

Historical Perspective

- "Ancient Times", the Baluchi people
 - Encouraged children with wounds on their hands to touch skin lesions of cow/ camelpox
- "Centuries ago" Variolation in India, China?
 - inoculation of fluid or scabs from smallpox lesions into skin or intranasally of susceptibles
 - usually mild illness, occasionally severe disease with spread to others
- 11th century/Iran
 - applied dried liver/ rabid dog on wound of bitten person

Historical Perspective

- 1721, Lady Mary Montague
 - Observes variolation in Turkey & promotes its use in Europe
- 1774, Benjamin Jesty
 - Inoculates wife & 2 children with cowpox during a smallpox epidemic
 - Children are protected 15 years later after deliberate inoculation with smallpox
- 1796, Jenner
 - Milkmaids who had cowpox (vaccinia?) were immune to smallpox
 - Inoculated fluid from cowpox lesions into the skin of smallpox susceptible people (calf lymph-derived vaccinia virus)
 - "1st" use of a less virulent related species to protect against an exclusively human pathogen

"The Cow Pock: The Wonderful Effects of the New Inoculation!" James Gillnay, 1802 vide the publication of the Anti Vaccine Society

Historical Perspective

- 1885: Louis Pasteur vaccinates Joseph Meister with rabies vaccine
 - Air-dried infected rabbit spinal cord:
 - started with avirulent virus, then proceeded with a series of more virulent strains
 - Coins "vaccination" in honor of Jenner
- 1955, Salk:
 - formalin-inactivated polio vaccine (IPV)
- 1962, Sabin:
 - Live attenuated polio vaccine (OPV, TOPV)

Immunization Strategy

- Prevention of infection vs. symptoms
- Temporary vs. Long-lasting Immunity
 - Passive protection: specific antibodies
 - Immediate Protection, but $t_{1/2} \approx 27$ days:
 - Antitoxins
 - Antibodies to Tetanus, Diphtheria, Botulinum toxins
 - Antisera to specific pathogens:
 - Hepatitis B, Varicella, Rabies, RSV
 - Pooled Human Immune Globulin: not specific
 Immune Serum Globulin & Intravenous IG
 - Active: vaccination (Lag time, but long-lasting)
 - Active Passive (HBIG+Hep B vac.; RIG+Rabies vac.)
- Preventative(Polio) vs. Post-exposure (Rabies)

Target Populations for Immunization

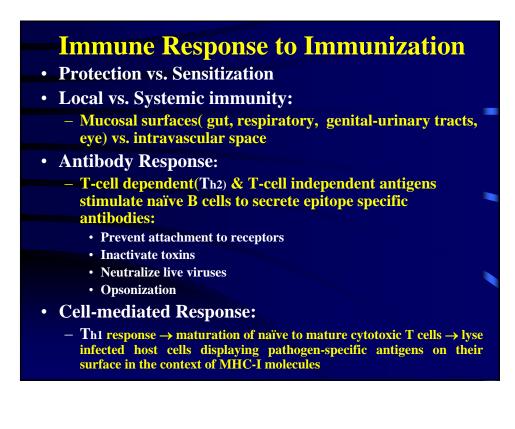
- High Risk Groups Only (Rabies, Varicella in some countries)
 - No effect on disease burden in general population
 - Vaccine must be highly effective
 - Must be able to reach all members of group
 - Less expensive in the short term
- Universal Immunization(Polio, Rubella, Varicella in USA)
 - Diminishes disease burden in general population
 - Pre-emptive immunization/ eventual high risk groups
 - Decreases risk of exposure
 - Planned access to target population
 - More cost-effective in long term
 - Requires extremely safe vaccines

Immunization of High Risk Groups

• Travel

- Polio, Hepatitis A, Diphtheria, Japanese Encephalitis, Meningococcus, Yellow fever, Typhoid....
- Occupation:
 - Hepatitis B, Rabies, Anthrax, Plague, Rubella & Varicella
- Age, illness, immunosuppression
 - High risk for invasive pneumoccocal disease:
 - Children < 6 years (Pneumococcal conjugate vaccine)
 - Elderly, high risk kids ≥ 6 years (Pneumococcal polysaccharide vaccine)
 - Influenza: elderly, or cardiac or pulmonary disease
 - Severe varicella (live attenuated varicella vaccine):
 leukemic children & HIV-infected kids with CD4 > 25%
 - HIV-infected children (Inactivated polio vaccine)

