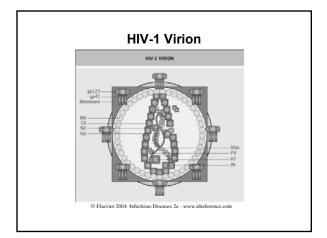
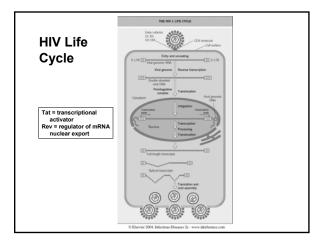
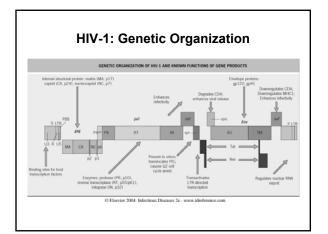
HIV Diagnosis and Pathogenesis

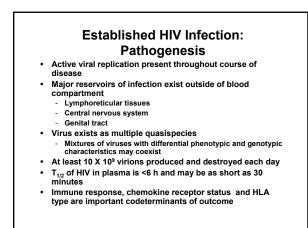
Scott M. Hammer, M.D.

HIV Diagnosis

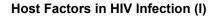

- Consider in anyone presenting with symptoms and signs compatible with an HIV-related syndrome or in an asymptomatic person with a risk factor for acquisition
- Full sexual and behavioral history should be taken in all patients
 Assumptions of risk (or lack thereof) by clinicians are unreliable

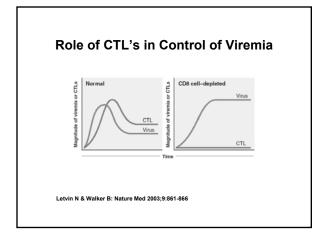

Laboratory Diagnosis of Established HIV Infection: Antibody Detection

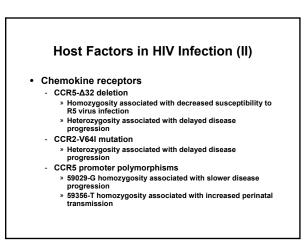

- Screening
 - Serum ELISA
 - Rapid blood or salivary Ab tests
- Confirmation
 Western blot
- Written consent for HIV Ab testing must be obtained and be accompanied by pre- and posttest counselling


Laboratory Diagnosis of Acute HIV-1 Infection

- Patients with acute HIV infection may present to a health care facility before full antibody seroconversion
 - ELISA may be negative
 - ELISA may be positive with negative or indeterminant Western blot
- Plasma HIV-1 RNA level should be done if acute HIV infection is suspected
- Follow-up antibody testing should be performed to document full seroconversion (positive ELISA and WB)

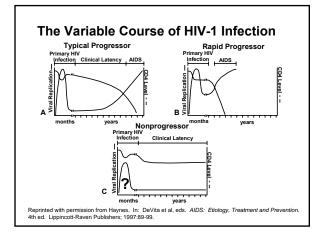


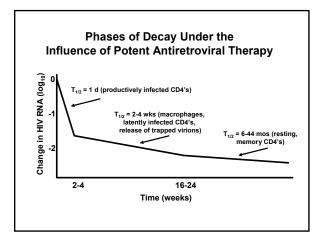


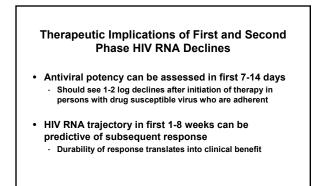

Determinants of Outcome: Selected Viral Factors

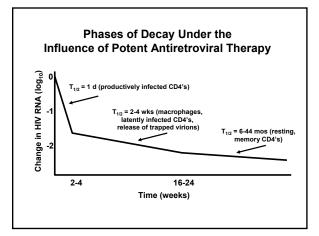
- Escape from immune response
 - Under immune selective pressure (cellular and humoral), mutations in gag, pol and env may arise
- · Attenuation
 - nef deleted viruses associated with slow or long-term nonprogression in case reports and small cohorts
- Tropism
 - R5 to X4 virus conversion associated with increased viral pathogenicity and disease progression
- · Subtypes
 - Potential for varied subtypes to exhibit differential transmissibility and virulence
 - » Potential for greater heterosexual spread of some subtypes

