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In a number of service systems, there can be substantiaidatto vary service rates. However, while speeding up
service rate during periods of congestion may address aresngestion issue, it may actually exacerbate the proble
by increasing the need for rework. We introduce a statestigre queueing network where service times and return
probabilities depend on the ‘overloaded’ and ‘underloadéate of the system. We use a fluid model to examine how
different definitions of ‘overload’ affect the long-termhmvior of the system and provide insight into the impact afigis
speedup. We identify scenarios where speedup can be haédpfemporarily alleviate congestion and increase access
to service. For such scenarios, we provide approximationshie likelihood of speedup to service. We also identify
scenarios where speedup should never be used; moreovachiasituation, an interesting bi-stability arises, sungtt t
the system shifts randomly between two equilibria statendd, our analysis sheds light onto the potential benefits an

pitfalls of using speedup when the subsequent returns mapdidable.
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1. Introduction

We consider a queueing system where the service time of rogstocan be reduced at the expense of
increased likelihood of the need to return to service. Werref the mechanism of increasing the service

rate of customers aspeedupThe speedup phenomenon can arise in a number of settingsasuihe

Intensive Care Unit (ICU)I_(KQ_a.ndeMLeAl:h_Zbﬂ), produgctlines [tP_OAALelLa.nd_S_QhJIlZ_ZQO4), email
contact centeré (Hasija et EI. 2J)10), and general servistersys|(Ata and shneoribn 2b06). The reduction

in quality of service due to speedup manifests itself thiotlge need for rework, which we refer to as

customerreturns This work aims to understand the dynamics of a queueingsysthere speedup is used
and the subsequent customer returns may be unavoidable.

We define the speedup dynamics by an operational controherfdrm of a threshold, which speci-
fies whether the system is considered to be overloaded. Heapdce rates and return probabilities are
endogenous to the operational speedup control. We inteodumewmulti-serverqueueing model where the

parameters which define the system dynamicsangestion dependeritence, they depend on the system
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state. We examine these state-dependent dynamics usird aghroximation. In doing so, we are able to
characterize the system’s stability conditions and Ia@rgatbehavior.
A number of works have considered the impact of customer rmetu For instance,

Yom-Tov and Mandglbang (2(213)[ Jennings and de Vé rilcoJM), Yankovic and girglen (2(111)

consider staffing and resource provisioning in (healticaervice systems with customer returns.

de Vericourt and Zhg“_(;O_bS) ahg Zhan and VV@LJZOIS) congideing in call-centers where customers

may call-back. None of these works consider how the likethof return depends on the service rate,

which may be altered depending on system congestion. Imihiik, we consider the impact of ‘speedup’

on these customer behaviors.

Also, there have been works which consider state-depe mics (e.gl_Armony an Maalalras

_2_O_O_Jl), Glazebrook and WhitaLelr (1$9ELM@LM£@B), Powell and Schultz (2004)); how-

ever, to the best of our knowledge, our work is the first whighsiders both state-dependent service times

in additionto state-dependent return probabilities. Combining thlieseeffects reveals new phenomena
which have not been previously observed when considericly @gmamic separately. More specifically, we
show an interesting bi-stability, i.e. the presence of twoikbria, can arise and identify conditions under
which speedup is detrimental in the long run.
A number of works consider congestion-dependent ser\moﬂjﬂhjjt l(19_9|0) anId_B_mea_a.ndALIaAiou

) consider the steady-state behavior of state-demtiggieues where the service times may increase
or decrease with delay. From a control standpJ)inl_ALa_a.um_QH(ZDAG__Ana.nd_e_tlzJI (2(*)10) consider
the quality-speed tradeoff of an M/M/1 queue and find thaedpe can be benefici£L_B_QIsKQLa.nd_B|orst

M)] Bekker and BQxLJnla (2d07) consider the steady-sisti#dition and optimal control of single server

gueues with state-dependent service rates. These workst@omsider returns to service. In contrast, our

work examines a multi-server model which includes customairns to service, as well as the increase in

return probability due to speedup.

Mandelbaum and Piatg (159&), Mandelbaum L.-t] al. (1998) censidte-dependent queueing networks

with state-dependent routing. The focus of these works detelop theoretical support for fluid and dif-

fusion approximations of the network dynamics. These wadaime state-dependent functions which are

continuous and cannot be applied to our model which inclddE®ntinuitiesn the state-dependentdynam-

ics. These discontinuities require a different analytiprapch: in this work we utilize fluid approximations
and Filippov analysi8).

We show that speedup—a mechanism which seems to alleviagesiion and increase access to service
in @ myopic manner—may create more congestion and exaedhgasituation in the long run under certain
conditions. More precisely, we show that in some situatiepgedup can be a useful operational tool to
navigate periods of high congestion. In other instance=edpp willincreasecongestion due to the addi-

tional load of returning customers. A surprising bi-stapiarises resulting in system dynamics which can



be misleading about whether speedup can help. Thereforsegleto understand system dynamics under
speedup and use this to develop insight into the benefits #fiadlgpof using speedup. In analyzing our
state-dependent model, we make the following key coniobst

e We introduce a new queueing model (Secfibn 2) which, to tis¢ dfeour knowledge, is the first such
model which incorporates 1) congestion-dependent setiriges in addition to 2) congestion-dependent
return probabilities. The interplay between speedup astbouer returns is a phenomenon that has not yet
been considered in the literature from an analytic view poin

e We specify conditions for when the queues of our state-dégenqueueing system grow without
bound (Theorerh 412). We show that in some cases, speedupal@narstable system unstable; in other
cases, speedup is necessary to maintain stability.

e We identify the long-term queueing dynamics and equiliisiaour state-dependent queueing system
(Sectior #). We find that in some cases (Case 1), managenmespeaify the desired system congestion and
effective offered load by appropriately tuning the speethupshold (V*). Additionally, this implies that
congestion is invariant to changes in the number of senldris. analysis provides a possible explanation
for the observation of ‘supply-sensitive demand’ in hecdite, i.e. demand increases with supply.

e We also find that in some cases (Case 2) an interesting hlistabises: the long-term dynamics can
converge to one of two states, depending on the initial ¢cmmdiUsing simulation, we demonstrate that
the stochastic system will oscillate randomly between e eéquilibria. This phenomenon demonstrates
that while speedup may appear to reduce congestion in s@taaes (Case 1), its use may be extremely
detrimental in other scenarios (Case 2). In such casesr, oteehanisms may be necessary to navigate
periods of congestion.

The rest of the paper is structured as follows: In Se¢fioneZpresent our queueing system which captures
the main essence of a system with speedup and its influencestoneer returns. We start by examining
a systemwithout speedup in Sectidd 3. This provides a baseline for expldhiergoehavior of our system
with speedup in Sectidd 4. In Sectioh 5, we extend our model toustdor factors often seen in various
service settings: multi-class customers and time-vargimgals. We show that in both extensions, the main

insights from our original model, such as the bi-stabiliffget, still hold. Finally, we conclude in Sectidh 6.

2. Queueing model

We now formally introduce our state-dependent queueingehathich captures new and returning cus-
tomers as well as the effect occupancy levels and queuenengdy have on service times and returns.

We consider a queueing network with two stations as depictédgure[1. Following the terminology

of - 13), we distinguish between twstomer statedleedyand Content
Needy customers require service at Station 1 and are eitlsarvice or waiting to begin service. When a

Needy customer completes service at Station 1, he will ei@@e the system or transition into the Content



4

state. Content customers are customers who currently &mg berved at Station 2, but upon completion
of service, they will transition back (return) to the Needsts and require additional service at Station 1.
Station 1 represents a limited resource station witlservers. Station 2 represents an unlimited resource
with an infinite number of servers. The service rate and meguobability for Needy customers are state
dependent and will be defined in the next subsection.

Needy
(N-servers)
Rate - 1(Q1) )
Arrivals —p(Q1) Exi
_ — it
Rate A
Content
(eo-servers) p(Q1)
Rate - 6

_@7

Figure 1  System model: Station 1 represents Miservers where Needy Customers are served. Station 2 rafgéise servers

where Content Customers are served.

2.1. Stochastic Model

We now describe our stochastic model as a Continuous Tim&dvaChain (CTMC), where all of the
dynamics are Markovian. L&) = (Q(¢),¢ > 0) be a two-dimensional stochastic queueing process, where
Q(t) = (Q1(t),Qa(t)): Q1(t) is the number of Needy Customers at Station 1 at tim@dQ(¢) is the
number of Content Customers at Station 2. We suppress tlendepce ot when it is understood from
the context of the discussion.

New Needy customersarrive to the system according to a Poisson random procekgate\. Station
1 hasN servers and an unbounded buffer. If a customer is beingetieatone of theV servers at Station
1, his service ratey(Q,), depends on the number of Needy Custom@rs,Customers discharged from
Station 1 will return to Station 1 with probability(x(Q;)).

We distinguish between two service rates: when the systeconsidered overloaded then Station 1
operates under congested dynamics, Withherservice and return probabilities than the nominal openatio
When Station 1 is not considered overloaded, then the seoparate normally, with nominal service rates
and return probabilities. Le¥V* > 0 be a control variable which determines the operation ofi@tdt. We
refer to/N* as the speedup threshold. The system is considered to Heanled when the number of Needy
customers is greater than the speedup threshold, i.e. @hen N*. Note that if V* < N, speedup will
begin before a queue forms.



