Pulmonary Physiology

Neural Control

- Inspiratory inhibition reflex (Hering Breuer); irritant, mechano, j receptors: stimulation in patients with, e.g., interstitial fibrosis, pulmonary embolism, atelectasis
- Stimulation of mechanoreceptors in airways: can cause tachypnea, bronchoconstriction

Chemical control

- CO₂ stimulation
- Hypoxemic stimulation
- H⁺ stimulation

Ventilation

- PACO₂ = VCO₂/VA x K (the constant is actually 863 mmHg, derived from ideal gas laws).
- The ratio of VCO₂/VA for normal people at rest, at sea level, is about 1/21.6; thus, normal PACO₂ = 1/21.6 x 863 mmHg = ~40 mmHg.

- Conduction of blood coming from the tissues through the alveolar capillaries so that O₂ can be added and CO₂ removed.
- Pulmonary vessels=low pressures and low resistance to flow (thin walled)
- Resistance=driving pressure/flow (Q)
- · Most resistance in the arterioles and capillaries
- Driving pressure=pressure at the beginning of the pulmonary circulation (the pulmonary artery) and other end (left atrium); normally, eg, blood flow 6 L/min and mean driving pressure of 9 mmHg, resistance is 9/6 or 1.5 mmHg/L/min (~10% of systemic pressure).

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Pulmonary capillary blood volume increases during inspiration and exercise
- Reduced when patients receive mechanical ventilation (intrathoracic pressure is raised, thus impeding venous return to the heart)
- Patients with increased pulmonary pressure (eg pulmonary hypertension, pulmonary embolism)=cardiodynamic consequences as well as disturbance of gas transfer

- Transfer of O₂ and CO₂ between alveolar gas and pulmonary capillary blood is entirely passive, with the *rate of diffusion* of gas across alveolar-capillary barrier determined by (1) solubility of gas in liquid, (2) density of gas, (3) partial pressure difference between alveolar air and pulmonary capillary blood, and (4) surface area available for diffusion
- CO₂ diffusion not a clinical problem because CO₂ xmuch more soluble and diffusible than oxygen between air and blood
- Total diffusing capacity includes uptake by hemoglobin and rate of flow

Gas Transport: CO₂

- CO₂ in physical solution: most carried in RBCs either as bicarbonate, or bound to Hgb (carbaminoHgb)
- Some is dissolved in plasma

Gas Transport:Oxygen

- O₂ combined with Hgb in RBCs, and dissolved O₂ in physical solution in the plasma
- Normal: 1 gm of Hgb able to combine chemically with 1.34 ml O₂
- Thus: O₂ capacity=1.34 ml O₂ /gmHgb
- If 15 gm Hgb/100 ml blood, O_2 capacity=20 ml O_2 /100 ml blood=200 ml O_2 /liter blood
- Dissolved $O_2 = .003$ ml $O_2 / 100$ ml blood/mmHg
- CaO₂ =SaO₂ x [O₂ capacity + dissolved O₂]/l/mmHg PaO2
- If PaO₂ =100 mmHg, O₂ content = 200 ml O₂ /liter blood + 3 mlO₂/liter blood=~203 mlO₂/liter blood x SaO₂

Hypoxemia

 Low partial pressure of O₂ in blood (PaO₂) OR low O₂ content

- Hypoxemia: hypoventilation, low PIO₂, diffusion abnormality (must be severe if at rest), V/Q mismatch, shunt (note that shunt and diffusion block manifest similarly in corresponding areas of lung; diffusion abnormality (if not block) does NOT equal shunt)
- Note that low V/Q does not=shunt
- O₂ saturation=O₂ content/O₂ capacity x 100
- Degree of O₂ saturation depends on O₂ tension

Physiologic Causes of Hypoxemia

Widening of AaDO2: Diffusion Abnormality V/Q mismatch Shunt

No widening of AaDO2: Hypoventilation ?Low PIO2 (may slightly widen if impaired diffusion

Abnormal Ventilation, Abnormal Gas Exchange

Good Moves

Two patients breathing room air at sea level:

- 1. PaO₂=40 mmHg, PaCO₂=90 mmHg:
- 2. PaO₂=40 mmHg, PaCO₂=22 mmHg:

Ventilation and Gas Exchange

- The failure of either or both results in impaired arterial blood gases and ultimately *respiratory failure*.
- Ventilatory failure: *Hypercapnic respiratory failure*
- Gas exchange failure: *Hypoxemic* respiratory failure
- Hypoxemia is the inevitable result of both

