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In hospitals, Step Down Units (SDUSs) provide an intermetliatel of care between the Intensive Care Units (ICUs)
and the general medical-surgical wards. Because SDUssweitdly staffed than ICUs, they are less costly to operate;
however, they also are unable to provide the level of careired by the sickest patients. There is an ongoing debate in
the medical community as to whether and how SDUs should hek @seone hand, an SDU alleviates ICU congestion by
providing a safe environment for post-ICU patients beftwgytare stable enough to be transferred to the general wards.
On the other hand, an SDU can take capacity away from thedsir@eer-congested ICU. In this work, we propose a
gqueueing model of patient flow through the ICU and SDU in otdedetermine when an SDU is needed, what size it
should be, and what are the main drivers influencing thedsidas. Using first and second order analysis, we examine the
tradeoff between reserving capacity in the ICU for the maisical patients versus gaining additional capacity aehie

by allocating nurses to the SDU due to the lower staffing reguént. We find that under some circumstances the optimal
size of the SDU is zero, while in other cases, having a siz8& may be beneficial. Moreover, we identify two
parameters which play a prominent role in the SDU sizingsieni p, which captures the demand for SDU beds, and
which captures the supply gains by moving nurses to the S .ifisights from our work provide rigorous justification
for the variation in SDU use seen in practice as well as hgitwhich factors should be considered when making such

sizing decisions for critical care.
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Introduction

Step Down Units (SDUs) provide an intermediate level of ¢eveen the Intensive Care Units (ICUs) and

the general medical-surgical wards. These units, whiclkala@commonly referred to as intermediate care

units and transitional care units, are found in many, butatiphospitals in developed nations. Typically,

(nearly $82 billion annuall

with ICU beds occupying only 5-10 percent of inpatient behs

these units are staffed at a higher nurse to patient ratiodbaeral medical-surgical wards but not as high
as ICUs. ICUs care for the sickest patients and consume eogisgiionate share of total health care costs
01Gjctvamounts to 20-35% of total hospital costs

' Ie_s_2b04)). Con-

sequently, a voluminous literature in both the medical gperations communities exists that addresses the
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need to understand and improve how these units functionf@wamplel._Qha.lﬁnﬂLQQbJD._Qhan_elt al.
_2013L_), Kc and TerwiesJ;tl] (Zdli), Kim eﬂ all. (2])]5), Shm!m'IL_ZOOJB)). In contrast, very few studies

address these issues with respect to SDUs, despite thédacint hospitals that have them, the SDU plays

an important role in patient flow through the ICU.
The purpose of an SDU is to treat patients who are more sevanelhe typical ward patient, but who do
not require as intense monitoring as the most critical ICtiepés. The basic premise of having an SDU is

that it can both care for sicker patients and, at the same take pressure off the ICU, thereby resulting

in both better patient outcomes as well as increased eféigi@yri ' 95).
Despite this promise, there is high variation in the preseartd size of SDUs as the medical community
debates the use of these units. Our goal in this work is taifgehe main drivers which dictate how these
units should be sized.

Semi-critical patients who can be treated in the SDU can gdlgebe treated in the ICU without any
impact on their quality of care. Conversely, due to the los@iffing requirements in the SDU, critical
patients who are treated in the SDU will not be able to recieehigh level monitoring and care provided
in the ICU, resulting in substantial degradation of theialify of care. Hence, not only do ICUs provide
care for the sickest patients, they can also be considemdblt servers’ in the sense that they can also
treat moderately severe patients. However, largely dubadiigh nurse-to-patient ratio requirement, they
are more costly to operate than SDUs. In California, an IClédgally obligated to have at least one nurse
for every two ICU patients; in practice, many hospitals eperwith one nurse per patient. In contrast, SDUs
can be staffed anywhere from one nurse per two to four patiémparticular, the SDU can accommodate
more patients for the same number of nurses. This creatdsatdd¢radeoff between overall capacity gains
(SDU) for all critical patient severities versus maintagimore capacity for the most severely ill patients
(ICUL).