Let ur anduy (uy > pr) define the service rate during underloaded and overloaeedds, i.e. when
the occupancy level i®w andhigh, respectively. The state dependent service rates are lgjuen

we={ K GE N @)

Once a customer completes service at Station 1, he exity#ens with probabilityl — p(x(Q,)) and
never requires additional service at Station 1. With prditaty(.(Q;)) the customer enters ti@ontent
state. Content customers transition into the Needy staterding to an exponential random variable with
constant raté. Thus, this station actually models the delay between cetigpl of initial service at Station
1 and the subsequent request for additional service. Natetth return probabilityy(1.(Q;)), depends on
the service rate of the customer at discharge: when spesdised, the return probability increases. ket

andpy (pg > pr) denote the return probability during underloaded andloeeled periods:
_ ) pbL if Ql < N*>
(@) = {2 SN 2.2
Thus, during their stay in the system, customers start ilNt#ely state and then alternate between Needy
and Content states until they depart the system. When amasteecomes Needy and a server at Station 1

is available, he immediately begins service. However,gfé¢hare no available servers, customers must wait

in a queue for an available one. The queueing policy is FCHSt(Eome First Served).

Remark 2.1 One could also consider return probabilities which dependie mean congestion in Station
1 during service (e.g. to capture how much work was ‘sped-ping so would require substantial nota-
tional overhead to keep track of the congestion each custerperienced and we leave such exploration

for future work.

Remark 2.2 Note that in practice(),, which only tracks Content customers who eventually ttaorsback
to the Needy state, may be an unobservable quantity sinceswadlyido not know which customers will

return to service a priori. As such, we restrict our controldepend only of®; .

The queueing system we analyze is a CTMC, which, under dondifor stability (to be described later),
has a long-term distribution. We can derive the equationshfe equilibrium distribution (see Appendix
B) and numerically evaluate or use simulation to computéreléperformance measures. However, these

methods fail to provide some insights into the behavior efdhistem, which a fluid analysis can.

2.2. The Fluid Model

In order to enable tractable analysis of the system dynaafioar state-dependent system, we introduce a
deterministic fluid approximation to the stochastic modebented in Sectidn 2.1. The fluid model is meant

to provide insight into the use of speedup (some of which istuitive, as will be seen in Sectidn 4.2).



We denote the fluid function of our queueing network®y- {Q(t),t > 0}. HereQ(t) = (Q1(t), Q=(t)),
where@, and@, are the fluid content of Needy and Content customers atitive derive the fluid formula
directly. We assume that arrivals and departures occurrditistically at the specified rates and also regard
the number of customers and servers as continuous quantitieis, the fluid arrives deterministically and
continuously at constant rate Fluid is served in station 1 deterministically at ratg),)(Q. A N), where
A denotes the minimum function so th@p; A N) is the number of occupied servers in station Jn(&);)
fraction of the fluid is transferred to station 2 after leaystation 1; the rest of the fluid exits the system.
The fluid in station 2 is served deterministically and comtinsly at rate)(),. The service rate function,
u(+), and the return probability functiop(-), are discontinuous in the amount of fluid content of the Needy
customersg), (¢). These functions are given Hy (2.1) ahd{2.2), respectively

The dynamics of our model can be captured by the followingit@my Differential Equations (ODE)

with discontinuousight hand sides:
Q1(t) = A+ 6Qa(t) — 1(quy<n1r(Qr(t) AN) = 1ig, = vy (Qu(t) AN,

Q2(t) = —0Q2(t) + 1{qy () <n-1PLir(Q1(E) AN) + gy ty=n-yPrtin (Qu(t) AN).

This discontinuous ODE is discontinuous@h but continuous irt. From [2.3), it is easy to see that the

(2.3)

derivative values(), which specify the flow dynamics are discontinuougaft) = N*. We will analyze
the long-term behavior of this fluid system, i.e. the behag&t — oo. Let § = (g1, ) be the long-term

values such that:
7= lim [Q(1)|Q(0) = qo]

Note that these limits may be infinite, may depend on theairitonditiong,, or may not exist. For notational
simplicity, hence forth we will omit the dependence on thiéidahcondition and specify explicitly if the

limit depends on it.

2.3. Definitions

In our analysis of the long-term behavior of our fluid system,will require a few definitions. Consider
a dynamic system that is dictated by the OPE F(q), ¢ € R%. In our systemy = 2 to capture the
Needy and Content customers. We denoteblfy,,¢) the flow at timet, given initial conditiong,. Then,
the flow dynamics over time are defined at timey: 4 ®(qo, t) = F(®(qo,t)), ®(g0,0) = go. The system
is considered to be unstable if the fluid content of custonmetfse system grows without bound over time.

Formally,

Definition 2.1 Unstable SysteriiVe say that a system defined by the QDE F'(q) is unstabléaf for any
initial condition, gy:
tlggo [Q1(t) + Qa(t)] — o0



In cases where the system is not unstable, we wish to exaiminbehavior of the system and assess
whether there is a limit to which the fluid system might cogestio over time. The following definitions for

equilibria can be found iE di Bernardo eJ £I. (2&)08).

Definition 2.2 Equilibrium (or fixed point) A pointg is anequilibriumof the ODEj = F'(q) if

®(q,t) =(q,0), forall ¢.

The simplest form of equilibriung is one that satisfies'(7) = 0. FoIIowingI_dj_B_eJ‘_nﬂr_d_o_el_eLll_(ZQbS),

we call apseudo-equilibriunan equilibrium that arises on the region of discontinuitytia ODE (e.g. on
the switching boundany = {Q : Q, = N*} of (2.3)). This type of equilibrium is an equilibrium since

a trajectory starting as that point will stay there, but idifferent from standard equilibria because the
derivatives may not be zero. This form of equilibrium happeinen the forces that push the trajectory to
this point are equal from all directions. Technical detaflpseudo-equilibria are given in the Appendix.
Note that even if an equilibriung, exists, it is not necessarily true that the system will @ge to it as
t — oo. Moreover, the limiting behavior may depend on the initiahdition g, € R? . Hence, we further
differentiate between types of equilibria. An equilibriusncalledLyapunovstable if trajectories starting
nearby to the equilibrium remain nearby for all time. Thipayof equilibrium is often referred to as a
Locally Stable Equilibrium. Without loss of generality, waesume the equilibrium is at the origin; that is,
®(0,t) =®(0,0) for all ¢.

Definition 2.3 (Lyapunov) Locally Stable EquilibriumThe origin is said to be (Lyapunov) locally stable
if for any e > 0, there exists @ > 0 such that if

We refer to an equilibrium aSlobally Stabldf for everystarting point it will converge to the same stable
equilibrium defined by Definition 21 3.

Definition 2.4 Globally Stable (in the sense of Lyapunov) Equilibriuffihe origin is said to be globally
stable (in the sense of Lyapunov) if the following two cood# hold:

1. ltis locally stable;

2. For all initial conditions, go: lim,_,o. ®(go,t) =0

Note that these definitions of stability do not mean thatdtexists &, such that)(¢) = g for all ¢ > t,.
They simply require that for every> 0, there exists &, such that for alk > ¢y, Q(t) is within € of g; in
the case of local stability this is only true if the trajestatarts close enough to the equilibrium. We will
actually see instances (for pseudo-equilibria) where thd fyscillates with arbitrarily small fluctuations
around the equilibrium point. Finally, we remark that themld exist long-term behavior which is not
captured by Definitions 2[1-2.4, e.g. a trajectory couldainiinite, but not converge to any single state.
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3. A System Without Speedup

For comparison purposes, we first consider a system wheeglgpas never used. In this case, the fluid
equations can be simplified to:

Q1(t) =A+0Qx(t) — n1(Qi(t) AN),

Qa(t) = —0Qu(t) +prur(Qi(t) AN).
This is the fluid model of an Erlang-R que - )). The queues grow without
boundif NV <

(3.1)

m; otherwise, the system converges to a globally stableibguiin, g. More formally:

Theorem 3.1 The dynamics of the fluid system describe8id]) can be summarized as:

A

1. The system is unstableif < —5-—;
PLIML

2. If N > (l_pXLm, the fluid converges to the following globally stable edmitim:
. _ )\ )‘pL >
1 t)y=q= , .
B 00 == ([

The proof of this result can be found in the Appendix. We nbt if N = m there are an uncount-
able number of equilibria. As an example, if the initial cdimh is such thatg,), > N and(qp). = Uf”ﬁ
then the fluid content stays at the initial condition (3@) = ¢, for all ¢.

4. Analysis of System Dynamics

In this section, we analyze the long-term dynamics of thelflanodel presented in SectibnR.2. The main
challenge is the discontinuity 1, = N*. The long-term dynamics are highly dependent on systemrmpara
eters for arrival rate, service times, and return probigdslias well as the control variable for when to begin
speedupN*.

To start, we leverage results fr@@%) to esshbthe existence of a solution to our ODE.

Theorem 4.1 There exists a solution of the problem defined by the @BB) for any initial condition
qo =Q(0) € [0, Quax] X [0, Qmax] WhereQ,,... < oo is an arbitrary finite constant.

This is a result of Theorem 1 on page 77, Chapter 2, SectioM .@). The details of leveraging
this result can be found in the Appendix.
We define the following parameters, which will be useful isci#bing the system dynamics:
A prA > < A P ) (N*AN) —qi
L _ , , H _ , , o= L . 4.1
= (i woam) = (g T e
One can think off” andq’ as the offered load at Station 1 and 2 under low and high ocaymlynamics.

This interpretation is clear when considering the systdtreei) alwaysworks under underloaded dynam-
ics and saneverspeeds-up (i.e. the system analyzed in Se¢fion 3) areNerworks under underloaded
dynamics and salwaysspeeds-up.



We begin our analysis with the question of when our systermitable. The proof is given in the

Appendix.

Theorem 4.2 The instability conditions for the fluid system(3) are broken into two cases.
1 g <qf.
e The system is unstableM < ¢f.
e The system is unstableM < ¢ and N* = o (i.e. speedup is never used)
2. qf' > qr.
e The system is unstableif < ¢F.

e The system is unstableif < ¢f" and N* < ¢f".

