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a b s t r a c t

Nonstationarity in extracellular recordings can present a major problem during in vivo experiments.
In this paper we present automatic methods for tracking time-varying spike shapes. Our algorithm is
based on a computationally efficient Kalman filter model; the recursive nature of this model allows
for on-line implementation of the method. The model parameters can be estimated using a standard
eywords:
pike sorting
on-stationarity
alman filter
idden Markov model
ixture model

expectation-maximization approach. In addition, refractory effects may be incorporated via closely
related hidden Markov model techniques. We present an analysis of the algorithm’s performance on
both simulated and real data.

© 2010 Elsevier B.V. All rights reserved.
M algorithm

. Introduction

Despite decades of effort, spike sorting remains one of the
rustratingly unsolved (or more accurately, half-solved) prob-
ems in statistical neuroscience: many spike sorting algorithms

ork quite well in some cases, but we still lack computa-
ionally efficient and robust methods that perform well in all
esired settings. The difficulties here are well-known and include

ssues of nonstationarity, non-Gaussianity, temporal dependen-
ies between spikes (e.g., refractoriness), and overlapping spike
hapes due to synchronous activity in nearby neurons (spike “col-
isions”); see, e.g., Quian Quiroga (2007) for a brief overview,
nd Lewicki (1998) and Sahani (1999) for two in-depth reviews
hich remain fairly current over a decade after their original
ublication.

In this brief note we do not attempt anything so ambitious as

full solution of the spike sorting problem; instead, we focus on
eveloping computationally efficient methods for the somewhat
ore tractable subproblem of automatically tracking time-varying

nonstationary) spike waveform shapes.1 These nonstationarities

∗ Corresponding author at: Columbia University, Schermerhorn Hall, 1190 Ams-
erdam Ave., New York, NY 10027, United States. Tel.: +1 212 854 5448.

E-mail address: amc2257@columbia.edu (A. Calabrese).
1 Note that we will not address the important case of temporary changes in spike

hape due to partial inactivation of sodium channels during the relative refractory
eriod (Fee et al., 1996; Lewicki, 1998; Quirk and Wilson, 1999; Pouzat et al., 2004);

nstead, we have longer-lasting, slower nonstationarities in mind here.

165-0270/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2010.12.002
are quite common in long experiments in vivo, and are most
often due to drifts in the position of the recording electrode
relative to the cell body, but can also be due to changes in
the health of the cell over the course of the experiment, for
example.

These nonstationarity issues have been addressed previously,
and in fact with models that are more powerful in some respects
than the approach we propose here (Pouzat et al., 2004; Bar-Hillel
et al., 2006; Gasthaus et al., 2009). Our approach has some advan-
tages in terms of simplicity and computational efficiency; we will
discuss these issues at more length below. To summarize briefly, we
introduce a simple Kalman-filter model of the nonstationary spike
sorting problem; given this model, it is straightforward to adapt
efficient recursive algorithms to perform inference and clustering.
Indeed, the recursive nature of the Kalman-based algorithms makes
it easy to implement these techniques in an on-line manner. In
addition, we can adapt conceptually similar hidden Markov meth-
ods to incorporate simple refractory effects in the model, which can
enhance clustering accuracy in the case of low-SNR, high firing rate
recordings.

We begin by briefly reviewing the classic mixture-of-Gaussians
(MoG) model for spike sorting (Section 2.1), along with the asso-
ciated expectation-maximization (EM) algorithms for parameter
inference in this model. We then extend this basic MoG approach

to include nonstationary behavior in Section 2.2, and discuss online
implementations of the parameter estimation algorithm in Sec-
tion 2.2.1. Finally, we incorporate Markovian refractory effects in
Section 2.3, and demonstrate the application of the methods to
simulated and real data in Section 3.

dx.doi.org/10.1016/j.jneumeth.2010.12.002
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:amc2257@columbia.edu
dx.doi.org/10.1016/j.jneumeth.2010.12.002
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optimize the marginal log-posterior

log p(�|Y) = log p(�)+ log p(Y |�) = log p(�)+ log
∑

z

p(Y, z|�).

The first step in the derivation of any EM algorithm is to write
out the complete log-posterior. In this case, we have:
60 A. Calabrese, L. Paninski / Journal of N
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.1. The Gaussian mixture model and the EM algorithm

In this section we will briefly introduce our setting, along with
ome basic ideas and notation which will be useful in the remainder
f the paper. Let us first review a few basic steps which are common
o almost all spike-sorting approaches: we assume first that the
he continuous raw extracellular voltage data has been band-pass
ltered, to discard both slow fluctuations in the voltage signal as
ell as high-frequency noise. Second, putative spikes are detected,
sually using simple threshold-crossing methods, but perhaps via
ore sophisticated spike-by-spike “peeling” methods capable of

esolving multiple overlapping spike waveforms (Lewicki, 1998;
egev et al., 2004). Third, relevant features of the spike shapes are
xtracted, often via principal components or factor analysis or some
ther dimensionality reduction method. Finally, these features are
he input of a clustering algorithm that performs the classifica-
ion of the spike waveforms. Our emphasis in this paper will be
lmost entirely on this final clustering step, although we should
ote that one frequently alternates between the spike detection
nd clustering phases of these algorithms (using the inferred mean
luster parameters to improve the spike detector), and the nonsta-
ionary methods we focus on here could certainly be employed in
n identical iterative manner.

Perhaps the simplest and most common probabilistic model
nderlying the clustering process is the mixture-of-Gaussians
MoG) model, in which each observed voltage waveform snippet
is a sample from a mixture distribution

(V) =
J∑

z=1

˛zpz(V),

ith J denoting the number of distinct units present in the record-
ng, z indexing the different units, and the individual distributions
iven by the multivariate Gaussian

z(V) = N�z,Cz (V), (1)

ith mean �z and covariance matrix Cz. The mixture probabilities
z satisfy

∑
z˛z = 1 and ˛z ≥0 for all z. Thus the parameter vec-

or � summarizing this model includes our information about the
nderlying mixture components and weights:

= {(�z, Cz, ˛z)1≤z≤J}.