In theory, having a single large unit where the level of cdreaxch bed can be dynamically flexed up
or down would be more desirable than fixing the nurse allooats discussed in a recent opinion/survey

article hﬂn_c_enl_a.ndﬁub_eafJJQ_ZdIS). However, the authdrsit there is no evidence that such a solution is

better than separate units and implementing this largengjtbe practically infeasible at many institutions.

First, all the beds would need to be equipped and legallyfieerto provide critical care. If some of these
beds are only rarely, if ever, used in a critical care cagattits would incur unnecessary overhead costs.
Second, not having a dedicated unit for semi-critical pesievill likely result in critical patients receiving
priority in bed assignment over semi-critical patientshia large common unit. This would potentially lead
to higher than desirable levels of off-placement of sentieal patients. Third, nursing staff have been very
reluctant to adopt such a solution as they prefer to haved tépredictability during their shift, which
changing the level of care provided would not allow. Due te kigh stress required to provide critical

care, ICU nurses have the highest turnover. Implementinipfe staffing would increase dissatisfaction
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which could result in higher turnover and more medical esr&.@iLa.Qh_o_La_e_t_HL_ZQba. While a few hospitals
have tried to implement units with these flexible capala'd;itiachievini such benefits in practice has been

1) and related references). Unit

extremely challenging due to a number of logistical hurdées
reconfigurations typically occur once or twice a year, ifthappen at all. As such, we focus on the strategic
decision of nurse allocation to determine the fixed ICU antU$Bpacity.

While physical space, beds, or specialized equipment dmeittie constraining resource, in many cases,
nurses staffing is the bottleneck. For example, in Califgrdéespite availability of more physical beds, only

75% of adult ICU beds are staffed ) i ia id 3 anning & Development

). Thus, our primary focus will be on how to allecatirses between the ICU and SDU. Many
hospitals use critical-care nurses to staff the SDU k&ghEmpﬁLi_e_t_alll_(ZDJ)4l)ﬂ_tlﬁ.Ldj|r‘Jg_(2£$09)) in order to
ensure that the nurses are capable of dealing with any coatipins which could arise in the unit. However,
if a hospital (e.g. Aloe et $| 2009)) elected to use meescagical nurses in their SDU, allocating more

beds to the SDU would have an additional benefit (over capgains) of lower staffing costs. Because of

strict nurse-to-patient ratios, the number of nurses fiityates the number of beds and we will use the two
terms (nurse versus bed allocation) interchangeably.

Patient flows into SDUs can come from various sources. Féarieg, patients can be directly admitted
to an SDU from the Emergency Department if they are deemeditddfor the ward, but not so sick that
they require ICU care. Alternatively, some SDUs are use@émt-operative patients with fairly standard
recovery patterns, but who need additional monitoring aetient of complications due to surgery. While
the original intent of the SDU was to provide ‘Step-Down’ €dor patients post-ICU, patients are some-

times placed in the SDU prior to ICU care if the ICU is too cosige to immediately admit the patient.
ﬁ

These complex flow patterns make studying SDUs quite clgiltignA number of hospitals (e. al.

_199$) antk Eachempati et all. (2J)O4)) only admit post-ICUgpids into their SDU, while others allow dif-

ferent admission patterns as described above. In order ittairatractability and gain some insight into

the role of SDUs in the care of critical patients, we focus analytic model on the case where the SDU is
a true ‘Step Down Unit’ and patients are admitted only afteing discharged from the ICU. We will then

use simulation to examine how our insights translate to momaplex patient flow patterns.