We will show in Theoreni 4]3 that when the conditions of Theo&2 are not satisfied, the system will
converge to a finite equilibrium.

Note that the stability of the system depends on both systmanmetergqi’, ¢~, N) and the decision
variable, i.e., the speedup threshold*). Consequently, there are cases in which the system canlie sta
lized only if speedup is applied (e.g. under Case @fift< N < ¢F); in such cases using speedup reduces
the offered load so that it is not necessary to acquire axhditiservers to ensure that the queues do not grow
without bound. On the other hand, there are cases where amasle stable system becomes unstable due
to utilizing speedup (e.g. under Case Aif < ¢F < N < ¢f).

We now consider the long-term dynamics of our system. In éiselts which follow, we assume that
is large enough such that the queues in our system do notdsple. the conditions of Theordm ¥.2 are
violated. Moreover, due to the potential for an uncountalieber of equilibria of our fluid equations (as

described in Sectidd 3), we make the following assumption:
Assumption 4.1 The number of serverd/, is such that the effective system load is strictly less thaue.
N> (qf Ngth).

We then consider how the various system parameters impgasyttem. In particular, we identify scenarios
where there is a unique, globally stable equilibrium as aslbther scenarios where there may be multiple

locally stable equilibria.

Theorem 4.3 Given N and N* such that Assumptidn 4.1 holds and the conditions of Thed

violated, the long-term dynamics of the fluid systen2ild) can be broken in two cases with additional
subcases:
1 g <qr
1.1 If N* < ¢f?, theng” is a globally stable equilibrium.
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1.2 If¢gff < N* AN < gf then(N*,aqs + (1 — a)q¥) is a globally stable pseudo-equilibrium.
1.3 If¢© < N* A N, theng” is a globally stable equilibrium.
2. qf' > qf
21 ¢ <N
2.1.1 IfN* < gF, theng' is a globally stable equilibrium.
2.1.2 Ifglk < N* < ¢f, theng” and ¢ are locally stable equilibria. In addition, wheyf # ¢/,
then(N*, agl + (1 — a)¢l") is a pseudo-equilibrium.
2.1.3 Ifgl’ < N*, theng” is a globally stable equilibrium
2.2 ¢ > N > ¢f and N* > ¢F. Theng” is a locally stable equilibrium andN*, agl + (1 — a)¢l?)

is a pseudo-equilibrium.

The proof follows by Filippov and Lyapunov techniques andiigen in the Appendix. We demonstrate
the intuition behind the result for Case 1 via the phase aibrf each subcase with* < NV (The case
for N* > N follows similarly). In Figurd 2(3), we see the phase portrdien the equilibrium is ag’—the
arrows represent the magnitude and direction of the dérévat each state, while the solid lines represent
points where the derivative is zero in one of the dimensiblesice, the trajectory of the queueing system is
pulled towards and along these lines. Fidure]2(b) breaksidbe/phase portrait in Figufe 2(a) to present a
clearer view of the relationship between the different peters. The dashed lines are a virtual continuation
of the derivative lines. It is not necessarily the casedhat 0 or g, = 0 along these lines due to the fact that
the system dynamics change when crossingNhehreshold. If the dynamics did not changé, would
be an equilibrium. However, because of the change in dyrahie to the speedup threshajd, is not
an actual equilibrium in this case. Thus, we refertoas aninadmissableequilibrium. Intuitively, when
Q. < N*, the system does not speedup and the trajectory is attradfeelpoint;”. Before reaching”, the
number of Needy customers grows so that> N* and speedup is used. At this point, the system dynamics
switch to the overloaded dynamics and the trajectory isetid to the poing” . BecauseV* < ¢” < N in
Case 1.1, the derivatives @4, ¢, = ¢. = 0. We thus refer t@g’ as anadmissiblepoint and can conclude it
is the equilibrium point of the system.

This intuition can be extended to Case 1.2 and 1.3. The siigpwn phase portraits for these cases are in
Figurel3, which depict the pull of two points which attraejéctoriesy” andq . Each point represents the
equilibrium when the system never or always speeds up. Tagaeship between’, ¢’ and the speedup
threshold, N*, dictates whether the equilibrium is@t (Case 1.1)¢* (Case 1.3), oiN* in which case the
trajectories oscillate across the switching boundary betwthe speedup/no-speedup regions (Case 1.2).
Similar phase portraits can be generated for Case 2.

To understand the impact of different parameters on thdibgquim values, we use bifurcation diagrams.

Bifurcation diagrams are often used to show the possiblg-term values (equilibria or periodic orbits) of
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Figure 2 Phase portrait for Case 1.N( < N): Dark lines represent points where the derivative is zemnie of the dimensions.
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Figure 3 Phase portraits for Case 1.2 and 1\3(< N).

a dynamical system as a function of a parameter which magtdithe system’s behavior. In our case, our
main interest is in understanding how the speedup threshoidaffects the equilibria (in Sectidn 5.2 we
will see cases where the long-term values are actually gierarbits). To examine the influence &f, we
assume that all other parameters, including the numberreése are fixed. For consistency, we consider
the case wher&V* < N. The case ofV* > N follows very similarly, assuming Assumpti¢n #.1 holds.
Figure[4(d) summarizes the equilibria for Case 1 as a fumcaifaV*. The long-term number of Needy
customersg;, increases witliv*, while the number of Content customejs, decreases with’*. When N *

is larger thany, no speedup is applied; wheé¥i* is smaller thary?, speedup is applied most of the time.
Finally, in the middle rangesf’ < N* < ¢F), speedup is applied a fraction of the time (therefore oalys

of the customers will be sped-up). This graph demonstrags\t* is not only the threshold of speedup,
but also the equilibrium of the system. From Theorémb 3.12aBdwe recognize that, in Casel¥,> ¢F
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guarantees the queue does not grow without bound irrespedtivhether or not speedup is used. However,
by utilizing speedup, we can achieve a long-term backlag ef ¢/ and maintain finite queues wifawer
servers. Hence, in Case 1, utilizing speedup (i.e., regulit) increases access to service by reducing the
overall workload on Station 1, despite the increase in reéssion likelihood.

Figure[4(b) summarizes the equilibria for Case 2.1 as a immcif the parameteN*. In this case, both
the number of Needy and Content customers is higher whemingilspeedup compared to never using it.
While speedup may seem like a reasonable action to takegdpeinods of congestion, it is a myopic action
which can exacerbate congestion issues in the long run.djemtike Case 1, it isindesirableto utilize

speedup as it can increase the overall load on Station 1hvidhalready congested.

a1, G2 T @
Case 1.1 Case 1.2 Case 1.3 Case2.1.1 Case 2.?.-2 - Case 2.1.3
global global equilibrium global global Thfe;eqi'l'b”a EF?@'
equilibrium at equilibrium equilibrium atq’,q" and equhbfllim
H L atqH N* agH +(1-c0) gk atq
atq (N*,aq3 +(1-00q5) atq (V"aqz +(1-00q3)
e N - a C e
ar 1 Y
’ q1
a¥
af
L —
B qz q1
Qg 2
L _
- n qr Gz
a1 qr N* - - -
ax ai N*
(a) Case 1 (b) Case 2.1

Figure 4  Bifurcation diagram as the speedup threshdld, varies.

At the extremes (high/lowN*) when speedup ialwaysor neverused, the basic insights from Case
1 and Case 2 are not surprising. However, because systemeglewyto operate at intermediary values
where speedup is used some of the time (Case 1.2 and CasgiRis.nportant to further understand the

dynamics in these regions.

4.1. Case 1.2: q& > q¥

We now discuss a number of interesting insights which carxtraeed by our analysis of Case 1.2. Recall
that in this case, speedup can increase access to service.

We first examine the impact of the number of servé¥s,on the system dynamics. Fix an occupancy
threshold0 < r at which speedup begins; hené€; = r N. Figure[5 demonstrates the long-term behavior
as we vary the number of servers, but maintain the speedephtid atN* = r»N. This introduces an
interesting phenomenon where adding more servers does@mtt® reduce congestion. More specifically,

as the number of server, increases, the occupancy level at Statio@l/NV, remains at. This is because
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N* is not only the threshold of speedup, but also the resultipglierium of the system. Hence, Station
1 still seems ‘busy’ even with the addition of servers. ThHoweglding servers doesn’t appear to reduce
congestion, it does result in fewer customers who are spe®@ur analysis suggests that large additions

may be required before there will be any noticeable changeéapancy levels.

d1,q> | Unstable Case 1.1 Case 1.2 Case 1.3
i global global § global
‘equilibrium equilibrium at equilibrium
ata” | (N"aq5+(1-a)gs) atq”
...... “FN
............... 7
at
qé.] ......
ai _
q2
S Pt
ai ar ar ar N
T T

Figure 5  Bifurcation diagram of Case 1 as the number of servtsyaries; Speedup begins at occupancy level 1. (The
diagram is similar for- > 1.)

We now delve further into the behavior of the system in CaRevthere it oscillates frequently between
overloaded and underloaded regions. Note that these fliangaare arbitrarily small such that the fluid
state remains close to the globally stable pseudo-equitibiHence, while the derivatives are non-zero, the
system is arbitrarily close to the equilibrium point. As asequence of the proof of Theoréml4.3, we can
establish the proportion of time spent in overload and unddrwhen the system oscillates between these

two regions.