If the identities z of the mixture components were observed, in
rder to estimate the model parameters we would begin by writing
own the likelihood p(V|�, z) of the observed spike data V given the
odel parameters � and the observed identities z, and then we

ould employ standard likelihood optimization methods to obtain
he maximum likelihood (ML) solutions for �. However, we do not
bserve z directly, and our likelihood is of the marginalized form

(V |�) =
∑

z

p(V, z|�),

ith the mixture identities z treated as unobserved (“latent,” or
hidden”) data. Note that a direct approach towards maximizing
his likelihood requires that we marginalize out z, and a direct opti-

ization of this marginal probability may be difficult in general. The

xpectation-maximization (EM) algorithm (Dempster et al., 1977)
as developed as a method for estimating � without having to com-
ute this integral. For brevity, we will not review the derivation of
he EM algorithm for the MoG model here (see, e.g., Bilmes (1997)
or a highly legible tutorial); however, we will build on these basic
deas as we develop our nonstationary model below.
cience Methods 196 (2011) 159–169

2.2. Kalman filter mixture model for spike sorting

Consider now the situation in which the mean voltage wave-
forms �j are non-stationary: for each cluster j, instead of taking �j
to be constant in time, we model this parameter with a random
drift

�t+1
j
= �t

j + εt
j , εt

j∼N(0, C�
j

). (2)

Here ε represents additive Gaussian noise, and the discrete
sequence of time steps t = 1, . . ., T corresponds to the experiment
time index. We assume that only one observation Yt occurs per time
step t:

Yt =
{

Vt if a spike occurs at t
∅ if no spike occurs at t,

(3)

and we retain the Gaussian model (Eq. (1)) for the observations Vt

given zt and �t
j
:

Vt = �t
zt + �t

zt , �t
zt∼N(0, CV

zt ). (4)

Thus, given the sequence of cluster identities zt, Eqs. (2) and (4)
correspond to a classical Kalman filter (Roweis and Ghahramani,
1999; Durbin and Koopman, 2001), if we identify the vector of
time-varying means �t as our hidden Markov state variable and
the voltage data Vt as our observations. Of course, in practice, zt

are unobserved (these are exactly the variables we are trying to
infer), and so we need to marginalize over these latent variables;
thus we are left with a mixture-of-Kalman filters (MoK), instead of
the simpler mixture-of-fixed-Gaussians model.2 Finally, in order to
exploit the computational efficiency of Kalman filters methods, we
make the approximation that the observation covariances CV

zt do
not change in time (see below and Section 4 for a brief description
of related approaches that take into account non-stationarities in
the observation covariances). See Fig. 1 for an illustration.

To perform inference in this model, we need to adapt the
familiar EM method from the MoG model for this MoK case. Lets
begin by more explicitly casting this inference problem in terms
of the EM framework. The parameters we want to infer are � =
{(�t

j
, C�

j
, CV

j
, ˛j)}. We have incorporated a Gaussian prior p(�) on

the vector of means �t
j
, from Eq. (2); note that this prior is improper

(does not integrate to one), since we have not constrained the ini-
tial value of �j. In addition, we should emphasize that even though
the prior over the �s corresponds to a random walk, more gener-
ally it can be interpreted as a term that penalizes big changes in
�j from one time step to the next. In particular, we show later in
Section 3.1 that even when �j(t) changes more systematically than
a random walk, the method works well (see Fig. 5). Finally, for now,
assume that our prior on the remaining elements of � is flat, though
of course this may be generalized if we have additional prior infor-
mation that constrains the structure of the model. Now we want to
2 This model may be seen as a special case of the “switching Kalman filter” model
(Wu et al., 2004), which models an observed time series whose dynamics and obser-
vation processes change randomly according to a Markov process; here we have J + 1
processes with fixed dynamics, and our observation is switching between these in
an i.i.d. manner (which is a special case of a Markov process). It turns out that infer-
ence in the general switching Kalman model is significantly more difficult than in
the special mixture-of-Kalmans model discussed here.
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Fig. 1. A schematic illustration of the mixture-of-Kalman filters clustering approach.
Time-varying cluster means are generated by Eq. (2), which in turn are combined
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bserved data (indicated by the grayscaled dots on the two-dimensional feature
lane); from the combined (unlabeled) data we would like to recover the time-
arying cluster means and other model parameters (M step) and correctly assign
abels to each spike (E step).

og p(Y, z|�)+ log p(�) = log p(z|�)+ log p(Y |z, �)+ log p(�)

=
T∑

t=1

log p(zt |�)+
T∑

t=1

log p(Yt |zt, �)

+
J∑

j=1

T∑
t=2

log p(�t
j |�t−1

j
),

here p(zt|�) = ˛t corresponds to the mixture weights and the
bservation density p(Yt|zt, �) is given by

(Yt |zt, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N0 0
...

...
NJ 0

0 1

; (5)

he first column corresponds to the case Yt = Vt and the second col-
mn handles the case that no data were observed at this time
oint, Yt =∅; we have set p(Vt |zt = j, �) = Nj (where Nj denotes
he Gaussian observation density as defined in Eqs. (1) and (4)),
(Vt|zt = J + 1, �) = 0, p(∅ |zt = j, �) = 0 and p(∅ |zt = J + 1, �) = 1. Note
hat we have added an additional “background model” Gaussian
N0) to the mixture. During the EM process only the weight and
ovariance of this Gaussian will be allowed to change, in order to
odel variable degrees of background noise; we will fix the mean
0, for simplicity.

Thus the complete log-posterior can be written as

og p(Y, z|�)+ log p(�)

=
T∑

t=1

log ˛zt +
T∑

t=1

log N�t
zt ,CV

zt
(Vt)+

J∑
j=1

T∑
t=2

log p(�t
j |�t−1

j
)

T ( )

=
∑
t=1

log ˛zt − 1
2

(log |CV
zt | + (Vt −�t

zt )
T
(CV

zt )
−1

(Vt −�t
zt )

− 1
2

J∑
j=1

T∑
t=2

(�t
j −�t−1

j
)
T
(C�

j
)
−1

(�t
j −�t−1

j
)+ const.
cience Methods 196 (2011) 159–169 161

The next step is to write out the expected complete log-
posterior; computing this expectation over the conditional
distribution of the latent variable z constitutes the E-step of the
EM algorithm, while the maximization of the resulting terms
(considered as a function of the parameters � = {˛j, CV

j
, �t

j
}) cor-

responds to the M-step. The expected complete log-posterior
here is

E
p(z|V,�̂) log p(V, z|�)+ log p(�)

= Ep(z|V,�)

(
T∑

t=1

log p(zt |�)+
T∑

t=1

log p(Vt |zt, �)

)

+
J∑

j=1

T∑
t=2

log p(�t
j |�t−1

j
) =

J∑
j=0

T∑
t=1

p(zt = j|Vt, �)

×
(

log ˛j −
1
2

(log |CV
j | + (Vt −�t

j )
T
(CV

j )
−1

(Vt −�t
j ))
)

− 1
2

J∑
j=1

T∑
t=2

(�t
j −�t−1

j
)
T
(C�

j
)
−1

(�t
j −�t−1

j
)+ const.,

with

p(zt = j|Vt, �̂) = e
log ˆ̨ j−(1/2)(log |ĈV

j
|+(Vt−�̂t

j
)T (ĈV

j
)
−1

j
(Vt−�̂t

j
))

∑J
j′=0e

log ˆ̨ j′ −(1/2)(log |ĈV
j′ |+(Vt−�̂t

j′ )
T (CV

j′ )
−1

(Vt−�̂t
j′ ))

.