One could consider utilizing a simulation study ( g 5)) to exhaustively search
over different possible ICU and SDU bed allocations. WHhiis tan provide useful prescriptive insight for a
specific hospital setting, simulation studies can obstedyipe of insights made possible via analysis of an
analytic model, which is what we focus on in this work. In itBmng important parameters which drive the
bed allocation and balking threshold decisions, we alswgigecan initial framwork for hospital administra-

tors to think about collecting data when making sizing deais for their own institution. Another approach

one could consider is to utilize Dynamic Programming (e.gstet al.|(2015)). Given the complexity of

bed allocation problenL_B_e_sl_e_tl 15) rely on heuristiltitions—this likely would also be required in
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our setting given the additional patient flow dynamics weiporate into our model. As such, we turn to a
gueueing model approach and rely on fluid and diffusion agprations to gain insights.

We introduce a queueing model of critical patients who artitv the ICU. If there is an available bed,
a patient will be treated immediately. If there is a long quef critical patients waiting for an ICU bed,
the patient will immediately balk and be sent for care at heothospital. Otherwise, he will be treated
in another hospital bed while waiting to be admitted to th& IT the wait is too long, the patient will
eventually recover and no longer need ICU care or, in the exis¢me case, die due to the long wait—-we
refer to such events as patient ‘abandonment’. A criticiepawho is admitted to the ICU will be treated
until reaching either a stable enough state to leave the3SOU/ system or a semi-critical state where he
can be treated in the SDU or stay in the ICU. To capture theli@attdemand pressures from sicker patients
can lead to patient discharges from the I(];U (Kc and Terwl@), we allow for semi-critical patients to
be bumped out of the ICU if a critical patient requires a bed.

The hospital’s objective is to determine the size of the SBDJ LU and the balking threshold in order
to minimize the costs associated with patient balking, dbament, holding in queue, and bumping. Cost
minimization and reward maximization formulations are coom in the healthcare literature (see for exam-

ple, Green etaLI. (ZOOLSJ), Chan elt MOJZ), Mills HﬂédMason etAI. 2014), Best eMI. (2})15),

) among others).

Our main contributions can be summarized as follows:

¢ We find that even under the optimal SDU sizing decisions, timabver of beds allocated to the SDU
is likely to be highly varied in practice. In particular, wedi there exist two operational regimes which
depend on the relative costs between lack of access fatadrdnd semi-critical patients. In one—the ICU
Driven (ID) regime-virtually all nurses are allocated te titU (so the SDU is very small or is of size zero),
and the system only incurs costs related to the bumping oi-eetical patients. While in the other—the
Capacity Driven (CD) regime—a significant number of nursesallocated to both units, and only costs
related to critical patients (balking, abandonment andihg)) are incurred.

e We identify main drivers which influence the joint sizing dgan of ICUs and SDUs. In particular,
we find two parameters which arise in our first and second adalysis of the optimal nurse allocation
between ICUs and SDUs. The first factor relates to the dema&dDuls, as captured by the proportion
of critical patients who become semi-critical, The second factor related to the supply of capacity, as
captured by the ratio between effective ICU capacity anelcgiffe SDU capacity;. These two factors arise
additively, suggesting they both have equal importanceflnencing the ICU and SDU sizing decision.

We find that optimizing the balking threshold is a second {ghér) order factor. As such, the tradeoff
between balking and waiting is a second order effect, whédradeoff between capacity for critical patients

(ICU) and overall capacity (SDU) is a first order factor.



e Via simulation analysis, we examine whether our insiglasgfate to a more complex model of patient
flow. We find that the solutions obtained from our first and seloarder approximations result in good out-
comes compared to an exhaustive search, despite our amalydiel not incorporating all patient dynamics.
This suggests that the main drivers of the unit sizing deniare robust to model specifications.

