
C o p y r i g h t  S h a r y n  O ' H a l l o r a n  2 0 0 1 1

Statistics and Quantitative 
Analysis U4320 

Lecture 13: Explaining Variation
Prof. Sharyn O’Halloran

Explaining Variation: Adjusted R2(cont)

n Definition of Adjusted R2

n So we'd like a measure like R2, but one that takes 
into account the fact that adding extra variables 
always increases your explanatory power.

n The statistic we use for this is call the Adjusted R2, 
and its formula is:

n The Adjusted R2 can actually fall if the variable 
you add doesn't explain much of the variance.
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Explaining Variation: Adjusted R2 (cont)

n Back to the Example
n Comparing Adjusted R2

n Model 1: .029
n Model 2: .031
n Model 3: .033
n Model 4: .030

n Interpretation
n You can see that the adjusted R2 rises from equation 1 

to equation 2, and from equation 2 to equation 3.
n But then it falls from equation 3 to 4, when we add in 

the variables for national parks and the zodiac.

Explaining Variation: Adjusted R2 (cont)

n Example: Equation 2

n We calculate:

Multiple R 0.18856
R Square 0.03555
Adjusted R Square 0.03142
Standard Error 0.62562

DFSum of Squares Mean Square
Regression 2 6.73848 3.36924
Residual 467 182.785 0.3914

F=8.60813 Signif F = 0.0002

Analysis of Variance

Variable B SE B Beta T T Sig T
SKOOL 0 0.01064 0.068897 1.459 0.1453
TUBETIME -0 0.01444 -0.157772 -3.341 0.0009
(Constant) 2.1 0.15826 13.446 0
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Explaining Variation: Adjusted R2 (cont)

n Stepwise Regression
n One strategy for model building is to add variables 

only if they increase your adjusted R2. 
n This technique is called stepwise regression. 
n However, I don't want to emphasize this approach 

to strongly.  
n Just as people can fixate on R2 they can fixate on 

adjusted R2. 
n If you have a theory that suggests that certain variables 

are important for your analysis then include them 
whether or not they increase the adjusted R2.  

n Negative findings can be important! 

Comparing Models: F-Tests
n When to use an F-Test?

n Say you add a number of variables into a 
regression model and you want to see if, as a 
group, they are significant in explaining variation 
in your dependent variable Y.

n The F-test tells you whether a group of variables, 
or even an entire model, is jointly significant. 
n This is in contrast to a t-test, which tells whether an 

individual coefficient is significantly different from zero.
n In short, does the specified model explain a significant 

proportion of the total variation.  

Comparing Models: F-Tests (cont.)

n Equations
n To be precise, say our original equation is:

Model 1:  Y = b0 + b1X1 + b2X2,
We add two more variables, so the new equation is:

Model 2:  Y = b0 + b1X1 + b2X2 + b3X3 + b4X4.
n We want to test the hypothesis that 

Η 0: β3 = β4 = 0.
We want to test the joint hypothesis that X3
and X4 together are not significant factors in 
determining Y.

Comparing Models: F-Tests (cont.)

n Using Adjusted R2 First
n There's an easy way to tell if these two 

variables are not significant.
n First, run the regression without X3 and X4 in it, 

then run the regression with X3 and X4. 
n Now look at the adjusted R2's for the two 

regressions.  
n If the adjusted R2 went down, then X3 and X4 are not 

jointly significant.

n So the adjusted R2 can serve as a quick 
test for insignificance.
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Comparing Models: F-Tests (cont.)

n Calculating an F-Test
If the adjusted R2 goes up, then you need to do 

a more complicated test, F-Test.
n Ratio

n Let regression 1 be the model without X3 and 
X4, and let regression 2 include X3 and X4.

n The basic idea of the F statistic, then, is to 
compute the ratio:
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Comparing Models: F-Tests (cont.)

n Correction
n We have to correct for the number of independent we 

add.
n So the complete statistic is:

n Remember: k is the total number of independent 
variables, including the ones that you are testing and the 
constant.
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m is the number of 
additional variables 
added to the model

Comparing Models: F-Tests (cont.)

n Correction (cont.)

n This equation defines an F-statistic with m and 
n-k degrees of freedom. 

n We write it like this: 

n To get critical values for the F statistic, we use 
a set of tables, just like for the normal and t-
statistics.
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m
−

Comparing Models: F-Tests (cont.)

n Example
n Adding Extra Variables:  Are a group of 

variables jointly significant?
n Are the variables YELOWSTN and MYSIGN 

jointly significant?

