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In a number of service systems, there can be substantial latitude to vary service rates. However, while speeding up

service rate during periods of congestion may address a present congestion issue, it may actually exacerbate the problem

by increasing the need for rework. We introduce a state-dependent queueing network where service times and return

probabilities depend on the ‘overloaded’ and ‘underloaded’ state of the system. We use a fluid model to examine how

different definitions of ‘overload’ affect the long-term behavior of the system and provide insight into the impact of using

speedup. We identify scenarios where speedup can be helpfulto temporarily alleviate congestion and increase access

to service. For such scenarios, we provide approximations for the likelihood of speedup to service. We also identify

scenarios where speedup should never be used; moreover, in such a situation, an interesting bi-stability arises, such that

the system shifts randomly between two equilibria states. Hence, our analysis sheds light onto the potential benefits and

pitfalls of using speedup when the subsequent returns may beunavoidable.
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1. Introduction

We consider a queueing system where the service time of customers can be reduced at the expense of

increased likelihood of the need to return to service. We refer to the mechanism of increasing the service

rate of customers asspeedup. The speedup phenomenon can arise in a number of settings such as the

Intensive Care Unit (ICU) (Kc and Terwiesch 2012), production lines (Powell and Schultz 2004), email

contact centers (Hasija et al. 2010), and general service systems (Ata and Shneorson 2006). The reduction

in quality of service due to speedup manifests itself through the need for rework, which we refer to as

customerreturns. This work aims to understand the dynamics of a queueing system where speedup is used

and the subsequent customer returns may be unavoidable.

We define the speedup dynamics by an operational control, in the form of a threshold, which speci-

fies whether the system is considered to be overloaded. Hence, service rates and return probabilities are

endogenous to the operational speedup control. We introduce a newmulti-serverqueueing model where the

parameters which define the system dynamics arecongestion dependent; hence, they depend on the system
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state. We examine these state-dependent dynamics using a fluid approximation. In doing so, we are able to

characterize the system’s stability conditions and long-term behavior.

A number of works have considered the impact of customer returns. For instance,

Yom-Tov and Mandelbaum (2013), Jennings and de Véricourt (2008), Yankovic and Green (2011)

consider staffing and resource provisioning in (healthcare) service systems with customer returns.

de Vericourt and Zhou (2005) and Zhan and Ward (2013) consider routing in call-centers where customers

may call-back. None of these works consider how the likelihood of return depends on the service rate,

which may be altered depending on system congestion. In thiswork, we consider the impact of ‘speedup’

on these customer behaviors.

Also, there have been works which consider state-dependentdynamics (e.g. Armony and Maglaras

(2004), Glazebrook and Whitaker (1992), Maglaras and Zeevi(2003), Powell and Schultz (2004)); how-

ever, to the best of our knowledge, our work is the first which considers both state-dependent service times

in addition to state-dependent return probabilities. Combining thesetwo effects reveals new phenomena

which have not been previously observed when considering each dynamic separately. More specifically, we

show an interesting bi-stability, i.e. the presence of two equilibria, can arise and identify conditions under

which speedup is detrimental in the long run.

A number of works consider congestion-dependent service times. Whitt (1990) and Boxma and Vlasiou

(2007) consider the steady-state behavior of state-dependent queues where the service times may increase

or decrease with delay. From a control standpoint, Ata and Shneorson (2006), Anand et al. (2010) consider

the quality-speed tradeoff of an M/M/1 queue and find that speedup can be beneficial. Bekker and Borst

(2006), Bekker and Boxma (2007) consider the steady-state distribution and optimal control of single server

queues with state-dependent service rates. These works do not consider returns to service. In contrast, our

work examines a multi-server model which includes customerreturns to service, as well as the increase in

return probability due to speedup.

Mandelbaum and Pats (1998), Mandelbaum et al. (1998) consider state-dependent queueing networks

with state-dependent routing. The focus of these works is todevelop theoretical support for fluid and dif-

fusion approximations of the network dynamics. These worksassume state-dependent functions which are

continuous and cannot be applied to our model which includesdiscontinuitiesin the state-dependent dynam-

ics. These discontinuities require a different analytic approach: in this work we utilize fluid approximations

and Filippov analysis (Filippov 1988).

We show that speedup–a mechanism which seems to alleviate congestion and increase access to service

in a myopic manner–may create more congestion and exacerbate the situation in the long run under certain

conditions. More precisely, we show that in some situations, speedup can be a useful operational tool to

navigate periods of high congestion. In other instances, speedup will increasecongestion due to the addi-

tional load of returning customers. A surprising bi-stability arises resulting in system dynamics which can
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be misleading about whether speedup can help. Therefore, weseek to understand system dynamics under

speedup and use this to develop insight into the benefits and pitfalls of using speedup. In analyzing our

state-dependent model, we make the following key contributions:

• We introduce a new queueing model (Section 2) which, to the best of our knowledge, is the first such

model which incorporates 1) congestion-dependent servicetimes in addition to 2) congestion-dependent

return probabilities. The interplay between speedup and customer returns is a phenomenon that has not yet

been considered in the literature from an analytic view point.

• We specify conditions for when the queues of our state-dependent queueing system grow without

bound (Theorem 4.2). We show that in some cases, speedup can make a stable system unstable; in other

cases, speedup is necessary to maintain stability.

• We identify the long-term queueing dynamics and equilibriafor our state-dependent queueing system

(Section 4). We find that in some cases (Case 1), management can specify the desired system congestion and

effective offered load by appropriately tuning the speedupthreshold (N∗). Additionally, this implies that

congestion is invariant to changes in the number of servers.This analysis provides a possible explanation

for the observation of ‘supply-sensitive demand’ in healthcare, i.e. demand increases with supply.

• We also find that in some cases (Case 2) an interesting bi-stability arises: the long-term dynamics can

converge to one of two states, depending on the initial condition. Using simulation, we demonstrate that

the stochastic system will oscillate randomly between the two equilibria. This phenomenon demonstrates

that while speedup may appear to reduce congestion in some instances (Case 1), its use may be extremely

detrimental in other scenarios (Case 2). In such cases, other mechanisms may be necessary to navigate

periods of congestion.

The rest of the paper is structured as follows: In Section 2, we present our queueing system which captures

the main essence of a system with speedup and its influence on customer returns. We start by examining

a systemwithout speedup in Section 3. This provides a baseline for exploringthe behavior of our system

with speedup in Section 4. In Section 5, we extend our model to account for factors often seen in various

service settings: multi-class customers and time-varyingarrivals. We show that in both extensions, the main

insights from our original model, such as the bi-stability effect, still hold. Finally, we conclude in Section 6.

2. Queueing model

We now formally introduce our state-dependent queueing model which captures new and returning cus-

tomers as well as the effect occupancy levels and queue lengths may have on service times and returns.

We consider a queueing network with two stations as depictedin Figure 1. Following the terminology

of Yom-Tov and Mandelbaum (2013), we distinguish between two customer states:Needyand Content.

Needy customers require service at Station 1 and are either in service or waiting to begin service. When a

Needy customer completes service at Station 1, he will either leave the system or transition into the Content



4

state. Content customers are customers who currently are being served at Station 2, but upon completion

of service, they will transition back (return) to the Needy state and require additional service at Station 1.

Station 1 represents a limited resource station withN servers. Station 2 represents an unlimited resource

with an infinite number of servers. The service rate and return probability for Needy customers are state

dependent and will be defined in the next subsection.
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Figure 1 System model: Station 1 represents theN servers where Needy Customers are served. Station 2 represents the servers

where Content Customers are served.

2.1. Stochastic Model

We now describe our stochastic model as a Continuous Time Markov Chain (CTMC), where all of the

dynamics are Markovian. LetQ= (Q(t), t≥ 0) be a two-dimensional stochastic queueing process, where

Q(t) = (Q1(t),Q2(t)): Q1(t) is the number of Needy Customers at Station 1 at timet andQ2(t) is the

number of Content Customers at Station 2. We suppress the dependence ont when it is understood from

the context of the discussion.

New Needy customersarrive to the system according to a Poisson random process with rateλ. Station

1 hasN servers and an unbounded buffer. If a customer is being treated in one of theN servers at Station

1, his service rate,µ(Q1), depends on the number of Needy Customers,Q1. Customers discharged from

Station 1 will return to Station 1 with probabilityp(µ(Q1)).

We distinguish between two service rates: when the system isconsidered overloaded then Station 1

operates under congested dynamics, withhigherservice and return probabilities than the nominal operation.

When Station 1 is not considered overloaded, then the servers operate normally, with nominal service rates

and return probabilities. LetN∗ ≥ 0 be a control variable which determines the operation of Station 1. We

refer toN∗ as the speedup threshold. The system is considered to be overloaded when the number of Needy

customers is greater than the speedup threshold, i.e. whenQ1 ≥ N∗. Note that ifN∗ ≤ N , speedup will

begin before a queue forms.
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Let µL andµH (µH > µL) define the service rate during underloaded and overloaded periods, i.e. when

the occupancy level islow andhigh, respectively. The state dependent service rates are givenby:

µ(Q1) =

{

µL , if Q1<N
∗,

µH , if Q1 ≥N∗.
(2.1)

Once a customer completes service at Station 1, he exits the system with probability1− p(µ(Q1)) and

never requires additional service at Station 1. With probability p(µ(Q1)) the customer enters theContent

state. Content customers transition into the Needy state according to an exponential random variable with

constant rateδ. Thus, this station actually models the delay between completion of initial service at Station

1 and the subsequent request for additional service. Note that the return probability,p(µ(Q1)), depends on

the service rate of the customer at discharge: when speedup is used, the return probability increases. LetpL

andpH (pH > pL) denote the return probability during underloaded and overloaded periods:

p(µ(Q1)) =

{

pL , if Q1 <N
∗,

pH , if Q1 ≥N∗.
(2.2)

Thus, during their stay in the system, customers start in theNeedy state and then alternate between Needy

and Content states until they depart the system. When a customer becomes Needy and a server at Station 1

is available, he immediately begins service. However, if there are no available servers, customers must wait

in a queue for an available one. The queueing policy is FCFS (First Come First Served).

Remark 2.1 One could also consider return probabilities which depend on the mean congestion in Station

1 during service (e.g. to capture how much work was ‘sped-up’). Doing so would require substantial nota-

tional overhead to keep track of the congestion each customer experienced and we leave such exploration

for future work.

Remark 2.2 Note that in practice,Q2, which only tracks Content customers who eventually transition back

to the Needy state, may be an unobservable quantity since we usually do not know which customers will

return to service a priori. As such, we restrict our control to depend only onQ1.

