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Mainstream queueing models are frequently employed in timapleealthcare delivery in a number of settings, and furthe
are used in making operational decisions for the same. Tétevajority of these queueing models ignore the effects of
delay experienced by a patient awaiting care. However, tielgys may have adverse effects on patient outcomes and
can potentially lead to longer lengths of stay (LOS) whengagent ultimately does receive care. This work sets out to
understand these delay issues from an operational peikspddsing data of over 57,000 Emergency Department (ED)
visits, we use an instrumental variable approach to englyicneasure the impact of delays in ICU admission, i.e. ED
boarding, on the patient’s ICU LOS for multiple patient tgpe

Capturing these empirically observed effects in a queusingel is challenging as the effect introduces potentially
long range correlations in service and inter-arrival tim&fs propose a queueing model which incorporates these mea-
sured delay effects and characterize approximations texpected work in the system when the service time of a job
is adversely impacted by the delay experienced by that joip.&pproximation demonstrates an effect of system load
on work which grows much faster than the traditioba{1 — p) relationship seen in most queueing systems. As such,
it is imperative that the relationship of delays on LOS bedryainderstood by hospital managers so that they can make

capacity decisions that prevent even seemingly moder#gsifrfom causing dire operational consequences.
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1. Introduction
Delays arise routinely in various healthcare settingsy tire a consequence of the inherent, highly vari-
able requirements of healthcare services and the ovenimgldemand for these services. It is natural to

conjecture that delays in receiving care can result in eetsaof adverse outcomes — and indeed, there is

some support in the medical literature for such conject(effgsl_Qhal[m_e_t_elIJ_(ZQj)ﬁ_Rﬂnaud_e} lz.L_dOO9).

I.I_(29_(|)4)). This paper proposes to study one siMdrse outcome in the intensive care set-
ting: delays in receiving intensive care can result in lonlgagths of stay (LOS) in the Intensive Care
Unit (ICU). From an operational perspective, this effect h@o consequences. The first, of course, is the
immediate impact on the delayed patient. The seceystemidmpact is the increased congestion caused

by the increased care requirements for the delayed paliiepéarticular, the increased ICU LOS can result



in delays tootherpatients requiring the same ICU resources, which in turalte# longer LOS for those
patients, and so forth. This paper will (empirically) stutig extent of this phenomenon across multiple
patient types. We then propose to modify extant queueingafsdthat are frequently used to model such
systems) to account for the phenomenon and present a titabestalysis for the same.

Delays and the ED-ICU Interface: Patients who arrive to a hospital via the Emergency Depant(&D)
first under go assessment and stabilization. If a decisiomaide to admit a patient into the hospital, this

patient may ‘board’ in the ED while waiting to be admitted cBulelays occur for patients of all severities

and is often due to unavailability of inpatient bed 5). It is particularly troubling when delays
occur for the most critical patients—those destined forl@lg. ICUs provide the highest level of care and
are very expensive to operate. As such, these units tend sonb#, resulting in frequent delays in ICU
admission.

Hospitals have adopted a number of approaches to deal with d@hgestion. For instance, ICU

congestion can result in discharging current patients rpptigely QL&IIL&& Dobson etial. 2010,
Kc and TerwiescliL_ZO_H, Chan QJ?I_LQZ%H), blocking new ptttiera ambulance diversion (Allon etlal.
2013) or rerouting patients to different unlt_s_(mompio_illﬁo_o;b Kim et QMAS). In this work, we focus
on a frequent symptom of this congestion: admission delageed, congestion in the ICU often forces
patients to wait in the ED until an ICU bed becomes availab&ﬂ_illa.k_el_ajl.l_(zg)_&)l)). With an increase
in critical care usagel_LHﬁlpELn_a.nd_Ba.sﬂLe_S_bOlO) and tvedastagnant supply of ICU beds, it is no

wonder that delays for patients awaiting ICU admission aogving. In fact, there exists a shortage of ICU
beds, which is projected to persi@ﬁ@OOS).

This paper will focus on the flow of patients from the ED inte tiEU. In particular, we will examine the
‘boarding’ delay experienced by these patients and the ¢ingiathis delay on the length of the patients’
stay in the ICU. The effect we study is in contrast to the presiy studied phenomenon of ‘speeding up’

current patients (e.g. Kc and TgrwiglsL:h (5012))]. Becaussere little evidence of this effect in our patient

cohort, we aim to gain a better understanding of the impacoogestion on ICU admission delays, rather

than its impact on ICU discharges.
Standard Queueing Models Fall Short:  Queueing models are often used to model and analyze patient
flows in hospital settings. These models are predictive amdprovide valuable insight into the impact

of changing demand scenarios as well as staffing or, morerg@éneapacity provisioning alternatives.
Seei nqu__o_l)G) for an overview of how queueing models haee bised in healthcare applications.

The vast majority of these queueing models assume that thieseequirement of a job is independent
of the state of the queue upon its arrival. In a healthcatengethis assumption is equivalent to ignoring
the effects of delay on LOS experienced by a patient awaiteng. As we show in this paper, this is

not a tenable assumption. In addition, there have beenusgondition specific studies in the medical

community demonstrating that delays can result in an irse@amortality dA_Qhan_ét al.
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2008/ Buist et al. 20 ' La.L_Zs{HO) and/or exteatiept LOS[(Q_hﬁ.II[n_el_:lilL_ZQbh._Rﬁnaud_étal.

2009, Rivers et al. 2001). We will explore this phenomengorafeariety of patient types.

As we shall see, evenin the simplest settings, the undertyirrueing process exhibits long range depen-
dencies and, consequently, Markovian models of the samabighedimensional. This is not surprising,
since capturing the delay effect creates long-run corcglatbetween service times and inter-arrival times—
bursts in arrivals will correlate with longer service timasd very little can be said about such systems.
While such models may still be beneficial in simulation, thegeing phenomena made transparent by
simple M /M /s type models is obscured. As such, an important componehtopaper is a simple set of
closed-form approximations to a key performance metristarh systems.

Contributions: While physicians recognize that delays are detrimentafandividual patient, our anal-
ysis provides insight into the impact such delays may havimomasing overall congestion and reducing
access to care for other critical patients. This work is thet fd rigourously analyze the impact of delays
on LOS. In particular, we make the following contributions:

1. Using retrospective data of over 57,000 patients fromgeelhospital network, we empirically estimate
the impact of delays in transfers from the ED to the ICU on LOStiultiple typesf critically ill patients.
Our empirical study is granular and characterizes the ntag@f this effect for a variety of patient primary
conditions. We estimate a Heckman selection model with dogenous regressor and find strong evidence
that increased ED boarding times are associated with loi@édengths of stay for a number of patient
conditions. Loosely, for some primary conditions (such ascdlar), a single additional hour of boarding
delay (relative to mean delay) is associated with an appratély 11.37% increase in ICU LOS.

2. Next, we examine the implications of this delay effect whensidering queueing models often used
to model hospital systems. We develop &YV (f)/s queueing model as an analogue of &fy)M /s
gueueing model, where service times are exponentiallyiloised with mean which increases with con-
gestion according to a growth functigh We present a rigorous, analytically tractable approxiomato
such models that, in addition to being quite accurate, peva simple, transparent view of the impact of
congestion on the amount of work in the system inghesencef the delay effect. We find a relationship
between system load and expected work which grows muchr fdmste thel /(1 — p) relationship seen in
most queueing systems. We view the simplicity of these afiprations as surprising since queueing sys-
tems with long-range correlations in service and inteizartimes are known to be notoriously difficult to
analyze.

3. We use numeric and simulation results to demonstratedhatto the relationship exhibited by our
gueueing model with delay effects, it is imperative for htapnanagers to carefully characterize the delay
phenomenon for their patient cohorts. Ignoring the impdadedays on LOS when making operational
decisions can result in persistent over-crowding, whetaydecan spiral out of control much faster than

anticipated.
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1.1. Related Literature

Our work is related to three main bodies of research: engliviork looking at the effect of delays and
congestion on patient outcomes as well as other empiricak farusing on estimation methodologies;
gueueing models with congestion-based dynamics; andegugmodels in healthcare.

The medical community has invested significant effort ineasuring the detrimental impact of delays on
patient outcomes. The majority of this work has focused oimari notion of delay: was a patient delayed
or not? For instance, a transfer from the Emergency Depatt(@®) to the Intensive Care Unit (ICU) was
labeled as ‘delayed’ if it was greater th@hours (Chalfin et gul. 294)7); however, there was no distirfgng
betweent and20 hours of delay. They find that the median hospital length ay $inclusive of ICU and

general medical ward stay) is 1 full day longer and the inplitakmortality rate was 35% higher for patients
who were boarded more than 6 hours. The definition of delaypeaon the order of minutes as in the case
of cardiac patienti (de Luca eﬂ\al._zbkm, Buist Qt al. leOﬁkMaic et a“ﬂ(l, Chan et MOS) or upsto
days for burn-injured patientg_(_s_h_el:ida.n_elta.l_i999). Athese works focus on a single patient condition

in a single hospital and may lead one to conjecture that ttay @dfect is isolated to a narrow section of the

patient population that visits the ICU. We verify insteadttthe delay-effect is prevalent across multiple
hospitals and ailments. For some conditions, we do not findkeece of a delay effect, suggesting hospital
administrators must be prudent about the composition df fatient population when making operational
decisions.

Our empirical approach leverages fluctuations in congestienpatient unitsl. Kc and Tgrwieg h (2009,
\ZO_LJZ) anJi Anderson et all._(ﬁll) consider how high load ingd&t) LOS following surgery. These works

find that high occupancy levels can resulsimorterpatient length-of-stay (LOS) due to a need to accom-

modate new, more critical patients. Moreover, such redastin LOS can increase risks for readmission
and death. In contrast, our work considersdkenissioninstead of discharge, process which is altogether
a fundamentally different medical decision. In particulae examine how the occupancy level in the unit
which a patient should be admitted cacreasel. OS in the current and subsequent unit. Notice the delay
we consider and the speedup effect seen in these prior wotlkally work in opposition. We find that
for the patient population we consider, speedup seems ® liite, if any, effectl Kim et AI. 2015) also

considers the impact of the occupancy levels of downstreaspital units; however, the focus is on how
high occupancy levels can affect patient routing and sulesstty, patient outcomes. In the present work,
we focus on the ICU and how congestion impacts delays ratia@rthe routing of patients to a potentially
less desirable recovery unit. That said, the findinng of Kﬂmlle(ZO_lJS) are evidence of potential sample

selection issues which may arise if one only considers pigti®ho are admitted to the ICU. Our setting has

a number of econometric challenges: sample selection ahmbemous regressors (sicker patients have pri-

ority for admission, so have shorter boarding times, but ate more likely to have longer LOS). As such,
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we leverage the methodology establishwwlwwﬂ to estimate our

model.
. 5) also consider ED boarding, but focuses erntipact of hospital discharge policies on

patient boarding. Similar to our work, they consider enggitrenalysis to motivate stochastic models. Using

simulation models, they approximate inpatient operatinm@shospital in Singapore. In our work, we aim to
provide analytic approximations to the impact of ED boagdin system dynamics such as average number
of patient hours in the system, i.e. what is the aggregateébrumf hours all the patients currently in the
system will spend in the ICU.

