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Abstract

I establish a translation invariance property of the Blackwell order for dichotomies,
show that garbling experiments reduces the norm of their difference, and show that
the norm of the distance from the identity matrix may be interpreted as a measure
of informativeness. The better experiment is closer to the fully revealing experiment;
this measure extends the Blackwell order, is complete, and prior-independent.
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1 Introduction

In a bedrock contribution (Blackwell (1951, 1953)), David Blackwell established the equiv-
alence of two notions of ordinal rankings of experiments - those of informativeness, and
payoff-richness (as well as the related notion of sufficiency). Here I first ask whether the
Blackwell order is preserved when both the better and the worse experiments are garbled
using the same garbling, and then show that the matrix norm of the difference between
a fully revealing experiment and another one is a convenient and appealing completion
of the Blackwell order. An application illustrating the usefulness of this completion con-
cludes. Throughout, I focus only on dichotomies: experiments with two states and two
signal realizations.
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Section 2 first asks: Given two Blackwell-ranked experiments, is the order preserved if
signal realizations from both experiments are subjected to noise? More precisely, suppose
both experiments undergo yet another stochastic transformation, say, M. If A Blackwell-
dominates B, does experiment MA always dominate experiment MB? Theorem 1 answers
in the affirmative, highlighting a curious translation invariance property.

Equally important is the question of completing the (notoriously partial) Blackwell or-
der. Theorem 2 shows that all dichotomous experiments are ranked by taking the infinity
norm of the difference between any experiment and the fully revealing experiment. The
interpretation is that more informative experiments are "closer" to the fully revealing ex-
periment (represented by the identity matrix). This measure completes Blackwell’s order
within this class of experiments, is complete, and prior-independent. Two counterexam-
ples follow each of theorem 1 and theorem 2, showing that neither result can be extended
beyond two states or two signal realizations.

Restricting attention to such dichotomies is common; the underlying state in inter-
esting problems often is binary (the product, project, firm, or match, is truly good or
bad) and thus the assumption of two states is common in this literature (Keppo et al.
(2008), de Oliveira et al. (2021), Mu et al. (2021)). Assuming binary signal realizations
(studied also in Birnbaum’s (1961) "simple binary experiments," Torgersen’s (1970) "dou-
ble dichotomies," and Blackwell and Girshik’s (1979) "binomial dichotomies") reflects the
fact that much of the relevant evidence (passing or failing a test or an audit, presence or
absence of a pathogen or biomarker) in these settings is also binary. In addition, many
economic decisions are binary (convict/acquit, purchase/not, approve/disapprove, vote
yes/no, tests of simple hypotheses); with binary decisions, and multiple signal realiza-
tions, many of those signals would lead to one of the two decisions,1 effectively acting as
one signal realization.

Notation

Throughout, the state space Ω = {ω0, ω1} = {0, 1} and the signal space S = {s0, s1} are
fixed. A Blackwell experiment is a 2× 2 stochastic matrix P = {pij} (i.e. pij ≥ 0, and for each
j, p1j + p2j = 1; the matrix is column-stochastic, with entries representing the probabilities
of signal realizations in each state). Denote by 1 the identity matrix, interpreted as a fully
revealing experiment. Experiment A Blackwell dominates experiment B, (written A ⪰B B),
if an only if an expected utility maximizing decision maker (DM) will prefer A over B, or
if and only if there exists a stochastic matrix Γ (a garbling), with ΓA = B.

1An insightful anonymous referee points out that with two states, two actions, and many signal real-
izations, the composition of an experiment with a strategy is itself a dichotomy.
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2 Translation Invariance and a Cardinal Measure of Infor-
mativeness

Given two Blackwell-ranked experiments, is the ordering preserved if signal realizations
from both experiments are subjected to noise? More precisely, suppose both experi-
ments undergo yet another garbling M. If A Blackwell-dominates B, does experiment
MA Blackwell-dominate experiment MB?

The question of noise added to signal realizations is animated by the growing research
program grappling with the impact of noise, errors, inattention, and other imperfections
in communication and interpretation, on established results. There are at least two rea-
sons why such a second-order garbling my occur. First, the DM may be inattentive, and
not recognize some signal realizations, merge, or misinterpret them (Bloedel and Segal
(2021)). Second, the DM may observe signal realizations with transmission noise (Her-
nandez and von Stengel (2014), Blume, Board, and Kawamura (2007)).

More formally, consider the following:

Definition 1. A =

(
a1 1 − a2

1 − a1 a2

)
is a diagonally dominant experiment if {a1, a2} ∈

[1
2 , 1]2.

