Cardiovascular Pathophysiology: Left To Right Shunts Ismee A. Williams, MD, MS

iib6@columbia.edu

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 VSD, PDA, ASD
- Discuss Eisenmenger's Syndrome

Pressure, Flow, Resistance

- Flow: Volume of blood that travels across vascular bed
- Resistance: Opposition to flow
 Vessel diameter
 - Vessel structure and organization
 Physical characteristics of blood

O₂ blood to high priority organs

- RV pumps De-O₂ blood to PA→DA→DescAo → lower body and placenta
- LV pumps O₂ blood to AscAo→coronary + cerebral circ
- Aortic isthmus connects the two separate vascular beds

Fetal Shunts Equalize Pressure

- RAp = LAp due to FO
- RVp = LVp due to DA

Unlike postnatal life unless a large communication persists...

RV is "work horse" of fetal heart

- LV pumps 34% CO
 31% goes to AscAo
- Only 10% total CO
- crosses Ao isthmus

Transition from Fetal to Neonatal Circulation

- Lose placenta

 [^]SVR
- Lungs expand mechanically
- ↑O₂ vasodilates pulm vasc bed
 →PVR
- ↑ PBF + ↑LA venous return
 − ↑LAp
- DV constricts
 ↓RAp

Regulation of Pulmonary Vascular Tone

- Vascoconstriction
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)
- Vasodilation
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media
 - (regression of medial hypertrophy)

Fetal Pulmonary Vascular Bed

- Placenta is the organ of gas exchange
- Goal to bypass the fetal lungs
- Pulmonary Pressure >> Ao Pressure
 - Low O₂ tension causes Vasoconstriction
 - Medial wall hypertrophy
- Pulmonary blood flow << Ao flow
- Pulmonary resistance >> Ao resistance
 - Encourages shunting via DA to aorta

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Left to Right Shunts

- Anatomic Communication between Pulmonary and Systemic circulations
- Excess blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

Qp:Qs

- Extra flow is represented by the ratio of pulmonary blood flow (Qp) to systemic blood flow (Qs)
- Qp:Qs = 1:1 if no shunts
- Qp:Qs >1 if left to right shunt
- Qp:Qs <1 if right to left shunt
- Qp:Qs of 2:1 means pulmonary blood flow is twice that of systemic blood flow

Why do we care?

- Already oxygenated pulmonary venous blood is recirculated through the lungs
- Excess PBF causes heart failure (CHF)
- Size of the shunt and ∴ the amount of PBF (Qp) determine how much CHF
- Shunt size determined by:
 - Location of communication
 - Size of communication
 - Age of the patient
 - Relative resistances to blood flow on either side of the communication

Pulmonary Effects of L to R Shunt

- \uparrow PBF = \uparrow extravascular lung fluid
 - transudation of fluid across capillaries faster than lymphatics can clear
- Altered lung mechanics
 - Tidal volume and lung compliance ↓
 Expiratory airway resistance ↑
- Pulmonary edema results if Qp and Pulm Venous pressure very high
- Tachypnea

Neurohumoral Effects of L to R Shunt

 Sympathetic nervous system and renin-angiotensin system activation

- plasma [NE] and [Epi] ↑
- cardiac hormone B-type natriuretic peptide (BNP) [↑]
- Tachycardia
- Diaphoresis

Metabolic Effects of L to R Shunt

- Acute and chronic malnutrition
- Mechanism not clear
 - - \downarrow nutritional intake
- Poor growth/ Failure to thrive

Pulmonary Hypertension: End Stage

- ↑ PBF causes sustained ↑ PAp
- Pulm vascular bed fails to remodel
 - Alveolar hypoxia may exacerbate
- Gradual effacement of the pulm arterioles
 Overgrowth of vascular smooth muscle
 Intimal proliferation
- Abnormal local vascular signaling
- Impaired endothelial function
- Pulm bed loses normal vasoreactivity
 fixed pulmonary HTN and irreversible pulmonary vascular disease

Re-Cap

- Flow, Resistance, Pressure
- Fetal and Transitional Circulation
- Left to Right Shunts and CHF
- VSD
- PDA
- AVC
- ASD
- Eisenmenger

"Top 4" Left to Right Shunt Lesions

- Ventricular Septal Defect (VSD)