Motivated by our empirical findings, we consider how to inmmate the measured delay effect into

our queueing model U ObALALa_and_lSDIJIe ' m_(ZbOl) all
consider queueing systems where service times can be #ectea decreased depending on congestion. In
general, they find that service rates shdalktteasewith congestion. In a similar vei 10)
examines the quality-speed tradeoff in an M/M/1 queue whkereice times can be reduced at the expense
of service quality while reducing delay costs and find that dguilibrium behavior is starkly different
than in traditional queueing models. We also compare theahpf congestion-dependent service times to
traditional queueing models; however, in contrast to thpegeers, we study a system where the service rate
is not controlled but a function of the system’s history aackte the long range correlations which arise
from these effects.

IXALIJJI]I .19_9_(1)) al’l(JLB_me_a_a.DdALﬁS_iIOLJ_(ZdOU examine a G/G/lugueith service times and interarrival

times which depend linearly on delays. Under very speciatitmns—e.g. the workload must decay over

time, or interarrival times must increase as service ragessdise—stability conditions and approximations to
the waiting times can be derived. While both of these works@®er workload that may increase with delay,
the dynamics of our system are very different. In partigudar interarrival times are not a function of ser-

vice rates, which is required for the resulti in ﬁMitt (ﬂgaﬂ Boxma and VIasi;l)tJ&A)lO?). Consequently,

the workload in our system will never decay as it must in ttegexhentioned works.

In recent worang&.t.Jill_QQlB) attempt to model the quegiphenomenon at hand by having the
instantaneous service rate decrease with congestiomy ridiain having congestion impact individual jobs

(patients). They analyze this system in a heavy traffic regignoring the granular modeling we undertake
here, and additionally assuming that an abandonment oegalates the system. While such a model is
potentially quite useful to understand phenomena suchvassibn to other units, it is unclear how their
results apply here (i.e. without abandonment), and fordfisited systems.

While there has been important work focusing on state-dég@imueueing systems, they are unable to
fully capture the healthcare specific dynamics which anenaséd from real hospital data and presented in
this paper. Our goal is to develop a framework which accoianthe type of delay effect which can appear

in a healthcare setting. In doing so, we hope to expand theguayeing models can be used in such a



setting. Queueing theory has been a useful tool to estin@fermance measures, such as waiting times,

and to provide support in operational decision making, saglletermining staffing levels. For instance,

1) consider a variable finite-sogreeueing model to determine the impact of

nurse staffing on overcrowding in the Emergency Departmerat.related vei eri ngs

(2011) consider an M/M/s/n queue to estimate the impact edextp-patient ratio constraints on patient
delayl Green et $I. 2006) modified the traditional M/M/s ugieag model to develop time-varying staffing

levels for the Emergency Department. To the best of our kedgé, despite the ever-present delay effect in

healthcare applications, no other works have explicitkgtait into account.

2. Empirical Motivation: Model and Analysis

In this section, we empirically examine the impact of delayspatients being transferred from the ED to
the ICU. We find that delayed transfers from the ED to the IC&agsociated with increases in ICU LOS.
These findings have significant implications for capacignpling and resource allocation in the ICU. We
will estimate a reduced form model that relates patient johggical factors and ED boarding time to ICU

LOS. We examine the impact of boarding time across diffepatient categories.

2.1. Data
We analyze a large patient data set collected from 19 fiesilivithin a single hospital network covering
urban and suburban locales for a total of 212,063 patienissiioms over the course of 18 months. The
largest hospital had a maximum ICU occupancy of 44 patievitde the average ICU size was 19 beds.
These ICUs have an average occupancy level of 70%. This weltades patient level characteristics such
as age, sex, primary condition for admission (i.e. congesteart failure or pneumonia), and four separate
severity scores based on lab tests and comorbidities.dtiatdudes operational data which tracks each
patient through each unit, marking time and dates of adonisaind discharge. Hospital units were classi-
fied into six broad categories including Emergency Depantr(ieD), General Medical Ward, Transitional
Care Unit (TCU), Intensive Care Unit (ICU), Operation Roo@R), and Post Anesthesia Recovery Unit.
This allowed us to calculate the hourly occupancy level iohelaospital unit. In order to avoid censored
occupancy levels, we restricted our analysis to patients wére admitted during the middle 12 months
of the study. As this was ainpatientdataset, the captured time in the ED is the time different¢edsen
the order to admit to an inpatient unit and when the patientadly left the emergency department. Hence,
this captures thED boarding timeand is measured as the time from when the admit order wasdolati
the patient is physically admitted to an inpatient unit. &dtat this does not include the time for triage,
stabilization, and assessment, all of which will typicdlly activities that occur prior to the request for an
inpatient bed.

110,574 patients were admitted via the ED. We considermatighose admission was classified as ‘ED,

medical’, i.e. their admission was via the ED and their ailtn@as not considered surgical (the flow of



surgical patients is rather different and governed by safgichedules, so such patients were excluded).
Similarly, we excluded patients who were admitted to the r@figg Room (OR) directly from the ED

To understand the impact of delay on different patient types classify patients based on over 16,000
ICD9 admission diagnosis codes into 10 broad groups of ailsneased on the types of specialists who
treat them: Cancer, Catastrophic, Cardiac, Fluid&Henagjio| Infectious, Metabolic, Renal, Respiratory,
Skeletal, and Vascula{r (Escobar g“ al. 3008). While thezesame patients who do not fall into one of these

categories, we focus on these main groupings which the imagdmpatients fall under.

Severity scores in the data were determined at the time gfitabsdmission and capture the severity
of the patients at the time the request for an inpatient besimade. In order to use these scores for risk
adjustment, we excluded all patients who were admitted toatient bed more than 48 hours after hospital
admission since it is unlikely the scores will accuratelyasugre the severity of patients after that. These
scores are used for the over 3 million patients in this haspietwork and have similar predictive power
as the APACHE and SAPS scores witBtatistic in the 0.88 rafdnia;%Zimmerman al. dOG, More@let

@). SeJa_Es_c_Qha_r_e_Il A.L_(ZJJOI&)J_QIED_H_&I__JZ&ZL_KLU]I 5) for further description and use of

these severity scores. We also restricted our analysistientswhose hospital stay was less than 60 days.

Patients who stayed longer are outliers with LOS more thaarisird deviations greater than the mean and
are unlikely to be representative of the general patientifation.

2,930 patients were removed from the sample because thetyTdies is common practice in the medical
community because various factors, such as Do-not-rdatsscirders, can bias LOS estimates for patients

who die kNQLLQD_e_t_ALZQJ)JL_Rﬁ.D_QD_Qﬂ_eH_a.L_lIQQG). We noteweaverified the robustness of our empiri-

cal analysis by also including patients who died and find esults are quite similar. When determining

occupancy levels, all patients who are treated in the halsgié included.

The data cleaning process is depicted in Figure 9 in AppdAdikhe final dataset consisted of 57,063
patients. 5,996 of these patients were admitted to the |Gk the ED. Tabl€]1l summarizes the statistics
for the different patient categories.

We wish to understand how delays to ICU admission impaciemaiCU LOS and whether ICU LOS
is increasing in ED boarding time. While such a relationshipatural to conjecture, the significance this
phenomenon can play in capacity management (as we will sée isubsequent sections) merits that we
establish its veracity rigorously. In addition, the emgatistudy in this section will also allow us to quantify
the magnitude of the delay effect for different classes tiepis.

2.2. Estimation
We now describe our model which forms the basis for our eséirabthe impact of boarding delay on ICU
LOS. To test our hypothesis, we consider the ICU LOS{/ LOS, and ED boarding time of each patient,

! Note that patients admitted to a medical service can go @R for surgery.



Non-ICU admits ICU admits
Condition ED boarding Age ED boarding Age ICULOS
Category N (hours) (years) N (hours) (years) (hours)
Cancer 507 3.544+5.02 65.93+14.32| 27 4.2844.99 52.50+£36.96 64.894+11.01
Cardiac 17772 3.46+4.28 68.12+14.68|2203 3.58+4.22 37.754+36.59 66.09 + 14.32
Catastrophi¢ 1278 3.88+4.93 69.38+19.65| 685 2.77+3.91 87.154+83.70 62.20 + 18.37
Fluid&Hem.| 2900 3.54+4.58 68.47+18.11| 164 4.30+5.24 45.78 £47.79 64.70+16.10
Infectious 11379 3.97+5.10 66.92419.11 1012 3.85+4.71 65.73+16.86 74.75+ 84.08
Metabolic 2979 3.75+£4.68 63.00+19.62| 650 2.87+3.30 51.70+57.21 48.64+19.92
Renal 1753 3.62+£4.86 67.11+17.77| 123 3.49+4.62 64.04+63.75 60.67 £16.44
Respiratory | 6487 3.90+5.01 68.45+15.91| 741 3.324+4.05 65.50+75.96 66.32+ 15.62
Skeletal 2727 3.45+4.45 69.34+1833| 98 4.83+5.78 52.70+55.09 66.00+ 18.70
Vascular 3285 3.45+4+4.37 71.10+£14.23| 293 3.28+£3.92 53.01+42.01 69.70+13.71
Table 1 Mean + Standard deviations are reported for 10 patient categories

EDBOARD. Due to the long tails in ICU LOS, we take the logarithm of ICQS&. Further, letZ be
a matrix of control variables for each patient which inclsdarious physiologic and operational factors
which may affect ICU LOS, such as patient severity, age, @nneondition, day of admission, and hospital

where care is received for each patient. See Tdble 3 in AppBiidr more details. Our model is then:

log(ICULOS) =37 Z +3EDBOARD +u 1)

The zero-mean noise termis assumed to be uncorrelated with The coefficient may be interpreted as
measuring how each additional hour of ED Boarding increagpected ICU LOS$ > 0 would support
our hypothesis. We will run separate analyses for eachrgaditment group (e.g. Cardiac versus Cancer

patients) to see if and how the delay effeGtyaries.

2.2.1. Econometric Challenges Due to ethical and practical concerns, it is not possibleitoa ran-
domized experiment to see how delay affects patients. Hamegocus on using retrospective data to
estimate this effect. This introduces a number of challsiigeur estimation.

Endogeneous regressoiBhere may be unobservable factors which impact both ED dogrand ICU
LOS. For instance, a very severe patient may be given priand transferred to the ICU earlier than other,
less severe patients. Because he is severe, he will alscahavger ICU LOS due to the increased time
required for recovery. If these severity factors are unolase, they could make our estimateidbiased.

Selection biaslin this work, we only consider the impact of delay on pasewho are admitted to the
ICU. However, only 11% of patients admitted to the hospitaltiie ED are admitted to the IC al.
_ﬂ) finds that when the ICU is busy, fewer patients are @dchinto the unit so that only the very

severe patients receive ICU care. This would result in lohgarding times (due to ICU congestion), but
also longer ICU LOS (due to the increased severity of adthjtegtients). Because the selection of patients
is non-random (it depends on patient severity which may eotdmpletely observable in the data), our

estimates ob may be biased.