Diagonally dominant experiments do not change the signal labels on average and fo-
cusing on diagonally dominant experiments or garblings involves no loss of generality if
the object of interest is the distribution of posterior beliefs. Theorem 1 given the transla-
tion invariance result:

Theorem 1 (Translation invariance of ⪰B). Let Γ1 be a diagonally dominant garbling matrix,
and take a non-singular experiment A. Let B = Γ1A (i.e. A ⪰B B). For any non-singular matrix
M, we have that:

i) MA Blackwell-dominates MB, and furthermore,

ii) Since there exists Γ1 with Γ1A = B, there exists a matrix Γ2, with Γ2 similar to Γ1 such
that Γ2MA = MB

In other words, the diagram in figure 1 commutes.

A B

MA MB

Γ1

M M
Γ2

Figure 1: Translation invariance of ⪰B
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Theorem 1 has two takeaways. One is that the Blackwell order is partially translation
invariant - the garbling M "shifts" any experiment by an amount "proportional" to the ini-
tial distance, because the resulting matrices are still ranked. The second takeaway is that
Γ1 and Γ2 are similar matrices - in other words, they represent the same linear transfor-
mation, but in different bases. Thus, the features of the linear transformation that have
to do with the characteristic polynomial (which does not depend on the choice of basis),
such as the determinant, trace and eigenvalues, but also the rank and the normal forms,
are preserved. The fact that the linear operator mapping A into B, and the linear operator
mapping MA into MB, turn out to be the same linear operator is thought-provoking.

For a minimal counterexample (showing that the theorem does not extend beyond
two signal realizations),2 let |Ω| = 2, and |S| = 3 and suppose A is a fully revealing ex-
periment, and Γ1 with p, q ∈ (1

2 , 1] is given below, so that B(= Γ1A) is partially revealing,

and take M as below.3 Then MA =

(
1 1
0 0

)
, a fully uninformative experiment, and

MB =

(
p 1

1 − p 0

)
. Clearly, A ≻B B, yet MA ≺B MB.

A =

1 0
0 1
0 0

 , Γ1 =

 p 1 − q 0
0 q 0

1 − p 0 1

 , B =

 p 1 − q
0 q

1 − p 0

 , M =

(
1 1 0
0 0 1

)

(1)

For a 3 × 3 counterexample (showing that the theorem does not extend beyond two
states), consider (letting B = Γ1A):

A =

 0.9 0.25 0.15
0.05 0.5 0.15
0.05 0.25 0.7

 , Γ1 =

0.51 0 0
0.49 1 0

0 0 1

 , M =

0.7 0.1 0.2
0.1 0 0.4
0.2 0.9 0.4

 (2)

Here MA does not Blackwell-dominate MB (the required Γ2 is not stochastic).
Going beyond theorem 1, and restricting attention to a particular norm - the infinity

norm, denoted by || · ||∞ - we obtain a completion of Blackwell’s order, and a cardinal
informativeness result.

Theorem 2 (A Cardinal Measure of Informativeness). Let A and B be two 2× 2 experiments,
and suppose that A is diagonally dominant. Then A ⪰B B implies ∥1 − A∥∞ ≤ ∥1 − B∥∞.

2A version of this counterexample was suggested by Alex Frankel.
3Note that for such minimal counterexamples diagonal dominance is undefined.
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1
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1

P(ω0|s1)

P
(ω

0|
s 0
)

B

A

1{ω=ω0}

= ||1 − A||∞

=
||1−

B||∞

{E|E ⪰B A}

{E|E ⪰B B}

Figure 2: A ⪰B B ⇒ A ⪰||·||∞ B: Blackwell informativeness and norm differences.

The states are ω0 and ω1, and signal realizations are s0 and s1. The prior of ω = ω0 is 1
2 ,

the true state is ω0, and A and B are (with abuse of nomenclature) two pairs of posterior
beliefs resulting from the eponymous experiments. The possible posterior beliefs after
a signal realization are on the axes; in light blue is the set of experiments and posterior
belief distributions that are Blackwell better than B (and a mean-preserving spread of
posteriors), while in dark blue is the corresponding set for A. E is a generic experiment
(and associated posterior belief distribution).

Thus, the "closer" a matrix is to full revelation, the "better" it is. The norm is a con-
tinuous function, and thus, if A ⪰B B are Blackwell ranked experiments, this completion
assigns "nearby" unranked experiments values that are "close" to the values for A and
B. Its interpretation also has the intuitively attractive features that relate this order to
Blackwell’s, and to mean preserving spreads; figure 3 illustrates.