The queueing system we analyze is a CTMC, which, under conditions for stability (to be described later),

has a long-term distribution. We can derive the equations for the equilibrium distribution (see Appendix

B) and numerically evaluate or use simulation to compute desired performance measures. However, these

methods fail to provide some insights into the behavior of the system, which a fluid analysis can.

2.2. The Fluid Model

In order to enable tractable analysis of the system dynamicsof our state-dependent system, we introduce a

deterministic fluid approximation to the stochastic model presented in Section 2.1. The fluid model is meant

to provide insight into the use of speedup (some of which is unintuitive, as will be seen in Section 4.2).
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We denote the fluid function of our queueing network byQ= {Q(t), t≥ 0}. HereQ(t) = (Q1(t),Q2(t)),

whereQ1 andQ2 are the fluid content of Needy and Content customers at timet. We derive the fluid formula

directly. We assume that arrivals and departures occur deterministically at the specified rates and also regard

the number of customers and servers as continuous quantities. Thus, the fluid arrives deterministically and

continuously at constant rateλ. Fluid is served in station 1 deterministically at rateµ(Q1)(Q1 ∧N), where

∧ denotes the minimum function so that(Q1 ∧N) is the number of occupied servers in station 1. Ap(Q1)

fraction of the fluid is transferred to station 2 after leaving station 1; the rest of the fluid exits the system.

The fluid in station 2 is served deterministically and continuously at rateδQ2. The service rate function,

µ(·), and the return probability function,p(·), are discontinuous in the amount of fluid content of the Needy

customers,Q1(t). These functions are given by (2.1) and (2.2), respectively.

The dynamics of our model can be captured by the following Ordinary Differential Equations (ODE)

with discontinuousright hand sides:

Q̇1(t) = λ+ δQ2(t)− 1{Q1(t)<N∗}µL(Q1(t)∧N)− 1{Q1(t)≥N∗}µH(Q1(t)∧N),

Q̇2(t) =−δQ2(t)+ 1{Q1(t)<N∗}pLµL(Q1(t)∧N)+ 1{Q1(t)≥N∗}pHµH(Q1(t)∧N).
(2.3)

This discontinuous ODE is discontinuous inQ, but continuous int. From (2.3), it is easy to see that the

derivative values,Q̇, which specify the flow dynamics are discontinuous atQ1(t) =N∗. We will analyze

the long-term behavior of this fluid system, i.e. the behavior ast→∞. Let q̄ = (q̄1, q̄2) be the long-term

values such that:

q̄ ≡ lim
t→∞

[Q(t)|Q(0) = q0]

Note that these limits may be infinite, may depend on the initial conditionq0, or may not exist. For notational

simplicity, hence forth we will omit the dependence on the initial condition and specify explicitly if the

limit depends on it.

2.3. Definitions

In our analysis of the long-term behavior of our fluid system,we will require a few definitions. Consider

a dynamic system that is dictated by the ODEq̇ = F (q), q ∈ Rn
+. In our system,n = 2 to capture the

Needy and Content customers. We denote byΦ(q0, t) the flow at timet, given initial conditionq0. Then,

the flow dynamics over time are defined at timet by: d
dt
Φ(q0, t) = F (Φ(q0, t)), Φ(q0,0) = q0. The system

is considered to be unstable if the fluid content of customersin the system grows without bound over time.

Formally,

Definition 2.1 Unstable SystemWe say that a system defined by the ODEq̇ = F (q) is unstableif for any

initial condition,q0:

lim
t→∞

[Q1(t)+Q2(t)]→∞
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In cases where the system is not unstable, we wish to examine the behavior of the system and assess

whether there is a limit to which the fluid system might converge to over time. The following definitions for

equilibria can be found in di Bernardo et al. (2008).

Definition 2.2 Equilibrium (or fixed point) A point q̄ is anequilibriumof the ODEq̇=F (q) if

Φ(q̄, t) = Φ(q̄,0), for all t.

The simplest form of equilibrium̄q is one that satisfiesF (q̄) = 0. Following di Bernardo et al. (2008),

we call apseudo-equilibriuman equilibrium that arises on the region of discontinuity inthe ODE (e.g. on

the switching boundaryΣ ≡ {Q : Q1 = N∗} of (2.3)). This type of equilibrium is an equilibrium since

a trajectory starting as that point will stay there, but it isdifferent from standard equilibria because the

derivatives may not be zero. This form of equilibrium happens when the forces that push the trajectory to

this point are equal from all directions. Technical detailsof pseudo-equilibria are given in the Appendix.

Note that even if an equilibrium,̄q, exists, it is not necessarily true that the system will converge to it as

t→∞. Moreover, the limiting behavior may depend on the initial conditionq0 ∈ R2
+ . Hence, we further

differentiate between types of equilibria. An equilibriumis calledLyapunovstable if trajectories starting

nearby to the equilibrium remain nearby for all time. This type of equilibrium is often referred to as a

Locally Stable Equilibrium. Without loss of generality, weassume the equilibrium is at the origin; that is,

Φ(0, t) = Φ(0,0) for all t.

Definition 2.3 (Lyapunov) Locally Stable EquilibriumThe origin is said to be (Lyapunov) locally stable

if for any ǫ > 0, there exists aδ > 0 such that if

‖q0‖< δ⇒‖Φ(q0, t)‖< ǫ, ∀t > 0

We refer to an equilibrium asGlobally Stableif for everystarting point it will converge to the same stable

equilibrium defined by Definition 2.3.

Definition 2.4 Globally Stable (in the sense of Lyapunov) EquilibriumThe origin is said to be globally

stable (in the sense of Lyapunov) if the following two conditions hold:

1. It is locally stable;

2. For all initial conditions,q0: limt→∞Φ(q0, t) = 0

Note that these definitions of stability do not mean that there exists at0 such thatQ(t) = q̄ for all t > t0.

They simply require that for everyǫ > 0, there exists at0 such that for allt > t0, Q(t) is within ǫ of q̄; in

the case of local stability this is only true if the trajectory starts close enough to the equilibrium. We will

actually see instances (for pseudo-equilibria) where the fluid oscillates with arbitrarily small fluctuations

around the equilibrium point. Finally, we remark that therecould exist long-term behavior which is not

captured by Definitions 2.1-2.4, e.g. a trajectory could remain finite, but not converge to any single state.
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3. A System Without Speedup

For comparison purposes, we first consider a system where speedup is never used. In this case, the fluid

equations can be simplified to:

Q̇1(t) = λ+ δQ2(t)−µL(Q1(t)∧N),

Q̇2(t) =−δQ2(t)+ pLµL(Q1(t)∧N).
(3.1)

This is the fluid model of an Erlang-R queue (Yom-Tov and Mandelbaum (2013)). The queues grow without

bound ifN < λ

(1−pL)µL
; otherwise, the system converges to a globally stable equilibrium, q̄. More formally:

Theorem 3.1 The dynamics of the fluid system described in(3.1)can be summarized as:

1. The system is unstable ifN < λ
(1−pL)µL

;

2. If N > λ

(1−pL)µL
, the fluid converges to the following globally stable equilibrium:

lim
t→∞

Q(t) = q̄=

(

λ

(1− pL)µL

,
λpL

(1− pL)δ

)

.

The proof of this result can be found in the Appendix. We note that ifN = λ
(1−pL)µL

, there are an uncount-

able number of equilibria. As an example, if the initial condition is such that(q0)1 ≥N and(q0)2 =
λpL

(1−pL)δ
,

then the fluid content stays at the initial condition, soQ(t) = q0 for all t.

4. Analysis of System Dynamics

In this section, we analyze the long-term dynamics of the fluid model presented in Section 2.2. The main

challenge is the discontinuity atQ1 =N∗. The long-term dynamics are highly dependent on system param-

eters for arrival rate, service times, and return probabilities as well as the control variable for when to begin

speedup,N∗.

To start, we leverage results from Filippov (1988) to establish the existence of a solution to our ODE.

Theorem 4.1 There exists a solution of the problem defined by the ODE(2.3) for any initial condition

q0 =Q(0)∈ [0,Qmax]× [0,Qmax] whereQmax <∞ is an arbitrary finite constant.

This is a result of Theorem 1 on page 77, Chapter 2, Section 7 ofFilippov (1988). The details of leveraging

this result can be found in the Appendix.

We define the following parameters, which will be useful in describing the system dynamics:

qL =

(

λ

(1− pL)µL

,
pLλ

(1− pL)δ

)

, qH =

(

λ

(1− pH)µH

,
pHλ

(1− pH)δ

)

, α=
(N∗ ∧N)− qH1

qL1 − qH1
. (4.1)

One can think ofqL andqH as the offered load at Station 1 and 2 under low and high occupancy dynamics.

This interpretation is clear when considering the system either i) alwaysworks under underloaded dynam-

ics and soneverspeeds-up (i.e. the system analyzed in Section 3) or ii)neverworks under underloaded

dynamics and soalwaysspeeds-up.
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We begin our analysis with the question of when our system is unstable. The proof is given in the

Appendix.

Theorem 4.2 The instability conditions for the fluid system in(2.3)are broken into two cases.

1. qH1 < qL1 .

• The system is unstable ifN < qH1 .

• The system is unstable ifN < qL1 andN∗ =∞ (i.e. speedup is never used)

2. qH1 ≥ qL1 .

• The system is unstable ifN < qL1 .

• The system is unstable ifN < qH1 andN∗ < qL1 .

We will show in Theorem 4.3 that when the conditions of Theorem 4.2 are not satisfied, the system will

converge to a finite equilibrium.

Note that the stability of the system depends on both system parameters(qH1 , q
L
1 ,N) and the decision

variable, i.e., the speedup threshold(N∗). Consequently, there are cases in which the system can be stabi-

lized only if speedup is applied (e.g. under Case 1 ifqH1 <N ≤ qL1 ); in such cases using speedup reduces

the offered load so that it is not necessary to acquire additional servers to ensure that the queues do not grow

without bound. On the other hand, there are cases where an otherwise stable system becomes unstable due

to utilizing speedup (e.g. under Case 2 ifN∗ < qL1 <N < qH1 ).

We now consider the long-term dynamics of our system. In the results which follow, we assume thatN

is large enough such that the queues in our system do not explode, i.e. the conditions of Theorem 4.2 are

violated. Moreover, due to the potential for an uncountablenumber of equilibria of our fluid equations (as

described in Section 3), we make the following assumption:

Assumption 4.1 The number of servers,N , is such that the effective system load is strictly less than1, i.e.

N >
(

qL1 ∧ qH1
)

.