 Left ventricle to Right ventricle
- Patent Ductus Arteriosus (PDA)
 Aorta to Pulmonary artery
- Atrioventricular Canal Defect (AVC)
 - Left ventricle to Right ventricle
 - Left atrium to Right atrium
- Atrial Septal Defect (ASD)

 Left atrium to Right atrium

VSD most common CHD (20%)

- 2/1000 live births
- Can occur anywhere in the IVS
- Location of VSD has no effect on shunt
- Perimembraneous most common (75%)
- Muscular (15%) most likely to close
- Outlet (5%) most likely to involve valves

 încidence in Asian pop (30%)
- Inlet (5%) assoc with AVC

VSD: Determinants of L to R shunt

- Size of VSD
- Difference in resistance between Pulmonary and Systemic circulations
- Difference in pressure between RV and LV

- Small (restrictive) VSD: L to R shunt flow limited by size of hole
- Large (unrestrictive) VSD: L to R shunt flow is determined by Pressure and Resistance
 - If RVp < LVp, L to R shunt occurs
 - If RVp = LVp, L to R shunt occurs if pulmonary < aortic resistance
- Shunt flow occurs in systole

Large VSD: Hemodynamic Effects

- Flow LV \rightarrow RV \rightarrow PA
- ↑ Pulm Venous Return
- LA/LV volume overload
- ↑ LV SV initially by Starling mechanism
- ↑ LV dilation leads to systolic dysfxn & CHF
- Pulm circ leads to pulm vascular disease

VSD: Signs/Symptoms

- Asymptomatic at birth: PA = Ao Pressure and Resistance
- Signs of congestive heart failure as pulmonary pressure and resistance ↓
 - Poor feeding
 - Failure to thrive (FTT) with preserved height and low weight
 - Tachypnea
 - Diaphoresis
 - Hepatomegaly
 - **Increased respiratory illness**

VSD: Physical Exam

- Harsh Holosystolic murmur
 - loudest LLSB radiating to apex and back
 - Smaller VSD = louder murmur
- Precordial Thrill 2° turbulence across VSD
- Mid-Diastolic rumble 2° ↑ trans-Mitral flow
- LV heave 2° LV dilation
- Signs of CHF
 Gallop (S3), Hepatomegaly, Rales
- Signs of Pulm Vasc Disease

 ↓murmur, RV heave, loud S2, cyanosis

VSD: Laboratory Findings

- CXR: Cardiomegally, **↑**PVM
 - Pulm Vasc Dz: large PAs
- EKG: LAE, LVH
 - Pulm Vasc Dz: RVH
- ECHO: Location/Size VSD
 - Amount/direction of shunt
 - LA/LV size
 - Estimation RV pressure
- CATH: only if suspect **^PVR**
 - O2 step up in RV

VSD: Management

- Does the patient have symptoms?
 size of the defect, RV/LV pressure, Pulm/Ao resistance
- Will the VSD close or ↓in size?
- Is there potential for complications?
 Valve damage, Pulm HTN
- Will the surgery be difficult? Will the surgery be successful?

VSD: Management

- Medical
 - Digoxin
 - Lasix
 - Increased caloric intake
 - 50% VSD size ↓ and CHF resolves

• Surgical

- Persistent CHF
- − ↑ pulmonary vascular resistance
- Valve damage
- Within first two years of life
- Catheter

VSD: Endocarditis Prophylaxis

- Not for isolated VSD
- Yes for 1st 6 mo following repair of VSD with prosthetic material or device
- Yes for life if there is a residual defect at or adjacent to the site of a prosthetic device
- For dental and respiratory tract procedures ONLY

no longer for GI or GU procedures

Patent Ductus Arteriosus (PDA)

- Communication between Aorta and Pulmonary Artery
- 1/2500-5000 live births
- Risk factors: prematurity, rubella, high altitude

PDA: Signs/Symptoms

- Small PDA: asymptomatic
- Large PDA: CHF
 - Diaphoresis
 - Tachypnea
 - Poor feeding
 - FTT
 - Hepatomegaly
 - Respiratory infections
- Moderate PDA: Fatigue, Dyspnea, palpitations in adol/adults
 - Afib 2º to LAE

PDA: Physical Exam

- Continuous machine-like murmur at left subclavian region
 - Ao>PA pressure in systole and diastole
- Congestive heart failure