Corollary 4.1 If the fluid system is stable ang’ < N* A N < ¢, then the proportion of time the fluid

process spends speeding up is given by:

A+0q —pL(@ AN) _ A+d(agy + (1 —a)gi') — pL(N*AN)
(g —pr)(@ AN) (g — pr)(N*AN)
This corollary is based on Filippov’s convex meth) which provides expressions for the

proportion of time a trajectory spends above the switchmgriolary. This proportion—from the fluid model—

(4.2)

T—o0

1 T
lim ?/0 Ligizny =

can be used as an approximation for the probability of speedaur original stochastic model, i.e.

1"
P(Speedup) = P(Qu(t) > N*) =~ lim f/ Liim=n=y
0

T—o0
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Figure 6 Case 1{ < N* < ¢F): Simulation vs. Fluid.

We simulate the long-term behavior of our original stocleaststem and compare it to our fluid approx-
imation. Figurd 6(a)-(h) shows the probability of speedspve varyN* for both the simulation and the
fluid approximation. We use parameters which satisfy thieriai for Case 1: a) A small system withi =
50 servers ang.;, = .0164, uz = .0224,p; = .0667, pyr = .0973,6 = .0161E| and b) A large system with
N =150 servers angi;, = .01, uy = .02,p;, = .5,py = .6,0 = .01. We observe that for larg& the fluid
is very accurate; this accuracy degrades as the size of gtensydecreases and whafr is close tog”
or ¢-. This is due to the non-smooth dynamics of the fluid approtisnavhenN* is relatively large or
small. This phenomenon also arises when considering thecéeghnumber of Needy customer§Q, ], as
seen in Figurg 6()-(H). Upon further investigation, weced that the fluid model provides a more accurate
estimate for thenodeof Q,, i.e. the most frequently observed value@f. Q, typically does not have a
symmetric distribution, s@&[Q,] is not necessarily equal to the mode®f. As the system gets larger, the

symmetry of the distribution increases, so the fluid appmation improves.

! These parameters were inspired by an ICU application.



15

" *J T " " i i " 0.25 . ; " " a
| L | | \ -
ST AR T . \ o
[ | ] I 1l TIrT T I 0.2+ ' 1 i
goot WY WOTLRACTOWS 5 o 0
£ f U it g |
S o5t ”q - b s P
] | \ simQ, EXREI
‘; 200 ! Fluid Q, b Lo
g 15) ‘V s, 2 o) “
£ | __ _FuidQ, T h \
2 J | £ 0 05—" \
uJ_LL U_T. ) s i - \
of L orlaan Mh o fipben: |
% 5 10 15 =20 50 3 40 45 % \16 20 2 0 50
Time [days] Number of Customers
(a) A Single Sample Path fa¥ = 50. (b) Steady state distribution @, (¢) andQ2(t) for N =
50.
0.2
120 . Q,
| -
100} w IM FM" \W WWW é\ 0.15 )
. i i b g
T 80F L >
: g
3 = 01
2 6oy 1 o
: 2
E ° ," —smq, || B 005
I 7Flu|dQ1 o -
20 simQ, | / ~
! __ _FlidQ, 0 - N~
00 50 160 150 260 250 360 350 460 450 500 0 50 100 150
Time Number of customers
(c) A Single Sample Path fav = 150. (d) Steady state distribution @ (¢) and Q2(¢) for N =

150.
Figure 7  Case 1 Simulatiomy? < N* < ¢F.

We next examine the variation of our stochastic process mgpect to the fluid approximation. Figures
[7(a) and 7(d) show a sample path of the system in Case 1.2,igne§ 7(0) anfl 7(#l) show the long-term
distribution of Q (using the same parameters as before for the small and lgsgenss). In this case, the
equilibrium of the fluid model is exactly; = N*. When considering the stochastic model, we observe
the distribution forQ, (¢) has an unusual shape—similar to a bilateral exponentitldiSon—that is tight
around the threshol®* and can be observed as rapid changes in the sample path. Ghén&and, ()
exhibits the typical Poisson distribution (this is moreillis in the larger system). The rapid changes in
Q(t) suggest a very strongull towards the equilibrium from above and below the equilibritV* for

Needy customers. This observation suggests that the nwtigydconsidered il]_BemLa.ndJALLiL‘l_(Zﬁl)ll),

which also observes tight drifts for a different queueingteyn, could be used to generate an approximation
for the distribution ofQ; .

4.1.1. Approximating Q under Case 1.2 Following ideas frorTll_P_emLa_ndAALIJ!illI_(Zdll), we develop

an approximation to our original stochastic proc€sswhile operating under Case 1.2 conditions. Such

an approximation provides insight into the behavior of thgation of the queue length process, which the
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fluid system does not allow. We develop the approximation hsuaistic. We consider an approximation
with a very simple structure: a two-sided birth-death pssc@ith constant rates on each side. Because
of this simple structure, we are able to easily derive appmakons for the steady-state distribution of
Q, as well as provide an approximation for the probability oéegup in our original stochastic model,
P(Q; > N*). While the approximation for P(speedup) from this apprdathe same as the one developed
in Corollary[4.1 using the Filippov method for the fluid modee now also have more detailed insight into
the distribution of the number of Needy customers in ourindbstochastic model than when considering
the results of the fluid analysis alone.

Define a CTMC proces@ = (Q(t), t >0) € R. Let A* andu* be the birth and death rates@ft) when
Q(t) > g, and\~ andp~ be the birth and death rates whéxt) < ,. Our approximation defines these
rates as:

AT =\+0q,

1 =pa(@ AN)
A" =\+6Gs

(4.3)

p=pr(@ AN).
Because of the constant birth and death rates, the pralfessvolves as an M/M/1 queue in each of the
regionsQ(t) > g, andQ(t) < g,. This allows us to easily determine the steady state préityaii being in
state::

pa=a-y= L)

At p—

pt AT

—\ —(i—q1+1) ~ .
(%) xP(Q=q-1),ifi<q -1,

P(Q=1) = (4.4)

Ao . o =
(F) xPQ=q-1) ,ifi>qg—1,
The intuition behind this process construction is as fofoWwhe stochastic proce§swe are trying to
approximate, has state-dependent drifts depending onuimder of customers in service; however, we

observed in Figurds 7{c) that that number of Needy custoimaimost deterministic and equaldpo= N*.
Hence, we remove the state-dependency and instead usamthiits in the procesg, similar to a single
server queue rather than the N-server queue we are appitoxn@he death rates differ on each side
because of speedup; speedup is used whenj,, while speedup is not used whén< g,. As a result, the
rates of( are the same as the proc&ssf the number of customers were fix&l= g = (N*, aqk + (1 —
a)qih). This is irrespective of what the actual queue leri@tis and allows us to derive simple expressions
for the distribution ofQ, as given in[(Z}4).

Previously, we used the fluid model to provide an approxiomator the probability of speedup in our

original stochastic system. We now consider a differentraxdmation approach, which uses the process
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Figure 8  Case 1: Simulation vs. Approximation based on Two-sided M/iueue.

Q(t) to approximate®, (t); thus, we measure whep\(t) is equal to or greater thai*. Therefore P(Q, >

At K

* s 5 o (At T A& nt ( r) i i

N )=PQ>q)=>_, (F) x P(Q=q — 1) =*—;=*. Using [4.3), and noting that" =
W

A —pm A 40G — pr(@AN)

pt—p (e —pr)(@ AN)

This is exactly the same approximation as from Corollary 4.1

P(speedup)=P(Q, > N") =~

Figure[8 compares the steady state distribution of our agipation, Q, to the simulated distribution of
the original proces®, in various cases. As expected, the fitis very good wiéris such that we expect the
speedup probability should be close to 50%. As we deviate fitat value ofN* (e.g., when the speedup
probability is close to 25% or 75%), the fit degrades. Eanlierobserved in Figufe 4.1 that the fluid model
provides a very accurate approximation when P(speeduss to 50%, but its accuracy degrades\as
approacheg’ or ¢/ (equivalently, as P(speedup) approaches 0 or 1). We expiednficcuracy to also
arise as we consider our approximation for the whole distigim for Q,. The fact that the shape of the
distribution is still quite accurate in the latter casesgagis that with improved approximations fprthe

approximation for the distribution @, could also improve.

4.2. Case2.1.2: q¥ < q¥

We now examine the analogous scenario in Case 2—Case Ad.2easider the insights our fluid analysis
provides for our original stochastic system. Theretareeequilibria in Case 2.1.2. However, the equilib-
rium (N*, agl + (1 — a)q¢¥) is not stable. That is, if the fluid starts there, it stays ¢héowever, even
small deviations in the initial conditions from the equilibm will drive the system away from it. Hence,
it is unlikely to be observed in our original stochastic syst The other two equilibriag”” and¢*, are
locally stable. Hence, whether speedup can alleviate ctiogeat Station 1 or whether it will lead to worse
congestion resulting in perpetual overload (even if théesyiscould be operated in underload without using
speedup) will depend on the initial condition. In the statltamodel, the behavior of the queues will depend

on the distance betweef andq”. If they are very far from each other, the steady state of thehsistic
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system will primarily depend on the initial condition. Byaging neag”, speedup will not need to be used:;
however, starting near” will require that speedup is always used. Evenfifandq’ are far away from
each other, there exists sample paths such that the numideafy customers will increase (decrease),
thereby effectively increasing (decreasing) the systead knd transitioning to staté’ (¢~). For example,

a transition fromg” to ¢ may occur due to a ‘burst’ of arrivals. Because of stochdhttuations, it is
possible that the stochastic queue will oscillate betwgeandq”. If these two equilibria are very far apart,
the transition times in the stochastic system could be \@rg+long enough that such transitions are never
observed in practice. However, if the equilibria are clasene another, small bursts will be sufficient to
cause the stochastic system to transition and so it maylaieddetween the two equilibria frequently. As
an example, we chose to demonstrate a scenario where batly Isiable equilibrium coexist.