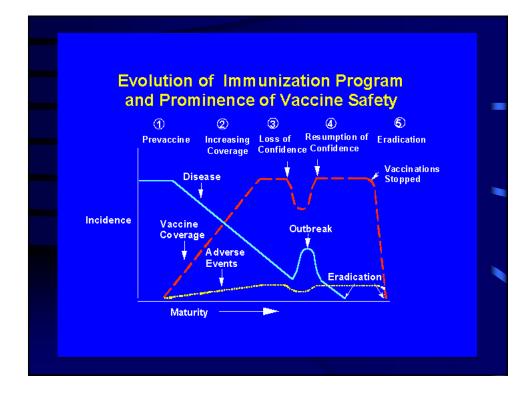
Administration

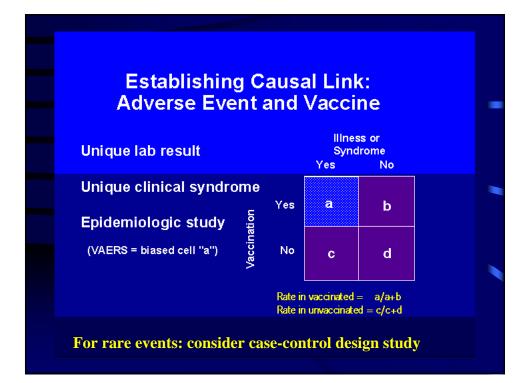

• Route

- Mimic route of natural infection: Oral polio vaccine, Live attenuated Intranasal Influenza vaccine
- Parenteral (Intramuscular, subcutaneous)
- Age at immunization
 - Age distribution of natural infection:
 - In pre-vaccine era: $\geq 60\%$ of invasive H.influenzae type b infections occurred at ≤ 18 months of age
 - Age-dependent immune response:
 - Polysaccaride antigens (HIB, Pneumo & Meningococcus) are poorly immunogenic at ≤ 2 years of age
 - Ability to access population to be immunized:
 - Hepatitis B & rubella vaccines in infants vs. adolescents

Administration

Type of Antigen & Number of Doses needed:


- Availability of Live vs. killed vaccine
- Likelihood of Take vs. No Take with 1st dose
- Waning immunity after 1st dose
- T-cell dependent vs. -independent response
- Safety concerns:
 - ability of host to control replication of live attenuated vaccine strains



Immune Response to Immunization

Primary response

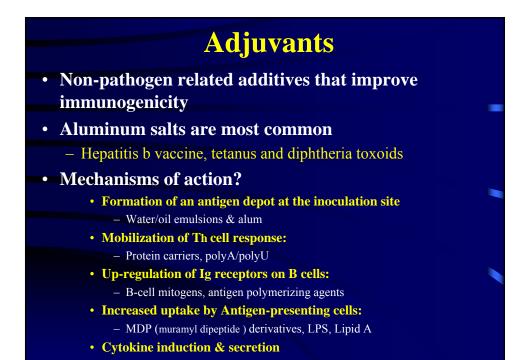
- 1st exposure to the antigen
- 7-10 day lag time between exposure and production of antibody and cell-mediated responses
- Initial antibody response is IgM, later switch to IgG
- Establish populations of memory T & B cells
- Secondary response
 - Repeat exposure to the antigen (or to the pathogen)
 - Shortened lag time between exposure and production of antibody and cell-mediated responses
 - Antibody response is almost all IgG
 - Rapid expansion/ Memory T & B cell populations

Current Technology	
 Inactivated whole organism: Whole cell Pertussis, eIPV, Hepatitis A, Rabies, Influenza(disrupted), plasma-derived Hepatitis B (no longer available in US) 	-
 Live organism from a related or different species: Vaccinia, Bacille Calmette-Guerin (BCG, also attenuated by serial passage) 	
 Live attenuated organism: – Oral Polio, Measles, Mumps, Rubella, Varicella, Cold- adapted Influenza, Yellow fever 	
 Attenuated by passage in tissue culture Toxoids: inactivated Diphtheria, Tetanus toxins 	
 Combination Vaccines: – DTP, MMRV, DTP-HIB, HIB-Hep.B, DTaP- Hep.B-IPV 	