2.2.2. Estimation Approach For ease of notation, throughout this section, we willAget Z,, and Z,
denote matrices which contain control variables ag iinom Eqn. (1).

In isolation, each challenge can be addressed via establlislols which have been used extensively in
the econometrics literature. An instrumental variablerapph (e.g. two-stage least squares) is a common
approach in estimating models with endogenous regrewgﬂﬂ)lzy Note that this approach

requires a valid instrument, which is uncorrelated withuhebservable noise, but influences the outcome

(ICU LOS) through its impact on the endogenous regressoil(@B). For instance, the following equations

can be used to model such a system:

log(ICULOS) = Z,, + SEDBOARD + u, )
EDBOARD = ZyB + s 3)

where, by assumption the,'s are 0 mean and independent 6f Note thatu, may be correlated with
EDBOARD, so that a valid identification strategy requitésto contain an instrument fat DBOARD.
ReplacingE DBOARD in Egn. [2) with the predicted value from Eqfl (3) allows opedentify the
impact of ED boarding on ICU LOS. However, such an approachbeome problematic when there is
sample selection. In particular, if2U LOS is only observed for a subset of the patients, the assumption

uncorrelated noise in the first equation may not hold:
e.g.Fu,|Z,,ICUADM =1]#0o0or E[u,|Zy, ICUADM = 1] #0

where/CUADM is a variable which indicates admission of the patient iniCU. To account for the
potential biases introduced by sample selection, the teteaf patients into ICU treatment can be mod-
eled via a Probit model and the Heckman model introducesracan factor, the Inverse Mills Ratio, to
account for the potential biases due to the fact that dataexist for selected observatiomwa
WooIdridgH 20(_)|2). Note that this approach requires data footh the selected and unselected samples to

estimate the selection model. The selection model is thus:

whereus; is an error term which assumed to be a standard normal randdabie which is uncorrelated
with Z;. Additionally, we assume thdi:,, u3) is independent of and satisfies the following parametric
relationship:

Elus Jus) = yus (5)

2 Note that other relationships between the error terms cacohsidered, but this particular assumption is standarcees B
Heckma mg).
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Consider the following steps of algebra, which are used tdifpohe log(ICU LOS) equation in[(R):

log(ICULOS) = Z,81 + SEDBOARD + E[u,|Z, ICUADM = 1] — E[u,|Z,ICUADM = 1] + u,
= 7,8, +SEDBOARD + E[u,|Z,ICUADM =1] +¢ (6)

whereZ = [Z,,2,,7Z;] ande = u; — E[u|Z,ICUADM = 1]. It is easy to see that, by construction,
Ele|Z,ICUADM =1]=0.
Now we consider the term&[u, | Z, ICU AD M]:

E[u,|Z,ICUADM)] = E|[E[u|Z,us, ICUADM]|Z,ICUADM]|
= E[E[u,|Z,us3)|Z, ICUADM]| 7)
= yEus|Z,ICUADM)|

where the first equality comes from iterated expectatidms,second equality comes from the fact that
(Z,u3) uniquely defineg 7, us, [CUADM) as given by equatioif4), and the last equality follows from
parametric assumptiofl(5) and the assumption thaindu, are independent of . Then, by our selec-
tion model in [4), we have thaf[us|Z, ICUADM = 1] = Elus|usz > —Z3/33] = AN(Z33), whereX(-) =
¢(+)/®(-) is the Inverse Mills Ratio ané and ® are the pdf and cdf of a standard normal, respectively.
Inserting this into[(b) results in the following reducedrfomodel for ICU LOS for the sample of patients
who are admitted to the ICU:

log(ICULOS) = Z,3, + SEDBOARD +y\(Z3;) + e

Since we potentially have both a selection and endogengusssor issue, our problem can be cast as a

Heckman selection model with an endogenous regr I.AALO_QIdLidJJIE_ZQl)Z). Our model

is thus:

log(ICULOS) = Z,8, + SEDBOARD +~\(Z5033) + ¢
EDBOARD = Zyfs +u, (8)

whereZ,, Z,, Z5 are exogenous controls that they are uncorrelatedayith, u. e is zero mean conditional
on Z and ICUADM = 1, while u, andus are zero mean conditional ot for the whole population.
EDBOARD is potentially endogenous, so may be correlated withand subsequently, We assume
the noise term in thé CU AD M model,us, is vector of independent and identically distributed zeeman
standard normal random variables, so that the model is stems$iwith the ICU admission model estimated
in lISLm_e_t_aiI ,2Q1j5). Additionally, we assume th@f,, EDBOARD) and(Z;, ICUADM) are always
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observed andCU LOS is observed only whehCU ADM = 1. Note that we can obsen#D BOARD

for all patients even if they are not admitted to the ICU. Aslswour model satisfies Assumption 17.2 in

Iﬂo_oldLidgiL 2002). Moreover, by Theorem 17.J in WQOIQMQ@), a two-stage least-squares approach

will result in consistent estimates férunder sample selection with the Inverse Mills Ratio incllids an

€X0genous regressor.

In order to estimate, we follow Procedure 17.2 ilj Wogldrigng(&J)OZ). We first mstie the selec-
tion and ED boarding models. We then use the estimates foInMRe(f\(Z3ﬂ3)) and ED boarding time
(EDBOARD(Z,f3,)) to estimate the ICU LOS model. What remains is to calculagecorrect standard

errors. As indicated i iJgr_dOOO), such hi+stage regression approach will lead to
consistent estimates and a GMM approach can be used toatalaiandard errors. This is the approach

taken iA Allon et ah. (2013), Meijer and Wansblelgk dOO?). Whiferentiates our model is that we actually

have observations of the endogenous regressor (ED bodiiag) even when the patient is not admitted to

the ICU. As such, we can utilize these observations to iserélae estimation power. Due to the large sam-

ple size of patientsot selected for ICU admission, performing the matrix invemsi@cessary to estimate
the standard errors via GMM is numerically challenging. Aists we use non-parametric bootstrapping
with replacement over 1000 samples to do;bﬁﬁwigbe& ZOJZ). We do this separately

for each of the 10 patient categories.

7, Zy, Zs all contain physiologic and operational factors which arailable for all patients, such as
severity, age, day of admission, and hospital where carecisived. BecausE D BOARD is potentially
endogenous?, also includes an instrument which influend&stU LO.S only through its relationship to
EDBOARD. Similar tolKim et al. [(;OJS), we use the congestion of thequa' first inpatient unit (i.e.
ICU congestion for ICU patients and ward congestion for taregal ward patients) as an instrument. In

this case, we consider the average hourly occupancy durentinhe the patient is boarding in the ED. We
define the next unit as ‘busy’ if the occupancy level is grettian 80% of the maximum patient census
over the course of the year. This binary measure of ICU cditges similar to the approaches taken

in [M_cgl_ellﬂn_e_t_aj [(19_£J4)|._I$§_a.ndlen&i_e_slo|h_(2})12) Mt.ﬂ) among others. Note that we

examined other measures of busy including different tholgishand times at which the occupancy was

measured and found similar results. Finally, we includedtwegestion of the ICU and nonICU units at
the time of inpatient unit admission inté;. We note that while these various measures of congestion are

related, their correlation is typically around 20% and naerthan 50%.

2.3. Empirical Results
We first consider the impact of busy inpatient units on ED Boay. Note that we look at the congestion in
the next unit the patient visits, so for ICU patients, we édeisthe congestion in the ICU, while for non-

ICU patients, we consider congestion in the non-ICU unitghW< .001, ED Boarding time increases by
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1.8-2.5 hours when the occupancy level of the next impatiaittis greater than 80%. This result supports
our intuition that inpatient unit congestion increasesrtimey time. Consistent Witlj Kim et H (2d15), we
find that when the ICU is busy, the likelihood of ICU admisstetreases.

We now consider the impact of ED Boarding on ICU LOS. As a measd model robustness, we
consider two models: the first does not use any instrumeatées and the second uses the Heckman
approach with endogenous regressor as discussed eaalide[ summarizes the delay effects for the 10
primary condition categories of interest. We also provlte doefficient;y, on the Inverse Mills ratio. Sta-
tistically significant results ofy suggests evidence of selection bias in some patient céegdve see
evidence of estimation bias, especially in the case of Reaténts, where using traditional Ordinary Least
Squares suggests that increased boarding time actuallgesdCU LOS. This goes against medical knowl-
edge and intuition. We can see that our approach is able testafdjr this bias. When we control for the
endogeneity of ED boarding and the potential selection, aihstatistically significant coefficients in this
case are positive.

We can see that for patient categories: Fluid & HematoloBinal, and Vascular the delay effect is
statistically significant){ < .10). For these ailments, 1 additional hour in ED delay is asgediwith a
11.37%-38.21% increase in ICU LOS. As we will see in our asiglpf queueing systems with delay-
dependent service times, this impact can be substantial.

The regressions for Cancer would not converge, so we coulchciieve coefficient estimates. We
also do not see any statistically significant results forgmatconditions Cardiac, Catastrophic, Infectious,
Metabolic, Respiratory, and Skeletal. Cancer and Skedeg¢ethe patient conditions with the fewest number
of ICU patients, so the lack of statistically significantults may be attributed to the small sample size.
There are 650 samples of Metabolic patients, yet it seemslétays may have little impact on ICU LOS.
This may be because Metabolic corresponds to chronic gonditncluding diabetes, immune disorders,
end stage renal disease, etc. Subsequently, these pat@yntse more delay tolerant. While the patients are
considered severe (they still need ICU care), there isylikelbe less urgency when the patient’s primary
condition for admission is chronic. Finally, Skeletal msféo conditions such as broken hips, which may
be susceptible to infection if left untreated; howeverijrtiegency is likely to be lower than other patients

such as those who had a stroke (Vascular).

2.3.1. Robustness Checksand Discussion While Table€2 presents our main empirical results, we also
performed a number of additional regressions to test thestoless of our results.