(6)

Thus the E-step turns out to be exactly the same as in the stan-
dard MoG model (Bilmes, 1997) and corresponds to a probabilistic
assignment of cluster identity to each sample, given the parameters
�̂ from the previous iteration.

Now, in the M-step we have to optimize Ep(z|V,�) log p(V, z|�) as
a function of �:

argmax
�
{Ep(z|V,�) log p(V, z|�)}

= argmax
�

⎧⎨
⎩

J∑
j=0

T∑
t=1

p(zt = j|�′)[log ˛j −
1
2

(log |CV
j |

+ (Vt −�t
j )

T
(CV

j )
−1

(Vt −�t
j ))]

−1
2

J∑
j=1

T∑
t=2

(�t
j −�t−1

j
)
T
(C�

j
)
−1

(�t
j −�t−1

j
)

⎫⎬
⎭ . (7)

Since this objective function is a sum of simpler functions, we
may optimize each piece in turn: we have one optimization involv-
ing ˛, J optimizations involving �j (since we have fixed �0 = 0), and
finally J + 1 optimizations involving CV

j
.

The optimization of

J∑
j=0

T∑
t=1

p(zt = j|�̂) log ˛zt ,
as a function of ˛j (under the constraint that ˛ forms a proper
probability mass function) leads to the intuitive solution

˛new
j =

∑T
t=1p(zt = j|�̂)

T
; (8)
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Table 1
MoK algorithm.

Initialization: initialize a mixture-of-Gaussians (using e.g. J-means to
determine centers �1,. . .,�J of J components. (Predetermine or
cross-validate over J.) Use the output of the mixture-of-Gaussians algorithm
to initialize the mixture-of-Kalman filters model.

Repeat
E Step

Update memberships ztj (Eq. (6))
M Step

For j = 0:J
Update ˛j (Eq. (8))

End For
For j = 1:J

Update �t
j

(forward–backward method)
End For
For j = 0:J
62 A. Calabrese, L. Paninski / Journal of N

.e., the updated mixture probability is just the average fraction of
amples assigned to index j under the parameter setting �̂; again,
his is exactly as in the MoG case.

Next we need to optimize

1
2

(
T∑

t=1

p(zt = j|�̂)(Vt −�t
j )

T
(CV

j )
−1

(Vt −�t
j )

+
T∑

t=2

(�t
j −�t−1

j
)
T
(C�

j
)
−1

(�t
j −�t−1

j
)

)
,

ith respect to �j, for each j between 1 and J (again, each opti-
ization can be computed separately). Here, for the first time, we

xploit the Kalman nature of our model, and note that each of
hese optimizations are quadratic in �j, with only nearest-neighbor
ependence between �t

j
and �t−1

j
, and may be computed directly

ia a straightforward forward–backward Kalman recursion. For the
orward step, the mean and covariance of the forward distribution
(�t|Y1:t) are given by

Ct+1
j

)
F =̇Cov(�t+1

j
|Y1:t+1) = ([(Ct

j )
F+C�

j
]
−1
+p(zt=j|Yt, �̂)(CV

j )
−1

)
−1

�t+1
j

)
F =̇E(�t+1

j
|Y1:t+1)

= (Ct+1
j

)
F
([(Ct

j )
F + C�

j
]
−1

(�t
j )

F + p(zt = j|Yt, �̂)(CV
j )
−1

Yt),

(9)

ith p(zt = j|Yt =∅)= 0, ∀1≤ j≤ J. These recursions can be derived
y the usual complete-the-squares argument, as in the standard
alman filter setting; see, e.g., Durbin and Koopman (2001) for
etails.

The backward recursion is exactly the same as in the standard
alman filter model, since the backward step does not depend on

he observed data except through the sufficient forward statistics
(�t|Y1:t) and Cov(�t|Y1:t):

(�t
j
)S = E(�t

j
|Y1:T ) = (�t

j
)F + Jt

j
[(�t+1

j
)
S − (�t

j
)F ]

(Ct
j
)S = Cov(�t

j
|Y1:T ) = (Ct

j
)F + Jt

j
[(Ct+1

j
)
S − ((Ct

j
)F + C�

j
)](Jt

j
)T

Jt
j
= (Ct

j
)F [(Ct

j
)F + C�

j
]
−1

(10)

The idea then is to run the forward algorithm to obtain (�t
j
)F ,

Ct
j
)F for 1≤ t≤ T, then initialize the recursion

(�T
j
)
S = (�T

j
)
F

(CT
j

)
S = (CT

j
)
F ,

nd propagate backwards for t = T, T−1, . . ., 1. When the backwards
ecursion concludes at t = 1, update �T

j
← (�T

j
)
S
, and we are done

ith the update for �j.
Finally, optimizing

1
2

T∑
t=1

p(zt = j|�̂)[log |CV
j | + (Vt −�t

zt
)
T
(CV

j )
−1

(Vt −�t
j )]

ith respect to CV
j

, leads to the following update rule for CV
j

:

CV
j )

new =
∑T

t=1p(zt = j|�̂)(Vt −�t
j
)T (Vt −�t

j
)∑T

t=1p(zt = j|�̂)
, (11)

gain echoing the solution in the MoG case.
Update CV
j

(Eq. (11))
End For

Until convergence

To summarize, the full MoK algorithm (Table 1) consists
of the standard MoG E-step to obtain the probabilistic assign-
ments p(zt = j|Vt, �̂), followed by the standard MoG M-step to
update the mixture parameters ˛ then a slightly modified Kalman
forward–backward sweep for maximizing Eq. (7), and finally a stan-
dard MoG-like update for the covariance parameters CV.