Current Technology

- Specific subunit/antigen(s), extracted and purified:
 - Acellular Pertussis Vaccines:
 - PT (Pertussis toxoid), FHA (filamentous hemagglutinin), Pertactin, Agglutinogens
 - Polysaccarides (T-cell independent antigens):
 - Hæmophilus(no longer available), Meningococcus, Pneumococcus
 - Influenza surface glycoproteins (HA, NA)
- Conjugated antigens (T-cell dependent):
 - HiB: PRP-D, PRP-T, PRP-OMP, HBoC(crm197)
 - Pneumococcal Conjugate
 CRM 197- 4, 6B, 9V, 14, 19F, 23F, 18C
 - Meningococcus A, C, W-135 & Y conjugated to diphtheria toxoid

Current Technology


Recombinant antigens: HBsAg/ yeast

• Virus-like particles:

• Major capsid proteins of human papillomavirus serotypes 6, 11, 16 & 18 expressed in eucaryotic cells

– Quadrivalent Vaccine efficacy:

- 99-100% vs HPV 16/18 related Cervical Intraepithelial neoplasia (CIN) 2/3 in uninfected women
- 27% efficacy in women who are recently infected
- No efficacy in those with established infection
- To be licensed for use in females 9-26 years in 2006
 - Males and a bivalent 16/18 vaccine later on
 - Younger age groups to follow

Age 🕨	Birth	1 month	2 months	4 months	6 months	12	15 months	18 months	24 months	4-6	11-12	13-18
Vaccine 🔻	HepB #1	month	months	montins	montins	months	months	monuns	months	years	years	years
Hepatitis B ¹			HepB #2			Hepl	B #3			HepB	Series	
Diphtheria, Tetanus, Pertussis²			DTaP	DTaP	DTaP		DT	aP		DTaP	Td	Td
Haemophilus influenzae type b³			Hib	Hib	Hib	н	ib					
Inactivated Poliovirus			IPV	IPV		IP	v			IPV		
Measles, Mumps, Rubella ⁴						ММ	R #1			MMR #2	MM	R #2
Varicella ⁵							Varicella			Vari	cella	
Pneumococcal Conjugate'			PCV	PCV	PCV	P	cv		PCV	PI	PV	
							a (Yearly)			Influenza	(Yearly)	

Routine Adult Immunizations

- Diphtheria & Tetanus boosters every 10 years
 - Pertussis may be added to the adolescent & adult schedule
- Influenza A/B
 - Yearly if > 55 years or high risk
 - Eventually: all adults regardless of age
- Pneumococcal polysaccaride (23-valent)
 - High risk adults
 - ≥ 65 years
 - Future use of an "adult" conjugate vaccine???
- Hepatitis B: if high risk
- If not immune:
 - Varicella, Rubella
 - Measles & Mumps: if born after 1956

and the second secon	of Maximum a		and a second	and the second
accine-Preve	ntable Diseas	es and vacc ed States	ine Adverse	Events,
	Office	ed States		
	Pre-Vaccin		F	Percentage
Disease	Era*	Year	1997**	Change
Diphtheria	206,939	(1921)	5	-99.99
Measles	894,134	(1941)	135	-99.98
Mumps	152,209	(1968)	612	-99.60
Pertussis	265,269	(1934)	5,519	-97.92
Polio (wild)	21,269	(1952)	0	-100.00
Rubella	57,686	(1969)	161	-99.72

Cong. Rubella Synd. 20,000+ (1964-5) 4 -99.98 1,560+ 20,000+ (1948) (1984) 43 165 -97.24 Tetanus Invasive Hib Disease -99.18 Total 1,639,066 6,644 -99.59 11,365 +++

Vaccine Adverse Events 0

e era and year e existen in the aximum cases reported in pre-vac timated because no national repo

