Coronary Artery Pathophysiology ACS / AMI

LeRoy E. Rabbani, MD
Director, Cardiac Inpatient Services
Director, Cardiac Intensive Care Unit
Professor of Clinical Medicine

Major Determinants of Myocardial Oxygen Supply and Demand Myocardial oxygen supply O₂ content Coronary blood flow - coronary perfusion pressure - ocronary vascular resistance - external compression - intrinsic regulation - local metabolites - endothelial factors - neural innervation Myocardial oxygen demand Wall stress (P-t/Zh) Heart rate Contractility

MYOCARDIAL OXYGEN DEMAND

- 1. Wall Tension
- 2. Heart Rate
- 3. Contractility (Inotropic State)

WALL TENSION

Wall Tension $\alpha = \frac{P \cdot r}{h}$ Formula of Laplace

P = LV Systolic Pressure

r = LV Radius

h = LV Wall Thickness

MYOCARDIAL OXYGEN SUPPLY

- 1. Diastolic Perfusion Pressure
- 2. Coronary Vascular Ressitance
- 3. Oxygen Carrying Capacity

INTRINSIC CONTROL OF CORONARY TONE

- 1. Heart in basal state consumes as much oxygen as it can (2-3 times as much as most organs)
- 2. Heart cannot increase oxygen extraction on demand
- 3. Any additional oxygen requirement must be provided by an increase in blood flow (autoregulation of coronary vascular tone)

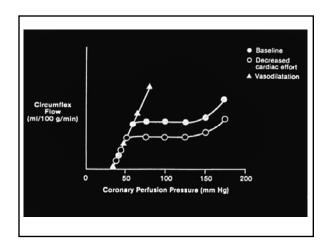
CORONARY BLOOD FLOW REGULATION

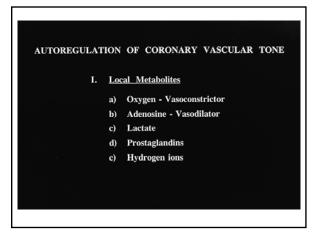
$$Q \quad \alpha \quad \frac{P}{R}$$

Q = Coronary Artery Blood Flow

P = Perfusion Pressure

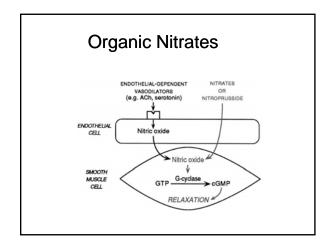
R = Coronary Vascular Resistance

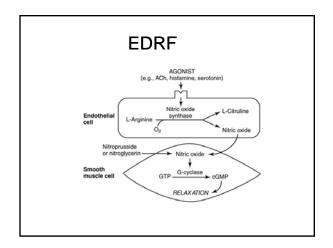

CORONARY VASCULAR RESISTANCE

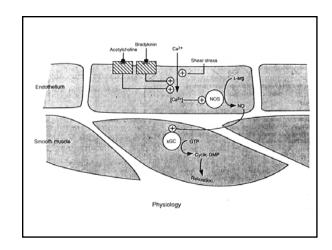

- 1. External Compression
- 2. Intrinsic Regulation
 - a) Local Metabolites
 - b) Endothelial Factors
 - c) Neural Innervation

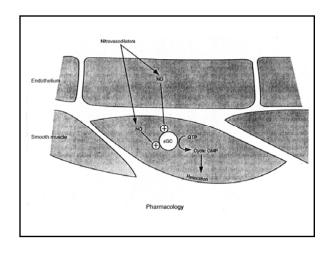
EXTERNAL COMPRESSION OF CORONARIES

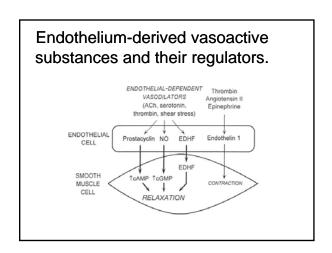
- 1. Greatest in systole
- 2. Directly related to intramyocardial pressure
- 3. <u>Subendocardium</u>, adjacent to high intraventricular pressure, is most vulnerable to ischemic damage

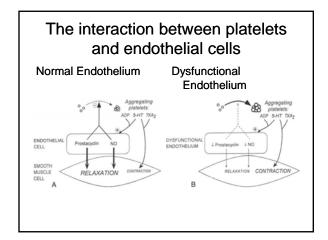

Resting and Maximal Coronary Blood Flow Maximal coronary flow 1x Resting coronary flow Percent lesion diameter