We should note before continuing that it is straightforward in
principle to also allow the mixture weights to vary with time by
introducing a state-space model for these parameters, and applying
an approximate EM approach along the lines of Smith and Brown
(2003) to iteratively update these parameters. For that matter, we
could also introduce a state-space model for the observation covari-
ances CV

j
, although this is somewhat more complicated (since we

must maintain the positive definiteness of CV
j

). We do not pur-
sue this direction further here; again, see Bar-Hillel et al. (2006)
and Gasthaus et al. (2009) for some related approaches. Finally, we
should note that our algorithm does not include an EM update rule
for the dynamics noise C�

j
(recall from Eq. (2) that this parameter

determines how much the mean waveform shape �j may change
from one timestep to the next). Instead, we assume a fixed value
for C�

j
, and show later (see Section 3.2) that varying this parameter

over several orders of magnitude has only a weak effect on spike
classification for two different real data sets. Even though we do
not pursue this direction further here, it is possible to derive an EM
update for C� directly from the output of the forward–backward
algorithm; see Shumway and Stoffer (2006) for details.

2.2.1. Online clustering
In many applications of spike sorting, spike sorting must be car-

ried out in close to real time. In neuronal prosthetic applications,
for example, neuronal activity simultaneously recorded from hun-
dreds of electrodes needs to be transformed into a “motor” action on
a time scale of hundreds of milliseconds (Donoghue, 2002; Zumsteg
et al., 2005). To satisfy such demands, a spike sorting algorithm
must be able to estimate the model parameters in an “on-line”
fashion.

One major advantage of the MoK is that the forward–backward
method introduced above for updating the cluster means �j per-
mits a direct on-line implementation: as each new spike is observed
at a given time to, we may update the required quantities online in
the following manner. First, compute the weight p(zto = j|Vto , �̂);

then run the filter backwards from time to (incorporating this new
piece of information Vto ) to time to− s, where s is the number of
time steps required for the updated values of �t to effectively
settle back down to the values obtained before the data at time
to were observed. Finally, update the weights p(zt = j|Vt, �̂) for
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Fig. 2. (A) A simple hidden Markov model for spike trains. The spike-generation
process is modeled as a random (hidden) variable with a ring structure. The hidden
state labeled spk is the state in which the neuron fires. After one time step the hidden
variable leaves the spiking state and jumps into the refractory state (ref), in which the
neuron is unable to produce a spike. From this state the hidden variable transitions
with rate a23 to the rest (rst) state, and after some time to the spk state with rate a31,
in which the cell fires again. The sum of the mean times the system will spend in the
refractory and rest states corresponds to the mean ISI for the cell. (B) Full model of
the data generation process. The complete model has the architecture of a slightly
A. Calabrese, L. Paninski / Journal of N

o− s≤ t≤ to. Each of these steps requires a fixed amount of compu-
ation time (i.e., the computation time does not scale as a function
f to, or more generally T), and therefore we may in principle repeat
hese partial EM updates once or a few times per observed spike,
o ensure accurate online assimilation of each new data point.

It is also possible to update the estimate for the observation
oise CV in an online manner. Recall that our estimate for the
oise variance in the offline version of the algorithm is given
y Eq. (11). To apply this equation online, we just need to note
hat, for time indices t < s, the means �t

j
and the responsibilities

tj = p(zt = j|Vt, �̂) do not change, so we just need to keep track of
he sufficient statistics

Asj =
∑
i<s

(Vt −�t
j )

T
(Vt −�t

j )

Bsj =
∑
i<s

ptj

,

nd then update our estimate as

CV
j )

new =
Asj +

∑
t≥s(V

t −�t
j
)T (Vt −�t

j
)

Bsj +
∑

t≥sptj
. (12)

.3. Including Markovian refractory effects

In the model discussed in Section 2.2, each spike waveform is
enerated independently of all others. One simple feature that has
ot been accounted for in our model is the ocurrence of the refrac-
ory period, a short period after each action potential during which
he cell will not fire again. In this section, we account for this effect
y introducing a simple hidden Markov model (HMM) for neural
efractoriness. Again, related approaches have been employed pre-
iously (Sahani, 1999; Herbst et al., 2008), as we will discuss at
ore length below.
As before, we model each observed voltage waveform snippet

as a sample from a mixture distribution, where the individual
istributions are given by multivariate Gaussians with mean �t

j

nd covariance CV
j

, and z denotes the hidden cluster identity of the
bserved snippet. In order to account for refractory effects, we now
ntroduce an additional hidden variable qt

j
for each neuron, which

epresents the potential of the cell to generate a spike at time t.
or clarity, we first introduce a one-variable HMM for single cell
ecordings. We then generalize to the multi-neuron case in Section
.3.2.

.3.1. Single neuron model
We assume a simple three-state Markov model for clarity (see

ig. 2); as will become clear below, this can be generalized eas-
ly. Our model associates an observation Yt with a spike (Yt = Vt)

hen the hidden random variable q equals one at that time, qt = 1.
e will refer to this state as the spiking state, and we assume that

he system spends just one timestep in this state; i.e., qt transi-
ions deterministically away from the spiking state into qt+1 = 2, the
efractory state. The neuron is unable to spike in this state (i.e., this
tate represents an absolute refractoriness); from here, qt transi-
ions with some rate to the rest state. The sum of the mean times

he system will spend in the refractory and rest states is precisely
qual to the mean inter-spike interval (ISI) for the cell. The state
pace of q has a ring structure: a spike is generated in state 1, and
hen q must jump through both remaining states before jumping
ack into the spiking state.
extended hidden Markov model: the hidden states qt are coupled to the observed
spike data Yt only via their connection to the hidden cluster identities zt . Once the
hidden identities zt are marginalized out, qt and Yt together form a hidden Markov
model (bottom).

State transitions are determined by the state transition proba-
bility distribution A ={aik}, where aik = p(qt = k|qt−1 = i), 1≤ i, k≤3:

A =
(

0 1 0
0 1− a23 a23

a31 0 1− a31

)
, (13)

where as mentioned above the neuron’s mean ISI is given by
1/a23 + 1/a31.