Most Pressing Future Needs

• HIV

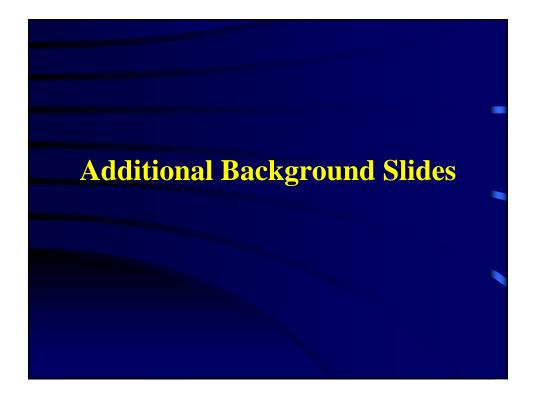
- Malaria
- Tuberculosis:
 - Improved BCG vaccine: rBCG30
 - Contains an extra copy of the major secretory protein (Ag85b) → improved immunogenicity & protection in animal models
 - Phase I clinical trials in humans completed

- Prime-Boost strategy:

- Prime with BCG
- Boost with MVA(Modified Vaccinia Ankara) vector containing the gene for TB antigen 85A
- · More robust CD4 response than either vaccine alone

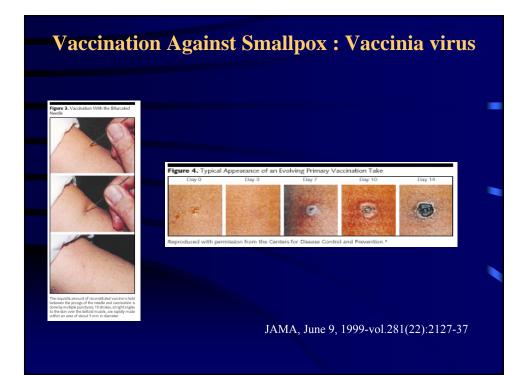
- Constant exposure to the pathogen:
 - "natural immunity" = chronic low-grade infection with constant exposure to changing antigens

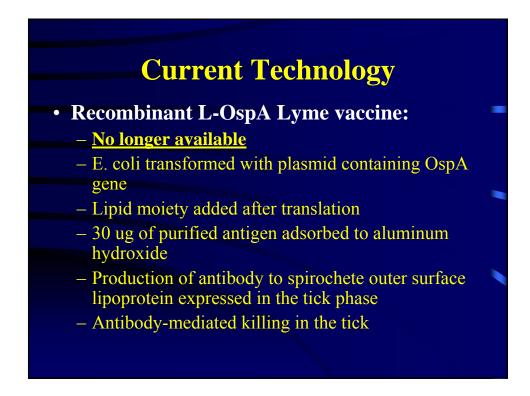
Malaria, still on the horizon ?

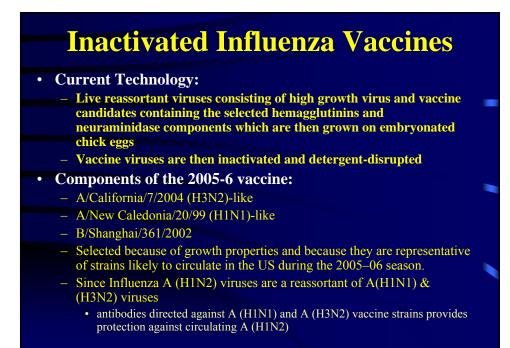

- Approaches to vaccine development
 - Irradiated sporozoite vaccine = "gold standard"
 - Stage specific recombinant antigens:
 - Circumsporozoite proteins (CSP):
 - RTS,S: segment of tandem-repeat region of CSP + flanking T cell epitopes + hepatitis b surface antigen expressed in yeast + 3-component adjuvant
 - Merozoite surface protein 1 (MSP1₁₉)
 - RBC schizont antigen (SERA)
 - Gametocyte antigens (Pfs25)
 - Multiple Antigen Peptides (MAPs)
 - Strong adjuvants

Malaria, still on the horizon ?

- Inadequate Long-term protection:
 - Failure to induce adequate memory T-cell responses?
 - Will prime-boost strategies work better?