First, we considered various measures of busy-ness of theid non-ICU units. We considered thresh-
olds of 75% and 85% occupancy, as well as linear and quadiaeicifications. The main insights from our

results did not vary drastically with these different sffieations.
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(i) (ii)
oLS Model (8)
5 R? ) ~ R?
Cancer 0.0775 |1.0000 . .
) () ()
Cardiac -0.0040 |0.1638|| 0.0007 0.4618*|0.1683
(0.0049) (0.0340) (0.1727)
Catastrophic -0.0137 | 0.1850|| 0.0427 -0.5002|0.1847
(0.0093) (0.0389) (0.4365)
Fluid&Hematologic|| -0.0101 | 0.3047| 0.3237* 0.2800 | 0.3439
(0.0150) (0.1325) (0.4937)
Infectious -0.0117 |0.1280)| 0.0259 1.0398*|0.1414
(0.0078) (0.0444) (0.3997)
Metabolic -0.0260* | 0.1580|| 0.0332 0.0088 | 0.1565
(0.0110) (0.0450) (0.3165)
Renal -0.0736** | 0.5224| 0.3821** -2.6919* | 0.5402
(0.0223) (0.1334) (1.0964)
Respiratory -0.0063 | 0.1312}| 0.0079 0.3458| 0.1457
(0.0099) (0.0576) (0.4737)
Skeletal 0.0110 |0.3346|| 0.0158 0.9692 | 0.3494
(0.0328) (0.2560) (1.1587)
Vascular -0.0296* | 0.2457|| 0.1137  1.0365 | 0.2559
(0.0133) (0.0651) (0.6440)

Standard errors in parenthesgs< 0.10; **p < 0.05; ***p < 0.01

Table 2 log(ICU LOS) regression results: (i) ordinary least squares without instrumental variables; (ii) uses

ICU Occupancy > 80% at ICU admission time as an instrumental variable.

We note that
Kc and Terwies @12). In their work, they focus on a simglediac ICU where patients are cared for fol-
lowing cardiac surgery. In our case, we do not consider satgiatients. We focus on ED medical patients.
Kim et all ,&15) shows that scheduled surgical patientaas likely to experience speedup when the ICU
is busy, while ED medical patients do not seem to experiepeedup when the ICU becomes congested.

rior work has demonstrated that when the ICUuiy,bpatient LOS may decrease

Our data is consistent with these findings.
A number of works have shown that congestion during an ICi @& result in worse outcomes (e.g.
(Chalfin (2005)

particular, we consider the average hourly ICU congestioing a patient’s ICU stay. This is similar to the

c‘L(ZdlZ)), so we also includedeasure of ICU congestion it 3. In

% This has also been demonstrated in non-ICU settmmy
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approach iIL_IS'Lm_e_t_aLIl_(ZQ‘ILS), which considered the averagg dongestion. When excluding this measure
or using congestion in the first 24 or 48 hours of ICU admissianfind the delay effect still exists, though
the statistical significance is sometimes weaker.

Note that our estimation approach relies on a number of gssoms and if any of these are violated,
it raises questions to the reliability of our results. Fatance, we assume the noise term in the selection
model is normally distributed. We also assume a specificrpatiéc relationship between this noise term
and that of thdog(ICULOS) model, which is stated in Eqri.]1(5). If either of these assionptdo not
hold, it could invalidate our results. We use congestionarious inpatient units as instrumental variables.
While we tested and found that these measures of congesgamaorrelated wittobservableneasures
of severity, it is impossible to check this with respectutmobservableneasures of severity. If this were
not true, it would invalidate the IV estimation approachspige these caveats, we find substantial evidence
that, for a large group of patients, delays in ICU admissi@nassociated with increases in ICU LOS. As
expected from the medical literature, the impact of delayges across different patient conditions. We next
devote our attention to understanding the implication$isf delay effect on traditional queueing insights.
While we notice the delay effect can vary across differepesyof patients, our models will focus on a

single class system in order to develop focused insightt@alelay effect.

3. Incorporating the Delay Effect: M/M (f)/s M odel

Motivated by our empirical analysis, we turn our attentiodéveloping queueing models which incorporate
the delay effect. Such analysis allows one to measure thadtrgd ignoring the delay effect when using
conventional queueing approaches. To do this, we introdadd /M /s-like queueing system which has
jobs with delay-dependent service times. Our analysismassla single patient class in order to focus on
the impact of the delay effect. Such an assumption is reddema hospitals with specialized ICUs. For
instance, some large hospitals have dedicated cardiac Widee non-surgical cardiac patients are given
priority. At a higher level, this modeling assumption, whis necessary to allow for analysis, also provides
a first step in understanding the effect of delay-dependamice times on queueing phenomena.

We consider a model with Poisson arrivals and exponentigicetimes. However, the service rate of the
standard exponential random variable now depends on thag déthe job; we denote this dependence by
M (f) wheref is an ‘inflation’ function that we will define shortly. Henciae service time (equivalently,
LOS) of a job is inflated from some nominal value by a quantitycli depends on the number of jobs in
the queue upon the job’s arrival. Such a model is able to capiie dynamics estimated from the patient
data in the previous section.

We now formally introduce our delay-dependent queueingesysConsider ar server queueing system
described as follows: Jobs arrive according to a Poissooegmat rate. and are served in First-Come-

First-Served (FCFS) fashion. We &t denote the number of jobs in the system at tim&ob: arrives at
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time ¢; and its service time is exponentially distributed with méan f (Nt;> where f(+) is a function,
referred to as growth functionwhich takes values in a finite set and satisfies the follow&rmirements:

1. f(m)=0form=0.

2. f(-) is bounded and non-decreasing.

In what follows, we will examine the behavior of this systendahe impact of the growth function,
f(m). We will refer to such a system as a queueing system with adagndent workload, and abbreviate

it with the notationM /M (f)/s.

Remark 1 Note that service times depend on the number of jobs in thersygon arrival, rather than the
realized waiting time of the job. This is primarily for traddility and we find that even with this assumption,
analysis of the model is still not straight forward. Thatdaive will see in Sectidd 6, this simplification does

not alter the insights substantially, &6 is a very good proxy for wait times.

3.1. Stability of an M /M (f)/s System

We first begin our analysis of our queueing system with del@gyendent service times by considering the
stability for such a system. While the stability conditiand consequently the throughput of Y M (f) /s
system, is a relatively coarse performance benchmarkoitigees interesting insight into the behavior of

such systems. We have that:

Proposition 1 AnM/M(f)/s system is weakly stable, i.e.

if and only if

<

1 + fsup
whereW, is the work in the system at timend f,,, = sup,, f(m) is the supremum of.

The proof of this result can be found in the appendix. To gtesome intuition of this result, if a burst of
jobs arrive, they will all experience some delay and an iasedn service requirement. If a particularly bad
burst of jobs arrive in sequence, the system will quicklyedetate to the point where all jobs are delayed
and require maximal service time. Hence, the stability iregoent is based on the maximum possible job
requirement. We see that short term behavior (bursts) calasting effects which impact long-run average
behavior (stability). We note that these dynamics highltbke challenges associated with analyzing such a
system. We can see a complex correlation structure betwessetvice times and interarrival times arises.
Periodic and evenly spaced interarrival times correspaadso service requirement inflation; however,

bursts and short interarrival times will lead to large seevimes. While the question of stability reduces
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to the standard stability characterization under the woese scenario of all jobs inflating maximally, the
system dynamics are more nuanced.

Our stability analysis demonstrates how substantial theeydsfect can be. We consider a simple example
to further illustrate this effect. Consider a system withadlydarrival rate of 10 Renal patients whose mean
LOS is 60.67 hours. Our empirical analysis suggests thatgleshour of delay would result in a 38.21%
increase in LOS (see TaHdlé 2). In order to maintain stabiliith a maximal 38.21% increase in LOS,
the system would need at least 35 beds, while only 26 bedseseed in a system without delay effects.
Stability is the most basic service requirement. If one wikto ensure high quality service one could use
traditional M /M /s analysis to verify that an ICU with 33 beds would guaranteg tfo more than 5% of
patients would have admission delays of more than 6 HoHli®vever, even if a 38.21% increase in LOS
were themaximumincrease in LOS, this ICU would be unstable, resulting imaxtdinarily poor system
performance. Thus, the system without delay effect woutdiidie a high service quality guarantee, while
the system with delay effect would be unstable. Using a srsphulation model which increases LOS by
38.21% if a patient must wait, we see that 37 beds (4 more)dumeiheeded to ensure the same high service
guality guarantee. Indeed, ignoring the delay effect canltén poor capacity management decisions.

In some instances, our delay-dependent queueing systerbecagpresented as a multi-dimensional
Markov Chain, which we formally discuss in Appendik C. Tharsition matrix for this Markov Chain has
a block diagonal structure. However, the size of the bloekshe arbitrarily large depending on the nature
of the functionf. While one may be able to solve for the steady-state dynamiogerically for special
cases, it does not provide much insight for the general mddieteover, this approach quickly becomes
intractable with generaf functions. Despite starting from the innocuoli&/M /s queueing model, the
introduction of the delay effect makes the resulting systantoo difficult to permit an exact analysis. As
such we focus on producing approximations by constructiitglsle upper bounding systems. This analysis
provides some insight into how the issues above might impaitinal predictions that do not account for

the impact of delay on service time.

4. Approximating the Workload Process
This section will be concerned with establishing a simplgragimation to the long run average workload of
anM /M (f)/s system. We focus on the workload as it is a common accountgtgerused in the hospital
setting. It can also be used as a surrogate for delays. Finally, freeslanical point of view, we are able to
establish tractable bounds for the workload.

Let us denote byV, and N, respectively, the workload and number in system processtms system,

where we define the workload as the total amount of work in yistesn based on realized service times.

4 As mentioned in Chalfin et 07), delays of more than @$are associated with worse outcomes.
5 The number of patient days specifies how many days patiergsgregate, stayed in a hospital or unit.
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Consider also, aid//M /s system with arrival rate\ and service ratq#sup where f,, = sup,, f(m).
Assume the service discipline for this system is FCFS. Wetsoy11/, and N, respectively, the workload
and number in system processes in this system. We will frgtyueefer to the former system (the system
we are interested in analyzing) as system 1 and the lattézray@svhich will have value in our producing
bounds) as system 2. Finally, we denotelby, the workload process in al/ /M /s system with arrival
rate\ and service rate, i.e. a systemwithoutany delay-effect or relationship to the growth functifn).

We will refer to this system as the baseline, delay-indepahslystem and use its behavior as a comparison
benchmark for oun/ /M (f)/s system and the corresponding bound we will establish. We[8t], E[IV],

and E[W] denote the expected work in each system. That is, if we dtarsystems according to their
respective stationary distributions, then these cornedpo the expected work in each system at time

E[W] = E[Wo], EIW] = E[W,], and E[W] = E[W]

4.1. An Upper bound for a Step Function
In order to provide more insight into the bound we will derive start by examining a special case of the
delay-growth functionyf. In particular, we focus on the case where jobs have nomaraice requirement

of meanl which increases to + & if there areN* or more jobs in the system upon arrival:

0, m< N*,
f(m)_{k‘, m>N*,
Such a delay growth function captures the increased setimieerequired by jobs (patients) who arrive to
a congested system (i.en, > N*). Such a growth function bears similarities to some of thelioa liter-
ature which examines the increase in workload of delayesingemot delayed patien{s (Chalfin QH al. 3007,
Renaud et ;l 20J)9). Moreover, we consider the case whesethiEze times are exponentially distributed.

We can establish the following upper bound:

Theorem1 Assume thaf(-) is defined according tg(m) = k for m > N*, and f(m) = 0 otherwise. We

have that the expected workloa@]V'], satisfies
E[W] < E[W]—A2k+k*)P(N < N*)

wherelW and N denote the workload and number of jobs in a traditionaf M /s system with arrival rate
A and service ratd /(1 + k).