We can now write down an expression for the assignment of
cluster identity to each sample (E-step):

p(zt |Y1:T ) =
∑

qt

p(zt, qt |Y1:T ) =
∑

qt

p(qt |Y1:T )p(zt |qt, Y1:T )

=
∑

qt

p(qt |Y1:T )p(zt |qt, Yt)

=
∑

qt

p(qt |Y1:T )p(zt |qt)p(Yt |zt)
p(Yt |qt)

. (14)

The third term in Eq. (14) is given by Eq. (5). The second term is
determined by the generative model and can be summarized as:

p(zt |qt) =
(

0 1 0
p 0 1− p
p 0 1− p

)
, (15)

where the first column corresponds to z = 0 and the second col-
umn to z = 1, and the third column to z =∅, and where p represents
the probability of the background Gaussian model, N0, emitting an
observation. The term in the denominator is just

p(Yt |qt) =
∑

zt

p(Yt |zt)p(zt |qt). (16)

Thus to compute the assignments p(zt|Y1:T) the only nontriv-
ial part is to compute the conditional state probabilities p(qt|Y1:T).
To handle these, note that once we marginalize out zt via Eq.
(16), qt and Yt together form a hidden Markov model, as sum-

marized in Fig. 2. Thus we may employ the standard HMM
forward–backward algorithm (as summarized, e.g., in Rabiner,
1989) to obtain p(qt|Y1:T). Once the assignments p(zt|Y1:T) are
in hand, the remainder of the parameter updates (M-step) are
straightforward: the Kalman terms remain the same as discussed



1 euros

a
(
t
a

2

w
W
r
v
s
t
t
i
b
t
b
i

A

d
t
f
i
t

s
s
e
t
s
a
F
t
a
m
t
c
m
c
w
s

a
o
T
J
t
t
s
t
a
e
t

o
c
a

64 A. Calabrese, L. Paninski / Journal of N

bove, while the M-step for the transition probabilities p(qt|qt−1)
specifically a23 and a31) is standard (Rabiner, 1989). We will refer
o this combined mixture-of-Kalmans HMM model by the abbrevi-
tion MoKHMM below.

.3.2. Full model – many neurons case
To sort the spikes from many simultaneously recorded neurons,

e may in principle proceed as in the simpler single-neuron case.
e introduce a hidden variable qj for each neuron; assuming J neu-

ons, the states of the hidden variables can be summarized by the
ector qt = (qt

1 . . . qt
J ), where qt

j
is a number between 1 and 3, repre-

enting the state of the j-th hidden variable associated with data at
ime t. The EM iteration for the full model is completely analogous
o the single neuron case if we replace the state transition probabil-
ty distribution and the observation symbol probability distribution
y the corresponding elements of the joint HMM for J cells. The state
ransition probability distribution A ={aik} for the joint process may
e written most simply in terms of the Kronecker product of the

ndividual transition matrices Aj = {aj
ik
}:

= A1 ⊗ A2 ⊗ . . .⊗ AJ,

ue to the independence of each qt. Note that this joint transi-
ion matrix A is fairly sparse, which enhances the efficiency of the
orward–backward procedure, in which the computational time
s dominated by repeated matrix–vector multiplications involving
he transition matrix.

The joint observation probability distribution may be defined
imilarly. The conditional mixture identities p(zt|qt) are con-
tructed in the natural way: neurons for which the corresponding
lements of qt are in the spiking state are assigned as spiking in
his time bin with probability one, and if no neurons are in the
piking state then we assign probability p to the background model
nd the remainder, 1−p, to the null observation, just as in Eq. (15).
or the observation density p(Yt|zt), if one or fewer neurons are in
he spiking state, then we revert to the single-neuron observation
nd plug in the Gaussian formulas discussed above. Conversely, if
ore than one element of zt is labeled “on,” then we have a simul-

aneous spike in this time bin, and we can modify the mean and
ovariance of our observation Gaussian accordingly, e.g., by sum-
ing the means of the spiking neurons. (The simulations and data

onsidered in the Results section below deal largely with the case
here the expected number of spike coincidences is negligible, and

o we did not pursue this aspect of the model in great depth.)
This completes the specification of our algorithm. Of course the

ttentive reader will have noticed a problem: the dimensionality
f the effective state variable q here scales exponentially with J.3

hus this exact approach is restricted to the setting of fairly small
in high-firing regimes. (To be clear, this concern only applies to
he Markov refractory model described in this section; the compu-
ational complexity of the basic MoK discussed in Section 2.2 is not
ubject to any such exponential dependence on J.) Approximations
o the exact E-step such as Gibbs sampling or variational mean field

lgorithms have been developed elsewhere (Jordan, 1999; Herbst
t al., 2008); further exporation of these methods here remains a
opic for further research.

3 More precisely, the state dimensionality scales exponentially with the number
f cells for which we implement a Markovian refractory model; for many low-firing
ells, it will be simpler to just revert back to the original MoK model, to avoid such
n explosion in computational complexity.
cience Methods 196 (2011) 159–169

3. Results

3.1. Clustering of synthetic data

We began by testing the algorithm (a MATLAB version of the
code, as well as several example synthetic data sets is publicly
available at http://www.columbia.edu/amc2257/ana/Code.html)
on simulated data; this allowed us to quantify the performance in
cases where ground truth information was available over a variety
of noise levels and degrees of nonstationarity. As discussed in, e.g.,
Quian Quiroga (2007), a complete spike sorting system includes
modules for spike detection, feature representation, and cluster-
ing. The focus of our work is in the clustering stage, and we will use
pre-existing methods for spike detection and representation (see
Section 3.2 for details). We therefore restrict our attention here
to simulations in which we model dynamic mixtures in a simple
two-dimensional setting; we have in mind the common approach
of projecting putative spike waveforms onto a plane spanned by
the first two principal components of the observed voltage seg-
ment data (the choice of a two-dimensional representation here is
merely for visualization purposes. Both the MoK and MoKHMM
can handle higher-dimensional representations of the data; see
online for an example). To test the complete model (MoKHMM),
we further restricted the analysis to mixture models with just J = 2
components. However, if the Markov refractory model is ignored
(as would be appropriate in low firing rate settings, where refrac-
tory violations are less of a concern), the number of component
units can be easily generalized to an arbitrary J (see Section 2.3.2
for further details).

We test our model on two different scenarios. In Section 3.1.1
we assess the performance of the algorithm on synthetic data that
was generated according to the model described in Section 2.3.2. In
Section 3.1.2 we relax some of the assumptions of the MoK model
(namely the Gaussian model for the observations Yt in Eq. (1) and
the Gaussian random drift of �j in Eq. (2)) and test the performance
of our model on a more challenging data set that deviates from these
assumptions.