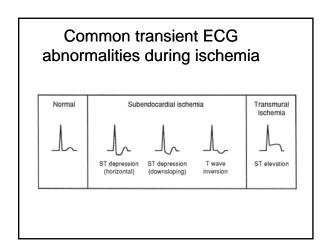


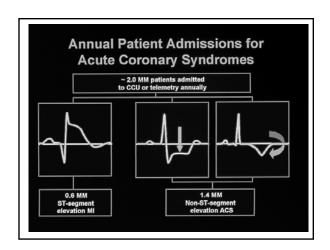


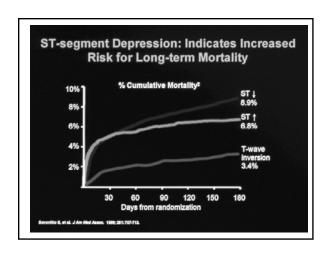

AUTOREGULATION OF CORONARY VASCULAR TONE

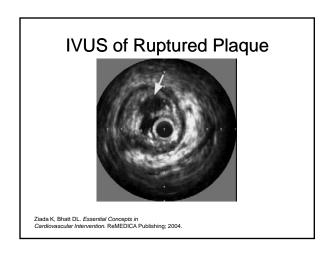

- II. Endothelial Factors
 - 1. Endothelial-dependent vasodilators: (ATP, ADP, bradykinin, histamine, acetylcholine)
 - 2. EDRF (nitric oxide free radical) stimulates SMC guanylate cyclase activity.
 - $\hbox{3. Increased cGMP mediates vasodilatation through inhibition of calcium release.}$