Figure[9(d) presents a sample path of the stochastic ®t@e= (Q;(¢),Q.(t)), under Case 2.1.2. We
observe shifting from one equilibrium to the second one @rttiddle of the run, after approximately 220
dayg . The system begins around tife equilibrium and shifts to the” equilibrium. When examining the
distribution of Q(¢) in Figure[9(D), we observe the two equilibriagt= (24,9.6) and¢” = (40,54.4).
Interestingly, there is another peak@t = N* = 35. This peak does not indicate the pseudo-equilibrium,
but rather is a product of the system shifting from one regithe next. During the transition, when the
fluid flow encounters the switching boundaxy(where @, = N*), the flow slides along the switching
boundary. Therefore, for a significant part of the tirfye is constant and equal*, while @, changes. This
behavior is described asstiding moden the dynamical systems literature and occurs V\Aﬁléﬁ’(;ALH <
Qs < "H(N%SANH which corresponds td8.4 < @, < 46.4 in our example. More details can be found
in the Appendix. While this sliding motion is a phenomenortla# fluid system, we can see that it still
provides important insight into the behavior of the stoticasy/stem.

The fluid analysis allowed us to identify these two operathtgjesl._G_'Ltlb_enS_e_tJaJL_(leO) also used fixed

point analysis of a deterministic system to demonstratexistence of bi-stability, albeitin communication

networks without feedback. Recognizing such behavior cast &ill help avoid poor speedup decision

making.

5. Model Extensions

Thus far, the focus of this work has been on the model predémt8ectioi 2. We now consider a number
of extensions to our stylized model which capture additiaclymamics which can arise in various service
settings. In particular, we look at the impact of includingptization of customers and time-varying arrival
rates. In both cases, we find that, although one can garner additional insights from analyzing these
extensions, the primary insights from our original anaysirry over to these extended models.

2 The timing for such shift is unpredictable: we have simolatiuns where the shift occurs within a few days and othershaike
much longer.
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Figure 9  Case 2.1.2 Simulation.

5.1. New Versus Return Customers

In this section, we consider differentiating between netamd first time customers. Return customers may

warrant higher priority in order to limit the total time cogters spend in the system ( tal.

(2012)). In addition, their service rates may differ, asnsk rbin and Kopel[(1993). We now examine
the dynamics of our queueing model where the service ragsednrn probabilities depend, not only on
congestion, but also on whether the customer is new vertursireg. We assume that returning customers
have preemptive priority over new customers. Again, we usd f#inalysis to generate insights about our
stochastic modelur;, (1r ) denotes the service rate for first-time (return) Needyamsts when the
system is considered underloaded, whiley (1.r ) represents the same when the system is considered
overloaded. Similarlypr 1, (pr..) denotes the probability of return for first-time (returngédly customers
when the system is considered underloaded, whilg (pr ) represents the same when the system is
considered overloaded. Denote Y and Q¥ the fluid content of first-time and return Needy customers,
respectively. Thus, wheR! + Q% > N*, the system is considered overloaded and speedup is ussLi&e
we give preemptive priority to return customers, capacitly fivst be allocated to them@?* A N); any
remaining service capacity)N — Q¥)*, is allocated to the first-time Needy customers. The modi@iedE

under consideration is now:

5= A= (QF AN = QN irrligr ron- + iralriorsne):
Qf{ = 0Qs — (QFF A N)[MR,Ll{Qf+Q{%<N*} +MR,H1{Q5+Q{?2N*}]7
Q2 = —0Q2+ (QF N(N — Q?)Jr)[pF,LMF,Ll{Q{'+Q§<N*} +pF,H,UF,H1{Qf+Q§2N*}] (5.1)
+(QFAN) [pR,L/LR,Ll{Qf+Q§<N*} +PR.,H/LR,H1{Q§+Q§ZN*}]

For this model, we utilize numerical approaches as the asmé complexity of this model introduces

additional challenges making it cumbersome to employ thegdized Lyapunov analysis used to prove
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Figure 10  Simulation: New Versus Return Customers.

Theoreni4.B. Similar to our original model, we find that thiseseded fluid model also has two cases: one
with a single globally stable equilibrium and another witkstability.

We translate the insight generated from the numerical aisady the fluid model to a stochastic model via
simulation of a system witlv = 45 servers and speedup threshald = 35. We use the following param-
eters in this exampleur, = .01, up g = .02, ug = 015, ur g = .02,pp = .05, prr = .06,ppy =
T,pru = .85; A =.15,6 = .0125. Figure[ 10 shows the result of a single trace of this extemdedel. We
see there exists a bi-stability effect in which the systeanditions, after nearly 5 months, from a ‘bad’
equilibrium, where the system is always under speedup, tmad’ equilibrium, where speedup is hardly
used. Note that under the ‘good’ equilibrium, most of thetooers arsnewcustomers and there are very
few return customers; however, under the ‘bad’ equilibrimost of the customers areturningcustomers.
Similar to our original model in Sectidn 2, we see that in t@se, utilizing speedup can result in even more
congestion. We see again that when such a bi-stabilitygxigter mechanisms, such as admission control,

may be more effective in navigating periods of high congesti

5.2. Time Varying Arrivals

Another marked property of service systems is that custeraervals are often time-varying (e.g.

Gans et AI. 2003), Green eHI. (2&)(16), Yom-Tov and Man@bﬂOlJB)). We now explore the implica-

tions of having time-varying arrivals.

As discussed iE Yom-Tov and ManderAlJm (3013) for a closelgted queueing system (with returns

but no speedup), the impact of time-varying arrivals depamdthe relationship of the period and amplitude

of the arrival rate versus the service duration. Time-vemacan substantially impact the dynamics of

our queueing system, especially when the scale of the setivie is long but of the same order as the
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time-variation. Here, we discover speedup control can sioms smooth the time-variability. A complete
analysis of the time-variability case is beyond the scopiisfpaper and there is currently little theory to
support analysis of time-varying Filippov systems. Theref most of the observations we present here are
based on numerical and simulation analysis.

We now consider a queueing system with the same stochastioys as the system described in Section
[2, except that the arrival process no longer has constant\Wa now model the arrival rate as a nonhomo-
geneous Poisson Process with time-varying arrival k&tg¢ We again use fluid models to provide insight
for the stochastic model. Accordingly, we can modify ougaral ODE in Equation(2]3), to derive an ODE

to describe the fluid dynamics of this system with time-vagyarrival rate as follows:
Q1 () = A(t) +0Qa(t) = Ligyy<n=y e (Qr(t) AN) = 1ig,@=n-1 (@i () AN),
Qa(t) = —6Qa(t) + 1(qy (< n=1PLur(Qi(t) AN) + Lig,=n=1Prir (Q1(t) AN).

In our analysis of this modified system, we find the distincti@tween Case 1 and 2 still exists. In Case

(5.2)

1 we have a distinct solution to the ODE, while in Case 2, ttstesy is quite chaotic (i.e. very dependent on
the specific starting point and the phase of the arrival réteihce, we concentrate on Case 1. In this case,
the solution may not be an equilibrium point as it was befbrd,could be an orbit, which is a periodic
function which the trajectory follows over time. This orbithich we denote byj(¢), is closely related to
the solution of a (time-varying) ODE which always or nevegsispeedup. We definé (¢) as the solution

for the following ODE when speedup is always used.
qi" (t) = A(t) + g5 (t) — pray’ (1),
(5.3)
G5’ (t) = —0ay' (t) + prpmay’ (¢).

We similarly define;”(¢) as the solution for the ODE when speedup is never used. A @enghalysis of
such an ODE is given in_[QmiOLa.nd_Mﬂnd_elbleL_m_dOB). If hhival rate is periodic (as is the case in

many service systems)? (¢) andq”(t) are cyclic functions that exhibit similar time-variatiorhigh lags

after the arrival rate function(t). This orbit’s period is the same as the period of the arriatds, though
the phase is shifted. Since we are in Case 1, one can view osivey speedup as a worst case scenario,
i.e. the average number of customers is the highest possibéesenseg”(t) is an upper bound for the
long term dynamics of our fluid system: consider two trajgetowhich start at the same initial point. One
follows the dynamics described Hy (b.3) while the otherdial the dynamics described lhy (5.2). The fluid
content of Needy customers in the latter will always be largenceg>(¢) is an upper bounding function
for ¢,. Similarly, ¢ (¢) is a lower bounding function faf, .

We start by considering a sinusoidal arrival procegs) = 148.5 x (1 + 0.12sin(27t/f),t > 0. The
periodf is 24 hoursyy, = 1.474, iy = 2.018,pr, = 0.667, py = 0.973,5 = 1.445, N = 150. Using numeric

analysis, we find that in Case 1, the orbit functipis a function that during various points of its cycle
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(determined by the cycle of time-variability in the arriyadocess) will follow either the upper bounding
function,¢” (¢), the lower bounding functior’ (¢), or stay along the speedup threshalt.