TUBETIMEb  SKOOLb  LIKEJPANb  TRUSTTV  :1 Model
3210

+++= b

YELOWSTNbMYSIGNb
TUBETIMEb  SKOOLb  LIKEJPANb  TRUSTTV  :2 Model

54

3210

++
+++= b
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Comparing Models: F-Tests (cont.)

n Adding Extra Variables (cont.)

n State the null hypothesis

n Calculate the F-statistic 
n Our formula for the F-statistic is:  

F
SSE SSE

m
SSE
n k

=
−

−

1 2

2
,

0:
540
== BBH

Comparing Models: F-Tests (cont.)

n What is SSE1?
n the sum of squared errors in the first regression.

n What is  SSE2?
n the sum of squared errors in the second 

regression
m = 2         N = 470         k = 6

n The formula is:

F =
−

−
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= 0.319

Comparing Models: F-Tests (cont.)

n Reject or fail to reject the null hypothesis?
n The critical value at the 5 % level

n from the table, is 3.00.
n Is the F-statistic >         ?

n If yes, then we reject the null hypothesis that the variables 
are not significantly different from zero; otherwise we fail 
to reject. 

n We can reject the null hypothesis because .319 < 3.00.

F470 6
2

−

F470 6
2

−

β=0 0.319 3.0

Comparing Models: F-Tests (cont.)

n Testing All Variables:  Is the Model 
Significant?
n Equation 2:  Impact of school and TV watched

Multiple R 0.18856
R Square 0.0356
Adjusted R Square 0.0314
Standard Error 0.6256

DF Sum of SquaresMean Square
Regression 2 6.74 3.37
Residual 467 182.78 0.39

F Statistic = 8.61 Signif F =2.000E-04

Variable B SE B Beta T Sig T
SKOOL 0.016 0.011 0.069 1.459 0.145
TUBETIME -0.048 0.014 -0.158 -3.341 0.001
(Constant) 2.128 0.158 13.446 0.000

Dependent Variable: Trust TV
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Comparing Models: F-Tests (cont.)

n Hypothesis Testing:
n State Hypothesis

n Calculate test statistic
n Again, we start with our formula:

F
SSE SSE
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Comparing Models: F-Tests (cont.)

n Calculate F-statistic
n SSE2 = 182.78
n SSE1 is the sum of squared errors when there 

are no explanatory variables at all.
If there are no explanatory variables, then SSR 
must be 0.  In this case, SSE=SST. 

n So we can substitute SST for SSE1 in our formula. 
SST = SSR + SSE = 6.738 + 182.78 = 189.54 

F =
−

−

189 54 182 78
2

182 78
470 3

. .

.

= 8.61.

This is the number 
reported in your printout 
under the F statistic.

Comparing Models: F-Tests (cont.)

n Reject or fail to reject the null hypothesis?
n The critical value at the 5% level,         from 

your table, is 3.00.
n So this time we can reject the null hypothesis 

that β1 = β2 = 0.

n Interpretation?
n The model explains a significant amount of the 

total variation in how much people trust what is 
said on TV.

F470 3
2

−

Comparing Models: Example

n Study of 78 Seventh Grade students in 
a mid-western school.
n Path Diagram

IQ
GPA

Gender

+

+



C o p y r i g h t  S h a r y n  O ' H a l l o r a n  2 0 0 1 6

Comparing Models: Example(cont.)

n Variables
n IQ= student’s score on a standard IQ test
n GPA= student’s grade point average
n Gender= students gender (1 for male; 0 for female)

n Descriptive Statistics

GPA IQ Gender
Mean 7.45 Mean 108.92 Mean 0.60
Standard Error 0.24 Standard Error 1.49 Standard Error 0.06
Mode 9.17 Mode 111.00 Mode 1.00
Sample Variance 4.41 Sample Variance 173.47 Sample Variance 0.24
Kurtosis 1.10 Kurtosis 0.64 Kurtosis -1.87
Minimum 0.53 Minimum 72.00 Minimum 0.00
Sum 580.83 Sum 8496.00 Sum 47.00

Comparing Models: Example(cont.)