We then consider how the various system parameters impact the system. In particular, we identify scenarios

where there is a unique, globally stable equilibrium as wellas other scenarios where there may be multiple

locally stable equilibria.

Theorem 4.3 GivenN andN∗ such that Assumption 4.1 holds and the conditions of Theorem4.2 are

violated, the long-term dynamics of the fluid system in(2.3) can be broken in two cases with additional

subcases:

1. qH1 < qL1

1.1 IfN∗ ≤ qH1 , thenqH is a globally stable equilibrium.
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1.2 If qH1 <N∗ ∧N < qL1 then(N∗, αqL2 +(1−α)qH2 ) is a globally stable pseudo-equilibrium.

1.3 If qL1 ≤N∗ ∧N , thenqL is a globally stable equilibrium.

2. qH1 ≥ qL1

2.1 qH1 <N

2.1.1 IfN∗ < qL1 , thenqH is a globally stable equilibrium.

2.1.2 IfqL1 ≤N∗ ≤ qH1 , thenqL andqH are locally stable equilibria. In addition, whenqL1 6= qH1 ,

then(N∗, αqL2 +(1−α)qH2 ) is a pseudo-equilibrium.

2.1.3 IfqH1 <N∗, thenqL is a globally stable equilibrium

2.2 qH1 ≥N > qL1 andN∗ > qL1 . ThenqL is a locally stable equilibrium and(N∗, αqL2 + (1−α)qH2 )

is a pseudo-equilibrium.

The proof follows by Filippov and Lyapunov techniques and isgiven in the Appendix. We demonstrate

the intuition behind the result for Case 1 via the phase portrait of each subcase withN∗ ≤ N (The case

for N∗ >N follows similarly). In Figure 2(a), we see the phase portrait when the equilibrium is atqH–the

arrows represent the magnitude and direction of the derivative at each state, while the solid lines represent

points where the derivative is zero in one of the dimensions.Hence, the trajectory of the queueing system is

pulled towards and along these lines. Figure 2(b) breaks down the phase portrait in Figure 2(a) to present a

clearer view of the relationship between the different parameters. The dashed lines are a virtual continuation

of the derivative lines. It is not necessarily the case thatq̇1 = 0 or q̇2 = 0 along these lines due to the fact that

the system dynamics change when crossing theN∗ threshold. If the dynamics did not change,qL, would

be an equilibrium. However, because of the change in dynamics due to the speedup threshold,qL is not

an actual equilibrium in this case. Thus, we refer toqL as aninadmissableequilibrium. Intuitively, when

Q1 <N
∗, the system does not speedup and the trajectory is attractedto the point,qL. Before reachingqL, the

number of Needy customers grows so thatQ1 ≥N∗ and speedup is used. At this point, the system dynamics

switch to the overloaded dynamics and the trajectory is attracted to the pointqH . BecauseN∗ ≤ qH <N in

Case 1.1, the derivatives atqH , q̇1 = q̇2 = 0. We thus refer toqH as anadmissiblepoint and can conclude it

is the equilibrium point of the system.

This intuition can be extended to Case 1.2 and 1.3. The stripped down phase portraits for these cases are in

Figure 3, which depict the pull of two points which attract trajectories:qL andqH . Each point represents the

equilibrium when the system never or always speeds up. The relationship betweenqL, qH and the speedup

threshold,N∗, dictates whether the equilibrium is atqH (Case 1.1),qL (Case 1.3), orN∗ in which case the

trajectories oscillate across the switching boundary between the speedup/no-speedup regions (Case 1.2).

Similar phase portraits can be generated for Case 2.

To understand the impact of different parameters on the equilibrium values, we use bifurcation diagrams.

Bifurcation diagrams are often used to show the possible long-term values (equilibria or periodic orbits) of
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Figure 2 Phase portrait for Case 1.1 (N∗

≤N ): Dark lines represent points where the derivative is zero in one of the dimensions.
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Figure 3 Phase portraits for Case 1.2 and 1.3 (N∗

≤N ).

a dynamical system as a function of a parameter which may dictate the system’s behavior. In our case, our

main interest is in understanding how the speedup threshold, N∗, affects the equilibria (in Section 5.2 we

will see cases where the long-term values are actually periodic orbits). To examine the influence ofN∗, we

assume that all other parameters, including the number of servers, are fixed. For consistency, we consider

the case whereN∗ ≤ N . The case ofN∗ > N follows very similarly, assuming Assumption 4.1 holds.

Figure 4(a) summarizes the equilibria for Case 1 as a function of N∗. The long-term number of Needy

customers,̄q1, increases withN∗, while the number of Content customers,q̄2, decreases withN∗. WhenN∗

is larger thanqL1 , no speedup is applied; whenN∗ is smaller thanqH1 , speedup is applied most of the time.

Finally, in the middle range (qH1 ≤N∗ ≤ qL1 ), speedup is applied a fraction of the time (therefore only some

of the customers will be sped-up). This graph demonstrates thatN∗ is not only the threshold of speedup,

but also the equilibrium of the system. From Theorems 3.1 and4.2, we recognize that, in Case 1,N > qL1
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guarantees the queue does not grow without bound irrespective of whether or not speedup is used. However,

by utilizing speedup, we can achieve a long-term backlog ofq̄1 < q
L
1 and maintain finite queues withfewer

servers. Hence, in Case 1, utilizing speedup (i.e., reducingN∗) increases access to service by reducing the

overall workload on Station 1, despite the increase in readmission likelihood.

Figure 4(b) summarizes the equilibria for Case 2.1 as a function of the parameterN∗. In this case, both

the number of Needy and Content customers is higher when utilizing speedup compared to never using it.

While speedup may seem like a reasonable action to take during periods of congestion, it is a myopic action

which can exacerbate congestion issues in the long run. Hence, unlike Case 1, it isundesirableto utilize

speedup as it can increase the overall load on Station 1, which is already congested.
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Figure 4 Bifurcation diagram as the speedup threshold,N∗, varies.

At the extremes (high/lowN∗) when speedup isalwaysor neverused, the basic insights from Case

1 and Case 2 are not surprising. However, because systems mayelect to operate at intermediary values

where speedup is used some of the time (Case 1.2 and Case 2.1.2), it is important to further understand the

dynamics in these regions.

4.1. Case 1.2: qL

1
> qH

1

We now discuss a number of interesting insights which can be extracted by our analysis of Case 1.2. Recall

that in this case, speedup can increase access to service.

We first examine the impact of the number of servers,N , on the system dynamics. Fix an occupancy

threshold,0≤ r at which speedup begins; hence,N∗ = rN . Figure 5 demonstrates the long-term behavior

as we vary the number of servers, but maintain the speedup threshold atN∗ = rN . This introduces an

interesting phenomenon where adding more servers does not seem to reduce congestion. More specifically,

as the number of servers,N , increases, the occupancy level at Station 1,Q1/N , remains atr. This is because
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N∗ is not only the threshold of speedup, but also the resulting equilibrium of the system. Hence, Station

1 still seems ‘busy’ even with the addition of servers. Though adding servers doesn’t appear to reduce

congestion, it does result in fewer customers who are sped-up. Our analysis suggests that large additions

may be required before there will be any noticeable change inoccupancy levels.
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Figure 5 Bifurcation diagram of Case 1 as the number of servers,N , varies; Speedup begins at occupancy levelr ≤ 1. (The

diagram is similar forr > 1.)

We now delve further into the behavior of the system in Case 1.2, where it oscillates frequently between

overloaded and underloaded regions. Note that these fluctuations are arbitrarily small such that the fluid

state remains close to the globally stable pseudo-equilibrium. Hence, while the derivatives are non-zero, the

system is arbitrarily close to the equilibrium point. As a consequence of the proof of Theorem 4.3, we can

establish the proportion of time spent in overload and underload when the system oscillates between these

two regions.

Corollary 4.1 If the fluid system is stable andqH1 ≤ N∗ ∧N ≤ qL1 , then the proportion of time the fluid

process spends speeding up is given by:

lim
T→∞

1

T

∫ T

0

1{Q1(t)≥N∗} =
λ+ δq̄2 −µL(q̄1 ∧N)

(µH −µL)(q̄1∧N)
=
λ+ δ(αqL2 +(1−α)qH2 )−µL(N

∗ ∧N)

(µH −µL)(N∗ ∧N)
. (4.2)

This corollary is based on Filippov’s convex method (Filippov 1988) which provides expressions for the

proportion of time a trajectory spends above the switching boundary. This proportion–from the fluid model–

can be used as an approximation for the probability of speedup in our original stochastic model, i.e.

P (Speedup)≡P (Q1(t)≥N∗)≈ lim
T→∞

1

T

∫ T

0

1{Q1(t)≥N∗}
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(a) N = 50: P(speedup) as a function ofN∗
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(b) N = 150: P(speedup) as a function ofN∗
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(c) N = 50: Q1 as a function ofN∗
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(d) N =150: Q1 as a function ofN∗

Figure 6 Case 1 (qH1 ≤N∗

≤ qL1 ): Simulation vs. Fluid.

We simulate the long-term behavior of our original stochastic system and compare it to our fluid approx-

imation. Figure 6(a)-(b) shows the probability of speedup as we varyN∗ for both the simulation and the

fluid approximation. We use parameters which satisfy the criteria for Case 1: a) A small system withN =

50 servers andµL = .0164, µH = .0224, pL = .0667, pH = .0973, δ = .01611 and b) A large system with

N = 150 servers andµL = .01, µH = .02, pL = .5, pH = .6, δ = .01. We observe that for largeN the fluid

is very accurate; this accuracy degrades as the size of the system decreases and whenN∗ is close toqH1

or qL1 . This is due to the non-smooth dynamics of the fluid approximation whenN∗ is relatively large or

small. This phenomenon also arises when considering the expected number of Needy customers,E[Q1], as

seen in Figure 6(c)-(d). Upon further investigation, we noticed that the fluid model provides a more accurate

estimate for themodeof Q1, i.e. the most frequently observed value ofQ1. Q1 typically does not have a

symmetric distribution, soE[Q1] is not necessarily equal to the mode ofQ1. As the system gets larger, the

symmetry of the distribution increases, so the fluid approximation improves.

1 These parameters were inspired by an ICU application.
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(d) Steady state distribution ofQ1(t) andQ2(t) for N =

150.

Figure 7 Case 1 Simulation:qH1 ≤N∗

≤ qL1 .