Hypoxemia

• Hypoxemia is not synonymous with:

Ventilation

- Alveolar PCO2 (PACO2)=VCO2/VA x K
- VCO2=CO2 production
- VA=alveolar ventilation
- Normal: VCO2/VA=1/21.6; K=863 mmHg, so PACO2=~40mmHg))
- Alveolar PCO2=CO2 leaving lungs after gas exchange; directly reflects arterial PCO2
- e.g., halving alveolar ventilation with constant CO2 production will double the alveolar PCO2
- e.g., doubling the alveolar PCO2 reflects halved alveolar ventilation

Hypoventilation/ Alveolar hypoventilation

- All hypoventilation concerns either :
- increased dead space/tidal volume ratio (anatomic or physiologic), or
- Decreased MINUTE ventilation (decreased tidal volume, and/or decreased respiratory rate)
- Each may result in alveolar hypoventilation (PaCO₂ elevated)

Alveolar Hypoventilation: 2 Clinical Pearls

- Does not widen the AaDO₂
- The hypoxemia may be readily ameliorated with supplemental O₂
- Challenge: Write a proof for this latter statement

Alveolar Gas Equation

- PAO2=PIO2 PACO2/R
- PIO2: FIO2 (Patm-PH20)
- PACO2=PaCO2

Alveolar Gas Equation

- PAO2=PIO2 PACO2/R
- PIO2: FIO2 (Patm-PH20)
- PACO2=PaCO2
- R=Respiratory Exchange Ratio: (gas R=CO2 added to alveolar gas by blood/amount of O2 removed from alveolar gas by blood; low V/Q=low R); normal=0.8

- CNS: central hypoventilation; infectious, traumatic, vascular damage to medullary centers; pharmacologic and sleep suppression of ventilatory drive
- Peripheral nervous system/myoneural junction: poliomyelitis, Guillain-Barre, myasthenia gravis

Respiratory muscles: muscular dystrophy, ALS, increased inspiratory loading (eg emphysema)

Alveolar Hypoventilation

Respiratory muscles: muscular dystrophy,increased inspiratory loading (eg emphysema)

Chest wall/mechanical restriction: kyphoscoliosis, trauma, splinting, obesity

Alveolar Hypoventilation

Respiratory muscles: muscular dystrophy,increased inspiratory loading (eg emphysema) Chest wall/mechanical restriction: kyphoscoliosis, trauma, splinting, obesity Airway obstruction: upper airway, lower airway

Alveolar Hypoventilation

Respiratory muscles: muscular dystrophy,increased inspiratory loading (eg emphysema) Chest wall/mechanical restriction: kyphoscoliosis, trauma, splinting, obesity Airway obstruction: upper airway, lower airway Increased dead space ventilation: pulmonary embolism; COPD

Case History

• RA: PaO2=70, PaCO2=30 mmHg

Case History

- RA: PaO2=70, PaCO2=30 mmHg
- No treatment: RA PaO2=50 mmHg, PaCO2=28 mmHg
- What happened?

Low V/Q

- Low relationship of V to Q; NOT low ventilation in all alveolar capillary units
- That is, Low V/Q is NOT hypoventilation (unless all units are the same low V/Q)

- Transfer of O₂ between alveolar gas and pulmonary capillary blood is entirely passive, with the *rate of diffusion* of gas across alveolar-capillary barrier determined by (1) solubility of gas in liquid, (2) density of gas, (3) partial pressure difference between alveolar air and pulmonary capillary blood, and (4) surface area available for diffusion
- Total diffusing capacity includes uptake by hemoglobin and rate of flow

- Low gas transfer may also result from processes not clearly blocking diffusion, such as low Hgb, or increased rate of flow disallowing adequate gas transfer
- All diffusion abnormalities do not typically =low PaO₂, or low O₂ content, since so much redundancy:
- Complete exposure of alveolar PO₂ to capillary blood=no decrease in end capillary PO₂, even if there is less of it (low lung volume, low Hgb) and no change in AaDO₂ (note that if less of it, lower O₂ CONTENT, not PaO₂)
- But incomplete transfer = decrease in end capillary PO₂ and widened AaDO₂

SUMMARY

- Hypoventilation: High PaCO₂, Low PaO₂, no widening of AaDO₂
- Gas exchange abnormality: Low PaO₂, normal or low PaCO₂, widened AaDO₂
- Hypoxemia of all hypoventilation and gas exchange abnormalities may be sufficiently overcome by supplemental O₂ unless gas exchange abnormality is absolute (eg shunt)