The upper bound consists of the amount of work in the systeafi jobs were inflated, which is then
corrected according to the second term in the bound. Inquaatti, when considering the expected workload
in the system, we can look at the total aggregate work in teesyup to time (i.e. integratefg W,dt) and
divide byt. With this approach, we start by looking at the contributaéran individual job to the integral

component. To provide some intuition of the correction teletis consider the case wheré* = s and



18

examine the amount of work contributed by an arbitrary jolVe leto; be the realized service requirement
for job i in our M /M(f)/s system andr; is the amount of work théh job brings in system 2, where all
jobs are inflated to expected service timelof k. We note that we correct for the extra amount of work
that is introduced whenever a job does not have to wait updwaan'.e.ﬁt; < s. Ajob that immediately
begins service contributes a total f? work, i.e. it brings works; that is depleted at constant rate 1 until
it completes service. The total contribution is then thearfthe right triangle with width and height equal
to o,. But this job does not have to wait, so the amount of work thattually contributed |§% which
accounts for the artificial inflation of the work to expectézkd + k. Therefore, to account for the actual
amount of work introduced by a job who does not have to waitswaract the amount of work contributed
by the inflated job%af and add the amount of work by the correct méagized job:%. See Figure

[ for an illustration of accounting to correct for the excessk introduced. Recognizing that the second

moment of an exponential random variable with mgas 2,2, we derive the desired result.

T — T
(X} —
t; ti+ 1 % t;+0;
Figure 1 Due to the inflation of all jobs, each job which experi ences zero delay contributes excess work

which is shaded in gray.

Note, that fork = 0, our bound is tight for a queueing system without delay-delpat service times:
the upper bound is equivalent to the classical results dffdi/ /s queue. Additionally, the bound is tight
asp — 0 andp — 1, with the M /M (f)/s system reverting back to ah//M /s queue withy = 1 or
w=1/(1+k), respectively. The first expression in the upper bound spoeds to a system whea# jobs
have their service time increased, irrespective of the arholudelay experienced. However, the workload
does not unilaterally increase with the load. The secont gfathe expression represents the correction
for over inflating the workload for jobs which do not expegerexcess congestion. We note that this is an
upper bounding system because, while we account for theaonorkload if a job is not delayed, we do
not correct for the propagation effect of its inflated woddaoon delays for future jobs. Still, as we will see
later, the upper bound is quite accurate for systems witlowagrowth factorsk, and number of servers,

S.
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We observe that the upper bound in Theokém 1 admits a simplgtaal expression. This allows us to
generate a clean understanding of the impact of delay ondhidaead process akin to our understanding of

the role factors such as utilization play in a traditiofal M/ /s system, which we will explore in Sectidh 5.

4.2. A General Upper Bound for an M /M (f)/s System

As we saw in Sectiohnl2, the delay effect can be gradual. Thesiaw generalize our result from Theorem
[ to other delay-growth functions. Consider any growth fiercf (-) with a countable number of disconti-
nuities. Letd = My < My < My < --- < M;_ < M; = oo be break points in the functiofy, so that if the
number of jobs in the system upon arrival of a new job satisfies< N < M;,,, the service rate of that

jobis1/(1+k;), wherek; <k, ,. Hence,

Thus, f is an arbitrary non-decreasing piece-wise constant fancMost non-decreasing functions can be
reasonably approximated within the framework of pieceevaignstant functions.

As we have described beford] and N are defined as the workload and jobs processes for this delay-
dependent queueing system. Similarly, letand N be the workload and jobs processes forMiiM//s
system with arrival rate\ and service raté /(1 + k;), wherek,; = max; k;. We can then establish the

following upper bound to oud/ /M (f)/s system:

Theorem 2 If f is a non-decreasing piece-wise constant function W) = k; if M; <m < M;,, we
have that the workload procedd/], satisfies

EW]| < E[W] - Z [(AN2ks+ k5 —2k; — k3)P(M; <N < M)

7=0
The proof of this result requires a coupling argument andbmafound in AppendixD. To provide some
insight into the interpretation of this bound, we parse tigfothe two expressions which compose the upper
bound:

1. The first term corresponds to the expected work in the sy#tall job are inflated maximally to
mean service timé + k; =1 + f,,. Thus, it corresponds to the expected work in\dy)/ /s system with
p = A1+ k;)/s. However, most jobs will not be inflated to the maximum sizéjalu brings us to the
second term.

2. The second term corresponds to the correction necessanyédrinflating the workload of jobs with
moderate or no wait upon arrival. If this occurs, the work #sach new job brings is a factor é% less
than the amount of work that arrives in tHé system. Removing this extra work results in the multiplier o

the last expression.
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Note that the only time we rely on the exponential serviceesiris to make the algebraic simplification
in Propositior{ 6 to establish the closed form expressiorHercorrection term. Hence, the bound can be

extended to general service times, but may not result ineaxpressions.

Remark 2 A lower bound for the expected workload of &y M (f)/s system can be derived using a
similar approach to that used for the upper bound here. Heaxeve find that such a lower bound is very
loose. One of the biggest issues with the delay effect isabative externalities on other jobs when a job
is delayed and its service requirementincreased. In oueuppunding system, our correction factor does
not correct for the propagation effect. However, a corrasgiag lower bounding system does not include
the propagation effect. We find that this propagation of yels a primary driver in the dynamics of an

M/M(f)/s system; thus, the lower bound is not very accurate.

5. Senditivity Analysisof the Bound

Traditional queueing models have been used to guide opeadtilecisions in healthcare, such as staffing

levels and numbers of beds (elg. McManus Lt al. (IZ()|04), JE 2606), | Yankovic and GreLrL (2(111),
[dﬁ&x@unﬁndﬁnmddﬂzdll) among many others). Nbtieee models account for the delay effect.

We now consider how the upper bound derived in Seéfion 4 carséé to gain a better understanding of a

gueueing system with delay dependent service times. Wesagdllthat the system behavior is very different
under the presence of a delay effect and this can result @ngially very different operational decisions. As
such, it is important to account for the effect appropriatéb see this, we focus on the result of Theorem
[, where the growth is represented by a step-function.

We start by examining the behavior of the workload as the ntad@ of the delay effect increases in
Figure2. The first aspect to notice is the accuracy of theveéipper bound in comparison to the simulated
workload of theM /M (f)/s system. This allows us to utilize our upper bound to deriveaniasights into
the behavior of our delay dependent system.

What is most striking is the change in workload as the systglmation increases (recall that service
times have been normalized to 1). It is well known that tiad#l M /M / s systems are sensitive to changes
in arrival rateX and the number of servegsso that ag — 1, the workload increases rapidly according to
the relationship /(1 — p). The introduction of the delay effect results in much moggdancreases. That
said, the bound is looser as the number of servers increBseause of pooling, the impact of the system
load decreases as the number of servers increases. Weestiidee phenomena more precisely via explicit
evaluation of our bound.

For any number of servers, it is possible to compose exact expressions for our uppendbavhen the
growth function is a step function as in Theoreim 1. To denratesthis process, we now explicitly evaluate

our bound in two cases: a single server and two servers. \Whdh a small system may not be generally
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Figure 2  Comparison of expected workload in a simulated M/M(f)/s system versus the derived upper

bound for s=1,2, and 10. Inflation is given by a step function: f(m) =klg,>s with k=.05,.1, and
2.

applicable to an ICU setting, there are specialized ICUswban be very small. For instance, in California,

the smallest number of licensed Medical/Surgical ICU badsragst hospitals with such an ICU is 2 and

three hospitals have a 3 bed IC ; lifornia Offic8tatewid ; anning & Development
2010-2011). More generally, there are other service ggttimhich include a delay effect and have few

servers. For instance, Primary Care may be one such settimggh the delay effect is likely much smaller

than in the ED to ICU setting which we are considering herepur evaluation of explicit expressions, we
considerN* = s, so that the workload increases for any job which is delayed.

The Single Server Case M /M (f)/1: We want to compare the behavior of thé/M (f)/1 system to
a regularM /M /1 system which does not have any delay effect. We denote thkloeal in anM /M /1
system with arrival rate\ and service raté asW and note that?[W] = ITPP for p = \. We denote by
WUE the upper bound derived in Theoréin 1. Using this upper bommdnjunction with a Taylor series

approximation, we have that
WUB B 1— p
EW] 1-(1+k)p
so that the workload in out/ /M ( f)/1 system grows quadratically with the expected work in a tiawial

~1+ E[W]k

M /M /1 system. Considering that the work grows according/td — p) for a traditionalM /M /1 system,
we see that in our new system with delay dependent serviastithe work will grow much more rapidly
with p (i.e., the additive term grows like/(1 — p)?).

The Two Server Case M /M (f)/2: We now consider a similar analysis to the single server casmw
there are two servers. Because there are two servers, weefime the system logd= )\/2 and maintain

this definition in what follows. For ouk! /M ( f)/2 system, we have:

WUE (L4R)AL—pD)  (2k+R) (L4204 k)p) (L= (1+k)p)(1—p)

EW] 1—(Q1+k)2p? L+(1+k)p
~ 1+ E[W]pk + 60k + 4p°k
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aroundk = 0. Similar to the single server case, we see the delay effeotinces a quadratic term I[W],
the expected work of a traditionaf /M /2 system. Thus, we again see a much more rapid growth according
to 1/(1 — p)? rather than the traditional/ (1 — p) relationship.

Many traditional queueing models are used for performamveduation and capacity management in

healthcare settings (ng. McManus At MOO4)). Howeflierresults here suggest that using such tradi-
tional tools could lead to substantial underestimatese®fitie delay. This is most pronounced wheand

k are large; ignoring the delay effect can result in estimafggerformance which are orders of magnitude
too low. For instance, whelh= .3 andp = .95, our upper bound estimates the expected work in the system
to be a factor of 9 greater than the workload in a standdyd//2 system. As such, it is important for hos-
pital managers to be acutely aware that the delay effect@aasecdelays to be much worse than originally
anticipated and take this into careful consideration wheking capacity management decisions.

Of course, there are some instances where ignoring the @éftagt will result in reasonably accurate
estimates of the underlying system. At a high level, thi$ @gcur when the system has 1) low utilization
and/or 2) a small delay effect. Suppose we are willing to pcoederestimates of the expected work in
system, there exist scenarios in which the estimates geedeirmm the standard//M /s without delay-
dependent service times are sufficiently close to the eggesork in the underlying/ /M (f)/s system.
Figure[3 demonstrates theand p values below which thél//M /s workload is sufficient for various
percentage tolerances. One can then use this analysisstoniee whether accounting for the delay effect
when using queueing models to inform managerial decis®ngcessary. For example, as longias .2
andp < .3, the estimates foE [V given by a standard/ /1 /1 model are likely to be within 10% of[1V/]
in the delay-dependent system. Similarly, for a two serystesn, as long ak < .4 andp < .15, using an
M /M /2 will be within 10% of the workload in thel/ /M (f)/2 system. Unfortunately, in most hospital
settings—and especially the ICU-system loads tend to heeleet 65-90%. In such cases, the impact of
delays cannot increase LOS by more than 4-10% in order forethdting delays to be within 25% of the
estimated delays from a tradition®f /1 /s model. Thus, for some conditions, such as Skeletal, it niight
reasonable to use tradition®f /M /s models. However, for other conditions, such as Fluid & Heiafic,
using a traditional\/ /M /s to model the system is likely to be quite inaccurate.