Additional references:


- Targett, Trends in Parasitology, 2005
- Okie, NEJM, 2005
- http://www.who.int/vaccine_research/documents/en/malaria_table.pdf



Historical Perspective

- 1886, Salmon/ Smith: killed hog cholera "virus" vaccine (salmonella)
 led to killed vaccines for typhoid, cholera & plague
- **1909, Smith:** inactivated diphtheria toxin (toxoid) protects guinea pigs
 - led to diphtheria & tetanus toxoid vaccines for humans
- 1927, Calmette & Guerin: BCG
 - attenuated by passage in beef bile over 13 years of Mycobacterium bovis
- 1931, Goodpasture: chorioallantoic membrane/hen's egg
 safe, reliable method for growing viruses for vaccines
- 1937, Live attenuated yellow fever vaccine
 passage in mouse brain & chorioallantoic membrane/hen's egg (17D strain)
- **1955, Salk:** formalin-inactivated polio vaccine (IPV)
- **1962, Sabin:** Live attenuated polio vaccine (OPV, TOPV)

Future Influenza Vaccines	5
QuickTime™ and a	 Example of Reverse Genetics Technique for production of Inactivated Influenza Vaccines*: Extract RNA from master vaccine strain(H1N1) & candidate wild-type strains (e.g. H5N2, H7N2, H5N1, H5N8) Amplify (RT-PCR) genes for HA & NA from wild-type strains & "backbone" genes from master vaccine strain (Polymerase complex genes, etc.) Clone each into plasmids & transfect 293T cells Collect reassortant viruses (rH5N1,containing HA & NA genes from wild-type strains &
TIFF (Uncompressed) decompressor are needed to see this picture.	 backbone genes from master vaccine strain) Infect ECE (embryonated chick eggs) or immortalized cell lines like Marcus Darby Canine kidney cells(MDCK) Disrupt cells, collect, inactivate vaccine virus
Can substitute MDCK cells \rightarrow	*Can modify this technique for cold-adapted live attenuated vaccines
	Selected References: • Lee, et. al. Vaccine, 2004 • Webby, et. al. Lancet, 2004 • Nicolson, et. al. Lancet, 2005

On the Horizon

- New Combination Vaccines:
 - Tdap (Tetanus-Low dose diphtheria-acellular pertussis)
- Maternal Immunization/neonatal disease
 - Tetanus
 - Group B Streptococcus:
 - Capsular Polysaccharides(Ia, Ib, II, III, IV) conjugated to tetanus toxoid
 - "Universal" surface protein(s) vaccine covering all serotypes?
 - Live attenuated Dengue type 1-4 vaccines
- New live attenuated rotavirus vaccine

Rotavirus Vaccine

• RotaTeq Vaccine Study:

- Pentavalent bovine-human reassortant vaccine

• VP7 genes of serotypes G1, G2, G3, G4 and P-type P1A)

- 70,000 placebo-controlled study:

- 70% efficacy vs. any vaccine-serotype-related disease
- 98% vs. severe disease
- 85, 94, 96% \downarrow in office visits, ED & hospitalizations
- Intussuception:
 - 6 & 5 cases in the overall vaccine & placebo groups
 - 0 & 1 in vaccine & placebo groups after the 1st dose

• Viral Vectors:

- Vaccinia:

- good cytotoxic T-cell response(CTL)
- pre-existing immunity to vaccinia limits use
- primary response to vector limits response to booster doses of vectored vaccine
- Occasionally, poor responses to inserted antigens
- Canarypox, Adenovirus, Baculovirus
- Varicella-Hepatitis B

• Replicons:

- RNA viruses engineered to consist of a virus coat housing a genome with structural genes replaced by gene for the immunizing antigen:
 - Infection of host cell
 - Large quantities of mRNA for the desired antigen
 - No replication of parent virus (no structural genes)

Bacterial mutants as vectors or attenuated vaccines

– BCG, Salmonella, Shigella, Listeria

- Auxotrophic mutant Shigella:
 - invasion of target cell but can't replicate without a key nutrient
 - dies, releasing episomal plasmid DNA coding for desired antigen

Auxotrophic mutant BCG & M. tuberculosis (MTB)

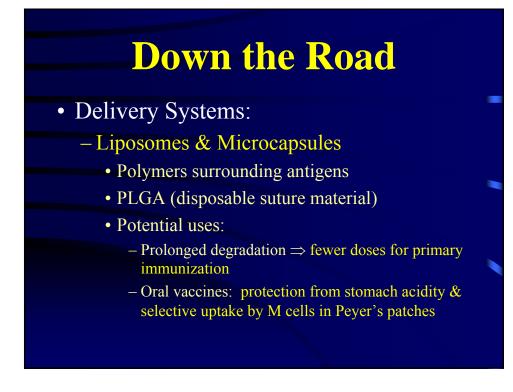
- defect in purine synthesis pathway \rightarrow unable to replicate in & lyse macrophages
- immunized guinea pigs protected after challenge with virulent MTB
- Salmonella auxotrophs expressing IL-2
 - protection of immunized mice after intraperitoneal challenge \leftarrow \uparrow Nitric oxide & IFN- γ production by peritoneal cells