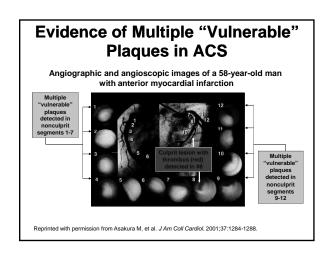


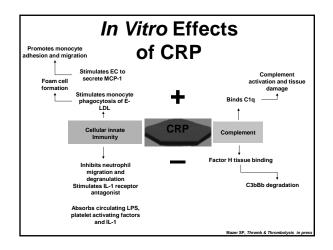


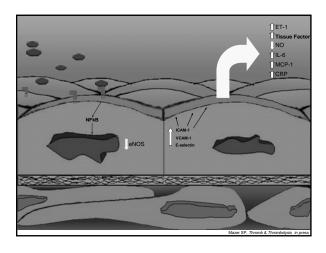


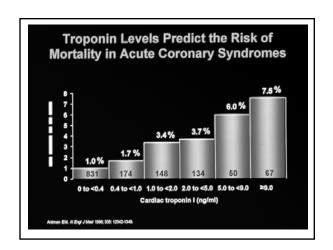


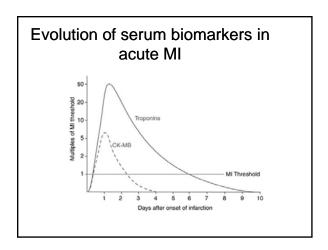


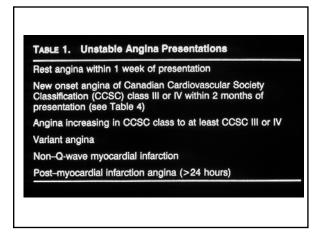


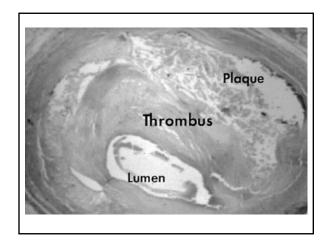


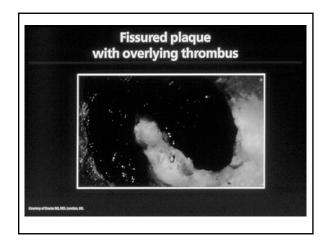


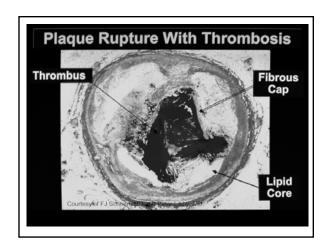


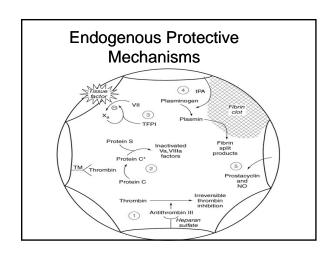


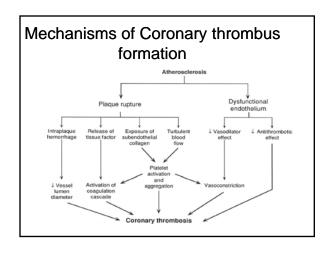


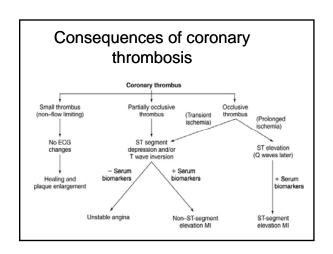


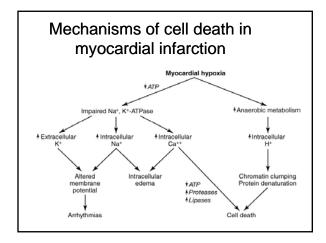


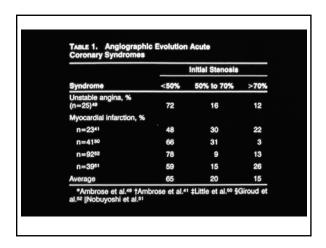


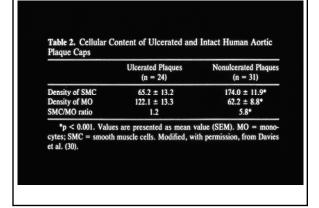
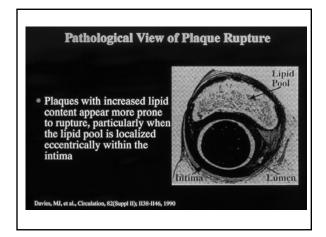

Class	Evoking Angina	Limits to Normal Activity
	Prolonged exertion	None
I	Walking >2 blocks	Slight
III	Walking <2 blocks	Marked
IV	Minimal or rest	Severe

