Acute Respiratory Failure

Phil Factor, D.O. Associate Professor of Medicine Pulmonary, Allergy, and Critical Care Medicine Director, Medical Intensive Care Unit Columbia University Medical Center

Acute Respiratory Failure

Physiologic Classification

1,				
	Type 1 Hypoxemic	Type 2 Ventilatory	Type 3 Post-op	Type 4 Shock
Mechanism	Shunt	↓Va	Atelectasis	↓ Cardiac Output
Etiology	Airspace Flooding	Increased Respiratory load, Decreased ventilatory drive	Decreased FRC and increased Closing Volume	Decreased FRC and increased Closing Volume
Clinical Setting	Water, Blood or Pus filling alveoli	CNS depression, Bronchospasm, Stiff respiratory system, respiratory muscle failure	Abdominal surgery, poor insp effort, obesity	Sepsis, MI, acute hemorrhage
Setting	alveoli	system, respiratory	effort,	

Respiratory Failure

Physiologic Definition:

Inability of the lungs to meet the metabolic demands of the body

Can't take in enough O_2 or Can't eliminate CO_2 fast enough to keep up with production

Ventilatory Failure

Inbalance between load on the lungs and the ability of bellows to compensate

Respiratory Failure

- Failure of Oxygenation: PaO2<60 mmHg
- Failure of Ventilation*: PaCO2>50 mmHg

 $^{\star}\mathrm{P_{a}CO_{2}}$ is directly proportional to alveolar minute ventilation

Type 1 Respiratory Failure

Acute Hypoxemic Respiratory Failure

- · Shunt disease intracardiac or intrapulmonary
- · Severe V/Q mismatch asthma, PE
- Venous admixture due to low cardiac output states, severe anemia coupled with shunt and/or V/Q mismatch

Causes of ARDS

DIRECT LUNG INJURY

Preumonia
Aspiration of gastric contents
Pulmonary contusion
Near-drowning
Inhalation injury (Cl-, smoke)
Reperfusion pulmonary edema
after lung transplantation or
pulmonary embolectomy

INDIRECT LUNG INJURY Non-pulmonary sepsis/SIRS Severe trauma with shock

Severe trauma with shock Cardiopulmonary bypass
Drug overdose (Narcotics)
Acute pancreatitis
Massive transfusion
(TRALI)
Drug reaction (ARA-C,
nitrofurantoin)
fat/air/amniotic fluid
embolism,bypass

Acute Respiratory Distress Syndrome (ARDS)

American-European Consensus Definition:*

- Refractory hypoxemia
 PaO₂/F_TO₂ (P/F ratio)
 <300 for ALI,
 <200 for ARDS
- A disease process likely to be associated with ARDS
- No evidence of elevated left atrial pressure elevation (by clinical exam, echo or PA catheter)
- · Bilateral airspace filling disease

Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.

Acute Respiratory Distress Syndrome

ARDS

Fundamental Pathophysiology:

<u>Increased alveolar permeability</u> due to direct neutrophil-mediated injury to the alveolar epithelium

Not a distinct disease - rather a seguelae of activation of lung and systemic inflammatory pathways

Severe Hypoxemia

Therapeutic Goals

Maintain reasonable oxygen delivery

Find & fix the primary cause

"Baby Lungs"

FRC can be reduced by 80% or more in ARDS

Gattinoni, et. al. Anesthesiology, 74:15-23, 1991.

ARDS Network Trial

Day 1 Ventilatory Characteristics

	Low V ₊ Group n=432	Traditional V _t Group n=429
V_{t} :	6.2 ± 0.9	11.8 ± 0.8
PEEP:	9.4 ± 3.6	8.6 ± 3.6
F_iO_2 :	0.56 ± 0.19	0.51 ± 0.17
P _{plat} :	25.7 ± 7	33 ± 9
P _{peak} :	32.8 ± 8	39 ± 10
P_aO_2/F_iO_2 :	158 ± 73	176 ± 76
P_0CO_2 :	40 ± 10	35 ± 8
pH:	7.38 ± 0.08	7.41 ± 0.07