We next examine the variation of our stochastic process withrespect to the fluid approximation. Figures

7(a) and 7(c) show a sample path of the system in Case 1.2, and Figures 7(b) and 7(d) show the long-term

distribution ofQ (using the same parameters as before for the small and large systems). In this case, the

equilibrium of the fluid model is exactlȳq1 = N∗. When considering the stochastic model, we observe

the distribution forQ1(t) has an unusual shape–similar to a bilateral exponential distribution–that is tight

around the thresholdN∗ and can be observed as rapid changes in the sample path. On theother hand,Q2(t)

exhibits the typical Poisson distribution (this is more visible in the larger system). The rapid changes in

Q1(t) suggest a very strongpull towards the equilibrium from above and below the equilibrium N∗ for

Needy customers. This observation suggests that the methodology considered in Perry and Whitt (2011),

which also observes tight drifts for a different queueing system, could be used to generate an approximation

for the distribution ofQ1.

4.1.1. Approximating Q under Case 1.2 Following ideas from Perry and Whitt (2011), we develop

an approximation to our original stochastic processQ1 while operating under Case 1.2 conditions. Such

an approximation provides insight into the behavior of the variation of the queue length process, which the
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fluid system does not allow. We develop the approximation as aheuristic. We consider an approximation

with a very simple structure: a two-sided birth-death process with constant rates on each side. Because

of this simple structure, we are able to easily derive approximations for the steady-state distribution of

Q1 as well as provide an approximation for the probability of speedup in our original stochastic model,

P (Q1 ≥N∗). While the approximation for P(speedup) from this approachis the same as the one developed

in Corollary 4.1 using the Filippov method for the fluid model, we now also have more detailed insight into

the distribution of the number of Needy customers in our original stochastic model than when considering

the results of the fluid analysis alone.

Define a CTMC process̃Q= (Q̃(t), t≥ 0)∈R. Letλ+ andµ+ be the birth and death rates ofQ̃(t) when

Q̃(t) ≥ q̄1 andλ− andµ− be the birth and death rates whenQ̃(t) < q̄1. Our approximation defines these

rates as:

λ+ = λ+ δq̄2

µ+ = µH(q̄1 ∧N)

λ− = λ+ δq̄2

µ− = µL(q̄1∧N).

(4.3)

Because of the constant birth and death rates, the processQ̃(t) evolves as an M/M/1 queue in each of the

regionsQ̃(t)≥ q̄1 andQ̃(t)< q̄1. This allows us to easily determine the steady state probability of being in

statei:

P (Q̃= q̄1 − 1) =

(

1− λ+

µ+

)(

1− µ−

λ−

)

1− λ+

µ+

µ−

λ−

P (Q̃= i) =











(

µ−

λ−

)−(i−q̄1+1)

×P (Q̃= q̄1 − 1) , if i < q̄1 − 1,
(

λ+

µ+

)i−q̄1+1

×P (Q̃= q̄1 − 1) , if i > q̄1 − 1,
(4.4)

The intuition behind this process construction is as follows: The stochastic processQ we are trying to

approximate, has state-dependent drifts depending on the number of customers in service; however, we

observed in Figures 7(c) that that number of Needy customersis almost deterministic and equal toq̄1 =N∗.

Hence, we remove the state-dependency and instead use constant drifts in the process̃Q, similar to a single

server queue rather than the N-server queue we are approximating. The death rates differ on each side

because of speedup; speedup is used whenQ̃≥ q̄1, while speedup is not used wheñQ< q̄1. As a result, the

rates ofQ̃ are the same as the processQ if the number of customers were fixedQ= q̄ = (N∗, αqL2 + (1−

α)qH2 ). This is irrespective of what the actual queue lengthQ is and allows us to derive simple expressions

for the distribution ofQ̃, as given in (4.4).

Previously, we used the fluid model to provide an approximation for the probability of speedup in our

original stochastic system. We now consider a different approximation approach, which uses the process
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Figure 8 Case 1: Simulation vs. Approximation based on Two-sided M/M/1 queue.

Q̃(t) to approximateQ1(t); thus, we measure wheñQ(t) is equal to or greater thanN∗. Therefore,P (Q1 ≥

N∗)≈ P (Q̃≥ q̄1) =
∑∞

i=q̄1

(

λ+

µ+

)i−q̄+1

×P (Q̃= q̄1 − 1) =
λ+

µ+

(

1−µ−

λ−

)

1−λ+

µ+
µ−

λ−

. Using (4.3), and noting thatλ+ =

λ−, gives:

P (speedup)=P (Q1 ≥N∗)≈
λ+ −µ−

µ+ −µ−
=
λ+ δq̄2 −µL(q̄1 ∧N)

(µH −µL)(q̄1∧N)
.

This is exactly the same approximation as from Corollary 4.1.

Figure 8 compares the steady state distribution of our approximation,Q̃, to the simulated distribution of

the original processQ1 in various cases. As expected, the fit is very good whenN∗ is such that we expect the

speedup probability should be close to 50%. As we deviate from that value ofN∗ (e.g., when the speedup

probability is close to 25% or 75%), the fit degrades. Earlier, we observed in Figure 4.1 that the fluid model

provides a very accurate approximation when P(speedup) is close to 50%, but its accuracy degrades asN∗

approachesqL1 or qH1 (equivalently, as P(speedup) approaches 0 or 1). We expect this inaccuracy to also

arise as we consider our approximation for the whole distribution for Q1. The fact that the shape of the

distribution is still quite accurate in the latter cases suggests that with improved approximations forq̄, the

approximation for the distribution ofQ1 could also improve.

4.2. Case 2.1.2: qL

1
≤ qH

1

We now examine the analogous scenario in Case 2–Case 2.1.2–and consider the insights our fluid analysis

provides for our original stochastic system. There arethreeequilibria in Case 2.1.2. However, the equilib-

rium (N∗, αqL2 + (1− α)qH2 ) is not stable. That is, if the fluid starts there, it stays there; however, even

small deviations in the initial conditions from the equilibrium will drive the system away from it. Hence,

it is unlikely to be observed in our original stochastic system. The other two equilibria,qH andqL, are

locally stable. Hence, whether speedup can alleviate congestion at Station 1 or whether it will lead to worse

congestion resulting in perpetual overload (even if the system could be operated in underload without using

speedup) will depend on the initial condition. In the stochastic model, the behavior of the queues will depend

on the distance betweenqH andqL. If they are very far from each other, the steady state of the stochastic
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system will primarily depend on the initial condition. By starting nearqL, speedup will not need to be used;

however, starting nearqH will require that speedup is always used. Even ifqL andqH are far away from

each other, there exists sample paths such that the number ofNeedy customers will increase (decrease),

thereby effectively increasing (decreasing) the system load and transitioning to stateqH (qL). For example,

a transition fromqL to qH may occur due to a ‘burst’ of arrivals. Because of stochasticfluctuations, it is

possible that the stochastic queue will oscillate betweenqH andqL. If these two equilibria are very far apart,

the transition times in the stochastic system could be very long–long enough that such transitions are never

observed in practice. However, if the equilibria are close to one another, small bursts will be sufficient to

cause the stochastic system to transition and so it may oscillate between the two equilibria frequently. As

an example, we chose to demonstrate a scenario where both locally stable equilibrium coexist.

Figure 9(a) presents a sample path of the stochastic stateQ(t) = (Q1(t),Q2(t)), under Case 2.1.2. We

observe shifting from one equilibrium to the second one in the middle of the run, after approximately 220

days2 . The system begins around theqL equilibrium and shifts to theqH equilibrium. When examining the

distribution ofQ(t) in Figure 9(b), we observe the two equilibria atqL = (24,9.6) andqH = (40,54.4).

Interestingly, there is another peak atQ1 =N∗ = 35. This peak does not indicate the pseudo-equilibrium,

but rather is a product of the system shifting from one regionto the next. During the transition, when the

fluid flow encounters the switching boundaryΣ (whereQ1 = N∗), the flow slides along the switching

boundary. Therefore, for a significant part of the time,Q1 is constant and equalN∗, whileQ2 changes. This

behavior is described as asliding modein the dynamical systems literature and occurs whenµL(N∗∧N)−λ

δ
≤

Q2 ≤
µH (N∗∧N)−λ

δ
, which corresponds to18.4 ≤ Q2 ≤ 46.4 in our example. More details can be found

in the Appendix. While this sliding motion is a phenomenon ofthe fluid system, we can see that it still

provides important insight into the behavior of the stochastic system.

The fluid analysis allowed us to identify these two operatingmodes. Gibbens et al. (1990) also used fixed

point analysis of a deterministic system to demonstrate theexistence of bi-stability, albeit in communication

networks without feedback. Recognizing such behavior can exist will help avoid poor speedup decision

making.

5. Model Extensions

Thus far, the focus of this work has been on the model presented in Section 2. We now consider a number

of extensions to our stylized model which capture additional dynamics which can arise in various service

settings. In particular, we look at the impact of including prioritization of customers and time-varying arrival

rates. In both cases, we find that, although one can garner some additional insights from analyzing these

extensions, the primary insights from our original analysis carry over to these extended models.

2 The timing for such shift is unpredictable: we have simulation runs where the shift occurs within a few days and others which take
much longer.
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Figure 9 Case 2.1.2 Simulation.

5.1. New Versus Return Customers

In this section, we consider differentiating between return and first time customers. Return customers may

warrant higher priority in order to limit the total time customers spend in the system (e.g. Huang et al.

(2012)). In addition, their service rates may differ, as seen in Durbin and Kopel (1993). We now examine

the dynamics of our queueing model where the service rates and return probabilities depend, not only on

congestion, but also on whether the customer is new versus returning. We assume that returning customers

have preemptive priority over new customers. Again, we use fluid analysis to generate insights about our

stochastic model.µF,L (µR,L) denotes the service rate for first-time (return) Needy customers when the

system is considered underloaded, whileµF,H (µR,H ) represents the same when the system is considered

overloaded. Similarly,pF,L (pR,L) denotes the probability of return for first-time (return) Needy customers

when the system is considered underloaded, whilepF,H (pR,H) represents the same when the system is

considered overloaded. Denote byQF
1 andQR

1 the fluid content of first-time and return Needy customers,

respectively. Thus, whenQF
1 +Q

R
1 ≥N∗, the system is considered overloaded and speedup is used. Because

we give preemptive priority to return customers, capacity will first be allocated to them (QR
1 ∧ N ); any

remaining service capacity,(N −QR
1 )

+, is allocated to the first-time Needy customers. The modifiedODE

under consideration is now:

Q̇F
1 = λ− (QF

1 ∧ (N −QR
1 )

+)[µF,L1{QF
1
+QR

1
<N∗} +µF,H1{QF

1
+QR

1
≥N∗}],

Q̇R
1 = δQ2 − (QR

1 ∧N)[µR,L1{QF
1
+QR

1
<N∗} +µR,H1{QF

1
+QR

1
≥N∗}],

Q̇2 = −δQ2 +(QF
1 ∧ (N −QR

1 )
+)[pF,LµF,L1{QF

1
+QR

1
<N∗} + pF,HµF,H1{QF

1
+QR

1
≥N∗}] (5.1)

+(QR
1 ∧N)[pR,LµR,L1{QF

1
+QR

1
<N∗} + pR,HµR,H1{QF

1
+QR

1
≥N∗}]

For this model, we utilize numerical approaches as the increased complexity of this model introduces

additional challenges making it cumbersome to employ the generalized Lyapunov analysis used to prove
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Figure 10 Simulation: New Versus Return Customers.