1.1. Literature Review

Our work is most related to three bodies of research: 1) naglitierature on ICU and SDU care, 2) work in

healthcare operations management on capacity and patienthtinagement, and 3) the queueing literature.
While there exists an extensive body of literature in the iceadcommunity on ICUs—there are multiple

journals, includincCritical Care andintensive Care Medicin@evoted to this topic—much less attention has

been directed towards SDUs. The majority of work related@$ has focused on the impact of SDUs on

ICU care. Though there may not be a general consensus astioenB®Us can be cost-effective for treating

semi-critical patient 98), there are abmurof studies focused on either specific ailments
or at individual institutions which suggest the presenca&n$DU can benefit patients. For instance, having
an SDU can reduce ICU length-of-stay (LOS) (Byrick {a_ldﬁ&his is intuitive because patients do not
have to reach as high a level of stability to be dischargemh fitee ICU to the SDU rather than the general

medical/surgical floor. In a study of patients with Acute Mgedial Infarction, the presence of an SDU was
shown to reduce cost by $1.5 million a year for the treatmépatents with moderate ris t al.
). Itis also argued there that high risk patients shoatde treated in the SDU.

There has been some work in operations management lookstgffihg in healthcare (e.g. Green et al.
200 II)), ngomr (2011), - um

2014)). Most of the prior work focuses on a single unit andehaot considered the impact of a step-down

unit. In recent work, Best et I (2(]15) takes a utilizatioaximization approach to partitioning hospitals
into different units. The focus is on how many beds to alle¢ateactypeof medical service in the general

ward. In contrast, we consider multiplevelsof care: the ICU and SDU. Chan . (2014a) also looks
at patient flows through the ICU and SDU, but takes an empidparoach to consider how SDU bed
availability impacts patient outcomes. In contrast, th®kwises a queueing approach to gain insights into
management of ICU and SDU capacity and patient flows in a siceméere increasing the capacity of
the SDU necessarily results in reduced ICU capacity. Indeedind scenarios where, due to this capacity

tradeoff, it is optimal to have no SDU. Recent wor Math Lon ;[(LOJS) uses a simulation model
to examine the role of an SDU in critical care. In contrast o work, the authors do not consider the
operational impact of proposed changes. As such, they fainéxample, that allocating all beds to the ICU
results in the best outcomes; however, they do not condidarded to hire additional nurses to enable such
a configuration.

In capturing the patient flow dynamics through an ICU and atUSe consider a modification to

the commonly used N-model queueing system (see Figure Il_@.m_@_all. 3)). The N-model arises



in our case due to the fact that the ICU consists of flexiblesbis@rvers), while the SDU does not.
In our setting, once a critical patient completes treatnfsetvice) in the ICU, he may transition into a
semi-critical patient who can be treated in either the ICLSBWU. This patient flow dynamic introduces
a feedback into our model, which is not captured by existinghddels. In various settings, a thresh-
old priority policy for routing patients to the flexible sens kB_elLandeﬂla[dSl_ZQ_&][Jezmn_and_l
[ZQILL I_G_ha_mammndJALel 12), and a generalized giority policy ( £.r_2604
Dai and nggAL_O_bé, Gurvich and Mmgb) have been showmnimize costs for the N-model in
heavy traffic asymptotic regimes. With the exception of nd Whi tl_(_Oj)S) ar{gj Gurvich and ﬂhltt

2010), in all of these works, prioritization and routingaafstomers is the primary concern. In contrast, in

the hospital setting, routing is largely dictated by mebiwgessity, so we focus on the question of staffing
and sizing of units while assuming that a prioritization aogting rule is given.
There is a rich literature on flexibility in queueing syste(esy. I_G_e_énl_(_QJSS pp et|a}._(&b04),

lLLaxLa.ﬂi_e_t_a'. MSWMW leb)I.lillﬁKhs_and_z llL(ZQIlZ)). An

important aspect discussed in this literature is how togiefie network topology (pairing, chaining, full

flexibility, etc.). Another focus is quantifying how to spthe resources between flexible and dedicated

servers. For example, there has been a series of recent wick wonsiders this question with respect to

tandem systemﬁmﬁmmm,wm& Our work is related

to this second category as we determine how to allocate tisesbetween the ICU (flexible) and the SDU

(dedicated). While we also look at a tandem system, the flateie exhibit different dynamics, such as
bumping, which arise in a hospital setting.
In developing an understanding of the hospital system, Wizauta number of analytic methods. To

start, we examine the system using fluid analysis M),W@Mom»,

that uses law-of-large-number principles to evaluate tarshs that are of the order of the arrival rate.