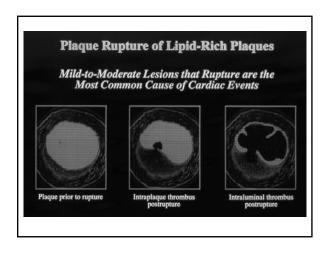


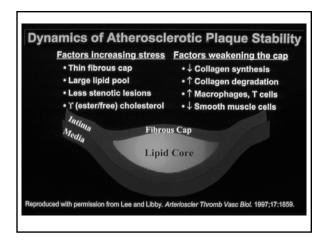


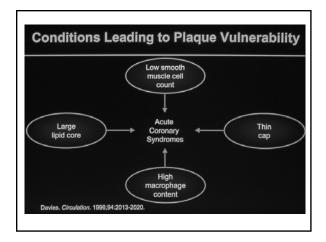


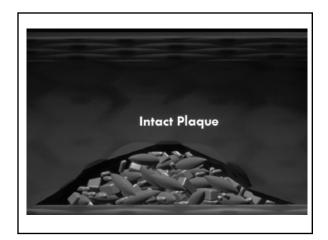


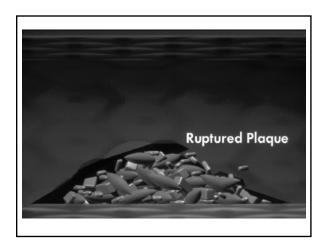



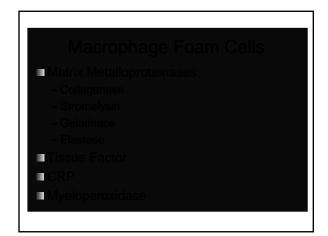

Table 1. Biochemical Analysis of Protein and Extracellular Lipid Content of Ulcerated and Intact Human Aortic Plaque Caps $\frac{\text{Ulcerated Plaques}}{(n=24)} \qquad \frac{\text{Nonulcerated Plaques}}{(n=31)}$ Total protein (% dry weight) 54.8 \pm 1.2 57.2 \pm 2.2 Collagen 35.4 \pm 8.4 56.8 \pm 1.4° Elastin 0.87 \pm 0.87 1.17 \pm 0.31 Glycosoaminoglycan 0.9 \pm 0.20 1.9 \pm 0.2° Extracellular lipid 54.9 \pm 3.8 22.1 \pm 2.4† (% plaque volume) $\frac{*p}{2} < 0.05. \ †p < 0.001. \ Values presented are mean value <math>\pm$ SEM. Modified, with permission, from Davies et al. (30).