Theorem 4.3. Similar to our original model, we find that this extended fluid model also has two cases: one

with a single globally stable equilibrium and another with bi-stability.

We translate the insight generated from the numerical analysis of the fluid model to a stochastic model via

simulation of a system withN = 45 servers and speedup thresholdN∗ = 35. We use the following param-

eters in this example:µF,L = .01, µF,H = .02, µR,L = .015, µR,H = .02, pF,L = .05, pR,L = .06, pF,H =

.7, pR,H = .85;λ= .15, δ = .0125. Figure 10 shows the result of a single trace of this extendedmodel. We

see there exists a bi-stability effect in which the system transitions, after nearly 5 months, from a ‘bad’

equilibrium, where the system is always under speedup, to a ‘good’ equilibrium, where speedup is hardly

used. Note that under the ‘good’ equilibrium, most of the customers arenewcustomers and there are very

few return customers; however, under the ‘bad’ equilibriummost of the customers arereturningcustomers.

Similar to our original model in Section 2, we see that in thiscase, utilizing speedup can result in even more

congestion. We see again that when such a bi-stability exists, other mechanisms, such as admission control,

may be more effective in navigating periods of high congestion.

5.2. Time Varying Arrivals

Another marked property of service systems is that customers arrivals are often time-varying (e.g.

Gans et al. (2003), Green et al. (2006), Yom-Tov and Mandelbaum (2013)). We now explore the implica-

tions of having time-varying arrivals.

As discussed in Yom-Tov and Mandelbaum (2013) for a closely related queueing system (with returns

but no speedup), the impact of time-varying arrivals depends on the relationship of the period and amplitude

of the arrival rate versus the service duration. Time-variation can substantially impact the dynamics of

our queueing system, especially when the scale of the service time is long but of the same order as the
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time-variation. Here, we discover speedup control can sometimes smooth the time-variability. A complete

analysis of the time-variability case is beyond the scope ofthis paper and there is currently little theory to

support analysis of time-varying Filippov systems. Therefore, most of the observations we present here are

based on numerical and simulation analysis.

We now consider a queueing system with the same stochastic dynamics as the system described in Section

2, except that the arrival process no longer has constant rate. We now model the arrival rate as a nonhomo-

geneous Poisson Process with time-varying arrival rateλ(t). We again use fluid models to provide insight

for the stochastic model. Accordingly, we can modify our original ODE in Equation (2.3), to derive an ODE

to describe the fluid dynamics of this system with time-varying arrival rate as follows:

Q̇1(t) = λ(t)+ δQ2(t)− 1{Q1(t)<N∗}µL(Q1(t)∧N)− 1{Q1(t)≥N∗}µH(Q1(t)∧N),

Q̇2(t) =−δQ2(t)+ 1{Q1(t)<N∗}pLµL(Q1(t)∧N)+ 1{Q1(t)≥N∗}pHµH(Q1(t)∧N).
(5.2)

In our analysis of this modified system, we find the distinction between Case 1 and 2 still exists. In Case

1 we have a distinct solution to the ODE, while in Case 2, the system is quite chaotic (i.e. very dependent on

the specific starting point and the phase of the arrival rate). Hence, we concentrate on Case 1. In this case,

the solution may not be an equilibrium point as it was before,but could be an orbit, which is a periodic

function which the trajectory follows over time. This orbit, which we denote bȳq(t), is closely related to

the solution of a (time-varying) ODE which always or never uses speedup. We defineqH(t) as the solution

for the following ODE when speedup is always used.

q̇H1 (t) = λ(t)+ δqH2 (t)−µHq
H
1 (t),

q̇H2 (t) =−δqH2 (t)+ pHµHq
H
1 (t).

(5.3)

We similarly defineqL(t) as the solution for the ODE when speedup is never used. A complete analysis of

such an ODE is given in Yom-Tov and Mandelbaum (2013). If the arrival rate is periodic (as is the case in

many service systems),qH(t) andqL(t) are cyclic functions that exhibit similar time-variation which lags

after the arrival rate functionλ(t). This orbit’s period is the same as the period of the arrival rates, though

the phase is shifted. Since we are in Case 1, one can view neverusing speedup as a worst case scenario,

i.e. the average number of customers is the highest possible. In a sense,qL(t) is an upper bound for the

long term dynamics of our fluid system: consider two trajectories which start at the same initial point. One

follows the dynamics described by (5.3) while the other follows the dynamics described by (5.2). The fluid

content of Needy customers in the latter will always be larger. Hence,qL1 (t) is an upper bounding function

for q̄1. Similarly, qH1 (t) is a lower bounding function for̄q1.

We start by considering a sinusoidal arrival process:λ(t) = 148.5× (1 + 0.12 sin(2πt/f), t ≥ 0. The

periodf is 24 hours,µL = 1.474, µH = 2.018, pL = 0.667, pH =0.973, δ= 1.445,N =150. Using numeric

analysis, we find that in Case 1, the orbit functionq̄ is a function that during various points of its cycle
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(determined by the cycle of time-variability in the arrivalprocess) will follow either the upper bounding

function,qL(t), the lower bounding function,qH1 (t), or stay along the speedup threshold,N∗.

Figure 11 presents some typical fluid approximations and simulated sample paths of our stochastic system

under different threshold values. In Figure 11(a), the trajectory converges to the orbitqH(t) where speedup

is always used. Because of the periodic nature of the arrivalprocess, we see that the trajectory on the fluid

model follows a cyclic orbit with the same period as the arrival process. In Figure 11(e), the trajectory

converges toN∗. This is similar to the pseudo-equilibrium in Case 1.2 without periodic arrivals whereqH

andqL reside on opposite sides of the speedup threshold,N∗, so that the trajectory is pulled rapidly back

and forth makingN∗ an equilibrium. What is interesting in the case of time-varying arrival rates is that

this behavior creates a non-time-varying equilibrium,N∗. We see that using speedup improves access to

service at Station 1, by reducing the offered load. It also has another benefit in that it also has the power

to remove time-variation and smooth the occupancy level at Station 1. Thus, despite the fact thatλ(t) and,

consequently,qH(t) andqL(t) are periodic functions with a period of 24 hours, the fluid content of Needy

customers istime-invariantand fixed atN∗. Another possible trajectory of the fluid content is depicted in

Figure 11(d). The orbit function,̄q(t), can follow 2 of the trajectories: it followsqH(t), but when it hits the

speedup threshold,N∗, it stays there until the arrival rate falls again, at which point it returns to tracking

qH(t). Thus, there is some smoothing of the occupancy level at Station 1 (whenQ1(t) = N∗); however,

because the speedup threshold is higher than in Figure 11(e), it is not held constant for all time and the

trajectory exhibits some (but not all) of the time variationof qH(t). Figures 11(b)-11(f) present simulated

sample paths of the fluid systems depicted in Figures 11(a)-11(e). We see that the fluid approximation is

quite accurate in describing the time-varying system dynamics.

While we see some very interesting dynamics arise when incorporating time-variation into our model,

we focused on a numeric setting which allows us to observe thenuances. We also wish examine the impact

of time-varying arrivals in the ICU setting. In the ICU–unlike the ED setting in Yom-Tov and Mandelbaum

(2013) and Green et al. (2006)–the LOS is quite long comparedto the time variability. Specifically, the

arrival rate varies at the time scale of hours, while ICU LOS is typically 3-4 days, spanning a few arrival rate

cycles. Due to this discrepancy in the time scale of variation versus service time, Yom-Tov and Mandelbaum

(2013) suggests that the impact of time-variation is likelyto be small. We also find this to be true when

considering our system with speedup. In Figures 13(a) and 13(b), we present the fluid approximation and

simulated sample path ofQ1 using identical parameters as in Figures 7(a) and 7(b), except the arrival rate is

according to the empirical time-varying arrival rates depicted in Figure 12. We observe the system still varies

around the chosen threshold and it is difficult to ascertain substantial differences from Figure 7(a). While

we find that in this setting incorporating daily variabilitydoes not significantly alter the system dynamics,

we can see in the previous analysis that the dynamics can change dramatically when incorporating time-

varying arrivals. We leave further exploration of this typeof time-varying, state-dependent queueing system

for future research.
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(e) Equilibrium isN∗ (r=0.62): Fluid
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Figure 11 Fluid approximations and sample paths for time varying arrivals with different threshold under Case 1 conditions.
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Figure 13 Time-varying ICU: Fluid approximation and sample path.

6. Conclusions

In this work, we consider a queueing model where service rates and return probabilities increase when the

system is overloaded. We analyze the dynamics of this state-dependent queueing model to gain insight into

the impact speedup and returns have on system dynamics. The model presented here provides insights into

the pros and cons of using speedup in a service system where customers may return to service.

We find that there are two main parameter regimes which define whether speedup can be a beneficial or

detrimental operational tool to help alleviate temporary congestion. Such analysis provides tools to enable

practitioners to assess the potential benefits and pitfallsof different speedup policies. We find that in some

cases speedup can be beneficial to help alleviate congestion. In such situations, the amount of congestion

and frequency of speedup can be specified via the speedup threshold,N∗. In other cases, the use of speedup

can exacerbate congestion. Moreover, an interesting bi-stability can arise, which demonstrates the potential

problems associated with using speedup.

We demonstrate via simulation that the fluid approximation to our state-dependent queueing system can

be very accurate. However, there are scenarios where the accuracy suffers–particularly in small systems

and/or when speedup is used around 25% or 75% of the time. In this work, we derived the fluid directly.

