyses of spontaneous and engi-
neered mutations causing similar abnormalities in
animals, has elucidated many of the molecular de-
fects causing sex reversal and disorders of reproduc-
tive function in humans. Our knowledge is expand-
ing regarding the molecular events necessary to
initiate the development of the urogenital ridge and
to select and sustain further sex differentiation and
development of gonads, reproductive ducts, and ex-
ternal genitalia. This deeper understanding has, in
some cases, contributed to improved patient care
both by increasing the likelihood of a positive out-
come and by averting unfavorable events. This
knowledge must be incorporated into treatment
strategies in order to increase and sustain the func-
tion, happiness, and emotional fulfillment of pa-
tients with abnormalities of sex differentiation.
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25 in the first full paragraph of the right-hand column should have

read, `̀ patients with a translocation in the distal arm of chromosome

17q near the SRY -related SOX9 gene and deletions of the distal arm

of chromosome 9p thought to contain other genes associated with sex

reversal in lower organisms,” rather than `̀ patients with a translocation

in the distal arm of chromosome 9p near the SRY -related SOX9 gene

and other genes associated with sex reversal in lower organisms,´́ as

printed.
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