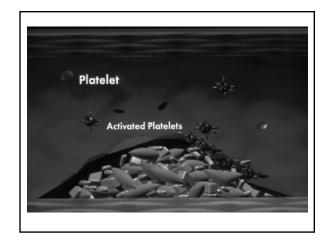


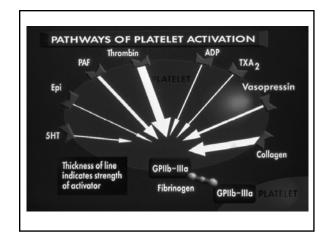


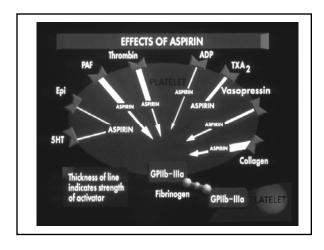


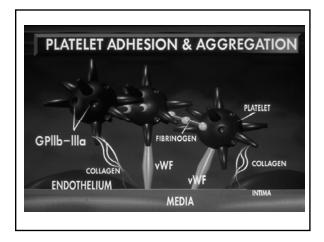


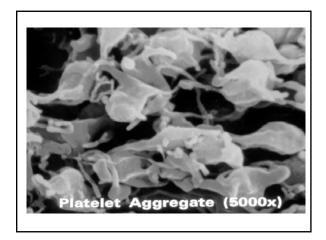


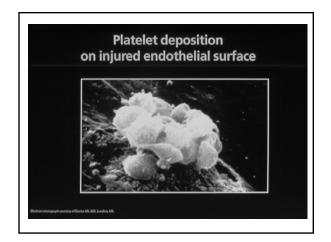


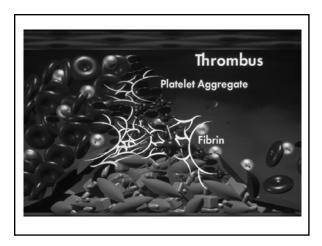


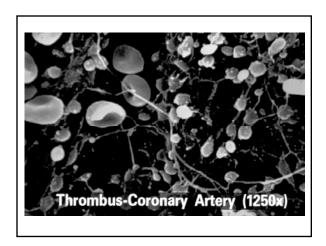


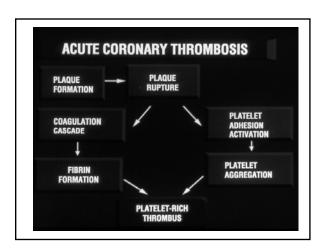


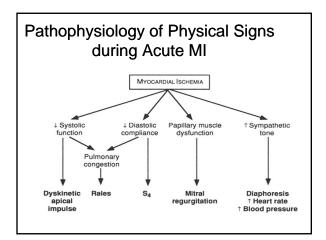


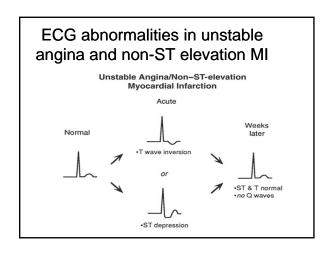


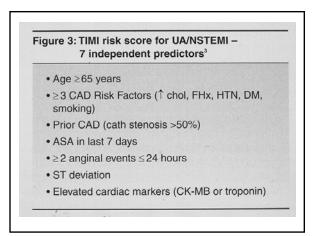


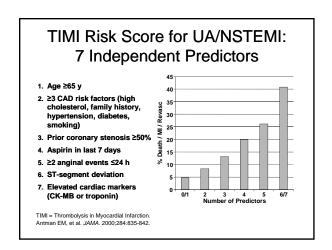


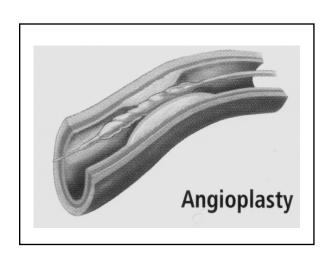


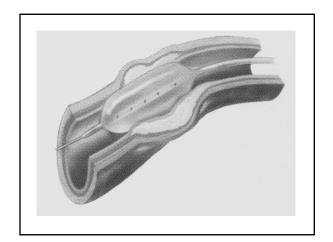


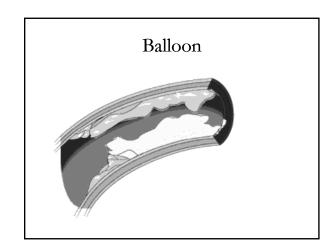


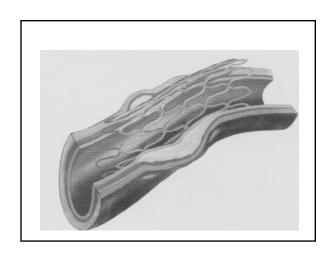




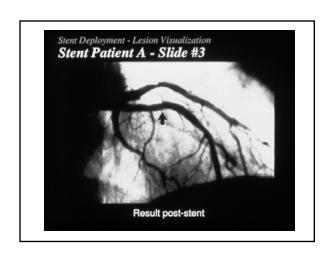


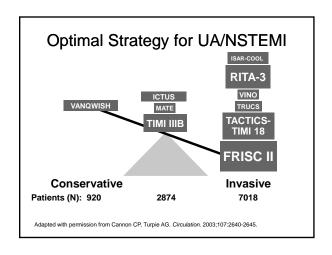

ACC/AHA Guidelines Recommendations: NSTE ACS Patients at High Risk of Death or MI

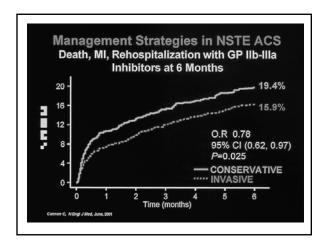

At least one of the following features must be present:

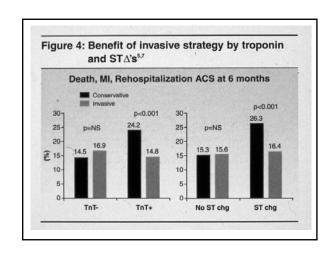

- Prolonged ongoing rest pain > 20 minutes
- Elevated cardiac troponin (TnT or TnI > 0.1 ng/mL)
- New or presumably new ST-segment depression
- Sustained ventricular tachycardia
- Pulmonary edema, most likely due to ischemia
- New or worsening mitral regurgitation (MR) murmur
- S₃ or new/worsening rales
- Hypotension, bradycardia, tachycardia
- Age > 75 years

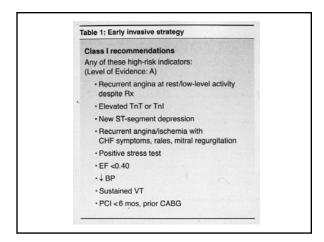
raunwald E, et al. 2002. http://www.acc.org/clinical/guidelines/unstable/unstable.pdf