- · Cell-mediated immunity
 - Cytotoxic T cells
 - » Eliminate virus infected cells
 - » Play prominent role in control of viremia, slowing of disease progression and perhaps prevention of infection
 - T-helper response » Vital for preservation of CTL response
- · Humoral immunity
 - Role in prevention of transmission and disease progression unclear

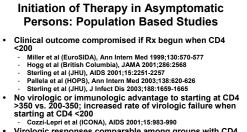

- Other genetic factors
 - Class I alleles B35 and Cω4
 - » Associated with accelerated disease progression Heterozygosity at all HLA class I loci
 - » Appear to be protective
 - HLA-B57, HLA-B27, HLA-Bω4, HLA-B*5701
 - » Associated with long-term non-progression
 HLA-B14 and HLA-C8
 - HLA-B14 and HLA-C8
 - » ?Associated with long-term nonprogression


Mechanisms of CD4+ Cell Death in HIV Infection

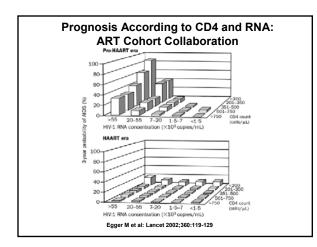

- HIV-infected cells
 - Direct cytolytic effect of HIV
 - Lysis by CTL's
 - Apoptosis
 - » Potentiated by viral gp120, Tat, Nef, Vpu

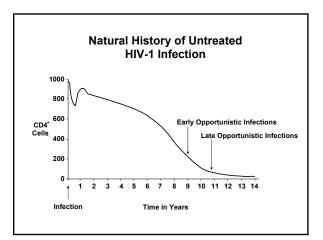

• HIV-uninfected cells

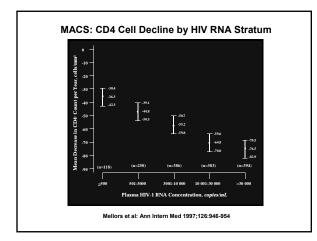

- Apoptosis » Release of gp120, Tat, Nef, Vpu by neighboring, infected
 - cells
- Activation induced cell death

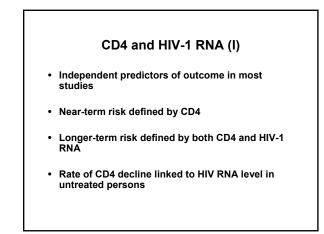


Therapeutic Implications of Third Phase of HIV RNA Decay: Latent Cell Reservoir


- · Viral eradication not possible with current drugs
- Archive of replication competent virus history is established
 - Drug susceptible and resistant
- Despite the presence of reservoir(s), minimal degree of viral evolution observed in patients with plasma HIV RNA levels <50 c/ml suggests that current approach designed to achieve maximum virus suppression is appropriate




- · Patient's disease stage
 - Symptomatic status
 - CD4 cell count
 - Plasma HIV-1 RNA level
- · Patient's commitment to therapy
- Philosophy of treatment Pros and cons of 'early' intervention



- Virologic responses comparable among groups with CD4 >200; slower decline to RNA <500 in those with RNA's >100,000 at baseline
- Phillips et al (SHCS, EuroSIDA, Frankfurt), JAMA 2001;286:2560-2567
- Clinical outcome compromised if Rx begun when CD4 <200 or RNA >100,000 Egger et al (13 cohorts, >12,000 persons), Lancet 2002;360:119-129

CD4 and HIV-1 RNA (II)

- · Good but incomplete surrogate markers For both natural history and treatment effect
- · Thresholds are arbitrary
 - Disease process is a biologic continuum Gender specificity of HIV RNA in early-mid stage disease needs to be considered
- Treatment decisions should be individualized Baseline should be established
 - Trajectory determined

