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Lecture 5

m Integer Programming
4Plant-location example

m Portfolio Optimization – Part I
4The Scenario Approach
4The Mean-Variance Model

m Summary and Preparation for next class
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Integer Programming

Definitions. An integer program is a linear program where some or all decision 
variables are constrained to take on integer values only.  A variable is called 
integer if it can take on any value in the range ..., -3, -2,-1, 0, 1, 2, 3,....  A 
variable is called binary if it can take on values 0 and 1 only. 

What use?
m Can’t build 1.37 aircraft carriers
m Rounding may not give the best, or even a feasible, answer

Selected Applications
m Capital budgeting

4invest all or nothing in a project
m Fixed cost/Set-up cost models
m Facility location

4build a plant or not (yes/no decision)
m Minimum batch size

4if any cars are produced at a plant, then at least 2,000 must be
produced

4C = 0 or C ≥ 2,000 (either/or decision)
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Difficulties in Solving Integer Programs

Example.

max  21 X + 11 Y
subject to:

7 X + 4 Y ≤13
X, Y ≥ 0

Optimal linear-programming solution:  X = 1.83, Y = 0.
Rounded to X = 2, Y = 0 is infeasible.
Rounded to X = 1, Y = 0 is not optimal.
Optimal integer-programming solution: X = 0, Y = 3.

1 2 3 4
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1

(0,3.25)

(1.83, 0)

X

Y
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Plant-Location Problem
m A new company has won contracts to supply a product to customers in 

Central America, United States, Europe, and South America.  The 
company has determined three potential locations for plants.  Relevant 
cost data are:

Fixed costs are in $ per month. Fixed costs are only incurred if the        
company decides to build and operate the plant. Variable costs are in $ 
per unit. Production capacities are in units per month. Customer demand 
(in units per month) is:

Central 
America

United 
States Europe

South 
America

Demand 18 15 20 12

In addition to fixed and variable costs, there are shipping costs.

Plant
Locations

Fixed
Costs

Variable
Costs

Production
Capacity

Brazil 50,000 1,000 30
Philippines 40,000 1,200 25
Mexico 60,000 1,600 35
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Plant-Location Problem (continued)

Plant Customer

Brazil

Philippines

Mexico

Central 
America

United 
States

Europe

South 
America

9

9

7

5
7

7
4

6

3
4

7

9

18

15

20

12

Numbers on arcs represent shipping costs (in $100 per unit).

Which plants and shipping plan minimize monthly production and 
distribution costs?
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Plant-Location Model
m Indices:

Let B represent the Brazil plant, and similarly use P (Philippines), M
(Mexico),  C (Central America), U (United States), E (Europe), and S
(South America).

m Decision Variables:  Let
pB = # of units to produce in Brazil 

and similarly define pP and pM.  Also let
xBC = # of units to ship from Brazil to Central America,

and define xBU , xBE , … , xMS similarly.

m Objective Function:
The total cost is the sum of fixed, variable, and shipping costs. 
Total variable cost is:

VAR = 1,000 pB + 1,200 pP + 1,600 pM .
Total shipping cost is:

SHIP = 900 xBC + 900 xBU + 700 xBE + 500 xBS

+ 700 xPC +700 xPU + 400 xPE + 600 xPS

+300 xMC + 400 xMU + 700 xME + 900 xMS .
We will return to the total fixed cost computation shortly.
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Plant-Location Model (continued)
m Constraints:

Plant-production definitions: There are constraints to define total 
production at each plant. For example, the total production at the 
Mexico plant is:

pM = xMC +  xMU +  xME +  xMS

This can be thought of as a “flow in = flow out” constraint for the Mexico 
node. 

m Demand constraints:
There are constraints to ensure demand is met for each customer. For 
example, the constraint for Europe is:

xBE +  xPE +  xME = 20.
This is a “flow in = flow out” constraint for the Europe node. 

m Plant-Capacity Constraints:
Production cannot exceed plant capacity, e.g., for Brazil

pB ≤30
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Fixed-Cost Computation
m Additional Decision Variables: To compute total fixed cost, define the 

binary plant-open variables: 

and define yP and yM similarly.
Total fixed cost is:

FIX = 50,000 yB + 40,000 yP + 60,000 yM

As it currently stands, the optimizer will always set the “plant open” 
variables to zero (so that no fixed cost will be incurred).  We need  
constraints to enforce the meaning of these variables, e.g.,

pB > 0    ⇒ yB = 1.