Down the Road

• Peptides:

– As the Immunogen:

- B-cell epitopes:
 - Conserved
 - B cells usually respond to 3D shape of the epitope


• T-cell epitope:

- MHC-restricted: Multiple epitopes for major haplotypes?
- T cell epitopes are usually linear sequences of aa's

- As the Carrier: should elicit T-cell help

Potential adjuvants under evaluation:

- Monophosphoryl lipid A
- MF59 (emulsion of oil & surfactants)
- SAF-1 (oil based emulsion of MDP + non-ionic block copolymers)
- Saponin derivatives
- Polymers (polyphosphazene)
- Bacterial toxins (cholera & E.coli HL)
 - Orally cholera toxin \rightarrow Th2 response \rightarrow IgG1, IgE, mucosal IgA
- Cytokines:
 - − IL-6 \rightarrow mucosal IgA & IgG
 - IL-4 \rightarrow type 2 T-cell response (Th2/ Tc2) \rightarrow potent Ig production
 - IL-12 \rightarrow type 1 T-cell response (Th1/ Tc1) \rightarrow potent $\gamma\text{-IFN}$ & cytotoxic T-cell responses

- Nasal & Oral Vaccines
 - Mucosal routes \rightarrow mucosal immune responses
 - Respiratory & enteric pathogens

- Examples:

- Oral cholera vaccines:
 - Cholera toxin B subunit/ Inactivated whole cell(B-WC)
 - Live attenuated deletion-mutant strains
 - Bivalent(O1/O139) B subunit/Inactivated whole cell
- Oral vaccines for enterotoxigenic E. coli
 - Antibody to Cholera toxin B subunit cross-reacts with E. coli LT-B (heat labile toxin)

Down the Road

- Edible Plant Vaccines:
 - Transgenic plants expressing protein antigens:
 - Phase I/II trials of transgenic potatoes expressing the binding subunit of cholera toxin: safe & immunogenic
 - Phase I/II trials of transgenic potatoes expressing HBsAg as a booster after traditional vaccine
 - Infection of edible plants with chimeric plant viruses expressing the antigen of choice on its surface
 - Effect of cooking on immunogenicity in humans?

• Nucleic Acid Vaccines (Naked DNA):

- Bacterial plasmids carrying:

- Genes encoding immunizing antigen or replicationdefective viral vectors
- Strong viral promoter
- Intramuscular injection
- Generate MCH-I restricted CTL responses
- Antigen is produced in mammalian cells:
 - More appropriate antigen conformation

Key for Vaccine Abbreviations

- BCG: Bacille Calmette-Guérin vaccine
- CRM₁₉₇: nontoxic mutant diphtheria toxin
- DTaP: Diphtheria, Tetanus, Pertussis (acellular)
- DTP: Diphtheria, Tetanus, Pertussis (whole cell)
- HbOC: a HIB vaccine that uses CRM₁₉₇ as a carrier protein conjugated to PRP
- Hep A, Hep B: hepatitis A or B vaccine
- HIB: Hæmophilus influenzae, type b
- IPV/ eIPV: Inactivated polio vaccine or enhanced potency IPV
- MMR: Measles, Mumps, Rubella vaccine
- MMRV: Measles, Mumps, Rubella, Varicella vaccine
- OMP: outer membrane protein of Neisseria meningitis
- OPV or OTPV: live attenuated oral(trivalent) polio vaccine
- OspA: outer surface protein A of lyme spirochete
- Polio: refers to either OPV or eIPV
- PRP: polyribosilribotol phosphate (the capsular polysaccaride of HIB)
- PRP-T, PRP-D, PRP-OMP: HIB vaccines with the PRP conjugated to T(tetanus),
- D(diphtheria) or OMP, respectively as the carrier protein)
- Var: varicella vaccine