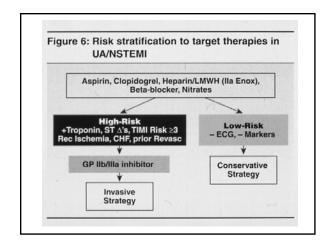


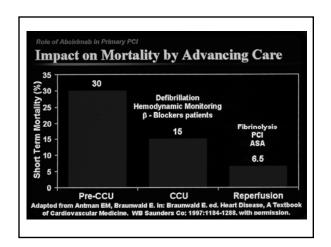


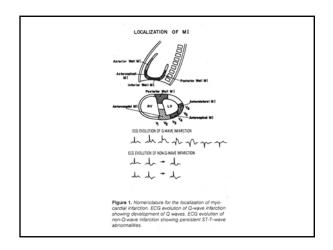


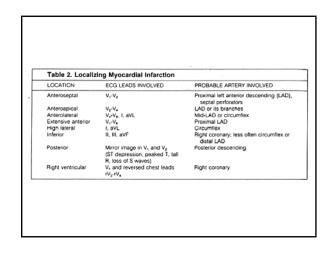


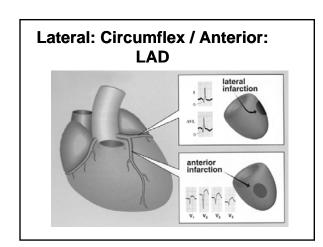


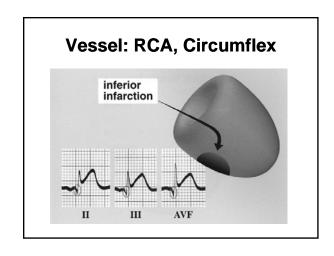


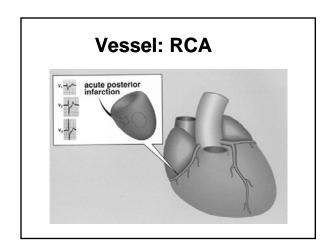


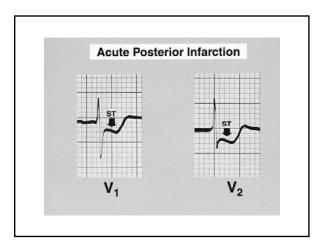




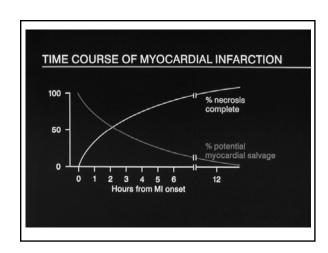


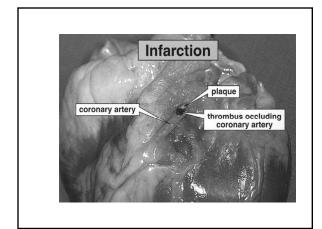






PROGNOSIS IN ACUTE MYOCARDIAL INFARCTION

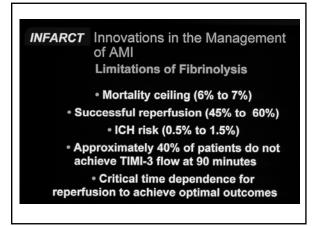

- 1. LVEF mechanical (pump failure)
- 2. Arrhythmias electrical


PRINCIPAL OBJECTIVES IN MANAGEMENT OF ACUTE MYOCARDIAL INFARCTION

- 1. Salvage myocardium minimize the mass of infarcted tissue.
- 2. Prevent death from arrhythmias.

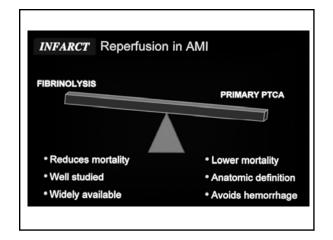
REPERFUSION IN ACUTE MYOCARDIAL INFARCTION

Early reperfusion (pharmacologic with thrombolytic treatment or mechanical with PTCA) of ischemic myocardium can salvage tissue before it becomes irreversibly injured.



Goal

"Door-to-lytic" 30 minutes


"Door-to-balloon" 90 minutes

Pharmacological Reperfusion for STEMI Fibrinolysis Background/Limitations

- Initial occluded artery remains (TFG 0/1), in ~20% of patients → 2-fold ↑ in mortality¹,²
- Reocclusion occurs in 5-10% of patients \rightarrow 3-fold \uparrow in mortality ^{3,4}
- Reinfarction occurs in ~5% of patients → 3fold ↑ in mortality ⁵

1.TIMI 1, Am J Cardiol 1998;62:179 2. GUSTO I Angio, NEJM 1993;329:1615) 3.Ohman et al., Circulation 1990;82:781 4. HART II, Circ 2001;104:648; PENTALYSE, EHJ 2001;22:1716 5. TIMI 2, JACC 1995;26:900; TIMI 4 & 5, Am J Cardiol 1997;80:696

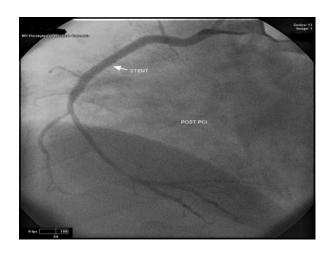
Percutaneous Coronary Intervention (PCI)

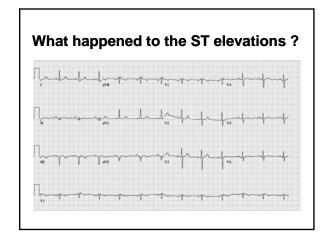
The advantages of Primary PCI

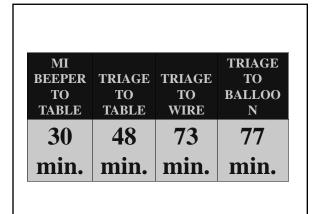
- High 85-95% infarct vessel patency rate
- Low rates of recurrent ischemia, reinfarction, death, and stroke
- Avoidance of ICH
- Shortened LOS
- Ability to treat lytic-ineligible patients

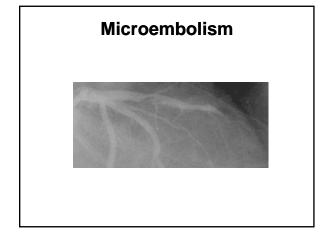
Transfer for PCI in STEMI: NRMI (1999–2002), 4278 Patients

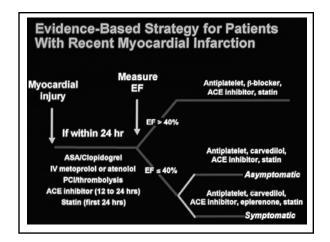
% of Patients
4.2
16.2
55.4
28.4

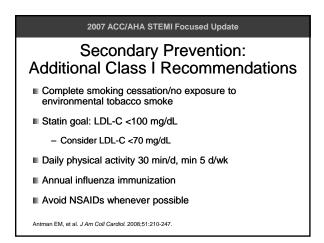

Nallamothu BK, et al. Circulation. 2005;111:761-767.