Why not add constraints to define the plant open variables, e.g., for 
Brazil,

yB = IF ( pB > 0 , 1, 0)  ?
Because =IF statements are not linear and they are discontinuous.
Optimizers cannot solve such problems easily, if at all.  What else 
can be done? 

y
p >

pB
B

B
= =




1 0
0 0
  if the Brazil plant is opened (i.e.,  if )       
 if the Brazil plant is not opened (i.e.,  if )
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Fixed-Cost Computation (continued)
m If yB = 0 we want to rule out production at the Brazil plant. If the Brazil plant 

is not opened (i.e., if yB = 0), its “available” capacity is 0.  If  yB = 1, the 
plant is open and its “available” capacity is 30 units per month.  The plant 
capacity constraints can be modified to enforce this meaning of yB:

pB ≤30 yB

If yB = 0 then the constraint becomes pB ≤ 0.
If yB = 1 then the constraint becomes pB ≤ 30. 
Alternatively, if pB > 0 (and yB can only take on the values 0 or 1) then yB = 1
This is exactly what is needed! 

m Modified Plant-Capacity Constraints:
Production cannot exceed plant capacity, e.g., for Brazil

pB ≤30 yB

Binary variable: yB = 0 or 1.

Similar plant-capacity and binary-variable constraints are needed for the 
Philippines and Mexico. 
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Plant Location Integer Programming Model

min VAR + SHIP + FIX
m Cost definitions:

(VAR Def.)  VAR = 1,000 pB + 1,200 pP + 1,600 pM .
(SHIP Def.) SHIP = 900 xBC + 900 xBU + 700 xBE +500 xBS

+ 700 xPC +700 xPU, + 400 xPE + 600 xPS
+ 300 xMC + 400 xMU + 700 xME + 900 xMS

(FIX Def.) FIX = 50,000 yB + 40,000 yP + 60,000 yM
m Plant production definitions:

(Brazil)  pB = xBC +  xBU +  xBE +  xBS
(Philippines)  pP = xPC +  xPU +  xPE +  xPS

(Mexico) pM = xMC +  xMU +  xME +  xMS
m Demand constraints:

(Central America) xBC +  xPC +  xMC = 18
(United States) xBU +  xPU +  xMU = 15

(Europe) xBE +  xPE +  xME = 20
(South America) xBS +  xPS +  xMS = 12

m Modified plant capacity constraints:
(Brazil) pB ≤ 30 yB

(Philippines) pP ≤ 25 yP
(Mexico) pM ≤35 yM

m Binary variables: yB , yP , yM = 0 or 1
m Nonnegativity: All variables ≥ 0
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m Decision variables in cells E5:E7 are restricted to 0 or 1, i.e., they are constrained 
to be binary.

m Note that many numbers in the spreadsheet were scaled to units of $100.  For the 
optimizer to work properly, it is important (especially with integer programs) to 
scale the numbers to be about the same magnitude.

m Shadow price information is not available with integer programs; the Excel 
optimizer does not give meaningful sensitivity reports.

Plant Location Optimized Spreadsheet

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I
PLANT.XLS Plant Location Model

Fixed Variable Production Plant Fixed cost 1,100
Plants Cost Cost Capacity Open Variable cost 860
Brazil 500 10 30 1 Shipping cost 314
Philippines 400 12 25 0 Total cost 2,274
Mexico 600 16 35 1

(All costs in $100)
Unit Shipping Costs: Customers

Central Am. U.S. Europe S.Amer.
Brazil 9 9 7 5
Philippines 7 7 4 6
Mexico 3 4 7 9

Shipping Plan: Customers Capacity Available
Central Am. U.S. Europe S.Amer. Total Constraint Capacity

Brazil 0 0 18 12 30 <= 30
Philippines 0 0 0 0 0 <= 0
Mexico 18 15 2 0 35 <= 35
Total 18 15 20 12
Constraint = = = =
Demand 18 15 20 12 =D7*E7

=SUMPRODUCT(B5:B7,E5:E7)

=SUMPRODUCT(C5:C7,F17:F19)

=SUMPRODUCT(B11:E13,B17:E19)
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The Solver Parameters Dialog Box

Solver Parameters
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m In the Solver Options Dialog Box, make sure to change the “Tolerance” 
setting to 0%.  This is necessary to ensure that Solver finds the best 
possible solution.