NEJM 342:1301-1308, 2000

ARDS Network Trial: Oxygenation Traditional Ventilation Low Vt Ventilation Ventilation with low tidal was associated lower P/F ratios on days 1 & 3

Permissive Hypercapnea

Low tidal volume mechanical ventilation are usually associated with low alveolar minute ventilation which results in high PaCO2

- High P_aCO_2 is well tolerated* P_aCO_2 should be allowed to rise slowly
 Contraindications: increased ICP, active myocardial ischemia/severe RV or LV failure, severe metabolic
- acidosis Bicarb infusion may be used if pH<7.10

High P_aCO₂ is preferable to flogging the lungs to "normalize gases"

*Multu, Schwartz, Factor, Crit Care Med, 30:477-480, 2002 *Tuxen, Am J Resp Crit Care 150:870-90, 1994

Pulmonary Edema

Not just due to fluid leaking into alveoli

It's also a problem with fluid clearance

Pulmonary Edema Accumulation

Starling's Equation

Fluid movement across a semipermeable membrane is governed by opposing hydrostatic and oncotic pressure aradients

Reduce further edema accumulation

Reduce pulmonary vascular hydrostatic pressures to limit edema accumulation

"Keep-em-Dry"

Diuresis, Phlebotomy, Venodilators

What happens to alveoli in ARDS?

Positive End-Expiratory Pressure (PEEP)

- Beneficial Effects
 Increases FRC, CI, P.O.
 Recruits Atelectatic Units

 - Decreases Qs/Qt
 Allows Reduction in F_iO₂
- Detrimental Effects
 Barotrauma Volutrauma
 Alveolar Overdistention
 Hemodynamic Derangements

What happens to alveoli in ARDS?

Edema accumulates in alveoli

Diluting & disaggregating surfactant

Surface tension increases

Alveoli collapse

Alveolar collapse decreases FRC and contributes to hypoxemia

PEEP

- Oxygen is:
 A) good for you
 B) bad for you
 C) all of the above

 $F_IO_2 > 0.6$ for 24 hours or more may cause lung injury

PEEP recruits collapsed alveoli, improves FRC and improves oxygenation

An essential therapy for patients with ARDS

ARDS Network Trial

The standard of care

Assist Control V_t 6 cc/kg ideal body weight PEEP of ≈8-10

Cause of Death in ARDS Patients?

Generally not due to respiratory failure

The lung is not just an innocent bystander - it functions as an immunomodulatory organ that may participate in the systemic inflammatory response that leads to multiple organ system dysfunction syndrome

Biotrauma

Does Mechanical Ventilation Contribute to MSOF?

Ranieri, et al.*: randomized prospective study of the effects of mechanical ventilation on bronchoalveolar lavage fluid and plasma cytokines in patients with ARDS (primarily non-pulmonary causes).

Controls (n=19): Rate 10-15 bpm, V, targeted to maintain Pa CO_2 35-40 mmHg (mean: 11 ml/kg), PEEP titrated to Sa O_2 (mean: 6.5), P_{plot} maintained <35 cmH $_2O$

Lung protective ventilation (n=18): Rate 10-15 bpm, V, targeted to keep P_{plat} less than upper inflexion point (mean: 7 ml/kg), PEEP 2-3 cmH₂O above LIP (mean: 14.8)

Plasma and BALF levels of II-1 β , IL-6, IL-8, TNF α , TNF α -sr 55, TNF α -sr 75, IL-1ra, measured within 8 hrs of intubation and again @24-30 hours & 36-40 hours after entry

*Ranieri, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54-61, 1999

Goals for Management of ARDS

The American-European Consensus Conference on ARDS, Part 2

- Ensure appropriate O₂ delivery to vital organs
- Minimize oxygen toxicity/tolerate mediocre ABG's
- Reduce edema accumulation
- Minimize airway pressures
- Prevent atelectasis/Recruit alveoli
- Use sedation and paralysis judiciously

Am J Resp Crit Care Med 157:1332-47, 1998.

Survival from "pure" ARDS

1979: 20-50%

2002: 50-90%