We can see that this bound is an important first step in uretetstg and characterizing the impact of the
delay-dependent service times on the expected worklodeiaytstem. We find that the delay effect results
in a dependency of the workload on the system load which growsh more rapidly than /(1 — p). A
direct takeaway from this observation is that reducingaailon—by reducing the arrival rate or by adding
more servers—will have a highly non-linear impact on desireaworkload, and subsequently, delays. Note
that in light of the delay effect, this reduction will be muatore effective than the same reduction in
a traditional M /M /s system. As such, it is important for hospital managers toazsgion when using

traditional queueing models to inform capacity decisiash as how many beds to staff in the ICU, as
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Figure 3 Numeric evaluation of when  WUYB/E[W] < 1+ p% where p% is the percentage tolerance a manager
may be willing to accept.

delays are likely to be much worse than anticipated. Funtbeg, because the/ (1 — p)?-type relationship
becomes more pronounced with large delay-effects (as maghbyk), it is crucial to understand the delay
effect for the patient population of interest. The model wespnt in this work is an important first step
at understanding how the effect of delays on service timeimmgact a queueing system. When making
operational decisions, it is important for hospital mamage account for the delay effect, either via models
such as the one presented here, simulation models, or gtheyaches. Certainly, ignoring the delay effect
is likely to result in poor operational decisions.

6. Numerical Comparisons
We further examine the behavior of our delay-dependent ejngusystem along with the quality of the
derived upper bound. In particular, we wish to examine how delay effect may impact a real system.
To do this we connect back to our empirical analysis in Sa@do calibrate our model. We consider a
setting with a fixed number of servers (beds). If a job (pd}iarrives and there is an available server, it is
immediately served. If there is no available server, he madt His expected service time is non-decreasing
in the amount of time he must wait. We consider the expecte#llaad in the systems.

Specifically, we simulate the behavior of these delay-ddpehqueueing systems for a small (6 beds)
and moderately sized (15 beds) ICU. We compare the expedsdoad to three benchmarks:

1. [M/M/s with p = A] This represents a traditional queueing system withoutydeffects. This is a
(trivial) lower bound to the delay-dependent system.

2. [M/M/s with p=A(1+k)] This represents a queueing system where the amount of wotk ea
job brings is artificially inflated as iéll jobs experienced delays. This is a (trivial) upper boundhto t

delay-dependent system.
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3. [Upper bound derived in Theorem[2] This corrects for the miscalculation of work for jobs who are

not delayed.

6.1. A Single Step Growth Function

To start, we consider a model where patients have a nomitBLIQS. If a new patientis delayed admission,
his LOS increases by a constant fackofwe consider alternative delay functions later). That is, farst
experiments involve a delay functigiim) = k if m > s and0 otherwise. We need to determine the value
of k. To do so, we turn back to our empirical analysis in SediioR&call that we found evidence that
patient delays (ED Boarding) are associated with longer L@QSE. In order to capture this effect in our
simulations, we account for an increase in service time whena job is delayed.

We focus on Vascular and Renal patients. We selected thesktion categories because they have the
lowest and highest statistically significant increase i ICOS when delayed. From Talile 1, the mean ICU
LOS of Vascular and Renal patients is 60.67 and 69.70 hoespectively. From Table 2, each hour of
boarding is associated with a 11.37% or 38.21% increaseUnLiOS.

In our empirical analysis we estimated a log-linear growthction, which we will be approximating
with a step function. While we consider multi-step funcdater, simple simulation experiments suggest
that the step function is quite accurate for low to moderasgl$—as the system becomes more heavily
loaded, more using additional steps will be more accuratst, fve consider Vascular patients and define

the growth functionf = f; as:
fi(m) = 0.1137, m > s;
BT 0, otherwise.

since the nominal LOS is normalized to 1, this correspon@dstxto a 11.37% increase in LOS when a
patient has to wait.

Figurel4 plots the expected workload|[V], for different arrival rates. We make two observations dabou
the delay-dependent system. First, as seen in Sddtion Bipiher bound is very accurate. Second, even
with this very small delay effect, we can see the behaviohefdystem is quite different than that of an
M /M /s system. At low loads, the delay-dependent system lookslike/ /M / s system where no jobs are
extended; this is because few jobs, if any are delayed. Hervas the system load increases, more jobs are
delayed and the delay-dependent system transitions betieé//1/ /s system without any job growth to
the M /M /s system with constant job growth. It is clear that ignoring ttelay effect can be misleading as
to the actual work in the system.

In order to get a better sense of the impact of the delay effiedtigure[%, we examine the relative
difference in the expected workload of different models paned to a traditional/ /M /s system where no
jobs are extended, i.e.= \/s. Most ICUs are not operated in a regime where patients ag§rar always
delayed, so we focus on arrival rates where at least a thitideobeds turn over each day so there is some,

but not excessive, congestion in our system. Again, we s@eotir bound is fairly accurate. Moreover, it
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M/M(f1)/s system to the derived upper bound as

well as traditional M /M /s systems with no jobs or all jobs are inflated. Here the growth factor is

11.37%.

provides more insight into the system workload thad g/ /s system where all jobs are inflated. Note that

anM /M /s system withy, = 1/(1 + k) precisely characterizes the stability condition for a gelapendent

queueing system (see Proposifign 1). However, the dynashite workload are more nuanced.
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Figure 5  Vascular patients: Simulation of M /M (f1)/s system: Relative difference in workload compared to
astandard M/M/s systemwith p= 2. Here the growth factor is 11.37%.

We now consider Renal patients, which have a larger delagcefOur second growth function is:
f2(m) =0.3821 if m > s and 0 otherwise. In this case, being delayed increasesenpatiCU LOS by

38.21%. Figurél6é demonstrates the relative difference irklwad in such a system. We notice that the
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upper bound is looser. This is because the upper bound onlgats the work a single job brings in, but
not the propagation effect it has on delaying/not delayutgre jobs. This propagation is more substantial
when the delay-effect is larger. Still, we can see the uppent is a better measure of system load than the
naive upper bound of ai/ /M /s system withp = @ i.e. all jobs are extended.
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Figure 6 Renal patients: Simulation of M /M(f2)/s system. Relative difference in workload compared to a
standard M /M/s systemwith p= 2. Here the growth factor is 38.21%.

5"

6.2. A Multi-step Growth Function

Next, we consider a multi-step growth function. To reallgss the upper bound, we consider Renal patients.
Thus, the maximum growth &8.21% and we assume that the increase in expected service tinmealy
increasing when there are betweeand2s jobs in the system. We have that

0, m < s,
fz(m) = 'i’fll (m—3s), s<m<2s;
3821, m > 2s.

Figure[T demonstrates the performance of the bound with agebwth function. As seen in Figuré 2, the
upper bound is more accurate in smaller systems. Still, fardarge systems, there are regimesXavhere
the upper bound is quite accurate. In all of these experisperd see the very rapid growth Bf1V] versus
p. This is particularly evident when considering Figulrélsl & with respect to the traditiondl/ /M /s
which already exhibits &/(1 — p)-type of relationship betweeh[IV] andp.

6.3. Realized waiting times
We now consider an alternative model to the inifiaf M ( f) /s model introduced in Sectidn 3. As a bench-
mark, we consider our original/ /M (f)/s model with the following growth function:

3821, s<m<2s;
fa(m) =< 7642 = 3821 x 2, 2s <m;
0, otherwise.



27

3 18 T
—&— MIMIs (i = 1/(1+k)) —6— MIMIs (i = 1/(1+k))
—%— UB MIM(f)/s —%— UB MIM(f)/s
25l —8— MM(f)/s 16 | —8— MIM(f)/s

141

o 7 2

p= S
ES s 35
N

o o

= g 0.8

; 1F .

L w 0.6

<1 o5t <
0.4

ol
0.2
| | . . | | | _ — 7‘79(7,)(,,9:/—%" . ]
o 50.8 0.9 1 11 12 13 14 15 1 02 22 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
A (patients/day) A (patients/day)
(a) 6bedICU (b) 15 bedICU

Figure 7 Renal patients: Simulation of multistep M/M(f)/s system: Difference in workload compared to a

standard M/M/s system with p= 2. Here the growth functionis  f3(m) = min{.3821, 2%2L (m — s)} x

1{7”23} .

Service times increase with realized waiting times: Our empirical findings had that service times
increased based on the wait each patient experienced,outitaodel uses the number of jobs in the system
upon arrival. While this is certainly a proxy for the realizevait times, we also simulate a system which
increases service times based on wait times. To trangjaitdo such a setting, we note that if the job is not
delayed, there is no inflation of service time. If the job deetsveen(s, 2s) jobs, its service requirement is
inflated to 1.3821. In expectation, this corresponds to a tivaé of less than & If the number of jobs in
the system is greater thag, the expected wait (in asrserver system) will be at least 1. Hence, this system
has expected service times given by:

A 1, D =0;
1+ f(D)=413821,0<D<1;
1.7642, 1 < D.
whereD is the realized delay of any job.

Figure[8 demonstrates that the model which depends oneedaliait times is practically identical to our
M/M(f)/s system, thus our simplification still allows us to reasogabbdel our empirically estimated
delay effect.

Through our simulations, we can see that our derived uppendoan be quite accurate. Moreover, we
see that the expected workload for aui/M (f)/s system is very different when comparing to a system
without a delay effect. Ignoring the impact delays may haveservice times may result in poor capacity
management and substantial under provisioning when usaditional queueing models to guide such
decisions. It is especially important to consider the delégct when the system is heavily loaded and most

8 Recall the service time of each job is normalized to 1
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Figure 8  Simulation of M/M(f)/s system with a delay effect that is wait (not number of jobs in s ystem)

dependent.

jobs tend to experience some delay. Without accountinghferdelay effect, a hospital ICU can become

even more congested. In order to manage this increase ensysad, hospitals may have to cancel surgeries
and/or divert ambulances to reduce patient arrivals at staobal loss in revenue. As the delay effect seems
to be prevalent in a number of healthcare settings, recensgithe management of these systems in light

of delay sensitive service times may result in substangatational and medical care improvements.

7. Conclusionsand Future Directions

To summarize, this work quantifies a relatively unstudiedwging phenomenon in a critical care setting
— the impact of delays on care requirements. We see that #¢liisat phenomenon is substantially veri-
fied by data and attempt to incorporate the phenomenon implsiqueueing models. The impact of this
phenomenon is substantial and, as such, warrants carefuatian.