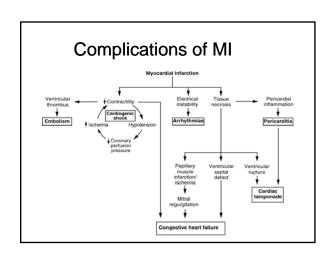

D2B: Strategies Associated With a Significant Reduction in Door-to-Balloon Time ("Code 90")		
Strategy	Mean reduction in door-to-balloon time (min)*	
Having emergency medicine physicians activate the cath lab	8.2	
Having a single call to a central page operator activate the cath lab	13.8	
Having the ED activate the cath lab while patient is still en route	15.4	
Expecting staff to arrive at the cath lab within 20 minutes after page	19.3	
Having an attending cardiologist always on site	14.6	
Having staff in the ED and cath lab use and receive real-time feedback	8.6	
* <i>P</i> <.05 for all.		
Bradley EH, et al. N Engl J Med. 2006;355:2308-2320.		




Artery, Lead, Location! Coronary Artery Involved Leads Type of Infarct Consequences II, III, RCA AVF Inferior AV block, bradycardia, hypotension, N/V, hiccoughs Increased JVD, CVP, large a waves, clear lungs, AV blocks







1. Submaximal ETT prior to discharge to detect residual ischemia and ventricular ectopy
2. Maximal (symptom-limited) ETT 4-6 weeks post infarction
3. Assessment of LVEF:
2-D Echo
Radionuclide Ventriculography
4. High risk findings:
angina at low workload
large reversible defect on perfusion imaging depressed LVEF with ischemia
ETT-induced symptomatic ventricular arrhythmias
5. Proceed with cardiac catheterization and/or invasive electrophysiologic study as needed

VENTRICULAR FIBRILLATION AND ACUTE MYOCARDIAL INFARCTION

- 1. Most common form of arrhythmic death in acute MI.
- Vast majority of deaths due to v fib occur within the first 24 hrs. of the advent of symptoms; of these deaths, over half occur in the <u>first hour</u>.
- 3. Most out-of-hospital deaths from MI are due to v fib.
- 4. May occur without warning symptoms or warning arrhythmias.
- In-hospital mortality from acute MI has decreased from 30% to 10-15%; death from in-hospital ventricular arrhythmia is now unusual.

VENTRICULAR FIBRILLATION POSTINFARCTION

- 1. Primary v fib (owing to acute ischemia; not associated with CHF, shock, BBB, or LV aneurysm) has a good long-term survival (>90% at one year).
- 2. Secondary v fib (owing to severe pump failure) occurring late in the hospital course has an extremely poor prognosis (85% mortality at one year); consider EPS.

ATRIOVENTRICULAR AND INTRAVENTRICULAR CONDUCTION DISTURBANCES POSTINFARCTION

Anterior MI and CHB: Inferior MI and CHB: 1.

60-75% mortality 25-40% mortality

- 2. Anterior MI and heart block ischemic malfunction of all 3 fascicles of conduction system - extensive myocardial necrosis
- 3. Inferior MI and heart block AV nodal ischemia - small amount of myocardium

Anterior MI: Inferior MI:

Mobitz type II block First-degree AV block Mobitz type I block

MANAGEMENT OF CHF POSTINFARCTION

- 1. Cautious use of Lasix
- 2. Nitrates reduce preload; help LV remodeling
- 3. ACE inhibitors to attenuate LV dilatation - SAVE study
- 4. Avoid digoxin
- 5. Optimize PCWP to 18-20 mmHg

CARDIOGENIC SHOCK

- 1. Infarction of >40% of LV; days 1-6
- 2. Marked hypotension (<80 mmHg), marked reduction in cardiac index (<1.8 L/min/m 2) with PCWP >18 mmHg
- 3. Mortality of 80%

Risk Factors for Cardiogenic Shock:
 advanced age
 depressed LVEF
 large MI
 previous MI
 diabetes mellitus

5. Treatment:

Hemodynamic Monitoring Vasopressors IABP

thrombolytic therapy/PTCA

IABP

- Inflates during early diastole, enhancing coronary blood flow and peripheral perfusion.
- 2. Deflates in early systole, reducing afterload