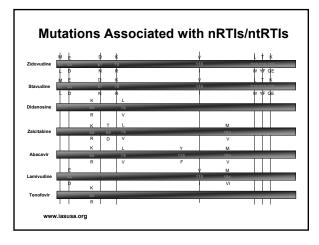
HIV Resistance: Underlying Concepts

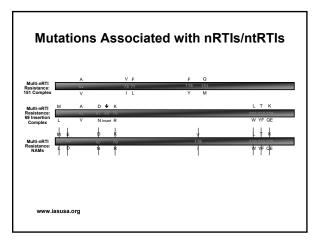
- Genetic variants are continuously produced as a result of high viral turnover and inherent error rate of RT
 - Mutations at each codon site occur daily » Survival depends on replication competence and presence of drug or immune selective pressure
 - Double mutations in same genome also occur but 3 or more mutations in same genome is a rare event
 - Numerous natural polymorphisms exist

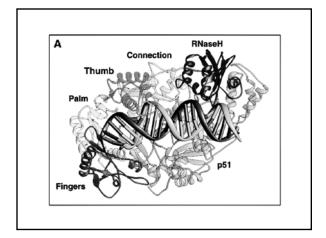
Pre-existence of Resistant Mutants

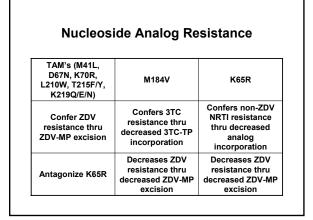
- Viral replication cycles: 109-1010/day
- RT error rate: 10⁻⁴-10⁻⁵/base/cycle
- HIV genome: 10⁴ bp
- Every point mutation occurs 104-105 times/day
 - In drug naïve individuals
 - » Single and double mutants pre-exist
 - » Triple and quadruple mutants would be predicted to be rare

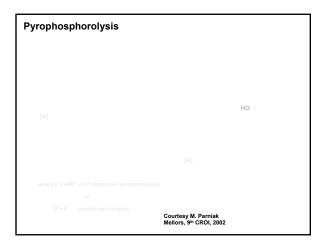
HIV Resistance: Underlying Concepts

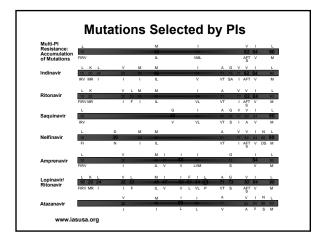

Implications

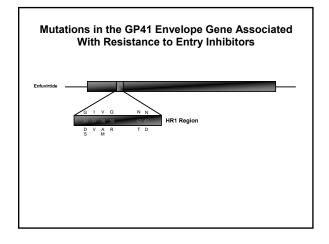

- Resistance mutations may exist before drug exposure and may emerge quickly after it is introduced
- Drugs which develop high level resistance with a single mutation are at greatest risk » e.g., 3TC, NNRTI's (nevirapine, efavirenz)
- Resistance to agents which require multiple mutations will evolve more slowly
- Partially suppressive regimens will inevitably lead to emergence of resistance A high 'genetic barrier' needs to be set to prevent
- resistance
 - » Potent, combination regimens

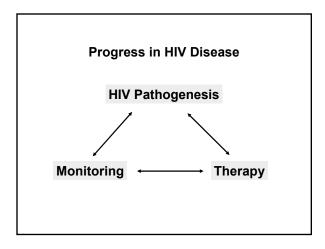



- Genotype
 - Determines phenotype
 - Major and minor mutations for PIs
- Phenotype
 Drug susceptibility
- Virtual phenotype
 Result of large relational genotype and phenotype
 database









Multi-NNRTI	κv	Y	
Resistance	103106 N M	188 L	
Multi-NNRTI	L V	Y G	м
Resistance:	100 106	181 190	230
of Mutations	I A	CI SA	L
	IKVV	YYG	
Nevirapine	100 103 106 108	181 188 190	
	I NAM I	CI CLH A	
	κv	ΥY	
Delavirdine	103106	181 188	2
	N M	C L	1
	L K V V	Y Y G	Р
Efavirenz	100 103 106 108	181 188 190	225

Г