Establishing a proof of the limit in a Functional Weak Law of Large Numbers sense introduces several

technical challenges due to the discontinuity of the ODE. However, it would be useful to be able to show

such a result. Additionally, it would be interesting to consider refinements to the fluid approximation.
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Finally, we consider two important extensions for our model: i) differing dynamics for new and returning

customers and ii) time-varying arrivals. This analysis provides some additional insights, but also suggests

that our original stylized model has value in shedding lighton the much more complex reality. We observe,

for example, that in the ICU application one need not explicitly consider time-varying dynamics. Instead,

may draw important conclusions on the impact of using speedup from the time-stationary model. Neverthe-

less, we find the time-varying dynamics can be very interesting in it’s own right and plan to investigate it

further in future work.
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Appendix

A. Miscellaneous Proofs

PROOF OFTHEOREM 3.1:

1. We begin with the instability result. Recall for instability, we must have the total fluid content of jobs

in the system grow without bound. That is, we considerQT =Q1 +Q2. The dynamics ofQT can be

summarized as:

Q̇T = Q̇1 + Q̇2 = λ− (1− pL)µL(Q1 ∧N).

If the system is unstable, thenlimt→∞
QT (t)

t
> 0. We integrate and solve forQT (t). We have:

lim
t→∞

QT (t)

t
= λ− (1− pL)µL lim

t→∞

1

t

∫ t

0

(Q1(τ)∧N)dτ

≥ λ− (1− pL)µL lim
t→∞

1

t

∫ t

0

Ndτ (A.1)

= λ− (1− pL)µLN > 0 if N <
λ

(1− pL)µL

2. For the stability and equilibrium result, we first show that q̄=
(

λ
(1−pL)µL

, λpL
(1−pL)δ

)

is a globally stable

equilibrium. The stability result follows from the finiteness ofq̄. To show global stability, we use the

following Lyapunov function:

V (Q) = |Q1 − q̄1|+ |Q2 − q̄2|

We must show that for allQ 6= q̄, V̇ (Q)< 0. To do this, we must examine a few cases:
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(a) Q1 > q̄1,Q2 > q̄2.

V̇ (Q) = Q̇1 + Q̇2 = λ− (1− pL)µL(Q1 ∧N)<λ− (1− pL)µLq̄1 =0

(b) Q1 < q̄1,Q2 < q̄2.

V̇ (Q) =−Q̇1 − Q̇2 = −λ+(1− pL)µL(Q1 ∧N)<−λ+(1− pL)µLq̄1 = 0

(c) Q1 > q̄1,Q2 < q̄2.

V̇ (Q) = Q̇1 − Q̇2 = λ+2δQ2 − (1+ pL)µL(Q1 ∧N)<λ+2δq̄2 − (1+ pL)µLq̄1 =0

(d) Q1 < q̄1,Q2 > q̄2.

V̇ (Q) =−Q̇1 + Q̇2 = −λ− 2δQ2 +(1+ pL)µL(Q1 ∧N)<−λ− 2δq̄2 +(1+ pL)µLq̄1 = 0

(e) Q1 = q̄1,Q2 > q̄2.

V̇ (Q) = Q̇2 = −δQ2 + pLµL(Q1 ∧N)<−δq̄2 + pLµLq̄1 = 0

(f) Q1 = q̄1,Q2 < q̄2.

V̇ (Q) =−Q̇2 = δQ2 − pLµL(Q1 ∧N)< δq̄2 − pLµLq̄1 =0

(g) Q1 > q̄1,Q2 = q̄2.

V̇ (Q) = Q̇1 = λ+ δQ2 −µL(Q1 ∧N)<λ+ δq̄2 −µLq̄1 = 0

(h) Q1 < q̄1,Q2 = q̄2.

V̇ (Q) =−Q̇1 = −λ− δQ2 +µL(Q1 ∧N)<−λ− δq̄2 +µLq̄1 = 0

�

A.1. Proofs for Discontinuous Ordinary Differential Equat ions

Our system is a piecewise-smooth set of ordinary differential equations. As such, it fits in to the frame-

work of Filippov (1988). In our analysis, we use Lyapunov techniques as well the methods outlined in

di Bernardo et al. (2008).
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Primitives

To begin, we represent our dynamic system by the following differential equation using the Filippov convex

method. More details of this method can be found in di Bernardo et al. (2008) and Filippov (1988). The

basic premise is to divide the state space into regions wherethe ODE is smooth and continuous in order

to leverage existing results of smooth dynamical systems. Aseparate region, the switching boundary3 is

defined as the states of discontinuity in the ODE. The approach is to transform the differential equation into

a differential inclusion, where the differential function is now a set-valued function. Additionally, Filippov

(1988) proves that solutions to the original discontinuousdifferential equation coincide with solutions to

the appropriately defined differential inclusion. In what follows, we will discuss first how to transform

Equation (2.3) into the appropriate differential inclusion. Next, we will demonstrate the desired results for

the differential inclusion, which will imply the result holds for the original differential equation. Note that

in our case, the differential equation (and subsequently the differential inclusion) does not depend ont, but

only onQ.

To start, we separate the state space,R2
+ into two regions,DL andDH , and the switching boundary,Σ,

between them as follows:

DL = {Q :Q1 <N
∗}

DH = {Q :Q1 >N
∗}

Σ= {Q :Q1 =N∗}.

In the regionsDL andDH , the ODE is smooth. However, the ODE is discontinuous at the switching

boundaryΣ. The Filippov methodology overcomes this by transforming the differential equation into a

differential inclusion by using a convex combination of thesmooth flows defined inDL andDH on the

switching boundary,Σ. We define the fluid functionFi(Q),Q∈Di, as the smooth ODE in these regions:

FL(Q) =

(

λ+ δQ2 −µL(Q1 ∧N)

−δQ2 + pLµL(Q1 ∧N)

)

, FH(Q) =

(

λ+ δQ2 −µH(Q1 ∧N)

−δQ2 + pHµH(Q1 ∧N)

)

.

Note that even though the ODE is non-differentiable atQ1 = N , as is customary, it is still considered

smooth, and not discontinuous, at this point. The real challenge comes at the switching boundary , i.e. when

Q1 =N∗. Now, our ODEQ̇= F (Q) can be represented via a Filippov ODE (a.k.a. a differentialinclusion):

Q̇∈F(Q) =







FL(Q) , if Q∈DL,
FH(Q) , if Q∈DH ,
{(1−ψ)FL(Q)+ψFH(Q)|0≤ψ≤ 1} , if Q∈Σ.

(A.2)

PROOF OFTHEOREM 4.1: We start by stating the existence result in Filippov (1988) in terms of our

notation. The result is for a differential inclusion; however, the Filippov method utilizes the fact that solu-

tions of the differential inclusion coincide with solutions of the original discontinuous differential equation.

3 The switching boundary is also often referred to as a discontinuity set, discontinuity boundary or switching manifold.
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Hence, if our differential inclusion satisfies the conditions of the following theorem, this will imply exis-

tence of a solution to our ODE (2.3).

Theorem A.1 (Theorem 1, Chapter 2, Section 7 of Filippov (1988)) LetF(Q) be a differential inclusion

that satisfies the following conditions in the domainG:

1. F(Q) is non-empty for allQ∈G.

2. F(Q) is bounded and closed for allQ∈G.

3. F(Q) is convex for allQ∈G.

4. The functionF is upper semicontinuous inQ.

Then for any pointq0 ∈G, there exists a solution of the problem

Q̇∈F(Q),Q(0) = q0.

We will consider the domainG= [0,Qmax]× [0,Qmax] for some arbitrary finite constant,Qmax <∞. Now,

we just have to demonstrate that the conditions hold for allQ ∈ G. It is easy to see that conditions 1-4

hold for allQ ∈ DL ∪ DH , as in these regionsF is a continuous real-valued function (rather than a set-

valued function). Thus,F(Q) is a single point, which is bounded above bymax{λ+δQmax, pHµH(Qmax∧

N)} and bounded below bymin{λ − µH(Qmax ∧N),−δQmax}. Any continuous function is also upper

semicontinuous, so the fourth condition follows.

It remains to show the four conditions hold for anyQ on the switching boundary,Σ. By the same

argument as forQ ∈ DL ∪ DH , F(Q) is bounded for anyQ ∈ Σ. By definition ofF in (A.2), F(Q) is

closed and convex forQ ∈ Σ as it is a convex combination ofFH andFL. Since both of these functions

are non-empty, so isF . Finally, to showF is upper semicontinuous onΣ, we need to show thatF is

upper semicontinuous for everyQ ∈ Σ. The set-valued functionF : Σ → Y ⊂ R2
+ is upper semicontin-

uous at a pointQ ∈ Σ provided that for each open setV in Y containingF(Q), there is an open setU

in Σ containingQ such that ifQ′ ∈ U , thenF(Q′) ⊆ V . By the definition of the inclusion, for anQ ∈

Σ,F(Q) = {(1− ψ)FL(Q) + ψFH(Q)|0≤ ψ ≤ 1}. Consider an open setV which containsF(Q): there

exists anǫ > 0, such that for everyf ∈ F(Q), f + ǫ ∈ V . Now by the continuity ofFH andFL, there

existsδ > 0, such that if|Q′ −Q|< δ, then|FH(Q)−FH(Q
′)|< ǫ/2 and|FL(Q)−FL(Q

′)|< ǫ/2. Thus,

|[(1−ψ)FL(Q)+ψFH(Q)]− [(1−ψ)FL(Q
′)+ψFH(Q

′)]|< ǫ for all 0≤ψ ≤ 1. Hence,F(Q′)⊂ V and

we have derived the necessary open setU = {Q′||Q′−Q|< δ}∩Σ (recall that the intersection of two open

sets is open.). This demonstrates thatF is upper semicontinuous inΣ. All conditions hold on the switching

boundary. Therefore, there exists a solution to the differential inclusion, and subsequently our ODE.

�

PROOF OFTHEOREM 4.2: We consider each of the two cases.

1. [qH1 < qL1 ]
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(a) We first consider the case whereN < qH1 . Similar to the instability proof of Theorem 3.1, we

consider the total number of jobs in the system and show thatlimt→∞
QT (t)

t
> 0. We have that:

Q̇T = Q̇1 + Q̇2 = λ− 1{Q1(t)<N∗}(1− pL)µL(Q1 ∧N)− 1{Q1(t)≥N∗}(1− pH)µH(Q1 ∧N)

We integrate both sides, divide byt and take the limit ast→∞:

lim
t→∞

QT (t)

t
= λ− lim

t→∞

1

t

∫ t

0

(Q1(τ)∧N)
[

(1− pL)µL1{Q1(τ)<N∗} +(1− pH)µH1{Q1(τ)≥N∗}

]

dτ

> λ− (1− pH)µH lim
t→∞

1

t

∫ t

0

(Q1(τ)∧N)dτ

≥ λ− (1− pH)µH lim
t→∞

1

t

∫ t

0

Ndτ

= λ− (1− pH)µHN >λ− (1− pH)µHq
H
1 =0

The first inequality comes from the fact that in this caseqH1 < qL1 , which implies that(1−pL)µL <

(1−pH)µH . The last inequality comes from the assumption thatN < λ
(1−pH )µH

= qH1 . Hence, the

system is unstable ifN < qH1 .