Solver Options Dialog Box

Default is 5%, 

change to 0
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m In this spreadsheet, the plant-open cells, E5:E7, are computed with =IF 
statements.

m The optimizer returns an incorrect optimal solution because of the =IF 
statements. 

m This is not an Excel bug. It is simply a difficult problem for any optimizer 
to solve because =IF statements represent discontinuous functions.

Incorrect Plant Location Spreadsheet
Using  = IF statements

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I
PLANT_IF.XLS Plant Location Model

Fixed Variable Production Plant Fixed cost 1500
Plants Cost Cost Capacity Open Variable cost 760
Brazil 500 10 30 1 Shipping cost 367
Philippines 400 12 25 1 Total cost 2,627
Mexico 600 16 35 1

(All costs in $100)
Unit Shipping Costs: Customers

Central Am. U.S. Europe S.Amer.
Brazil 9 9 7 5
Philippines 7 7 4 6
Mexico 3 4 7 9

Shipping Plan: Customers Capacity Available
Central Am. U.S. Europe S.Amer. Total Constraint Capacity

Brazil 8 10 0 12 30 <= 30
Philippines 0 5 20 0 25 <= 25
Mexico 10 0 0 0 10 <= 35
Total 18 15 20 12
Constraint = = = =
Demand 18 15 20 12

=IF(F17>0,1,0)
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Portfolio Optimization

Problem: What portfolio to invest in today given an uncertain future? 

This investment problem is often called an asset-allocation or portfolio-
selection decision.  The assets or securities could include Treasury 
bonds, options, mortgage-backed securities, foreign stocks, real estate, 
etc.

Example. Suppose an investor is considering investing in 3 asset classes:  
(1) stocks, (2) bonds, and (3) T-bills. 

Suppose the investor has a budget of $2,000,000 and the investor’s 
portfolio consists of $1,200,000 in stocks, $600,000 in bonds, and 
$200,000 in T-bills.  

m Index the asset classes by j = 1, ..., n.  Define the decision variables
xj = fraction of budget invested in asset class j. 

For this example, the investor’s portfolio is (x1, x2, x3) = (0.6, 0.3, 0.1).

Definition: A portfolio is an allocation xj , j = 1, ..., n, satisfying            
and xj ≥ 0 for j = 1, ..., n. 
Note: xj ≥ 0 prohibits short sales. 

∑ = =n

j jx
1

1
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A Model of the Uncertain Future

Consider a 1-period model with a finite number of future scenarios.   
Scenario 1
Scenario 2
Scenario 3
Scenario 4

today 1 month Time
later

Make portfolio Random future
decision returns

pi = probability scenario i occurs

Definition:  A scenario is a list of returns for the n securities.

Price
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Scenario Returns and Probabilities
Table. (Monthly returns)

Prob.  Security 1         Security 2 Security 3  
Scenario 1      0.25   5.51%   1.95%            2.56% 

2     0.25 − 1.24%              2.26%                0.16%
3   0.25              5.46% − 4.07% − 0.64%  
4   0.25 − 1.90%              3.59%                 0.30%

Let ri j denote the return of security j if scenario i occurs. E.g., r32=− 4.07%.  
Where do the scenarios come from?

4 Historical returns
4 Security analysts’ forecasts
4 Economic/Financial models
4 A combination of the above

Portfolio Returns
If scenario i occurs, what is the return of the portfolio (x1, ..., xn) ?
The portfolio return if scenario i occurs, denoted ri , is

(1)∑
=

=
n

j
jiji xrr

1

.
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Portfolio Returns (continued)

m Example.  Suppose the investor’s portfolio is (x1,x2,x3)=(0.5, 0.5, 0). 
Then, from equation (1), the portfolio returns in the four scenarios are:  

Scenario 1:  r1 =   5.51(0.5)  + 1.95(0.5) + 2.56(0) =   3.73 
Scenario 2:  r2 = − 1.24(0.5)  + 2.26(0.5) + 0.16(0) =   0.51 
Scenario 3:  r3 = 5.46(0.5)  − 4.07(0.5) − 0.64(0) =   0.70 
Scenario 4:  r4 = − 1.90(0.5)  + 3.59(0.5) + 0.30(0) =   0.85
This distribution of returns can be plotted as follows:

m Different portfolios will have different distributions of returns. How can 
an investor express a preference for one distribution over another?