Next, we refine our analysis by using diffusion approximasias |rL Jagerm Lalj (147!4_1), Garnett M_L(JZOOZ)
[Ma.nd_elb_aum_a.nd_zgll ll]_QQIOSJD__KQ_Qaga_a.DdAJ\/JiLd_dZ010) evarage central-limit-theorem type results

to evaluate fluctuations about the fluid limit that are of orsiguare-root of the arrival rate. Through the
diffusion analysis, we establish a state-space collapsadtreimilar to| Gurvich and thtJ_(;O_Qba), albeit

for different dynamics in a different queueing system. (ddimese methodologies, we are able to evaluate

the average abandonment, holding, balking and bumping emst optimize the balking threshold and the
size of the units to minimize these costs. In our asymptaig\esis we take formal fluid and diffusion
limits of the nurse allocation problem and then analyze threesponding fluid and diffusion optimization

problems directly. Using simulations we demonstrate tfieaafy of the asymptotic solutions for the original

system. This approach is similar to the one takevl]_bng:la.LmnhZEﬂlr [(29_d4i_8uhm9_a.nd_z4\fla_(l)09),
[Kmammndmmmmn_eﬂe{uz&ns) M@m




2. Mode
Patient flows through the ICU and SDU can be very complex, satat by focusing on a streamlined
model in order to allow for tractability and to highlight theain factors which influence the optimal sizing
of these units. In Sectidd 5, we use simulation to examinethrgteour insights derived from our analytic
model extend to more general patient flow dynamics.

Similar to.Mathews and LQJ};_(A)IlS), we consider two posdielglth states for each patie@t:itical or
Semi-critical. If a patient is in the critical state, austbe treated in the ICU. Once the patient is admitted

to the ICU, the time he is physiologically considered to bé&hia critical state is exponentially distributed
with rate u. Once a patient is no longer in the critical state, he willdraee a semi-critical patient with
probability p; with probability 1 — p, he leaves the ICU/SDU system. Practically, this can cpmed to a
number of different situations, such as the patient beiagstierred to the ward, being discharged home,
or dying. Semi-critical patients can be treated in the SDUCh. Regardless of the type of bed, the time
a patient is considered to be semi-critical is exponentiditributed with rateus.. Note the recovery
pattern for all patients of a single type is homogenous aeséates specify ‘service times’, defined as the
expected time a patient is in a specific health state whemhetated in one of the units; these times do not
necessarily correspond to the time a patient is treatedyipparticular unit.

We consider the case where nursing costs are the bottleswale must determine how to allocate a fixed
number of N nurses. These nurses are flexible in the sense that they aarinveither the ICU or SDU.
While not all hospitals use critical-care nurses to staéf 8DU, many—such as that ['Ln_Ea.Qh_Qmpﬁli_Lt al.
_@)—do. In such instances, the costs for each nurseasiatle to the unit she is assigned. However,

if nurses without critical care credentials are used in tb&JSthe costs for SDU nurses would be lower
than that for ICU nurses. For safety reasons, a strict niorgtient ratio must be maintained in each unit.
Letr; (< rs) be the given number of patients each nurse can manage iICth¢3DU). Our goal is to
determine how to allocate nurses between the two units,iwikianalogous to determining the number of
ICU and SDU bedsB; andBs. Thus, the nurse allocation and bed capacity decisionsis@echangeable.

We assume that no additional nurses can be hired. This mieains t

B B
rr s

so that we allocate up t&/ nurses to the ICU and SDU while satisfying the nurse-togpatiatios. We
refer to any pail B;, Bs) of non-negative integers that satisfy (1) as a feasible badsé) allocation. As

critical-care is often a bottleneck in the hospih@Mb@H&nﬁM@MbﬁMom

we will assume there is ample space in the general medicgiesiiward. This will allow us to focus on

the flow of critical and semi-critical patients. In Appenfi-2, we consider the case where physical beds

are the bottleneck and find that many of our insights alsg/aarer.