3. Indications:

intractable ischemia cardiogenic shock VSD

4. Contraindications: aortic regurgitation aortic dissection severe peripheral vascular disease

5. Morbidity of 10%

POSTINFARCTION MITRAL REGURGITATION

- MR murmur in up to 50% of post MI patients; hemodynamically significant MR in only a minority
- Papillary muscle dysfunction secondary to ischemia or infarction > MR due to change in LV size or shape from aneurysm or impaired contractility
- 3. Involvement of Posteromedial muscle (circumflex artery) > Anterolateral muscle (circumflex and LAD arteries)
- 4. 2-D Echo
- ${\bf 5.} \ \ {\bf Papillary\ muscle\ dysfunction\ is\ frequently\ compatible\ with\ long-term\ survival}$
- 6. Mild MR: no therapy Moderate-Severe MR: surgery ACE inhibitors

PAPILLARY MUSCLE RUPTURE

- 1. Occurs in 1% of MIs and accounts for 1-5% of MI
- 2. Days 2-7 post MI: sudden onset of pulmonary edema with murmur in patients with inferior and/or lateral MI
- Posteromedial papillary muscle is 6-12 x's more likely to rupture than anterolateral papillary
- 4. Diagnosis: 2-D Echo and Swan-Ganz catheter
- 5. Treatment: IABP with vasodilator and inotropic therapy for stabilization \rightarrow surgery

VSD POSTINFARCTION

- 1. Occurs in 1-3% of MIs and accounts for 5% of MI deaths
- 2. Equal frequency between anterior and inferior MIs
- 3. Majority occur during first week post MI
- 4. New murmur, CHF, hypotension
- 5. Diagnosis: Doppler-Echo and Swan-Ganz catheter
- Treatment: IABP, inotropes, vasopressors → rapid surgery (high risk)
- 7. Surgical results are worse if VSD complicates an inferior MI and if there is concomitant RV dysfunction

MYOCARDIAL RUPTURE

- 1. 24% of fatal MIs
- 2. Free wall of LV ruptures
- 3. Characteristics: first week post MI first MI

age > 70
history of hypertension; no LVH
no history of angina
large Q wave infarct

- 4. Prevented by intravenous beta-blockade
- 5. EMD almost universally fatal

LV ANEURYSM

- 1. Dyskinesis local expansile paradoxical wall motion
- 2. Scar tissue \underline{not} associated with cardiac rupture
- $\begin{array}{ll} {\bf 3.} & {\bf Complications~occur~weeks\hbox{-}months~after~MI:~CHF,}\\ {\bf arterial~embolism,~ventricular~arrhythmia.} \end{array}$
- 4. Apical aneurysms double, diffuse, or displaced apical
- 5. EKG finding of ST segment elevation at rest in precordial leads in 25% of patients with apical or anterior aneuryms
- 6. 2-D Echo: detect mural thrombus
- $\label{eq:pseudoaneurysm} \textbf{Pseudoaneurysm limited myocardial rupture needs surgical repair.}$

RIGHT VENTRICULAR INFARCTION

- 1. 1/3 of patients with inferoposterior MI have some degree of RV necrosis.
- Severe RV failure (JVD, Kussmaul's sign, hepatomegaly) with or without hypotension; low cardiac output if severe. Lungs are clear.
- 3. ST-segment elevations of right-sided precordial leads, particularly lead V4R.
- 4. Diagnosis: 2-D Echo; Swan-Ganz catheterization reveals equalization of diastolic pressures.
- 5. Treatment: volume expansion Swan-Ganz catheter avoid nitrates, vasodilators, diuretics use IABP, dopamine, dobutamine as needed thrombolytic therapy/PTCA dual chamber A-V sequential pacing if CHB
- 6. Mortality: 20%

PERICARDITIS POSTINFARCTION

- 1. Pericardial friction rub with pericarditic pain
- 2. Manage with high dose aspirin (650 mg p.o. q.i.d.)
- 3. Avoid NSAIDs and steroids
- 4. Must be careful in using heparin or Coumadin because of danger of tamponade

THROMBOEMBOLISM POSTINFARCTION

- 1. Clinically apparent in 10% of MI cases
- 2. Embolic lesions in 45% at autopsy
- 3. Contributes to death in 25% of MI patients
- LV mural thrombi on 2-D Echo; 20% spontaneous regression; treat with Coumadin for 3-6 months, particularly if large anterior wall MI with CHF, akinesis, or dyskinesis
- $\begin{tabular}{ll} 5. & SQ \ heparin \ to \ prevent \ pulmonary \ emboli \ arising \\ from \ leg \ veins \end{tabular}$