3.1.1. Synthetic data set 1: dynamic mixture of Gaussians
This data set mimics two nonstationary clusters corresponding

to two different cells. Initially, the clusters are well-separated but
after some time the movements in the cluster centers induce over-
laps. The data were generated according to the model described
in Section 2.3.2. Fig. 3A (right panel) shows the resulting syn-
thetic data set. We compared the performance of our MoK with
a Markov model for neural refractoriness (MoKHMM) against a
standard mixture-of-Gaussians model (MoG). Both methods were
applied to the same spike data, and were supplied with the correct
number of clusters J.

The clustering solutions for the MoG and MoKHMM are shown
in Fig. 3A (left and center panels, respectively). As can be seen
clearly from the figure, in this scenario it is very difficult to esti-
mate the correct clustering based on a “stationary” view of the
data (in which temporal information is discarded). The MoG, which
assumes stationarity of the data, fails to provide an accurate esti-
mate of the true underlying labels. The MoK approach, on the other
hand, allows us to successfully track the clusters’ centers over time
(see Fig. 3B), and produces a solution that is much closer to the
underlying ground truth (fraction of spikes correctly classified was
0.9 for the MoKHMM, versus 0.72 for the MoG).

With this data set we intended to simulate the case of high firing

rate neurons, where refractory period violations (i.e., the occur-
rence of two spike observations in a time window of length 1 ms)
are often observed in the data. There are 41 refractory period vio-
lations in this data set, out of which our model is able to detect
40. Fig. 4 shows the true and estimated hidden state sequence for

http://www.columbia.edu/amc2257/ana/Code.html
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Fig. 3. Clustering results obtained for an example synthetic dataset. Simulated
spikes in a two-dimensional feature space were sampled from a mixture of two
bivariate Gaussian distributions. In addition, both cluster centers (each associated
with a different neuron) move constantly according to Eq. (2), and for both clusters
the spike-generation process follows the three-state model described in Section
2.3.1 (see Fig. 2A). (A) Clustering solution for a Gaussian mixture model (left),
clustering solution for the Kalman-filter mixture model with an HMM for neural
refractoriness (center), and true underlying mixtures (right). (B) Estimated and true
underlying 2D movement of the centers of the clusters (�1 and �2) as a function of
time. Error bars represent posterior s.d. for � (computed by taking the square root
of the diagonal elements of the forward–backward covariance (Ct

j
)S from Eq. (10)).

The position of the center of the clusters as estimated by the MoG has been plotted
for comparison (dashed lines), with the errorbars in this case indicating the s.d. of
the observation noise CV

j
. We found that the MoKHMM significantly outperforms

an MoG and, is able to accurately track the clusters over time when applied to this
example synthetic dynamic mixture-of-Gaussians with substantial cluster overlap.

neuron cluster 

neuron cluster 2

spk

ref

rst

100 ms

true
MoKHMM

spk
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rst

q (t)
1

q (t)
2

Fig. 4. True (black) and estimated (gray) hidden states for a subset of the synthetic datase
of hidden states for cluster 1 to facilitate visualization of the transitions. While the trackin
of the refractory period violations in the example synthetic data set of Fig. 3.
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a subset of the data. While the tracking of the complete sequence
is not perfect (we find that correctly estimating the hidden states
becomes more difficult when the clusters overlap stongly) the
model is able to detect most of the refractory period violations,
and taking these refractory effects into account improves the per-
formance of our model. When we try to sort the same data with a
model that does not include the Markov model for refractoriness
(MoK) we find that the fraction of spikes correctly classified drops
to 0.86 (as opposed to 0.9 for the full model). These results were
replicated consistently over many similar numerical experiments
(data not shown).

3.1.2. Synthetic data set 2: robustness with respect to relaxation
of the model assumptions

We next tested the robustness of our algorithm by relaxing some
of the underlying assumptions of the model. How well does the
model sort data that was not generated according to a Gaussian
model? How accurately is the model able to track cluster move-
ments that do not correspond to a simple Kalman filter?

To answer these questions we generated synthetic data for
which spikes (again, as represented in a two-dimensional plane for
simplicity of visualization) were sampled from a mixture of two
bivariate t distributions (with four degrees of freedom) as opposed
to a mixture of Gaussians (Shoham et al., 2003). In this data set,
one of the clusters (associated with a neuron) moves with a con-
stant, deterministic velocity towards the other cluster (which is
stationary and associated with noise). Note that this scenario is dif-
ferent from the one described in Section 3.1.1, where both clusters
in the mixture were associated with neurons and both had Gaus-
sian temporal dynamics. In addition, the center of cluster 1 (neuron)
experiences a large discontinuous jump about halfway through the
simulated experiment (Fig. 5A, right panel, black line). The spike-
generation process for cluster 1 is given by the model described in
Section 2.3.1 (see also Fig. 2A). For cluster 0 (noise), spikes were
generated at random with a fixed probability p = 0.15.

Fig. 5A shows the clustering solution for a MoG and the
MoKHMM, together with the posterior standard deviation for the
estimates of the center of each cluster at different times through the
length of the simulation. As with the previous data set, our method
outperforms a simple MoG (fraction of spikes correctly classified
was 0.96 for the MoKHMM and 0.88 for the MoG). Even though the
underlying 2D movement of the center of cluster 1 (�1) deviates
significantly from a random walk, our model is still capable of accu-

rately tracking its trajectory (Fig. 5B). Note that towards the end of
the simulation, when both clusters overlap, it becomes harder to
accurately estimate the position of cluster 1 (Fig. 5B, left panel).
We observe a similar effect for the estimation of the hidden state q
(not shown).