Unfortunately, theorem 2 also does not extend beyond dichotomies. For a minimal
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counterexample with two states and three signal realizations, consider

A =

0.4870 0.5984
0.4386 0.2385
0.0744 0.1631

 , Γ =

0.2328 0.3042 0.1225
0.0644 0.2672 0.3710
0.7028 0.4286 0.5065

 , ΓA = B =

0.2559 0.2318
0.1761 0.1628
0.5680 0.6054


(3)

Using E =

1 0
0 1
0 0

 in place of the identity for the norm computations we obtain: ||E −

A||∞ − ||E − B||∞ = 0.0268. For an example with three states, let

A =

0.55 0 0
0.45 0.55 0.45

0 0.45 0.55

 , Γ =

0.5 1 0
0.5 0 0
0 0 1

 (4)

where we let B = ΓA. In this case, ∥1 − A∥∞ − ∥1 − B∥∞ = 0.075.

Application

Suppose4 a von Neumann-Morgenstern DM faces a choice between experiments A1 =(
0.7 0.4
0.3 0.6

)
, A2 =

(
0.75 0.25
0.25 0.75

)
, and a third experiment, B =

(
0.85 0.49
0.15 0.51

)
, which

is more informative than the other two in one state, and nearly uninformative in the other.
A2 Blackwell-dominates A1, yet B is not ranked vis-à-vis either A1 or A2. In terms of norm
distances, we have:

||1 − A1||∞ = 0.7 > ||1 − B||∞ = 0.64 > ||1 − A2||∞ = 0.5 (5)

How should a DM who cares about action in both states choose? From a (non-Blackwell-
ranked) menu M1 = {A1, B} the infinity norm difference order says that a DM should
chose B (B is closer to full revelation as evidenced by a smaller distance to full revelation
than A1), and from a menu M2 = {B, A2} they should choose A2.

Notably, completing the Blackwell order using norms in dichotomies is (unlike other
completions of the order) prior-independent, stated without reference to a decision prob-
lem (and thus not tied to a utility specification), simple and easy to compute, and easily
interpretable in terms of mean-preserving spreads

4Generalizing this example is beyond the scope of this note.
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Appendix: Proofs

Proof of theorem 1. Γ1A = B by assumption; if a Γ2 with the stated properties, exists, we
would have Γ2MA = MB. But then

Γ2MA = MB ⇐⇒ Γ2MA = MΓ1A (6)

⇒ Γ2M = MΓ1 (7)

⇒ Γ2 = MΓ1M−1 (8)

Substituting the resulting Γ2 verifies what was needed to show; the last equation confirms
that the fact that Γ1 and Γ2 are similar matrices and gives an explicit formula for Γ2. It
remains to show that Γ2 is a garbling - stochastic - matrix. Computing explicitly we obtain

MΓ1M−1 =

(
m1 1 − m2

1 − m1 m2

)
︸ ︷︷ ︸

M

(
γ1 1 − γ2

1 − γ1 γ2

)
︸ ︷︷ ︸

Γ1

1
|M|

(
m2 m2 − 1

m1 − 1 m1

)
︸ ︷︷ ︸

M−1

= (9)

=

(
γ2 + m1 − m2 + γ1m2 − γ2m1 m1 − γ1 − m2 + γ1m2 − γ2m1 + 1

m2 − m1 − γ2 − γ1m2 + γ2m1 + 1 γ1 − m1 + m2 − γ1m2 + γ2m1

)
(10)

and |M| = m1m2 − (1−m2)(1−m1) = m1 +m2 − 1 and γ1, γ2 ∈ [1
2 , 1], by assumption.

The columns sum to unity, and the restriction on γ1 and γ2 ensures that that each entry is
non-negative.

Proof of theorem 2. Let A =

(
a1 1 − a2

1 − a1 a2

)
. Because A Blackwell-dominates B by

supposition, there exists some Γ =

(
γ1 1 − γ2

1 − γ1 γ2

)
such that B = ΓA. Computing

directly, ∥1 − A∥∞ = 2 − a1 − a2, therefore

∥1 − ΓA∥∞ − ∥1 − A∥∞ = (2 − γ1 − γ2)(a1 − a2 − 1) (11)

The term 2 − γ1 − γ2 is always nonnegative (since Γ is column-stochastic), and the term
a1 − a2 − 1 is nonnegative because of the supposition that A is diagonally dominant. Thus,

∥1 − B∥ − ∥1 − A∥ = ∥1 − ΓA∥ − ∥1 − A∥ ≥ 0 (12)

which completes the proof.
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