Figurd 11 presents some typical fluid approximations andisited sample paths of our stochastic system
under different threshold values. In Figlire T1(a), theetjry converges to the orhijt (¢) where speedup
is always used. Because of the periodic nature of the apiaaess, we see that the trajectory on the fluid
model follows a cyclic orbit with the same period as the airprocess. In Figurg 1I{e), the trajectory
converges taV*. This is similar to the pseudo-equilibrium in Case 1.2 withperiodic arrivals wherg’
andq® reside on opposite sides of the speedup threstétd so that the trajectory is pulled rapidly back
and forth makingV* an equilibrium. What is interesting in the case of time-viagyarrival rates is that
this behavior creates a non-time-varying equilibriuly,. We see that using speedup improves access to
service at Station 1, by reducing the offered load. It als® dx@other benefit in that it also has the power
to remove time-variation and smooth the occupancy levetatid® 1. Thus, despite the fact theit) and,
consequently;” (¢) andq”(t) are periodic functions with a period of 24 hours, the fluidteom of Needy
customers igime-invariantand fixed atV*. Another possible trajectory of the fluid content is depidte
Figure T1(d). The orbit functiorg(¢), can follow 2 of the trajectories: it followg” (¢), but when it hits the
speedup thresholdy*, it stays there until the arrival rate falls again, at whiainp it returns to tracking
q" (t). Thus, there is some smoothing of the occupancy level aip8tat(when@,(t) = N*); however,
because the speedup threshold is higher than in Fjgure] itlig)not held constant for all time and the
trajectory exhibits some (but not all) of the time variatiofiy” (¢). Figured TI(B)-11(f) present simulated
sample paths of the fluid systems depicted in Figlres [LT[@@}1We see that the fluid approximation is
quite accurate in describing the time-varying system dyinoam

While we see some very interesting dynamics arise when iacating time-variation into our model,
we focused on a numeric setting which allows us to observauhaces. We also wish examine the impact

of time-varying arrivals in the ICU setting. In the ICU-Udithe ED setting i - um

) an _QLe_Qn_e_tJaL(ZdOG)—the LOS is quite long compardte time variability. Specifically, the
arrival rate varies at the time scale of hours, while ICU LO§pically 3-4 days, spanning a few arrival rate

cycles. Due to this discrepancy in the time scale of vanatigrsus service tim - um

) suggests that the impact of time-variation is likilybe small. We also find this to be true when
considering our system with speedup. In Figlres 13(a] afi1®e present the fluid approximation and
simulated sample path @, using identical parameters as in FigJres]7(a)and 7(b) pexice arrival rate is
according to the empirical time-varying arrival rates aégil in Figuré I2. We observe the system still varies
around the chosen threshold and it is difficult to ascertabstantial differences from Figure 7|(a). While
we find that in this setting incorporating daily variabiliipes not significantly alter the system dynamics,
we can see in the previous analysis that the dynamics cargeldramatically when incorporating time-
varying arrivals. We leave further exploration of this tygfdime-varying, state-dependent queueing system
for future research.
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Figure 13  Time-varying ICU: Fluid approximation and sample path.

6. Conclusions

In this work, we consider a queueing model where servicesrael return probabilities increase when the
system is overloaded. We analyze the dynamics of this digglendent queueing model to gain insight into
the impact speedup and returns have on system dynamics. ddhe presented here provides insights into
the pros and cons of using speedup in a service system whetmeers may return to service.

We find that there are two main parameter regimes which defirether speedup can be a beneficial or
detrimental operational tool to help alleviate temporasggestion. Such analysis provides tools to enable
practitioners to assess the potential benefits and pitaliéfferent speedup policies. We find that in some
cases speedup can be beneficial to help alleviate congelstisnch situations, the amount of congestion
and frequency of speedup can be specified via the speedspatdeV*. In other cases, the use of speedup
can exacerbate congestion. Moreover, an interestingbitsy can arise, which demonstrates the potential
problems associated with using speedup.

We demonstrate via simulation that the fluid approximatmour state-dependent queueing system can
be very accurate. However, there are scenarios where theaagcsuffers—particularly in small systems
and/or when speedup is used around 25% or 75% of the timeidnvtirk, we derived the fluid directly.
Establishing a proof of the limit in a Functional Weak Law airge Numbers sense introduces several
technical challenges due to the discontinuity of the ODEweleer, it would be useful to be able to show

such a result. Additionally, it would be interesting to cioles refinements to the fluid approximation.



25

Finally, we consider two important extensions for our mogeliffering dynamics for new and returning
customers and ii) time-varying arrivals. This analysisvites some additional insights, but also suggests
that our original stylized model has value in shedding liginthe much more complex reality. We observe,
for example, that in the ICU application one need not exficionsider time-varying dynamics. Instead,
may draw important conclusions on the impact of using speédm the time-stationary model. Neverthe-
less, we find the time-varying dynamics can be very intergsti it's own right and plan to investigate it

further in future work.
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Appendix

A. Miscellaneous Proofs
PROOF OFTHEOREM[3.T:

1. We begin with the instability result. Recall for instatyil we must have the total fluid content of jobs
in the system grow without bound. That is, we consi@er= Q, + (). The dynamics of); can be
summarized as:

Qr=Q1+Q=\~ (1=pr)pur(QiAN).

If the system is unstable, théim,_, .. QTT(” > (0. We integrate and solve fapr(t). We have:

t I

tlim QTT() =2—(1 —pL),uLtlim Z/ (Qi(T) AN)dr
1 Ot

>A—(1 —pL),uLtlim Z/ Ndr (A1)
— 00 0
, A
=A—(1- N>0if N < ——-—
(1—pr)pr oo
2. For the stability and equilibrium result, we first showttfia- ((1_;”%, (1—21)6) is a globally stable

equilibrium. The stability result follows from the finites® ofg. To show global stability, we use the

following Lyapunov function:
V(Q)=1Q1 — qi| + Q2 — G|

We must show that for atl) # g, V(Q) < 0. To do this, we must examine a few cases:
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@) Q1>01,Q2> .
V(Q)=Q1+Q2 = A= (1=pp)ur(Qi AN) < A= (1= pp)prdy =0
(b) @1 <@, Q2 <o
V(Q)=-Q1— Q= -+ (1—pr)pur(QAN) < A+ (1 —pr)prgi =0
(€) @1>q1,Q2 <.
V(Q)=Q1— Q2= A+26Qs — (1 +pp)ur(Qi AN) < A+28G — (L +pr)purd =0
(d) @1 <q, Q2> o
V(Q)=-Qi+ Q2= -A—20Q2+ (1 +pL)pur(Qi AN) < —A—26G + (1 +pr)prg =0

(€) Q1 =0q1,Q2> Go.

V(Q)=Qs = —0Qa+prur(Qi AN) < —0G+prirGi =0
) Qi=a,Q2 <.

V(Q)=—Q = 0Q> — prus (@ AN) <8Gs — prptrgy =0
Q) Q1> ¢, Q2=

V(Q)=Q1 = A+08Qz — ur(Qi AN) < A+63 — 12.G, =0
(h) Q1 <q1,Q2= 1.

V(Q)=-Q1=-XA=3Qo+pur(QiAN) < =\ —68Gs + prgs =0

A.1. Proofs for Discontinuous Ordinary Differential Equat ions

Our system is a piecewise-smooth set of ordinary diffea¢@ijuations. As such, it fits in to the frame-
work ofm @) In our analysis, we use Lyapunovhieiques as well the methods outlined in

[dJ_B_emaLdg_el_A J_(ZQJ)B)
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Primitives

To begin, we represent our dynamic system by the followifffeidintial equation using the Filippov convex

method. More details of this method can be found_in di : ) and_Fili 8). The
basic premise is to divide the state space into regions wher©DE is smooth and continuous in order
to leverage existing results of smooth dynamical systemseparate region, the switching boundiaisy

defined as the states of discontinuity in the ODE. The appristo transform the differential equation into

adifferential inclusion where the differential function is now a set-valued fuotiAdditionally, Filippo

_@) proves that solutions to the original discontinudifferential equation coincide with solutions to
the appropriately defined differential inclusion. In whatidws, we will discuss first how to transform
Equation[(2.B) into the appropriate differential inclusidlext, we will demonstrate the desired results for
the differential inclusion, which will imply the result hatd for the original differential equation. Note that
in our case, the differential equation (and subsequenglylifierential inclusion) does not dependrut
only on@.

To start, we separate the state sp&ento two regions D, andDy, and the switching boundary,
between them as follows:

D, ={Q:Q: <N"}
Dy={Q:Q:>N"}
Y={Q:Q,=N"}.

In the regionsD;, and Dy, the ODE is smooth. However, the ODE is discontinuous at wicking
boundaryX. The Filippov methodology overcomes this by transforming differential equation into a
differential inclusion by using a convex combination of grmooth flows defined ifD; and Dy on the
switching boundaryy.. We define the fluid functioi’; (Q), @ € D;, as the smooth ODE in these regions:

)\+5Q2_ML(Q1/\N)> F (Q):<)\+5Q2—MH(Q1/\N)>
—0Qa +prpun(QAN) ) —~0Q2 + (@ AN))

Note that even though the ODE is non-differentiabledat= N, as is customary, it is still considered

FQ) =

smooth, and not discontinuous, at this point. The real ehgkt comes at the switching boundary , i.e. when
Q. = N*. Now, our ODEQ = F(Q) can be represented via a Filippov ODE (a.k.a. a differeimt@lision):

. Fr(Q) . ifQeD;,
QReF(Q) =1 Fu(Q) . ifQeDy, (A-2)
{(1=Y)FL(Q)+ v Fu(Q)0<y <1} . if Qe

ProOOF OF THEOREMIAl: We start by stating the existence resu w p@)gin terms of our

notation. The result is for a differential inclusion; howeewthe Filippov method utilizes the fact that solu-

tions of the differential inclusion coincide with soluti®of the original discontinuous differential equation.

% The switching boundary is also often referred to as a discoity set, discontinuity boundary or switching manifold.
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Hence, if our differential inclusion satisfies the condisoof the following theorem, this will imply exis-
tence of a solution to our ODE(2.3).

Theorem A.1 (Theorem 1, Chapter 2, Section 7|.of Fili 0988)) Egt)) be a differential inclusion
that satisfies the following conditions in the doméin

1. F(Q) is non-empty for aly € G.

2. F(Q) is bounded and closed for &l € G.

3. F(Q) is convex for allk € G.

4. The functionF is upper semicontinuous if.

Then for any poing, € G, there exists a solution of the problem

Q € F(Q),Q(0) = qo.