See Figuréll as an example of an allocation of nurses amdregBEU and SDU. The nurse-to-patient
ratio—i.e. the maximum number of patients a nurse can tteaice—in the ICU ig; = 1 and in the SDU it
isrg = 3. There areV = 8 nurses who are allocated I8y = 6 ICU beds and3y = 6 SDU beds.

( ICU 1:1 W ( SDU 3:1 w
>
000000 oG

v

Figure 1 Nurses are depicted as circles, patients are depict ed at squares. Critical patients are served in the
ICU. A critical patient may become a semi-critical patient u pon finishing service in the ICU. semi-
critical patients are depicted in gray and are served in the S DU or ICU. One semi-critical patient is
currently being served in the ICU.

New critical patients arrive to the ICU according to a Poispoocess with rata. If there is space in the
ICU, the patient will begin treatment immediately. If théseno space in the ICU, he will wait in a virtual
gueue. For instance, the patient could wait for ICU admis&iothe Emergency Department (ED). This
queue has length of up t& € [0, oc|, which is a design parameter the system administrator naletts
Thatis, if a new critical patient arrives and there are alyel& critical patients waiting for ICU admission,
the new patient will balk and be sent to a different hospaatfre. A cost ofv5 is incurred for each critical
patient who balks from the queue.

Each critical patient in the queue incurs a holding cost wéte wZ to capture the undesirability of
making critical patients wait. This is undesirable in terofigatient care as well as operationally, as these
patients must be treated elsewhere—often in the ED, comgumany resources. If the critical patient waits
too long, he will abandon the queue after an exponential tivitle rate & and an abandonment cost of
w§ is incurred. Note that abandonment corresponds to a patigiting for ICU care and then eventually
rescinding the request after receiving care elsewhereyeging or dying. This is in contrast to balking
which occurs when a patient’s request for ICU care is imntetlidcancelled upon arrival. For tractability,
we use costs for patient balking, abandonment, and holdingpture the undesirability of lack of access
to ICU care. Other adverse events of patient wait, such ascaeadse in LOS{_(Q_ha.n_eﬂliL_Zil)l(i), could also
be considered.

If there is a semi-critical patient in the ICU and all ICU bexds occupied, he can be bumped out by an
incoming critical patient. If there is space for him in the$Qhis bumping comes at no cost. However, if



there is no space in the SDU, a current semi-critical patiéihtbe bumped to the general ward resulting

in costwgc. Our queueing model is depicted in Figlite 2. The *?’ in therégrepresents the assignment
decision for the semi-critical patient.

SDU

Wsc
A
eT :
N he P /p\
\./

l ICU -

v 4
Hsc Hsc

Figure 2 ICU-SDU queueing model: The ‘?’ represents the assi  gnment decision of a semi-critical patient.

Solid lines depict critical patient flows while dotted lines depict semi-critical patient flows.

Our objective is to minimize the long run average balkingdhmy, abandonment, and bumping costs.
These costs capture the impact of lack of access to caré.(ej andZs(t) denote the number of critical
and semi-critical patients in the ICU or SDU at time)(¢) denotes the number of critical patiemtaiting
in a (virtual) queue. We define a balking functiéfQ(¢)) : Z, — {0,1} as a function which specifies
whether a new arrival would enter the queue given queue he@gt). In particular, if Q(¢) > K, the
patient balks and = 1; if Q(¢) < K, the patient enters the queue ahe: 0. Y(Q(t), Zc(t), Zsc(t)) :
73 — {0, 1} is a function which specifies whether a semi-critical patieii be bumped given system state
(Q(t), Zc(t), Zsc(t)). Note that a patient cannot be bumped if he departs the sysittiout becoming a
semi-critical patient (either by balking, abandoning @vieg after completing ICU service). Additionally,
a patient cannot abandon if he balks upon arrival. Our ol thus to determine the balking threshold,
K, as well as to specify the number of ICU and SDU beds in orderitemize the following cost function:

Optimization Problem 1

T

xgin, limsup % /O [wWEN(Q(1) +wEQ(t) +wse (P Br A Ze ()] + N(Q(1), Zo (1), Zsc (t))] dt,

2)
Wherewg 2wl +wio, andA denotes the minimum function. The first compone@péorresponds to the
balking costs; the second component represents the quegth leosts, which is the sum of the holding plus
the abandonment costs; and the third captures the bumpisiig cbhe bumping costs depend on the decision
epochs when a semi-critical can be bumped: 1) when a crigatient becomes semi-critical, which occurs
atratepuc[Br A Zc(t)] and 2) when a new critical patient arrives.
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In this work, we examine a stylized model of patient flows tlgio the ICU and SDlJL_B;LLi_Qk_e_LLlLLIQSG)
found that having an SDU can reduce ICU LOS-this reductiotajstured by our service requirements

of critical and semi-critical patients. With an SDU, the mdaDS of a patient in the ICU will bé /¢

plus some additional time depending on if there is spacedrn@ to treat him while in the semi-critical
state. However, without an SDU, more semi-critical pasentll be treated in the ICU, thus increasing
overall ICU LOS. While there are some practical elementsmadel does not capture, such as external
arrivals to the SDU, readmissions, or treatment of critialents in the SDU, it does capture the essence of
the tradeoff between increasing capacity for all patiemesges versus maximizing capacity for the most
vulnerable patients. We will see this is a main driver in effeely managing ICUs and SDUSs. In analyzing
the patient flows described in this section, we can gain masights into the role of the SDU and, in
Sectior b, we find that they extend to a more general modeltardlows.

In considering the possible types of patient dynamics in system, we found a general consensus
amongst physicians we consulted with that critical patiexre typically given priority over semi-critical
patients in the ICU. In what follows, we will assume thatdtpriority is given to critical patients, so that
a semi-critical patient will be bumped out of the ICU if a nesitical patient needs the bed. Formally, we

make the following assumption throughout the paper:

Assumption 1 Critical patients obtain strict preemptive priority oveemi-critical patients in the ICU.

Note that Assumption 1 implies that a critical patient nebadks or queues if there are semi-critical patients
in the ICU.

2.1. Cost parameters

It is reasonable to assume the optimal policy will dependhendifferent cost parameter@@,wg, and
wsc. Our formulation allows foany quality metric—it could capture clinical costs such as thedecrease

in quality-adjusted life years (QALYS) or financial costgch as loss in revenue due to not treating a patient
in the ICU and/or the differences in reimbursement rategddimg on where patients are treated. We now
discuss a number of clinically relevant costs, which h@dpiare likely to consider when making decisions
surrounding ICUs and SDUs.

Mortality Risk: A natural cost metric is mortality. Specifically, there isreorisk of death associated
with each patient, even if the patient follows the ‘desiredte pathway. However, if a Critical patient is
unable to get ICU care and must wait, possibly so long he eedlgtabandons the queue, or is sent to
another hospital, then it is reasonable to consider howntlaig impact the patient’s nominal mortality risk.
Similarly, bumping a Semi-critical patient out of the SDU yriacrease the likelihood of death. In these
caseswg, wg andwgc could capture théncrease in mortality risidue to waiting/abandonment, balking

or bumping, respectively. Then, solving the optimizatisalgem in [2) would correspond to selecting the
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ICU and SDU sizes which would minimize the mortality rate oitiCal and Semi-critical patients. In some
practical settings, this cost metric may be too crude to beabfe as access to care is typically granted
for patients whose mortality risk would be significantly ieased. Thus, we also consider other clinical
measures of interest.

