Acute Respiratory Failure Phil Factor, D.O. Associate Professor of Medicine Pulmonary, Allergy, and Critical Care Medicine Director, Medical Intensive Care Unit Columbia University Medical Center #### Acute Respiratory Failure Physiologic Classification | 1, | | | | | |---------------------|---|---|--|--| | | Type 1
Hypoxemic | Type 2
Ventilatory | Type 3
Post-op | Type 4
Shock | | Mechanism | Shunt | ↓Va | Atelectasis | ↓ Cardiac
Output | | Etiology | Airspace
Flooding | Increased
Respiratory load,
Decreased
ventilatory drive | Decreased
FRC and
increased
Closing
Volume | Decreased
FRC and
increased
Closing
Volume | | Clinical
Setting | Water, Blood
or Pus filling
alveoli | CNS depression,
Bronchospasm,
Stiff respiratory
system,
respiratory
muscle failure | Abdominal
surgery,
poor insp
effort,
obesity | Sepsis, MI,
acute
hemorrhage | | Setting | alveoli | system,
respiratory | effort, | | #### Respiratory Failure Physiologic Definition: Inability of the lungs to meet the metabolic demands of the body Can't take in enough O_2 or Can't eliminate CO_2 fast enough to keep up with production #### Ventilatory Failure Inbalance between load on the lungs and the ability of bellows to compensate #### Respiratory Failure - Failure of Oxygenation: PaO2<60 mmHg - Failure of Ventilation*: PaCO2>50 mmHg $^{\star}\mathrm{P_{a}CO_{2}}$ is directly proportional to alveolar minute ventilation #### Type 1 Respiratory Failure Acute Hypoxemic Respiratory Failure - · Shunt disease intracardiac or intrapulmonary - · Severe V/Q mismatch asthma, PE - Venous admixture due to low cardiac output states, severe anemia coupled with shunt and/or V/Q mismatch #### Causes of ARDS #### DIRECT LUNG INJURY Preumonia Aspiration of gastric contents Pulmonary contusion Near-drowning Inhalation injury (Cl-, smoke) Reperfusion pulmonary edema after lung transplantation or pulmonary embolectomy #### INDIRECT LUNG INJURY Non-pulmonary sepsis/SIRS Severe trauma with shock Severe trauma with shock Cardiopulmonary bypass Drug overdose (Narcotics) Acute pancreatitis Massive transfusion (TRALI) Drug reaction (ARA-C, nitrofurantoin) fat/air/amniotic fluid embolism,bypass ### Acute Respiratory Distress Syndrome (ARDS) American-European Consensus Definition:* - Refractory hypoxemia PaO₂/F_TO₂ (P/F ratio) <300 for ALI, <200 for ARDS - A disease process likely to be associated with ARDS - No evidence of elevated left atrial pressure elevation (by clinical exam, echo or PA catheter) - · Bilateral airspace filling disease Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee. ## Acute Respiratory Distress Syndrome #### ARDS Fundamental Pathophysiology: <u>Increased alveolar permeability</u> due to direct neutrophil-mediated injury to the alveolar epithelium Not a distinct disease - rather a seguelae of activation of lung and systemic inflammatory pathways Severe Hypoxemia #### Therapeutic Goals Maintain reasonable oxygen delivery Find & fix the primary cause #### "Baby Lungs" FRC can be reduced by 80% or more in ARDS Gattinoni, et. al. Anesthesiology, 74:15-23, 1991. #### ARDS Network Trial #### Day 1 Ventilatory Characteristics | | Low V ₊ Group
n=432 | Traditional V _t Group