1 rst spk ref rst

t of Fig. 3. The inset shows an expanded version of a small portion of the sequence
g of the complete state sequence is not perfect, the MoKHMM is able to detect most
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Fig. 5. Robustness of the MoK to relaxation of the model assumptions. Spikes in a
two-dimensional feature space were sampled from a mixture of two bivariate t dis-
tributions, as opposed to a mixture of Gaussians. In addition, cluster 1 (associated
with a neuron, red) moves deterministically and with constant velocity towards
cluster 0 (associated with noise, black), but experiencing a discontinuous jump
about halfway through the experiment (panel A, right panel, black line). The spike-
generation process for cluster 1 is given by the three-state model described in
Section 2.3.1 (see Fig. 2A). (A) Left: MoG clustering solution. Dashed lines repre-
sent noise covariance ellipses computed from CV

j
for each cluster. Center: clustering

solution for the MoKHMM. Full lines represent estimated observation noise covari-
ance ellipses centered at the inferred cluster means at a few representative times
through the length of the simulation. Covariance ellipses for the observation noise
CV

j
in the MoG model are replotted for comparison. Right: true underlying mixtures

and trajectory of cluster 1 (red). (B) Estimated and true underlying 2D movement of
the center of cluster 1 (�1) as a function of time. Error bars represent the posterior
s.d. of �, computed as in Fig. 3. The position of the center of cluster 1 as estimated
by the MoG has been plotted for comparison (dashed lines± estimated observation
noise s.d.). Even in a case in which the data set deviates significantly from the model
a
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ssumptions (see Section 3.1.2 for details), we found that the Mok has a higher clus-
ering performance than the MoG and is able to accurately track the position of the
enters as a function of time. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

.2. Clustering of real data

Finally, we tested our method on two different real data
ets. The first data set, for which the “ground-truth” labels
re partially known, consists of simultaneous intracellular and
xtracellular (tetrode) recordings of cells in the hippocampus
f anesthetized rats (see Harris et al., 2000) for a detailed
escription of this data set). The second data set, for which the
ground-truth” labels are unknown, corresponds to extracellular
single electrode) recordings of cells in the midbrain of awake
ongbirds. In each case, the MoK appears to qualitatively out-
erform the MoG in tracking the non-stationarity visible in this
ata.
.2.1. Data set with known “ground truth” labels
We used a 4-min subset of the data set here (in particular,

e used data set d533101 at http://crcns.org/data-sets/hc/hc-
/about), in which recordings from an extracellular tetrode and
cience Methods 196 (2011) 159–169

an intracellular (IC) electrode were made simultaneously. Action
potentials detected on the extracellular channels may include the
action potentials generated by the intracellularly recorded cell
(which are recorded with sufficiently high SNR to be treated as
ground truth here), but typically include spiking activity from other
cells as well. The data were recorded at 10 kHz and bandpass fil-
tered (300 Hz–3 kHz), and spikes on the intracellular channel were
detected as the local maxima near which the first derivative of the
voltage exceeded a threshold. Putative spikes on the extracellular
channels were determined as the local maxima near voltage excur-
sions exceeding 6 median absolute deviations in magnitude. We
extracted 40-dimensional spike waveforms from around each spike
(19 samples before and 20 samples after the peak). The positions
of the spike waveforms were aligned by upsampling, shifting and
then down-sampling the waveforms. The extracellular spikes cor-
responding to action potentials from the identified neuron were
determined as the spikes occurring within 0.1 ms of the IC spike.
PCA dimensionality reduction was performed on the spike wave-
forms from one of the four tetrode channels. The first two principal
components were used as the input to our spike sorting algorithm.
The dataset consists of 2491 putative spikes, 786 of which were also
detected on the IC channel.

As shown in Fig. 6A, there is a clearly visible change in wave-
form shape of the identified neuron over time. This can also be
seen from the non-Gaussian shape of the clusters on the right
panel of Fig. 6B (in particular, see cluster 1, red), which shows
the underlying labeling of the identified cell (red) and presumably
additional cells and background noise (black), for one channel of
the tetrode. The inferred labels are illustrated on the left panel
of Fig. 6B. For comparison, the same data set was also sorted
using the MoG (which does not make use of any information
about the occurrence times of the spikes). We found that our
algorithm outperforms the MoG on this data set (fraction of cor-
rectly classified spikes±binomial proportion confidence interval
for MoK was 0.91±0.006 as opposed to 0.89±0.006 for MoG);
this difference is modest here, largely because the clusters remain
fairly well separated even if temporal information is discarded.
Note that here we use the MoK model instead of the full MoKHM
model to sort this data, since this data set does not contain any
refractory period violations and sorting the data with the full
model leads to the same classification performance. Turning off
the HMM for neural refractoriness here has an additional advan-
tage in terms of computational efficiency: instead of taking the
time index t to be the experimental time, we may take t to be
the spike number. This straightforward modification makes the
algorithm significantly faster (time for a single EM iteration in
the MoK setting is ∼1.4 s as opposed to ∼90 s for the full MoKHM
model).

The positions of the clusters’ centers (�1 and �2) as a function
of time are shown in Fig. 6C. In agreement with Fig. 6A, we found
that the center of cluster 1 (identified cell) drifts considerably with
time, whereas the center of cluster 2 is mostly static. Our results
did not depend strongly on the value of C�

j
used; recall that this

quantity controls the variability in the drift of the cluster means
�j. We experimented with settings of C�

j
over several orders of

magnitude; classification performance remained at 90% over this
range.

In an attempt to improve the overall performance of both algo-
rithms, we tried sorting the data by combining the signals from
the four tetrode channels. We appended the 4 voltage snippets
extracted from each of the channels into a single vector, and then
performed PCA dimensionality reduction on the combined data.

This procedure led to a slight (∼2%) increase in the performance
of the algorithms. Adding more dimensions to the spike represen-
tation (e.g., three PC instead of two) had an even smaller effect.
Increasing the number of clusters in the mixture (e.g., J = 3), did not

http://crcns.org/data-sets/hc/hc-1/about
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Fig. 6. Clustering results and mean-tracking for data for which the ground truth labeling of one neuron is known (see Section 3.2.1 for details). (A) Subset of the extracted
voltage snippets from a single extracellular electrode for the identified cell (cluster 1 in panel B). Different levels of gray represent different occurrence times (dark gray
corresponds to the beginning of the recording session and light gray to the end). The amplitude of the detected waveforms changes visibly with time (see also panel C). (B)
Left: clustering solution for the MoK. Full lines represent the estimates of the center of each cluster at diferent times through the length of the experiment. The corresponding
observation noise covariance ellipses for CV in the MoG are plotted for comparison. Right: true underlying labels of the recoded data, as determined by intracellular recording.
( in Fi
c s plo
n

i
c

3

g
o
e
a
t
a
c
p
T

c
t
t
l
a
d
N
t
i
l
M

j

C) Estimated cluster centers (�1 and �2) as a function of time, ±posterior s.d., as
omparison (dashed). Gray circles represent the occurrence time of the waveform
onstationarities in the clusters’ positions.

ncrease the number of spikes of the labeled cell that were correctly
lassified.