We will consider the domaiti’ = [0, Qax] X [0, Quax] fOr some arbitrary finite constar®,,,... < co. Now,
we just have to demonstrate that the conditions hold fof)adl G. It is easy to see that conditions 1-4
hold for all Q € D, U Dy, as in these regiong is a continuous real-valued function (rather than a set-
valued function). ThusF (@) is a single point, which is bounded aboverbyx{ A + dQ ax, Prtr (Qmax A
N)} and bounded below bynin{A — g (Quax A N), —0Qumax - Any continuous function is also upper
semicontinuous, so the fourth condition follows.

It remains to show the four conditions hold for afyon the switching boundary;. By the same
argument as for) € Dy U Dy, F(Q) is bounded for any) € X. By definition of 7 in (A2), F(Q) is
closed and convex fof) € ¥ as it is a convex combination df;; and F;. Since both of these functions
are non-empty, so iF. Finally, to showF is upper semicontinuous ad, we need to show thaf is
upper semicontinuous for evefy € . The set-valued functiotF : ¥ — Y C R? is upper semicontin-
uous at a point) € ¥ provided that for each open sBtin Y containingF (@), there is an open séf
in 3 containing@ such that ifQ’ € U, thenF(Q') C V. By the definition of the inclusion, for a@ €
2,FQ)={(1—-¢)FL(Q) +¢¥Fu(Q)|0 < < 1}. Consider an open sét which containsF(Q): there
exists ane > 0, such that for every € F(Q), f + € € V. Now by the continuity ofFy and F;, there
existso > 0, such that i@ — Q| < d, then|Fy(Q) — Fr(Q')| <¢/2 and|F(Q) — Fr(Q')| < ¢/2. Thus,
(1=Y)FL(Q)+¢YFu(Q)]—[(1—¢)FL(Q)+¢YFu(Q')]| <eforall0 < <1.HenceF(Q') C V and
we have derived the necessary operiget {Q’'||Q' — Q| < 6} N X (recall that the intersection of two open

sets is open.). This demonstrates thas upper semicontinuous . All conditions hold on the switching
boundary. Therefore, there exists a solution to the difféakinclusion, and subsequently our ODE.
[
PrROOF OFTHEOREM[4.2: We consider each of the two cases.

1. [qf" <qf]
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(@) We first consider the case wheke< ¢f’. Similar to the instability proof of Theoren 3.1, we
consider the total number of jobs in the system and showlithat, .. QTT(“ > 0. We have that:

Qr =1+ Q2 = A= Lgw<nv1(1 = pL)pe (@i AN) = Ligm>n (1= p) (@1 AN)
We integrate both sides, divide bynd take the limit as — oco:

. t 1t
lim Qrlt) _ A — lim ;/ (Qu(T) AN) [(A = pL)urliqun<n+y + (1= pa)uulig =N+ ] dT
0

t—o00 t—o0

> A= (1= puy fim [ (@7 ANYar
> tJo

1 t
— 00 0
= A= —pa)paN >X— (1 —pu)pug’ =0

The first inequality comes from the fact that in this ca8e< ¢/, which implies that1 —p; ), <
(1 —pg)uy. The last inequality comes from the assumption fkiat m =qH. Hence, the
system is unstable iV < ¢f.
(b) We next consider the case whéYe< ¢~ andN* = oo (i.e. speedup is never used). This is simply
the result of Theorem 3.1.
2. laf’ = q7]
(@) We first consider the case wheve< ¢F. Using the same argument as before, we now have:

, t 1
im 27—\~ i ;/ (Qi(T) AN) [(1=pr)urliQim<ny + (1= pr)birliqnzn] d7

t
t—o0 t t—o0 0

1!
> A_(l_pL)MLtIH&Z/ (Qi(T) AN)dr
1 r
(1—pp)pr im = [ Ndr
t~>oot 0

v

A\ —

The first inequality is becausgg’ > ¢~. The last inequality comes from the assumption fhiat

A — gL . I
a0 = @' Hence, the system is unstableNf< ¢;".

(b) Now we consider the case whe¥e< ¢f andN* < ¢F. Again, we focus on the total workload in

the original system. We have that:
t

lim ——= = A— lim 1
t tJo

/ (@UT)AN) [(1=pr)pcligum<ny + (1= pu)inliq,m=n+] dT
A
> A= lim - [IN*(1=pr)pcliqi(m<n-y + @ (1 = pu)inliq,(n=n+y) dT

1
> A= lim — [ (1= p)ucligunensy +ai' (1= pr)imligunzne ] d7
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The inequalities come from the assumptions tNak ¢ and N* < ¢F. Hence, the system is
unstable.
|
PROOF OFTHEOREM[4.3:
Defining Equilibria points and the ODE flow. Our theorem distinguishes between seven cases and three
equilibria points. We start by identifying these points émelconditions under which they arise as equilibria;
we then prove stability. To do so, we refer back to the priragidefined earlier for Filippov ODESs, which
transform the original ODE into a differential inclusion.
We start by examining each regidR;; andD;,. If the solution trajectory never leaves a regibnonce
it enters the region, then the solution can be characterggdstandard methods for regular continuous

ODEs kGuckenheimer and HoIn|1 S (2002)). Therefore, we faBne the equilibria of ', (Q) and F'iy (Q).

That s, we consider the long-term behavior of a system wjthadhics which are defined by the continuous

ODE F1(Q) (Fr(Q)) across the entire state space in the case where speedyeiga@eays) used. We

assume there is no switching boundary or speedup thredBplithe methods ' 08),
if a locally or globally stable equilibriumg;, (gx), of the continuous ODE',(Q) (Fx(Q)) is in Dy, (Dg),
then this directly translates into local stability@f (G;) in the original discontinuous ODE.

Lemma A.1 If ¢F < N, then the continuous ODE}, has a globally stable equilibrium at”. If ¢* € D,
andq” < N, theng” is a locally stable equilibrium in the original discontinus ODE defined if2.3).

PROOF The first part comes from Theorém.1. The second part is@yfor piecewise-smooth ODEs and

follows from Guckenheimer and Holgllés (2002) and our stigtalssumption. Intuitively, by the stability of

q" in the continuous ODE defined bY;, there exists a small ball arourd such that trajectories which

start within the ball will converge to” and stay there. I§* is in D, then one can also select a small ball
aroundg” such that 1) trajectories which start within the ball willheerge tog” and 2) the ball is entirely
contained inD;,. Then, starting a trajectory in this small ball, but lettithg system dynamics be defined
according to our original, discontinuous ODEI[in (2.3), tfedctory will stay in the ball, which means they
will stay in Dy, and follow the same dynamics as the continuous Esince it won't hit the switching

boundaryy:, or enter the other regio® . Thus,q” is locally stable. [ |

Lemma A.2 If ¢ < N, then the continuous ODE; has a globally stable equilibrium at?. If ¢/ € Dy

andq” < N theng' is a locally stable equilibrium in the original discontinus ODE defined ifZ.3).

PROOF. The results can be derived with the same techniques as jprdioé for Theoreni 311 and Lemma
AT
Lemma[A.1l proves the existence of a locally stable equilibratg;, in cases 1.3, 2.1.2, 2.1.3, and 2.2

because’’ € D; holds in these cases, as demonstrated for Case 1.3 in Fig@ienBarly, Lemmd A2
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Figure 14  Example of a sliding motion.

proves the existence of a locally stable equilibriunyatin cases 1.1, 2.1.1 and 2.1.2. We will later use
Lyaponov techniques to prove the global stability of thespalédoria in the appropriate cases.

Next, we analyze the dynamics of the system on the switchingptdary,>:, and identify our third equi-
librium which lies in this space. To do this, we look at thectes on either side of the switching boundary.
Specifically, we look at the componentBfnormal to3, which we denote by;. These measures are often

referred to as the Lie derivatives.
L =A+0Qs—pur(N"AN),
Lyp=A+0Q2—pa(N"AN)

(A.3)

We have the following three cases to consider:

1. £, <0andLy < 0: a flow that hits® will transition from Dy to D,,. If the flow is already irD;, it
will stay inD;,. Because:;, < 1y, forall {Q EX:Qy< W} , both£; and.y are negative,
and the transition will be fror® to D, ;

2. L; >0andLy > 0: a flow that hitsY will transition fromD;, to Dy. If the flow is already iMDy, it
will stay in Dy. For all {Q EX:Qy> W} both£; andLy are positive, and the transition
will be from Dy, to Dy.

3. L Ly < 0: a flow that hitsX will stay on X—potentially forever. The flow is said to be insiding
mode, in whichQ), is constant and equal f§* while only @, changes. Figufe 14 illustrates an example
of a sliding mode flow wherev* = 200. If “LLANZA < ) < 1 WANIZA e have thall;, < 0
and Ly > 0, so then the ODE is in a sliding mode on the switching boundaryhe importance
of this sliding mode is there could be an additional equiilibr inside the sliding set. This point is
typically not a fixed point in the standard sense since the @Dion-zero at that point. However, it
is still an equilibrium by definitioli 2]2 because if a flow $$aat that point, it stays there. In some

cases, this special equilibrium is a unique and stable ibguin. We call this type of equilibrium a

pseudo-equilibriunas in.di [ 8).



32

Definition A.1 We call a pointg a pseudo-equilibriunif it is an equilibrium of the sliding flow, i.e. for

some scalab < £ <1,

Fo=(1-8FL(q)+&Fu(q) =0, geX (A.4)

Note the similarities to the Filippov ODIEE(A.2). When the ger combination is active in(Al2), i.e: €
(0,1), there exists an equilibrium on the switching boundgmgnd¢ = .