PDA: Laboratory Studies

- CXR: cardiomegally, \uparrow PVM
- EKG: LAE, LVH
- ECHO: measures size PDA, shunt and gradient, estimate PAp
- CATH: O2 step up in PA

PDA: Management

• Indications for Closure

- CHF/failure to thrive
- Pulmonary hypertension

Closure Methods

- Indomethacin if preemie
- Surgical ligation
 - Transcatheter closure
 - Coil
 - Device

<section-header>

Atrioventricular Canal Defect/ Endocardial Cushion Defect

- Atrial Septal Defect (Primum)
- Inlet VSD
- Common Atrioventricular Valve

AVC: Management

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Congestive Heart Failure
 - Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves

Summary: VSD, PDA and AVC

- Asymptomatic in fetus and neonate
- Progressive ↑ in L to R shunt from 3-8 wks of life as pulmonary pressure and vascular resistance ↓
- Indications for intervention
 - Congestive heart failure: FTT
 - Pulmonary vascular disease
- End stage: Eisenmenger's syndrome

Atrial Septum Formation

- Septum Primum grows downward
- Ostium Primum obliterates
- Fenestration in septum primum forms ostium secundum
- Septum secundum grows downward and fuses with endocardial cushions
 - Leaves oval-shaped opening Foramen ovale
- Superior edge of septum primum regresses
 - Lower edge becomes flap of FO

Atrial Septal Defect

- Persistent communication between RA and LA
- Common: 1/1500 live births
 7% of CHD
- Can occur anywhere in septum
- Physiologic consequences depend on:
 - Location
 - Size
 - Association with other anomalies

ASD Types

- Ostium Secundum ASD (70%)
 - 2:1 F>M
 - Familial recurrence 7-10%
 - Holt-Oram syndrome upper limb defects
 - Region of FO
 - Defect in septum primum or secundum

Ostium Primum ASD

- Inferior portion of septum
- Failure of fusion between septum primum and endocardial cushions
- Cleft in MV or CAVC

ASD Types

- Sinus Venosus ASD (10%)
 - Incomplete absorption of sinus venosus into RA
 - IVC or SVC straddles atrial septum
 - Anomalous pulmonary venous drainage

Coronary Sinus ASD

- Unroofed coronary sinus
- Wall between LA and coronary sinus missing
- Persistent L-SVC

Patent Foramen Ovale

- Prevalence 30% of population
- Failure of fusion of septum primum and secundum (flap of FO)
- Remains closed as long as LAp>RAp
 LAp<RAp
 - Pulmonary HTN / RV failure
 - Valsalva
 - Paradoxical embolism and STROKE

RA and RV volume overload

ASD: Signs/Symptoms

- Infant/child usually asymptomatic
 - DOE, fatigue, lower respiratory tract infections
- Adults (prior age 40)
 - Palpitations (Atrial tach 2º RAE)
 - $-\downarrow$ stamina (Right heart failure)
 - Survival less than age-matched controls (5th-6th decade)

ASD: Physical Exam

- Small for age
- Wide fixed split S2
- RV heave

Eisenmenger's Syndrome

- Dr. Victor Eisenmenger, 1897
- Severe pulmonary vascular obstruction 2^o to chronic left to right shunts
- Pathophysiology
 - − High pulmonary blood flow → Shear Stress
 - Medial hypertrophy + intimal proliferation
 - leads to ↓cross-sectional area of pulm bed
 - Perivascular necrosis and thrombosis
 - Replacement of normal vascular architecture
- Pulmonary vascular resistance increases
 Right to left shunt
 - Severe cyanosis

Eisenmenger's Syndrome R to L flow via VSD

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Eisenmenger's: Physical Exam

- Clubbing
- Loud S2
- RV heave (RV hypertension)
- Diastolic pulm insufficiency murmur
- No systolic murmur

Eisenmenger's: Lab findings

- No LV volume overload /
 [↑] RV pressure
- CXR: Clear lung fields, prominent PA segment with distal pruning, small heart
- EKG: RAE, RVH ± strain
- ECHO: RV hypertrophy, right to left shunt at VSD, PDA, or ASD

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:

- VSD, PDA, ASD

Discuss Eisenmenger's Syndrome