Probability

0.25

        0.51%  0.70%   0.85%                         3.73%    Return
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Preferences for Return Distributions
m Consider two return distributions:

Distribution 1:

Distribution 2:

m The returns in Distribution 2 are higher than the returns in Distribution 
1.  Hence, most rational investors would prefer 2 to 1. Generally, 
though, one distribution will not dominate another in this way. So how 
can we express a preference over complicated distributions?
One way is to summarize a distribution is by its average return.

0

Probability

Return

0

Probability

Return
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Average Portfolio Return
Definition: A portfolio’s average return of a portfolio, denoted rP, is 

(2)

m The average return is the return of the portfolio in each scenario (ri) weighted 
by the probability that the scenario occurs (pi). In the example, 

rP = 0.25(3.73) + 0.25(0.51) + 0.25(0.70) + 0.25(0.85) = 1.45%.  
Or, in the case of equal probability scenarios, we can use the shortcut:

rP = AVERAGE (r1 , r2 , r3 , r4) = 1.45%.  
m The average summarizes the location of a distribution with a single number:

m Most investors would prefer rP to be as large as possible, everything else 
equal.  

m What else matters?

∑
=

=
m

i
iiP rpr

1

.

0

Probability

Return
Average Return
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Standard Deviation of Return

m Suppose rP = 1%.  This is the average, and the actual return could 
differ substantially from that value.  Risk can be measured by the 
uncertainty. One measure of risk is the standard deviation (SD) of 
returns. 

m With equal probability scenarios, we can get the standard deviation by 
using the Excel function =STDEVP.  For example:
4 Portfolio Standard Deviation (SD) = STDEVP(r1 , r2 , r3 , r4).
4 For portfolio (x1, x2, x3) = (0.5, 0.5, 0): rP = 1.45% and SD = 1.53%.

m What about the portfolio (x1, x2, x3) = (0, 1, 0), i.e., all in security 2?
4 Well, the average portfolio return is rP = 0.93% and SD = 3.41%.
4 This portfolio has a smaller average return and larger risk (as 

measured by SD) compared to the portfolio (0.5, 0.5, 0). Portfolio 
(0.5, 0.5, 0) dominates portfolio (0, 1, 0).
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Summary
Table. (Monthly returns expressed in percent)

Prob.  Security 1  Security 2  Security 3  
Scenario1   0.25         5.51 1.95              2.56

2   0.25  − 1.24 2.26 0.16
3   0.25         5.46 − 4.07 − 0.64
4   0.25 − 1.90 3.59 0.30 

A portfolio of these three securities, denoted (x1, x2, x3), must satisfy:
4 (Budget) x1 + x2 + x3 = 1
4 (No short sales) x1≥0, x2≥0, x3≥0,

and the portfolio returns in each scenario are given by: 
Scenario 1: r1 =   5.51 x1 + 1.95 x2 + 2.56 x3

Scenario 2: r2 = − 1.24 x1 + 2.26 x2 + 0.16 x3

Scenario 3: r3 =   5.46 x1 − 4.07 x2 − 0.64 x3

Scenario 4: r4 = − 1.90 x1 + 3.59 x2 + 0.30 x3
The average portfolio return is given by:

rP = AVERAGE(r1, r2, r3, r4)
The standard deviation of the portfolio return (i.e., the risk) is:

SD = STDEVP(r1, r2, r3, r4)
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Efficient Frontier
m For any portfolio (x1, ..., xn) with                    and xj ≥ 0, we can compute 

the corresponding average portfolio return rP and standard deviation 
(SD). The set of all feasible portfolios is as follows:

m Average return and risk are two conflicting objectives. Since we can’t 
have two objective functions in an optimization model, choose one to 
be the objective and the other to be a constraint.

∑ = =n

j jx
1

1
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Portfolio-Optimization Model

m One formulation of the portfolio-optimization model is: over all feasible 
portfolios, minimize “risk” (e.g., SD) subject to “reward” (e.g., rP) at least 
some user-specified level.  That is,

min     SD
subject to:

(Average return)      rP  ≥ δ
(Budget)       x1+ x2+ x3+ …  + xn =1

(No short sales)      xj ≥ 0 for all j

m δis a user-supplied constant, indicating the minimum level of average 
return that the investor is willing to accept.

m This is a non-linear model.
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Portfolio-Optimization Model (continued)

m Next we specify the details of the optimization model.