(b) We next consider the case whereN < qL1 andN∗ =∞ (i.e. speedup is never used). This is simply

the result of Theorem 3.1.

2. [qH1 ≥ qL1 ]

(a) We first consider the case whereN < qL1 . Using the same argument as before, we now have:

lim
t→∞

QT (t)

t
= λ− lim

t→∞

1

t

∫ t

0

(Q1(τ)∧N)
[

(1− pL)µL1{Q1(τ)<N∗} +(1− pH)µH1{Q1(τ)≥N∗}

]

dτ

≥ λ− (1− pL)µL lim
t→∞

1

t

∫ t

0

(Q1(τ)∧N)dτ

≥ λ− (1− pL)µL lim
t→∞

1

t

∫ t

0

Ndτ

= λ− (1− pL)µLN > 0

The first inequality is becauseqH1 ≥ qL1 . The last inequality comes from the assumption thatN <

λ
(1−pL)µL

= qL1 . Hence, the system is unstable ifN < qL1 .

(b) Now we consider the case whereN < qH1 andN∗ < qL1 . Again, we focus on the total workload in

the original system. We have that:

lim
t→∞

QT (t)

t
= λ− lim

t→∞

1

t

∫ t

0

(Q1(τ)∧N)
[

(1− pL)µL1{Q1(τ)<N∗} +(1− pH)µH1{Q1(τ)≥N∗}

]

dτ

> λ− lim
t→∞

1

t

∫ t

0

[

N∗(1− pL)µL1{Q1(τ)<N∗} + qH1 (1− pH)µH1{Q1(τ)≥N∗}

]

dτ

> λ− lim
t→∞

1

t

∫ t

0

[

qL1 (1− pL)µL1{Q1(τ)<N∗} + qH1 (1− pH)µH1{Q1(τ)≥N∗}

]

dτ

= λ− lim
t→∞

1

t

∫ t

0

λdτ = 0.
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The inequalities come from the assumptions thatN < qH1 andN∗ < qL1 . Hence, the system is

unstable.

�

PROOF OFTHEOREM 4.3:

Defining Equilibria points and the ODE flow. Our theorem distinguishes between seven cases and three

equilibria points. We start by identifying these points andthe conditions under which they arise as equilibria;

we then prove stability. To do so, we refer back to the primitives defined earlier for Filippov ODEs, which

transform the original ODE into a differential inclusion.

We start by examining each region,DH andDL. If the solution trajectory never leaves a regionDi once

it enters the region, then the solution can be characterizedwith standard methods for regular continuous

ODEs (Guckenheimer and Holmes (2002)). Therefore, we first define the equilibria ofFL(Q) andFH(Q).

That is, we consider the long-term behavior of a system with dynamics which are defined by the continuous

ODEFL(Q) (FH(Q)) across the entire state space in the case where speedup is never (always) used. We

assume there is no switching boundary or speedup threshold.By the methods of di Bernardo et al. (2008),

if a locally or globally stable equilibrium,̄qL (q̄H), of the continuous ODEFL(Q) (FH(Q)) is in DL (DH ),

then this directly translates into local stability ofq̄L (q̄H) in the original discontinuous ODE.

Lemma A.1 If qL1 <N , then the continuous ODEFL has a globally stable equilibrium atqL. If qL ∈ DL

andqL1 <N , thenqL is a locally stable equilibrium in the original discontinuous ODE defined in(2.3).

PROOF: The first part comes from Theorem 3.1. The second part is typical for piecewise-smooth ODEs and

follows from Guckenheimer and Holmes (2002) and our stability assumption. Intuitively, by the stability of

qL in the continuous ODE defined byFL, there exists a small ball aroundqL such that trajectories which

start within the ball will converge toqL and stay there. IfqL is in DL, then one can also select a small ball

aroundqL such that 1) trajectories which start within the ball will converge toqL and 2) the ball is entirely

contained inDL. Then, starting a trajectory in this small ball, but lettingthe system dynamics be defined

according to our original, discontinuous ODE in (2.3), the trajectory will stay in the ball, which means they

will stay in DL and follow the same dynamics as the continuous ODEFL, since it won’t hit the switching

boundary,Σ, or enter the other region,DH . Thus,qL is locally stable. �

Lemma A.2 If qH1 <N , then the continuous ODEFH has a globally stable equilibrium atqH . If qH ∈DH

andqH1 <N thenqH is a locally stable equilibrium in the original discontinuous ODE defined in(2.3).

PROOF: The results can be derived with the same techniques as in theproof for Theorem 3.1 and Lemma

A.1.

Lemma A.1 proves the existence of a locally stable equilibrium atqL in cases 1.3, 2.1.2, 2.1.3, and 2.2

becauseqL ∈ DL holds in these cases, as demonstrated for Case 1.3 in Figure 3. Similarly, Lemma A.2
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Figure 14 Example of a sliding motion.

proves the existence of a locally stable equilibrium atqH in cases 1.1, 2.1.1 and 2.1.2. We will later use

Lyaponov techniques to prove the global stability of these equilibria in the appropriate cases.

Next, we analyze the dynamics of the system on the switching boundary,Σ, and identify our third equi-

librium which lies in this space. To do this, we look at the forces on either side of the switching boundary.

Specifically, we look at the component ofFi normal toΣ, which we denote byLi. These measures are often

referred to as the Lie derivatives.

LL = λ+ δQ2 −µL(N
∗ ∧N),

LH = λ+ δQ2 −µH(N
∗ ∧N)

(A.3)

We have the following three cases to consider:

1. LL < 0 andLH < 0: a flow that hitsΣ will transition fromDH to DL. If the flow is already inDL, it

will stay inDL. BecauseµL <µH , for all
{

Q∈Σ :Q2 <
µL(N∗∧N)−λ

δ

}

, bothLL andLH are negative,

and the transition will be fromDH to DL;

2. LL > 0 andLH > 0: a flow that hitsΣ will transition fromDL to DH . If the flow is already inDH , it

will stay inDH . For all
{

Q∈Σ :Q2 >
µH (N∗∧N)−λ

δ

}

, bothLL andLH are positive, and the transition

will be from DL to DH .

3. LLLH < 0: a flow that hitsΣ will stay onΣ–potentially forever. The flow is said to be in asliding

mode, in whichQ1 is constant and equal toN∗ while onlyQ2 changes. Figure 14 illustrates an example

of a sliding mode flow whereN∗ = 200. If µL(N∗∧N)−λ

δ
≤Q2 ≤

µH (N∗∧N)−λ

δ
, we have thatLL < 0

andLH > 0, so then the ODE is in a sliding mode on the switching boundaryΣ. The importance

of this sliding mode is there could be an additional equilibrium inside the sliding set. This point is

typically not a fixed point in the standard sense since the ODEis non-zero at that point. However, it

is still an equilibrium by definition 2.2 because if a flow starts at that point, it stays there. In some

cases, this special equilibrium is a unique and stable equilibrium. We call this type of equilibrium a

pseudo-equilibriumas in di Bernardo et al. (2008).
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Definition A.1 We call a pointq̄ a pseudo-equilibriumif it is an equilibrium of the sliding flow, i.e. for

some scalar0< ξ < 1,

Fs = (1− ξ)FL(q̄)+ ξFH(q̄) = 0, q̄ ∈Σ (A.4)

Note the similarities to the Filippov ODE (A.2). When the convex combination is active in (A.2), i.e.ψ ∈

(0,1), there exists an equilibrium on the switching boundaryΣ andξ =ψ.

Lemma A.3 The point(N∗, αqL2 +(1−α)qH2 ) is a pseudo-equilibrium in Cases 1.2 and 2.1.2.

PROOF: Solving (A.4) yields

ξ =
λ− (1− pL)µL(N

∗ ∧N)

(1− pH)µH(N∗ ∧N)− (1− pL)µL(N∗ ∧N)
. (A.5)

We have that0< ξ < 1 if the following three conditions hold simultaneously:

(a) λ− (1− pL)µL(N
∗ ∧N)> 0 ⇒ N∗ ∧N < qL1 ,

(b) (1− pH)µH(N
∗ ∧N)− (1− pL)µL(N

∗ ∧N)> 0 ⇒ qH1 < qL1 , and

(c) λ− (1− pL)µL(N
∗ ∧N)< (1− pH)µH(N

∗ ∧N)− (1− pL)µL(N
∗ ∧N) ⇒ qH1 <N∗ ∧N .

These are exactly the conditions of Case 1.2, which means that in this case there exists a pseudo-

equilibrium on the switching boundaryΣ. Substitutingξ from (A.5) into (A.4) gives the resulting equilib-

rium: (N∗,
(N∗∧N)−qH1

qL
1
−qH

1

qL2 +
qL1 −(N∗∧N)

qL
1
−qH

1

qH2 ). We will show later that in this case this point is a globally stable

equilibrium. By definingα=
(N∗∧N)−qH1

qL
1
−qH

1

, we can express the equilibrium as(N∗, αqL2 − (1−α)qH2 ). Note

that under the above three conditions (Case 1.2)0<α< 1.

Another scenario where0< ξ < 1 is if the following three conditions hold simultaneously:

(a) λ− (1− pL)µL(N
∗ ∧N)< 0 ⇒ N∗ ∧N > qL1 ,

(b) (1− pH)µH(N
∗ ∧N)− (1− pL)µL(N

∗ ∧N)< 0 ⇒ qH1 > qL1 , and

(c) λ− (1− pL)µL(N
∗ ∧N)> (1− pH)µH(N

∗ ∧N)− (1− pL)µL(N
∗ ∧N) ⇒ qH1 >N∗ ∧N .

These are exactly the conditions of Cases 2.1.2 (forqL1 6= qH1 ) and 2.2, which means that in these cases there

also exists a pseudo-equilibrium on the switching boundaryΣ. Again this pseudo-equilibrium is(N∗, αqL2 +

(1− α)qH2 ). Experiments show that this point is not stable. If we start the system at that point it will stay

there, but very small changes from that point will bring us toone of the other two equilibria of the system.

�

Locally Stable Equilibria: Combining the results of Lemmas A.1, A.2, and A.3 yields our (Lya-

punov/local) stability results for Case 2.1.2 and 2.2, and the existence of the third equilibrium in case 2.1.2.