In this work, we empirically estimated the impact of delay8iU admission on ICU LOS for 10 different
patient types. A number of estimation challenges arisedtleetfact that patients are not randomly selected
for ICU admission and that sicker patients are typicallyegiyriority, thereby lowering their waiting times,
but also increasing the risk of longer LOS. Our empiricalrapgph utilizes a Heckman selection model
with endogenous regressors. Due to the large sample sizatiehfsnot admitted to the ICU, we utilize
a bootstrapping approach to estimate our model and fourtdatimumber of patient types, but not all,
demonstrate a significant effect of delay on LOS.

We then propose a stylized queueuing model which incorpsttis effect. Analyzing queueing systems
with delay-dependent service times exactly can be cumbegsmd intractable. As such, we focus on the

development of reasonable approximations for the systerkload. We find that 1) our approximations are
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quite accurate and 2) they provide expressions which albminferpretations related to increases in system
load. Our analysis reveals a relationship between systachdod work which grows much more rapidly
than the standard/(1 — p) relationship seen in traditional queueing models. Igrgptime delay effect
when using queueing models to guide operational decisidarmas likely to result in substantial under-
estimates of true delay and, simultaneously, shortagessaiurces such as beds, nurses, and physicians.
In the ICU setting where access to timely care is cruciak gssential that hospital managers are aware
of such phenomena when considering staffing decisions. derebecause the delay effect can be quite
substantial, especially under standard ICU loads, disdéugit may impede future attempts to make ICUs
more efficient and effective. Accounting for a delay effedt vesult in more accurate estimates of system
dynamics as well as targets for system improvement.

While we don’t expect our models to directly translate inéavrcapacity management criteria for hospi-
tal ICUs, this analysis demonstrates the impact of ignotiiregdelay effects when making such decisions.
Ignoring the delay effects will result in ICUs continuinglbe highly congested, which can lead to other
reactive actions such as rerouti015), paspeedup (Kc and TerwieJMlZ), and ambu-
lance diversior] (Allon et Jﬂ. 20I]3), which can also be degrital to patient outcomes. From both a patient
as well as system level perspective, it is desirable to redetays. While reducing the average ED boarding

time by an hour may be practically difficult, the adverse fesmak of delays on increased service require-
ments suggests that, due to the faster thdn — p) relationship between system load and work, even small
reductions in boarding time on the order of 10 to 15 minuteg h&lp reduce congestion. Hospital man-
agers need to 1) take the time to characterize the exteneafdlay effect within their own patient cohort
and 2) to the extent that the delay effect exists, they mustbeful when managing capacity of their units
as delays will grow out of hand much faster than traditionsduping models suggest.

This work takes the first steps towards identifying and tlarg an important phenomenon: the impact of
delays on service times. The foundation developed hereesiiglg number of directions for further research.
For instance, our empirical models imposed a linear reiatigp between delay andg(LOS). It would be
useful to further explore the nature of the growth functfgn. Doing so will likely require significant data
collection for each different patient type. Our empiricedults demonstrate that many patient types demon-
strate a delay effect and our queueing models indicatetifaphenomenon significantly alters and hinders
insights that can be extracted from traditional queueindef® This suggests a need for better models to
be used for capacity planning. It would be interesting toedtsy heuristics for capacity management which
are easily understandable by hospital managers, yet atsmatcfor the added complexity introduced by
the delay-dependent service times.
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Appendix A:  Supplementary Information for Empirical Analysis

Total hospitalizations

212,063
T + Admitted outside of study period: 41,142 (19.4%)
Admitted during
study period
170,921
ST ¥ Direct admits (not via the ED): 60,347 (35.3%)

ED admissions
110,574

s -+ Admitted to Surgical Service: 15,416 (13.9%)

Admitted to
Medical Service
95,158

~sgg -+ Not one of 10 condition categories: 29,282 (30.1%)

One of 10 main
conditions
65,876

------------------------- + Longer than 48 hours in ED: 5,347 (8.1%)
~T

ED LOS < 48hours
60,529

I ¥ Longer than 60 day hospital stay: 98 (.2%)

Hospital LOS < 60days
60431

~gT » Admitted to OR from ED: 438 (.7%)

Admitted to
inpatient unit
59,993

\ ------------- + Died during hospitalization: 2,930 (4.9%)
_______ == —————

Survived
hospitalization
57,063

NonlICU admits ICU admits
51,067 5,996

Figure 9  Selection of the patient sample. Final cohort in dot ted-lined box: aggregated and split by patients

who were admitted to the ICU and nonICU units.



35

Variable | Description

Age Patient’s age at hospital admission: coded as piecewisarligpline
with knots at 40, 65, 75, and 85 years

Gender Male or Female

LAPS Laboratory-based Acute Physiology Score which uses irdiom from
14 laboratory tests obtained 24 hours preceding hospitaissibn (see
Escobar et al| (2008) for more information)

COPS Comorbidity Point Score based on 40 different comorbiditecorded
in inpatient and outpatient data 12 months preceding halsgadimission
(see Escobar et al. (2008) for more information)

Hospital Indicator variables for each of the 19 hospitals a patient beatreated

Admission Day

Indicator variables for the day of week the patient was atdwhito the
hospital

Admission Month

Indicator variables for the month the patient was admitetti¢ hospital

Admission Shift

Indicator variables for the nursing shift the patient wamstéd to the
hospital. Nursing shifts are 8 hours: from 7am-3pm, 3pmriland
11pm-7am

Table 3 Control Variables.
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Appendix B:  Miscellaneous Proofs

PROOF OFPROPOSITIONII:

Weak Stability: First, we show that it < ﬁ then the system is weakly stable. This follows by examirdng
traditional M /M /s system with arrival rate. and mean service requiremdnt fq,, = 1 +sup,, f(m). By coupling

the arrivals of this system and the service times so thatifitkan service requirement in our delay-dependent system
is o <1+ fsp, its service requirement isX and the service requirement in thié/M /s system is(1 + foup)X
whereX is a meanl, exponentially distributed random variable. It is easyde that this\/ /M /s system is an upper
bounding system to our delay-dependent system. Hence iffiber bounding system is stable, so isMEM (f)/s
system. The stability condition for this upper boundingegsis the desired criteria.

I nstability: We now show that i% > ﬁ then the system is unstable. We do this in two steps: 1) we St
from any initial state, there is a non-zero probability tte time until theM /M (f)/s system will reach the state
where the number of jobs in the system is such that the setimieeof a new arrival would be maximally inflated and
all the jobs in the system have been been delayed enougihé#iasérvice rate is maximal is finite 2) we establish the
transience of this state which will establish that our riisglsystem is transient and, hence, unstable.

We define the following notation: L&V, = = min{N : f(N) = sup,, f(n)} be the minimum number of jobs in
the system such that the service time for a new job is inflateximmally. Note that by assumptiofitakes values in a
finite set, saVy,,, exists. Our state at timecan be described by th¥;_, -dimensional vectot7,, where(Z, ), is the
number of jobs in the system which savjobs when it arrivedZNfsup is the number of jobs which se¥€; or more
jobs in the system). Lef,, = inf{t > 0: Z, = y|Z, = =} be the time to first passage to stgtgiven we start in state
x at time0. Finally, we define the state with exactly = max(Ny,, ,s) jobs in the system, all of whose service time
is maximally inflated a8 ={Z: Zy, =3, Z, = N1

We begin by showing that the time to reach stéteis finite with non-zero probability from any initial state.
Specifically, we will show that for any state P(T,s« < co) > 0. Consider a system which starts at state.e.
Zy = x. Let N, be the number of jobs in the system in statéVe start with assuming/, < Ny, + N. Our goal is
to find the first time to stat§*. One way to get t&™* is to haveN + Ny,., — N, jobs arrive before any job departs the
system and then havg;, , — IV, jobs depart from the system before another job arrives.  thegrobability of this
particular sample path occurring, which we denotelasan be lower bounded by:

A NANjgup —Na Sflmin Nsup
P> (s (7o) >0
wherepmax = 1 andumin = 1/(1+ fsup) are the maximal and minimal service rates, respectivelyeideer, the time
it takes for this cascade of events to occur is upper boungédebsum of NV + 2Ny, — No, meanl /(A + Sfimin)
exponentially distributed random variables. Specificalie time has a gamma distributi@n, ~ F(N + 2Ny —

N,,1/(A+ spmin)), Which is finite with non-zero probability. Hence, we havatth
P(T,s+ <00)>P(A)P(Tx <00)>0

Note that if N, > Ny, + N, we simply need thal, — N jobs must depart before the next arrival. Using the same

argument as above, we can show tRé7,s- < co) > 0, for anyz.
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Next, we demonstrate that the recurrence time for statés infinite with non-zero probability, i.eP(Ts«s- <

_ A+ fsup)
- S

00) < 1. To do this, we will leverage the fact that a standafd) /s queueing system with = —— >1

Shmin
is unstable, and hence, transient. We consider two statbssin/ /M /s system: state, with N jobs in the system,
and statg,*, with N + 1 jobs in the system. Because this/ M /s system is transient, the time to first passage from
y* to y satisfies the foIIowingP(Ty”igM/s < o0) < 1. Here we use the superscripf/M /s to differentiate from the
first passage time of our delay depend®ht) (f)/s system/T,,,.

We leverage the the preceding observation and decomposedineence timé’s- s~ into whether the next eventis

an arrival or departure with the new state denoteg byndy —, respectively:

SHmin A
P(Tseg- < 00) = /\_:LTP(TTS* < o0) + WP(TN* < 0)
SHmin A

P(T,+s- < <1
o A—’—S:umin )\+8Mmin ( vrs OO)

The last inequality comes from the observation that we extizait state5*, an arrival occurred so we are now at start
y*+ and we are considering the recurrence time to return to StatBow there areV + 1 jobs in the system and any
job that arrives to the system will see at least> N f.up JODS in the system before the system hits stételf this
were not the case, the system will have already returnedate St. Therefore, all new jobs will have service time
exponentially distributed with meart- fsup = 1/pmin. Hence, the dynamics of ot /M (f)/s system are identical
to the M /M /s system with arrival rate. and service ratg,,,;,, during the trajectory to the first visit to stat& from
statey ™. Because thd//M /s system is transient, staté& is also transient in out/ /M (f)/s system.

By Theorem 3.4 it6), all states in auf/M(f)/s system are transient since the time to reach a

transient statey(€ S*) is finite with non-zero probability for all states. Hendee i/ /M (f)/s queue is unstable. O

Appendix C: A Markovian M odel

For the sake of concreteness and simplicity of expositiomilleonsider a very simplé¢ (-). In particular, we assume

that the workload increase functiofy,-), is defined as follows:

fom={ s

Hence, the mean service time of each jol ig there are fewer tham jobs in the system upon arrival aridt k
otherwise. This means any job which is delayed will have angased service requirement.

Let X = (Xy, Xp) be the system state wheley is the number of jobs in the system who arrived with less than
s jobs currently in the system anll, is the number of jobs in the system who arrives witbr more jobs in the
system, and hence experiences an increase in serviceawguit. Note that due to the FCFS and non-preemptive
service discipline, ifXy > 0, then necessarily there af& v A s) jobs currently in service at rate The remaining
servers{s — X )T, will be serving jobs at ratgﬁ if any are available. Otherwise, they will idle. We can wettiat

the Markov Property holds for our state as defined.