Lemma A.3 The point(N*, ags + (1 — a)¢d!) is a pseudo-equilibrium in Cases 1.2 and 2.1.2.

PROOF. Solving [A.4) yields

A— (1 —pr)ur(N*AN)
(L=pm)pa(N*AN) = (1= pr)ur(N* AN)

§= (A.5)

We have tha0 < ¢ < 1 if the following three conditions hold simultaneously:

@ A= (1=pr)ur(N*AN)>0 = N*AN <gqf,

(b) (1 —pu)pa(N*AN) = (1—pr)ur(N*AN)>0 = qi' <qi,and

© A=A =p)ur(N*AN) < (L =pm)puu(N*AN) = (1= pr)ur(N*AN) = g <N*AN.

These are exactly the conditions of Case 1.2, which mearsirththis case there exists a pseudo-

equilibrium on the switching boundady. Substitutingt from (A.5) into (A.4) gives the resulting equilib-

rium: (N, (Nzlfjjq)gqul at + qlL;IL(Jf;{QN) ¢2"). We will show later that in this case this point is a globatigtse
equilibrium. By definingy = % we can express the equilibrium @, agh — (1 — a)¢d’). Note
that under the above three conditions (Case 12y < 1.
Another scenario wher@< ¢ < 1 is if the following three conditions hold simultaneously:
@ A= (1 —pr)ur(N*AN) <0 = N*AN >qf,
(b) (1 —pa)pa(N*AN)—=(1—pr)ur(N*AN) <0 = qi' >qi, and
©) A= (1 =p)pr(N*AN) > (1= pu)pua(N*AN) = (1 =pr)ur(N*AN) = ¢ > N*AN.
These are exactly the conditions of Cases 2.1.2fot ¢/) and 2.2, which means that in these cases there
also exists a pseudo-equilibrium on the switching boundlaigain this pseudo-equilibrium gV, agl +
(1 — )qi!). Experiments show that this point is not stable. If we stagtgystem at that point it will stay
there, but very small changes from that point will bring usi@ of the other two equilibria of the system.

Locally Stable Equilibria: Combining the results of Lemmas_A.IL,_A.2, ahd ]A.3 yields olyaf
punov/local) stability results for Case 2.1.2 and 2.2, d&edexistence of the third equilibrium in case 2.1.2.

Globally Stable Equilibria: We continue by proving the global stability results (Catds1.3, 2.1.1, and

2.1.3). To show global stability in the sense of Lyapunovnwed to identify a Lyapunov function and prove
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that forall @ € R%\{g}, the derivative of the Lyaponov function is strictly negatiWe use the following

Lyapunov function:
V(Q) = Q1 — q1] + Q2 — 3| (A.6)

whereq is the specified equilibrium. We use the Filippov methodglag describe earlier, which redefines
the ODE as a differential inclusion so that on the switchingrary,, is the convex combination of the
surrounding smooth ODEs in(A.2) fof(Q)). We continue to use this definition of our ODE and utilize the
generalized Lyapunov theory for set valued functions. g¢ne approach ilg Shevitz and PA en (1994), we

need to show that the set value map for our generalized Lyapderivative is negative for all states not

equal to the equilibrium in order to establish global siabil

We have two cases to consider for our set value map, gereddlimpunov derivative:

1. [Q: # N*].

V(Q), @1 # 41, Q2 # Go;

Qi, @Q1>q1,Q2=q;

V(Q)=4 —Q1, Qi1<q,Q:=0; (A7)
Q23 Q1 =q1,Q2> qa;
—Q2, Q1=q1,Q2 < G-

2. [Q, = N*]. Inthis case, the flow is on the switching boundaty,

PVEHQ)+ (1 —p)VH(Q), ¢ €[0,1], Q1 # G1, Qs # o

. QI +(1-9)Qf ¢ € 0,1, Q1> 1, Q2= @
V(Q)={ —¢Qr — (1-9)Q1, ¢ €0,1], Q1 <q1, Q2= G} (A.8)
Y3 + (1 —4)Q3, ¥ €[0,1], Q1=aq1,Q2> ¢2;

—Qy — (1)@, v €[0,1], Q1 =q1, Q2 < o

whereVZ andV# correspond to the Lyapunov function whén < N* and@, > N*, respectively.
In what follows, we will use this generalized Lyapunov thetwr prove the global stability in Theordm #.3.
Due to the immense amount of algebra involved in this proefonly include here the proof for Case 1.2
while noting the rest of the cases (1.1, 1.3, 2.1.1, and pwlilBfollow similarly. We need to show that for
all Q#q, V(Q) <0,
Case 1.77 < (N* A N) < ¢F: Define the stability point ag = (7, (N*),3(N*)) = (N*,aqd + (1 —
a)qs), wherea = % We will suppress the dependence on the control fa¢tor,for notational
compactness. Note thatA N € (¢, ¢f") andg, € (¢%, ¢3'). Moreover, by assumptidn 4., > ¢{’. There
are a number of subcases to consider within each of our twescas

I [Q1# N7
(@ Q>0 =N",Q2> .

V(Q) =V(Q)=Q1+Qa=A+3Qs — i (Q1 AN) — 6Qs + prpr (Q1 AN)

= A= (1=pr)pr(QiAN)<A— 1 —pm)pn(@ Aai) =X— (1 —pu)prq =0
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(b) Q1 <@ =N*,Q2< .

V(Q) = V(Q) = —Ql - Q2 =-A=0Q2+prL(Qi AN)+ Qs —prur(Q1 AN)
= A+ (1 =p)pur(QiAN) < =X+ (1 —pr)urg =0

€ Qi< =N"Q:>7q

V(Q) = V(Q) = Q1+ Qo= —\— Qs + pr(Qu AN) = 6Qo + prin (Qy AN)
= —A=20Q:+ (1 +pL)pr(QiAN) <=A=25¢+ (1 +pr)pur(G AN)
< =A=20g5 + (1 +pr)prgr =0

d) Q> =N"Q:2<p

V(Q) =V(Q)=Q1—Qa=A+6Qs — pur(Q AN) +3Qs — prrptr (Qi AN)
= A+20Q2 — (1+pg)pr(Qi AN) <A +20G — (14 pu)pn (@i Agy)
< A+20¢;" — (L+pu)pugl’ =0

) Q> =N*Q2=0.
V(Q)=Q1 = A\ +06Q2 — par(Qi AN) <X +0G — par(@ Agi') SN +66 — pugt’ =0
) Q<@ =N"Q:=0.

V(Q):—le—A—éQQﬂLﬂL(Ql AN)<—=X—=0dgy +prgr =0

ii. [Q;=N*] We wantto show that for atp € [0, 1],V (Q) < 0:
(a) Ql :(jl :N*aQ2 >(jQ-

V(Q) = T/JQé +(1 - ¢)Q§I =[-06Qs +prur(Qi AN)]+ (1 =) [=6Q2 + prpu(Q1 A N)]
< P0G +pruc(@ AN)| + (L =) [=0G +papn(qi A N)]

< P[-dgy ji_pL,U/LQf] + (1 =) [~6q2 +pH,UH(€le AN)] L: (1 =) [~6G + prpn (G AN)]

= (1-v) pHuH(N*/\N)—5<(N ﬁN);ql g+ 4 _L(N QN) f)}
L qr — 4 qr — 1
N*AN)(QQL—Qf)—qquLJrqquf)]
at —aqf’
(N*ANN)(pr —pu)popia — Nprps _pH:UH):|
(1 =pu)pun — (L —pr)pr
R I W(PLML —pH,UH)]
(I =pa)pr — (L —pr)ur
(pL - pH),UL,UH - ﬁ(pL,uL —pHMH)]

(1 —=pu)pus — (1 —pr)pc

= (1-1) -pHMH(N*AN)_(s((

= (1-1) _pHMH(N*/\N)_

— (1) [pusn (VA N) — (N* AN

< (1 =9) |prpa(N"AN) = (N*AN)

= (1-4) -pHMH(N* AN)— (N*AN) (pr _pH)/zf/in;)(jH__plzl)/in(f)LuﬂLL _pHNH):| —0, Vo
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(b) Q1= =N

V(Q) = —vQk -
—prpr(@ AN)]+(1-
—prpn(@ AN)]+(1
-_pLNL(N*/\N)+5<( L

< Y[0g,
< Y[0q,
= (1-v)

<(1-9)

=({1-v)

*7Q2 < 62'

—pLpr(N* AN +

_PHMH(N*AN)—(S((

(1—)QY =[6Qs — prur(QiAN)] + (1 -

V)0 — prpag]

— 1) [6gs" —pHqul]
N*AN)—qF

[&]2 prir(qi AN)]

L

gt + 4
(h_q{[ ?
N*AN)(qy —ai') —q

—(N"AN) Hﬂ

CI1 _(h 2

at —qf

(N*AN)(pL — pr)irin —

Tay +atal )]

—pLi(N"AN)+(N"AN)

)‘(pLML - pH,UH)]

(1 —=pu)punr — (1 —pr)pc

(N*AN)

(pL —PH)pLpn —

ﬁ (pL,UL - pH,UH)

(L —pm)pn — (1 —pr)pr

(1 —pa)ps — (1 —pr)pc
(pr —pr)pcpn — (1 —pr)pc(Pope — Puitn)

(PL —pH)MLMH - ﬁ(PLuL —pHMH)]

V)[0Q2 — prir(Q1AN)]

|

This concludes the proof for the global stability of Case 1.2

B. Markov Chain Performance Measures

P(Speedup) =(0,0) <(7

7(0,0) = [?
i
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