Relation between IQ and GPA
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Average of IQ 105.8387097 110.9574468
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Data

Gender Average of GPA Average of IQ
0 7.696548387 105.8387097
1 7.281638298 110.9574468
Grand Total 7.446538462 108.9230769
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Comparing Models: Example(cont.)

n Hypothesis Testing:
n Hypothesizes concerning coefficients

n

n We want to know if IQ and Gender explain a 
significant amount of the variation in GPA.

n Hypothesizes Concerning Models
0:

210
== ββH
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≠β

a
H
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21
≠= ββ

a
H

Comparing Models: Example(cont.)

n Estimation
n Model I 

IQbbGPA 10 +=

SUMMARY OUTPUT Dependent Variable: GPA

Regress ion  S ta t is t ics
Multiple R 0.63
R Square 0.40
Adjusted R Square 0.39
Standard Error 1.63
Observations 78.00

ANOVA
df S S MS F Signi f icance F

Regression 1 136.32 136.32 51.01 4.7373E-10
Residual 76 203.11 2.67
Total 77 339.43

Coef f ic ien ts Standard  Error t  Stat P-value
Intercept -3.56 1.552 -2.29 0.024658962
IQ 0.10 0.014 7.14 4.7373E-10

IQGPA 10.056.3 +−=

Relation between IQ and GPA

y = 0.101x - 3.5571
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Comparing Models: Example(cont.)

GenderbIQbbGPA 210 ++=

SUMMARY OUTPUT Dependent Variable: GPA

Regress ion  Sta t is t ics
Multiple R 0.67
R Square 0.45
Adjusted R Square 0.44
Standard Error 1.58
Observations 78.00

ANOVA
df SS MS F Signi f icance F

Regression 2 153.16 76.58 30.84 0.00
Residual 75 186.27 2.48
Total 77 339.43

Coef f ic ien ts Standard  Error t  Sta t P-value
Intercept -3.73 1.50 -2.49 0.01
IQ 0.11 0.01 7.77 0.00
Gender -0.97 0.37 -2.60 0.01

GenderIQGPA 11.097.073.3 +−−=

n Model II:

Relation between IQ and GPA
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Comparing Models: Example(cont.)

n Is Model I better than Model II?

F
SSE SSE

m
SSE
n k

=
−

−

1 2

2
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75.2
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11.203

1
27.18611.203
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Yes it is.

124.600.41

78
<=F

F-test Statistics 

β=0 4.0 6.12

Comparing Models: Example(cont.)

Regression Statistics
Multiple R 0.675
R Square 0.456
Adjusted R Square 0.433
Standard Error 1.585
Observations 77.000

ANOVA
df SS MS F Significance F

Regression 3 153.526 51.175 20.363 0.000
Residual 73 183.456 2.513
Total 76 336.982

Coefficients Standard Error t Stat P-value
Intercept -2.196 2.169 -1.013 0.315
IQ 0.093 0.020 4.583 0.000
Gender -3.899 3.055 -1.276 0.206
IQ*Gender 0.027 0.028 0.974 0.333

n Interactive Terms

The interactive term is not statistically significant.  
A high or low IQ has the same effect on GPA 
independent of gender. 

Comparing Models: Example(cont.)

n Interpretation
n Coefficients

n Both IQ and Gender matter.  
n IQ increases GPA by .11 points holding Gender 

constant.
n Gender Decreases GPA by .97 points holding IQ 

constant.
n Models

n F-statistic shows that the model that includes Gender 
performs significantly better in explaining variation 
then does the model with only IQ.  

n We are therefore able to reject the null hypothesis 
that model 1=model 2 at the 5% significance level.
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Final Paper
n Clearly state your hypothesis.

• Use a path diagram to present the causal relation.
• Use the correlations to help you determine what causes what.
• State the alternative hypothesis.

n Present descriptive statistics.
n This includes a correlation matrix and histogram or scatter plot.

n Estimate your model.
n You can do simple regression, include interactive terms, do path analysis, use dummy 

variables; whatever is appropriate to your hypothesis.
n Present your results.
n Interpret your results.
n Draw out the policy implications of your

analysis.
n The paper should begin with a brief which states the basic 

project and your main findings.