Globally Stable Equilibria : We continue by proving the global stability results (Cases1.1-1.3, 2.1.1, and

2.1.3). To show global stability in the sense of Lyapunov, weneed to identify a Lyapunov function and prove
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that forall Q ∈R2
+\{q̄}, the derivative of the Lyaponov function is strictly negative. We use the following

Lyapunov function:

V (Q) = |Q1 − q̄1|+ |Q2 − q̄2| (A.6)

whereq̄ is the specified equilibrium. We use the Filippov methodology as describe earlier, which redefines

the ODE as a differential inclusion so that on the switching boundary,Σ, is the convex combination of the

surrounding smooth ODEs in (A.2) forF(Q). We continue to use this definition of our ODE and utilize the

generalized Lyapunov theory for set valued functions. Using the approach in Shevitz and Paden (1994), we

need to show that the set value map for our generalized Lyapunov derivative is negative for all states not

equal to the equilibrium in order to establish global stability.

We have two cases to consider for our set value map, generalized Lyapunov derivative:

1. [Q1 6=N∗].

˙̃V (Q) =























V̇ (Q), Q1 6= q̄1,Q2 6= q̄2;
Q̇1, Q1 > q̄1,Q2 = q̄2;
−Q̇1, Q1 < q̄1,Q2 = q̄2;
Q̇2, Q1 = q̄1,Q2 > q̄2;
−Q̇2, Q1 = q̄1,Q2 < q̄2.

(A.7)

2. [Q1 =N∗]. In this case, the flow is on the switching boundary,Σ.

˙̃V (Q) =























ψV̇ L(Q)+ (1−ψ)V̇ H(Q),ψ ∈ [0,1], Q1 6= q̄1,Q2 6= q̄2;
ψQ̇L

1 +(1−ψ)Q̇H
1 ,ψ ∈ [0,1], Q1 > q̄1,Q2 = q̄2;

−ψQ̇L
1 − (1−ψ)Q̇H

1 ,ψ ∈ [0,1], Q1 < q̄1,Q2 = q̄2;
ψQ̇L

2 +(1−ψ)Q̇H
2 ,ψ ∈ [0,1], Q1 = q̄1,Q2 > q̄2;

−ψQ̇L
2 − (1−ψ)Q̇H

2 ,ψ ∈ [0,1], Q1 = q̄1,Q2 < q̄2.

(A.8)

whereV L andV H correspond to the Lyapunov function whenQ1 <N
∗ andQ1 >N

∗, respectively.

In what follows, we will use this generalized Lyapunov theory to prove the global stability in Theorem 4.3.

Due to the immense amount of algebra involved in this proof, we only include here the proof for Case 1.2

while noting the rest of the cases (1.1, 1.3, 2.1.1, and 2.1.3) will follow similarly. We need to show that for

all Q 6= q̄, ˙̃V (Q)< 0.

Case 1.2qH

1
< (N∗ ∧N)< qL

1
: Define the stability point as̄q = (q̄1(N

∗), q̄2(N
∗)) = (N∗, αqL2 + (1−

α)qH2 ), whereα =
(N∗∧N)−qH1

qL
1
−qH

1

. We will suppress the dependence on the control factor,N∗, for notational

compactness. Note thatq̄1 ∧N ∈ (qH1 , q
L
1 ) andq̄2 ∈ (qL2 , q

H
2 ). Moreover, by assumption 4.1,N > qH1 . There

are a number of subcases to consider within each of our two cases:

i. [Q1 6=N∗]

(a) Q1 > q̄1 =N∗,Q2 > q̄2.

˙̃V (Q) = V̇ (Q) = Q̇1 + Q̇2 = λ+ δQ2 −µH(Q1 ∧N)− δQ2 + pHµH(Q1 ∧N)

= λ− (1− pH)µH(Q1 ∧N)<λ− (1− pH)µH(q̄1∧ q
H
1 ) = λ− (1− pH)µHq

H
1 =0
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(b) Q1 < q̄1 =N∗,Q2 < q̄2.

˙̃V (Q) = V̇ (Q) =−Q̇1 − Q̇2 =−λ− δQ2 +µL(Q1 ∧N)+ δQ2 − pLµL(Q1 ∧N)

= −λ+(1− pL)µL(Q1 ∧N)<−λ+(1− pL)µLq
L
1 = 0

(c) Q1 < q̄1 =N∗,Q2 > q̄2

˙̃V (Q) = V̇ (Q) =−Q̇1 + Q̇2 =−λ− δQ2 +µL(Q1 ∧N)− δQ2 + pLµL(Q1 ∧N)

= −λ− 2δQ2 +(1+ pL)µL(Q1 ∧N)<−λ− 2δq̄2+(1+ pL)µL(q̄1 ∧N)

< −λ− 2δqL2 +(1+ pL)µLq
L
1 = 0

(d) Q1 > q̄1 =N∗,Q2 < q̄2

˙̃V (Q) = V̇ (Q) = Q̇1 − Q̇2 = λ+ δQ2 −µH(Q1 ∧N)+ δQ2 − pHµH(Q1 ∧N)

= λ+2δQ2 − (1+ pH)µH(Q1 ∧N)<λ+2δq̄2 − (1+ pH)µH(q̄1 ∧ q
H
1 )

≤ λ+2δqH2 − (1+ pH)µHq
H
1 = 0

(e) Q1 > q̄1 =N∗,Q2 = q̄2.

˙̃V (Q) = Q̇1 = λ+ δQ2 −µH(Q1 ∧N)<λ+ δq̄2 −µH(q̄1 ∧ q
H
1 )≤ λ+ δqH2 −µHq

H
1 =0

(f) Q1 < q̄1 =N∗,Q2 = q̄2.

˙̃V (Q) =−Q̇1 =−λ− δQ2 +µL(Q1 ∧N)<−λ− δqL2 +µLq
L
1 = 0

ii. [Q1 =N∗] We want to show that for allψ ∈ [0,1], ˙̃V (Q)< 0:

(a) Q1 = q̄1 =N∗,Q2 > q̄2.

˙̃V (Q) = ψQ̇L
2 +(1−ψ)Q̇H

2 = ψ[−δQ2 + pLµL(Q1 ∧N)]+ (1−ψ)[−δQ2 + pHµH(Q1 ∧N)]

< ψ[−δq̄2 + pLµL(q̄1 ∧N)]+ (1−ψ)[−δq̄2 + pHµH(q̄1 ∧N)]

< ψ[−δqL2 + pLµLq
L
1 ] + (1−ψ)[−δq̄2 + pHµH(q̄1 ∧N)] = (1−ψ)[−δq̄2 + pHµH(q̄1 ∧N)]

= (1−ψ)

[

pHµH(N
∗ ∧N)− δ

(

(N∗ ∧N)− qH1
qL1 − qH1

qL2 +
qL1 − (N∗ ∧N)

qL1 − qH1
qH2

)]

= (1−ψ)

[

pHµH(N
∗ ∧N)− δ

(

(N∗ ∧N)(qL2 − qH2 )− qH1 q
L
2 + qL1 q

H
2

qL1 − qH1

)]

= (1−ψ)

[

pHµH(N
∗ ∧N)−

(N∗ ∧N)(pL− pH)µLµH −λ(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

= (1−ψ)

[

pHµH(N
∗ ∧N)− (N∗ ∧N)

(pL− pH)µLµH − λ
N∗∧N

(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

< (1−ψ)

[

pHµH(N
∗ ∧N)− (N∗ ∧N)

(pL− pH)µLµH − λ

qH
1

(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

= (1−ψ)

[

pHµH(N
∗ ∧N)− (N∗ ∧N)

(pL− pH)µLµH − (1− pH)µH(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

=0, ∀ψ
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(b) Q1 = q̄1 =N∗,Q2 < q̄2.

˙̃V (Q) = −ψQ̇L
2 − (1−ψ)Q̇H

2 =ψ[δQ2 − pLµL(Q1 ∧N)]+ (1−ψ)[δQ2 − pHµH(Q1 ∧N)]

< ψ[δq̄2 − pLµL(q̄1 ∧N)]+ (1−ψ)[δq̄2 − pHµHq
H
1 ]

≤ ψ[δq̄2 − pLµL(q̄1 ∧N)]+ (1−ψ)[δqH2 − pHµHq
H
1 ] = ψ[δq̄2 − pLµL(q̄1∧N)]

= (1−ψ)

[

−pLµL(N
∗ ∧N)+ δ

(

(N∗ ∧N)− qH1
qL1 − qH1

qL2 +
qL1 − (N∗ ∧N)

qL1 − qH1
qH2

)]

= (1−ψ)

[

pHµH(N
∗ ∧N)− δ

(

(N∗ ∧N)(qL2 − qH2 )− qH1 q
L
2 + qL1 q

H
2

qL1 − qH1

)]

= (1−ψ)

[

−pLµL(N
∗ ∧N +

(N∗ ∧N)(pL− pH)µLµH −λ(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

= (1−ψ)

[

−pLµL(N
∗ ∧N)+ (N∗ ∧N)

(pL− pH)µLµH − λ
N∗∧N

(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

< (1−ψ)

[

−pLµL(N
∗ ∧N)+ (N∗ ∧N)

(pL− pH)µLµH − λ

qL
1

(pLµL − pHµH)

(1− pH)µH − (1− pL)µL

]

= (1−ψ)

[

−pLµL(N
∗ ∧N)+ (N∗ ∧N)

(pL− pH)µLµH − (1− pL)µL(pLµL− pHµH)

(1− pH)µH − (1− pL)µL

]

=0, ∀ψ

This concludes the proof for the global stability of Case 1.2. �

B. Markov Chain Performance Measures

P (Speedup)= π(0,0)

(

(1− ph)µh

(1− pl)µl

)T−1
∑

j

1

j!

(

λpl
(1− pl)δ

)j
(

N
∑

i=T

1

i!

(

λ

(1− ph)µh

)i

+
∞
∑

i=N+1

1

N !N i−N

(

λ

(1− ph)µh

)i
)

P (Wait > 0) = π(0,0)

(

(1− ph)µh

(1− pl)µl

)T−1
∑

j

1

j!

(

λpl
(1− pl)δ

)j ∞
∑

i=N+1

1

N !N i−N

(

λ

(1− ph)µh

)i

π(0,0) =

[

∑

j

1

j!

(

λpl
(1− pl)δ

)j
(

T−1
∑

i=0

1

i!

(

λ

(1− pl)µl

)i

+

(

(1− ph)µh

(1− pl)µl

)T−1 N
∑

i=T

1

i!

(

λ

(1− ph)µh

)i

+

(

(1− ph)µh

(1− pl)µl

)T−1 ∞
∑

i=N+1

1

N !N i−N

(

λ

(1− ph)µh

)i
)]−1

.

(B.1)
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