Proposition 2 An M /M (f)/s system withf (m) = k1,,>; can be represented as a Markovian system with state

X:(XN,XD).
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PROOF.  We show that the Markov Property holds for our system. WeXlet) = (X y (i), X (7)) be the state at the

ith state transition. What's left to show is that
P(X(i+1)=(zn,2p)|X(0),X(1),...,.X(¢—1),X(1)=P(X(i+1)=(xn,2p)|X (7))

We demonstrate this by considering the precise transitiobabilities:

P(X(i+1) = (zn,2p)|X(0),X(1),..., X (i —1),X (1) = (zy,2))
o )+ADA(5 )T if ((EN,(ED): (x;v_i_l’xlD) andx;\;‘i‘ZC’D <s
INAIFT TR
At (2 As)+ N s D if (xN’:ED) (‘r;V :ED+1) andx;\,+x’D ZS,
ENAS)T T
- ZNM’ if (zn,2p) = (¢ —1,2); 9)

A (zhyns)+ L=
(LD/\(.S :LN)+
e .
]+D/\(s )+ if (IN,ID) (I;VaI,D_l)!
)\-I—(:v /\s)-‘rT
0, otherwise.

= P(X(i+1)= (zn,2p)|X (i) = (2, 2}))

Itis clear that the transition probabilities depend onlytlo& current state and are independent of the past. O
For many otheyf functions, the system will still be Markovian with an appriagely defined state space; however, the

size of the state space will grow rapidly with more compfefnctions.
Appendix D:  Proof of Theorem[2

We now proceed with the proof of our main result. The proof elamine the case of Theoréin 1, which assumes that

the growth functionf is defined as:
F(m) = 0, m< N~
m)= k, m>N*.

We note that the generalized result for Theofdm 2 will follswwilarly. The only changes required are additional
notation and book keeping to keep track of each breakpotheiigrowth functionf. The proof will proceed in several
steps. Again we will refer to out/ /M (f)/s system as system 1 and &fy M /s system with arrival rata and service

ratel/(1+ k) as system 2.

Coupling: To begin we will construct a natural coupling between MgM (f)/s and M /M /s systems above. In
particular, we assume that both systems see a common gra@ss. With an abuse of notation, let the workload
introduced by théth arriving job—equivalently, this is the service time as #iervice rates have been normalized to 1—
in the latter system be;; the corresponding service time in the delay dependergisyist then eithes; =&, /(1 + k)

or o; =, depending on whether the delay dependent system has lovesiog (V,- < N*) or is considered busy
(Nt: > N*) upon the arrival of théth job. Finally, we assume that both systems TStart empty. Mow (7;) denote

the amount of time théth arriving job waits in the former (latter) system respesly before beginning service. We

have, as a consequence of our coupling, the following eléamgresult:

Proposition 3 7, <7, for all i. Moreover,N, < N, for all t.

PROOFE We prove the first statement. Proceeding by induction olestiat the statementis true foe 1: 7, =7, =
0. Assume the statement true fio= [ — 1 and considet = [. For the sake of contradiction assume that 7,. Since

the service discipline is FCFS in both systems, it follovat tithen jokl starts service in system 2:
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e There are at most— 1 jobs from among the firgt— 1 arriving jobs present in system 2.

e Simultaneously, deasts jobs from among the firgt— 1 arriving jobs are still present in system 1 since jdtas
not yet started service in system 1.
Consequently, given the induction hypothesis and the ffeatttty our coupling; <@, fori=1,2,...,1— 1, thereis a
job among the first— 1 arrivals that finished service strictly earlier in systethan in system. This is a contradiction.
We have consequently established that 7; for all i. The latter statement follows as a simple corollary. O

We next use the result above to construct a first upper bouadate:

Proposition 4

1 1 — 1 2k + k2
UiTi‘i‘EU?SEi?i—FgE?—l{NF <]\7*}§Ei2 (7—’_ )

PROOFE We begin with two elementary observations. First,
0; <0

always under our coupling and, in particularNf- > N*. Further
o;
1+k
if N,- < N*. This follows from the fact thalV, > NV, (PropositioliB), so thaV,- < N* impliesN,- < N*. It follows
that

0; <

a1
0,7 +-0 <7, 7, +—=0;
27 27
<“+1{N >N*}3—2+1{N <N*}l i
= CE A a 2 (14 k)2
1, (= 1_, [ 2k+k?
— 57 _—__1{N, N*}——? i
0T —|—20Z - < 50 ((1—!—/{)2)

The first inequality follows from the fact that; < &, (by our coupling) andr; < 7, (PropositioB). The second
inequality follows from the two observations we made at thtset. |

We next connect this result to the average workload in bagtesys (over a finite interval). Lé{ (7") be the number
of jobs that have arrived duringe [0, T"]. We have:

Proposition 5

17 | TG 1, (2k+k\ Wy
— Wdt < — W.,dt — — l{Nf N*}—‘? —_ —
T/O ‘ _T/O : T; Nt \aeee) T T
PROOF. Notice that the total workload contributed by jolover time in system 1 is given by the quantityr; +

%af where the first term in the sum corresponds to the workloadriboned while job: waits, and the latter term

corresponds to the workload contributed while jab in service. We consequently have:
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O
Note that the last equality comes from the fact that not athefwork which arrives betwedf, T'] is completed by
time T'; hencelW;» remains. What remains is to take limits on both sides of tiegumlity established in the previous
result. To that end we begin with a few intermediary resiisst, we provide a few definitions. We I€t[1¥] and
E[W] be the expected work in ot /M (f)/s system and ain/ /M /s system withp = M respectively.

Lemmal limr . L [ Widt=E[W]

ProoFE This result follows directly from the renewal reward thexwr and the fact that the system is stable. The

reward function is the cumulative work and is defineda&:) = fot W.dr O

Lemma2 limy . L [ W,.dt=E[W]

PROOF. Again, this result follows directly from the renewal rewaheorem and the fact that the system is stable.

The reward function is the cumulative work and is defined(g) = jot W .dr O

Lemma3 lims . 7 fOT 1{N, < N*}dt = P(N < N*)

PROOF. Again, this result follows directly from the renewal rexddheorem and the fact that the system is stable. The
reward function is the total time the number of jobs in theeaysis less thav* and is defined asz(t) = jot 1{N, <
N*}dr O

Lemma4 lims_,. £ =0

PrRoOF. This follows from the fact that the system is stable and tlecsirrent. If we consider thal; is upper
bounded by the amount of work that arrives betwf&HT"), T'], whereT; (T') = sup{t < T': W, =0} is the last time
beforeT’, the system was empty, then the fact that the system is mxduestablishes that (7 — T; (1) < o0) = 1.
Assuming a finite first moment far; gives the desired result. O

We next establish a limit for the second term on the right hsidd of the inequality in Propositidn 4.

Proposition 6

N(T)

.1 — A 1s(2k+K*N TR Y
Jlim — ;1{Nti<N }502. <(1+k)2)_/\(2k+k )Tlggﬁ/o 1{N, < N*}at
PROOF. Let use denote, for notational convenience,
1 o[ 2k+k? 9 A
—Fo; | ——— | =2k + k= .
2 U’L((Hk)?) e
and
1 (2k+Fk? g
2\ (1+k)2) '

We begin with observing that

N(T)

1 — . N B A §
Tlgr;ofgl{Nti<N}a:)\ajlgriof/o 1{N, < N"}dt (10)
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by PASTA. Next, observe that

N L
£l 1 31 (%, <ol < g g | Y {F, <)ol
- . v
= Jim > E[1{N <N}
Ly oo ) B
_Tlggo?;E_l{Nti<N } B8 (11)
Ny
= lim Z E1 {Nt; <N*}Ef} 6

LN
= 1N, <N*}E§] 3
i=1

The first equality above follows by dominated convergenain@the dominating random variabM(T")/T). The

= lim F

T— 00

fourth equality (which is crucial) follows sinc‘e{N, < N*} andz? are independent random variables. Recall these
are defined for the standafd /)M /s system. Now, sincémy_, . 7 fOT 1{N, < N*}dtis aconstant (by Lemnig 3),

(I0) and[(11L) together yield

N(T)

iZ1{N <N'}o? B=ralim = [ 1{N, <NVt
T 0 (| p=refim ) -

1=

lim F

T— o0

But from Lemmab, which will come in AppendixD.1

N(T)

lim B % ; N, <)o

T— o0

B=E

LN

. T * | =2

Hm 21{Nn<N }011/3
N(T)

. 1 T * | =2
=4 Z} LN, <N}t
Using Lemmagll arld 2 to replace the limit with expectatiomegithe desired result. This completes the proofO
D.1. Existenceof aLimit

Thepartial busy periotbf an M /G/s queue is defined as the time between when an arriving custersran empty
system and the first time after that at which a departing costesees an empty system. We will use the following
result:

Theorem 3 (Ghahramani (198d)) Themth moments of the partial busy period of &/ G//s queue are finite if and
only if the service time distribution has finiteth moments.

We denote byl’,, the lengthmth partial busy period. We can now establish:

Lemma5 Assume the service time distribution has finite fourth masaéien,
N(T)

lim 3 1{Nt; <N*}5§
i=1

T~>o<>T -

exists and equals a constant. Further,

1 N
. T * | =2
lim F T;_ll{Nti<N}ai

T— o0

B=FE

THOOT .

e
lim — 3 1{Ntf <N*}a§] 3
i=1
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ProOF We first establish that
N(T)

lim —ZI{N <N*} 2B

T—>oo

exists and is constant. To see this denotd by j; < j» < j3... the arrivalsi for which N,- = 0. Observe that the

random variables _
Jm+1—1

X, 2 3 1{Nf<N*}E§

i=jm
are independent random variables. Moreo@’r’"+1 "1 {Nt_f < N*} o2 < s2T?2. Note that since we have assumed
the service time distribution has finite fourth moments, veeehET? < co. Now let M (T) = sup{l|A;, < T};

M (T) — co. The strong law of large numbers then implies that

M(T
lim 721':(1 )Xm
T M(T)
exists and is a constant a.s. Further, a simple argumerg @iebyshev’s inequality and the Borel Cantelli lemma
implies that
X
lim =M™ _as.
T— o0

Finally, the elementary renewal theorem implies that, .. 2 = 1/ET. But,

S X, M(T) XM(T) 1 Z N, <n )i Sl X M(T) | Xurery
M(T) T M(T) T T

so that taking limits throughout and employing the abovesolzgions yields the first conclusion of the Lemma.

Now to establish the second conclusion, observe that

N(T) N(T)
da {N, <N*}E§ <y &
i=1 ! i=1
and that
N(T)

E Y ! =EN(T)Eo} = \TEo?

where the first equality is Wald’s identity. Consequentlg, mvay apply the conclusion of the first part of the theorem

along with the dominated convergence theorem to estaliieskecond conclusion of the theorem.
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