.2.2. Data set with unknown “ground truth” labels
We used a 20-min data set, in which recordings from a sin-

le extracellular electrode were made from the auditory midbrain
f an awake, restrained zebra finch, during playback of differ-
nt types of auditory stimuli. The data were recorded at 24 kHz,
mplified (1000×), and filtered (300–5000 Hz; A-M Systems). Spike
imes were detected online using a spike threshold discriminator
nd spike waveforms were saved for off-line sorting. Waveforms
onsisted of 293-dimentional vectors, and we used the first two
rincipal components of each vector as the input to our algorithm.
he data set consists of 14713 putative action potentials.

Fig. 7A shows the first two PCs of the extracted voltage snippets
olor-coded according to occurrence order. While one of the clus-
ers (cluster 1) stays mostly static throughout the recording session,
he other one (cluster 2) drifts considerably over time. The inferred
abels using a mixture-of-Gaussians are shown in Fig. 7B, and those
ssigned by our algorithm are illustrated in Fig. 7C and D, for two
ifferent values of the dynamics noise parameter (C�

j
), respectively.
ote that even though this new data set contains substantial drift,
he two cells still remain fairly well separated, which leads to sim-
lar clustering assignments for the MoK and MoG. Since the true
abels of the data are not known, we compare the MoG and the

oK in terms of their associated observation error ellipses, which
gs. 3 and 5. Estimated MoG means, ±estimated observation noise s.d., plotted for
tted in panel A. The use of a MoK on this data set allows us to successfully track

are a measure of the uncertainty in the observations. Smaller error
ellipses mean decreased uncertainty and in this sense we found
that the MoK outperforms the MoG.

As before, we found that the clustering assignments for the MoK
did not depend strongly on the value of C�

j
used (c.f. Fig. 7C and

D), as expected. Varying the dynamics noise parameter has a more
visible effect on the estimation of the clusters’ position over time.
This can be seen clearly from Fig. 8: smaller values of C�

j
lead to

decreased variability when tracking the position of the clusters’
centers as a function of time (c.f. panels A and B of Fig. 8). In
agreement with Fig. 7A, we found that the center of cluster 1 stays
relatively stationary, while the center of cluster 2 drifts consider-
ably over time. The MoK seems to do a good job overall of tracking
the nonstationarity evident in Fig. 7A.

4. Discussion

We have introduced a simple Bayesian method for tracking non-
stationary spike shapes in extracellular recordings. The basic model
we employ can be seen as an extension of the usual mixture-
of-Gaussians model for spike sorting to the case that the cluster

means are allowed to vary with time. The Gaussian nature of the
model leads to efficient computation based on standard Kalman
filter methods; in particular, the required forward and backward
recursions can be adapted for on-line implementation, as discussed
in Section 2.2.1. Despite the simplicity and constrained nature of the
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Fig. 7. Clustering results for a data set for which the ground truth labeling is not known(see Section 3.2.2 for details). (A) Extracted voltage snippets in a two-dimensional
feature space color coded according to occurrence order (dark gray corresponds to the beginning of the recording session and light gray to the end). (B) Clustering assignments
for a MoG model. Dashed lines represent the covariance ellipses for the observation noise CV

j
. (C) Clustering assignments for the MoK, for C�

j
= 1. Noise covariance ellipses

for the MoK (full lines) and MoG (dashed lines) as in Fig. 5. (D) Clustering assignments for the MoK, for C�
j
= 0.1. Noise covariance ellipses for the MoK and MoG as in panel

C. Even though the labeling of the data produced by the two methods is similar, the use of a MoK rather than a MoG results in decreased uncertainty in the observations as
measured by the associated observation noise covariance ellipses.
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anels A and B). In both cases, while cluster 1 stays mostly stationary over time, clu

odel, we have found that these methods are effective and fairly

obust when applied to simulated and real data. In addition, it is
ossible to incorporate refractory effects into the model via closely
elated hidden Markov model techniques.

As emphasized in Section 1, our work is far from the first to
ddress these issues. For example, Monte Carlo-based methods
j

drifts considerably (c.f. Fig. 7).

for incorporating non-stationarity have been proposed which are

more powerful and flexible but more computationally expensive
(Pouzat et al., 2004; Gasthaus et al., 2009). In addition, more pow-
erful nonparametric Bayesian methods can be employed to perform
automatic model selection and averaging (i.e., a proper quantifica-
tion of our uncertainty about the number of cells present), a topic
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Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, Donoghue J. Modeling and decod-
ing motor cortical activity using a switching Kalman filter. IEEE Trans Biomed
Eng 2004;51:933–42.
A. Calabrese, L. Paninski / Journal of N

e do not address at all here4; see, e.g., Wood and Black (2008) and
asthaus et al. (2009) for further details. Bar-Hillel et al. (2006) took
similar approach to nonstationarity tracking as ours; in fact their
odel for nonstationarity was more general, in that Bar-Hillel et al.

2006) allow both the covariance and the mean of the distribution of
pike shapes to change with time. We make the approximation that
nly the cluster mean varies significantly in time, in order to exploit
he more computationally efficient Kalman filter methods empha-
ized here. Finally, Wolf et al. (2009) recently employed an online
aussian-based iterative tracking scheme which is similar in spirit

o the forward recursion of the Kalman filter; these authors went
urther, implementing online hardware control of the electrode
osition to stabilize the recording quality. It would be interesting
o explore whether the online expectation-maximization-Kalman
pproach we have presented here for tracking multiple clusters
ould lead to a more accurate and robust method for electrode
tabilization.

Related approaches to incorporating refractory effects in spike
orting algorithms have also been pursued. Sahani (1999) discusses
number of these approaches. At one end of the spectrum we can

imply discard spike pairs which cause a “refractory violation”;
his is done semi-manually in many experimental labs, though

ore principled expectation-maximization-based approaches are
vailable (Sahani, 1999). On the other hand a number of works
ave pursued more intricate hidden Markov models, in which the
bserved voltage depends on the precise submillisecond spiking
tate of the neuron, or on the cell’s longer-term spike history
Sahani, 1999; Fee et al., 1996; Pouzat et al., 2004; Herbst et al.,
008). Our work represents a computationally efficient compro-
ise position between these two extremes. As emphasized in

ection 2.3.2, an important direction for future work will be to
evelop more efficient and scalable methods in the setting of large
umbers of isolable units.
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