δ

Optimal Solution 
for this δ
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Mean-Variance Portfolio-Optimization Model

The complete non-linear optimization model can be written as:
min SD

subject to:
(r1  def.) r1 =  5.51 x1 + 1.95 x2 +  2.56 x3

(r2  def.) r2 = − 1.24 x1 + 2.26 x2 +  0.16 x3

(r3  def.) r3 =  5.46 x1 − 4.07 x2 − 0.64 x3

(r4  def.) r4 = − 1.90 x1 + 3.59 x2 +  0.30 x3

(rP  def.) rP = AVERAGE(r1, r2, r3, r4)
(Min. rP) rP  ≥ δ

(Risk)      SD = STDEVP(r1, r2, r3, r4)
(Budget)      x1 + x2 + x3  = 1

(nonneg.) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

This formulation can easily be set up in a spreadsheet, but it is a non-linear
model since the standard deviation involves squares and square-roots.
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Spreadsheet Solution

m The spreadsheet shows the optimal solution corresponding to δ= 1.0 
(where δis set in cell C7).

=CORREL(F11:F14,G11:G14)

=SUMPRODUCT(F14:H14,$F$5:$H$5)

=STDEVP(H11:H14)

=AVERAGE(H11:H14)

=SUM(F5:H5)

Decision Variables

=AVERAGE(D11:D14) =STDEVP(D11:D14)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I J
INVEST.XLS Investment Non-Linear Program: Equal Probability Scenarios

Avg. Portfolio Portfolio Portfolio Weights x(j) Sum of Portfolio
Return Stnd. Dev. 1 2 3 Weights

1.00 1.24 23.2% 26.4% 50.4% 100%
>= =

Min Return 1.00 100%
Portfolio

Return Security returns by scenario
Scenario by Scenario 1 2 3

1 3.08 5.51 1.95 2.56
2 0.39 -1.24 2.26 0.16
3 -0.13 5.46 -4.07 -0.64
4 0.66 -1.90 3.59 0.30

Average 1.96 0.93 0.60
StdDev 3.54 2.95 1.19

Correlations
Sec1 vs. Sec2 -0.68
Sec1 vs. Sec3 0.31
Sec2 vs. Sec3 0.48

Objective Function

Decision Models  Lecture 5   28

Solver Parameters

The solver parameters dialog box.

m Remember: do not click on “Assume Linear Model” (in “Options”) since it 
is a non-linear model.
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Optimization-Model Results
m For δ= 1.0, the optimal solution is:

x1= 23.2%,  x2 = 26.4%,  x3 = 50.4% 
r1 = 3.08%,  r2 = 0.39%,  r3 = − 0.13%,  r4 = 0.66% 

with SD = 1.24%  and rP = 1.00%.

m Using SolverTable, we can vary δand graph the optimal solutions to 
the problem.  These trace out the efficient frontier.

Maximum Mean Return

Minimum SD

Current optimal 
Solution

Graph of Efficient Frontier
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Comments on the Mean-Variance Model

m Alternate formulation: maximize return subject to a user-specified 
maximum risk (SD).

m The mean-variance approach leads to a nonlinear model
4 This non-linear model is more difficult to solve than a linear one, but 

Excel can solve it. 
4 Variance penalizes upside and downside returns
4 Less sensitivity-analysis information available with nonlinear 

programs
4 Right-hand side ranges are not given for nonlinear models

m Alternative models: Use a measure of risk, e.g. Average Downside Risk 
(ADR), which can be formulated as a linear model.  See the readings 
book for details (“Portfolio Optimization Using Linear Programming”).
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Comparison of Scenario Approach 
with Variance-Covariance Approach

m An alternate method of formulating a mean-variance portfolio 
optimization model involves computing the variance-covariance matrix 
of the security returns.

m Because the scenario approach uses the security returns directly, it 
does not require computation of the variance-covariance matrix. 

m The two approaches give the same answer! (They are really identical.)

m Since the scenario-based model uses the data directly, the historical 
correlations between security returns are used implicitly, and need not 
be computed.
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Summary

m Optional readings: “Exploring the New Efficient Frontier” and “Asset 
Allocation in a Downside-Risk Framework” in the readings book. 

For next class

m Integer Programming - A Plant Location Example
m Portfolio Optimization

4 Modeling uncertainty with scenarios
4 Definitions of reward and risk
4 Tradeoff between two conflicting objectives
4 The Efficient Frontier
4 Setting up the Model
4 Solving the Model
4 Looking at the Results