n=429 | |---------------------|-----------------------------------|---| | V_{t} : | 6.2 ± 0.9 | 11.8 ± 0.8 | | PEEP: | 9.4 ± 3.6 | 8.6 ± 3.6 | | F_iO_2 : | 0.56 ± 0.19 | 0.51 ± 0.17 | | P _{plat} : | 25.7 ± 7 | 33 ± 9 | | P _{peak} : | 32.8 ± 8 | 39 ± 10 | | P_aO_2/F_iO_2 : | 158 ± 73 | 176 ± 76 | | P_0CO_2 : | 40 ± 10 | 35 ± 8 | | pH: | 7.38 ± 0.08 | 7.41 ± 0.07 | NEJM 342:1301-1308, 2000 # ARDS Network Trial: Oxygenation Traditional Ventilation Low Vt Ventilation Ventilation with low tidal was associated lower P/F ratios on days 1 & 3 #### Permissive Hypercapnea Low tidal volume mechanical ventilation are usually associated with low alveolar minute ventilation which results in high PaCO2 - High P_aCO_2 is well tolerated* P_aCO_2 should be allowed to rise slowly Contraindications: increased ICP, active myocardial ischemia/severe RV or LV failure, severe metabolic - acidosis Bicarb infusion may be used if pH<7.10 High P_aCO₂ is preferable to flogging the lungs to "normalize gases" *Multu, Schwartz, Factor, Crit Care Med, 30:477-480, 2002 *Tuxen, Am J Resp Crit Care 150:870-90, 1994 #### Pulmonary Edema Not just due to fluid leaking into alveoli It's also a problem with fluid clearance #### Pulmonary Edema Accumulation #### Starling's Equation Fluid movement across a semipermeable membrane is governed by opposing hydrostatic and oncotic pressure aradients #### Reduce further edema accumulation Reduce pulmonary vascular hydrostatic pressures to limit edema accumulation "Keep-em-Dry" Diuresis, Phlebotomy, Venodilators ## What happens to alveoli in ARDS? #### Positive End-Expiratory Pressure (PEEP) - Beneficial Effects Increases FRC, CI, P.O. Recruits Atelectatic Units - Decreases Qs/Qt Allows Reduction in F_iO₂ - Detrimental Effects Barotrauma Volutrauma Alveolar Overdistention Hemodynamic Derangements ## What happens to alveoli in ARDS? Edema accumulates in alveoli Diluting & disaggregating surfactant Surface tension increases Alveoli collapse Alveolar collapse decreases FRC and contributes to hypoxemia #### PEEP - Oxygen is: A) good for you B) bad for you C) all of the above $F_IO_2 > 0.6$ for 24 hours or more may cause lung injury PEEP recruits collapsed alveoli, improves FRC and improves oxygenation An essential therapy for patients with ARDS #### ARDS Network Trial The standard of care Assist Control V_t 6 cc/kg ideal body weight PEEP of ≈8-10 Cause of Death in ARDS Patients? ## Generally not due to respiratory failure The lung is not just an innocent bystander - it functions as an immunomodulatory organ that may participate in the systemic inflammatory response that leads to multiple organ system dysfunction syndrome #### Biotrauma #### Does Mechanical Ventilation Contribute to MSOF? Ranieri, et al.*: randomized prospective study of the effects of mechanical ventilation on bronchoalveolar lavage fluid and plasma cytokines in patients with ARDS (primarily non-pulmonary causes). Controls (n=19): Rate 10-15 bpm, V, targeted to maintain Pa CO_2 35-40 mmHg (mean: 11 ml/kg), PEEP titrated to Sa O_2 (mean: 6.5), P_{plot} maintained <35 cmH $_2O$ Lung protective ventilation (n=18): Rate 10-15 bpm, V, targeted to keep P_{plat} less than upper inflexion point (mean: 7 ml/kg), PEEP 2-3 cmH₂O above LIP (mean: 14.8) Plasma and BALF levels of II-1 β , IL-6, IL-8, TNF α , TNF α -sr 55, TNF α -sr 75, IL-1ra, measured within 8 hrs of intubation and again @24-30 hours & 36-40 hours after entry *Ranieri, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54-61, 1999 #### Goals for Management of ARDS The American-European Consensus Conference on ARDS, Part 2 - Ensure appropriate O₂ delivery to vital organs - Minimize oxygen toxicity/tolerate mediocre ABG's - Reduce edema accumulation - Minimize airway pressures - Prevent atelectasis/Recruit alveoli - Use sedation and paralysis judiciously Am J Resp Crit Care Med 157:1332-47, 1998. Survival from "pure" ARDS 1979: 20-50% 2002: 50-90%