Readmission Risk: Another measure the medical community has focused on ismagadmissions,
and more specifically, the probability of readmission. Téust metric has clear clinical implications as

readmitted patients tend to be worse lgff (Durbin and d&@lglt also has operational implications as
readmitted patients will utilize ICU and SDU beds, which kcblbave been used for new patients.

For each of these clinical measures, the cost parame@mug and wgc would correspond to the
increase in mortality risk or readmission risk due to wajtabandonment, balking, or bumping. Then, solv-
ing the optimization problem i {2) would correspond to stiey the ICU and SDU sizes which would
minimize the number of corresponding adverse patient ouéso While a hospital administrator may wish
to focus on one clinical outcome, one could also considerighted sum and/or other potential cost mea-

sures.

3. Balancing capacity needswith capacity gains
We begin our analysis via a fluid modeling approach to exathi@eptimal allocation of nurses and balking
threshold given the balking, queue length, and bumpingrarstmeters. We find that the optimal allocation
of nurses can be characterized by a well-defined threshoidhwdaptures the balance between capacity
needs and capacity gains. The fluid analysis is based omgdak arrival rate and the number of beds
and nurses by/N and ignoring quantities that are of order that is less tNaThis way, we can focus on
the main drivers of the balking threshold and nurse allocatie begin by defining our fluid scaling. For
notational compactness, we omit the indexing @y N. Let\ := \/N, b, := B;/N,k:= K/Nfori=1,5
and note that by (1),

br + bs <1 (3)

T Ts
We say a functiorf (z) := o(x) if f(x)/x— 0asx — ccandf(x) :=O(x)if f(x)/x <c>0asz — oco.

The following proposition provides conditions such tha tluid costs are non-zero.

Proposition1 1. If TS:SC (p+ Tffffcc) < N, then there exists a feasible bed allocation and balking

threshold such that the total cost rate in Eq@) is o( V).
2. Otherwise, ifrsA <p+ Tsusc) > N, then for any feasible bed allocation and balking threshhbiel

Hrsc TIRC

total cost rate in Eqn(2) is at leastO(N).

It is easy to see that in scenario 1, settiig= co, B; = \/uc and B, = A\p/ s Will result in zero fluid
costs. As such, in order to focus on the more interestingsaafsgon-zero costs, we consider the case where

the following assumption is satisfied:
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Assumption 2 The system operates in overload. That is,

A <p—|— TS“”) > N. )

Tsisc Tric

The following proposition helps simplify the fluid analysigbstantially.

Proposition 2 Under Assumptiof]2 and under any optimal bed allocation, asehthat neither unit is
underloaded. Thatis, we have thatB;, Bs) is optimal, thenB; < \/uc+o(N)andBg < pBjuc/psc +
o(N).

The proof of the proposition follows simply by observingthaither of the units is underloaded, one could

strictly improve the cost by transferring nurses to the othrat.

Corollary 1 Under Assumptioh]2, the number of ICU beds occupied by seticat patients under the

optimal allocation iso(N).

The implications of this corollary is that the interacticgtlveen the two units is minimal at the fluid scale
in the sense that the patient types are effectively treadesbparate units, and the system reduces to two

gueues in tandem with zero buffer in front of the second queue

3.1. Balking Threshold
In this section we consider an arbitrary nurse allocatiod simow that, in the fluid scaling, the optimal
balking threshold is eitheso or 0, independent of this allocation. In determining theiropt fluid-level
balking thresholdk*, we must consider two cases depending on a relationshipelketihe abandonment
rate, the balking cost and the queue length cost.

e Queue-Dominated Case (wg?/e < wk): Because the queue length cost is less than that of balking, it
is easy to see that patients should never balk. By allowitd edtical patient into the system, at worst,

he will wait and abandon, incurring expected co$t/6, rather than the larger? if the patient is blocked

upon arrival. Indeed, following Proposition 1 L ) we have that, in this cagé = cc.

e Balking-Dominated Case (w& /0 > w5): We letGuay = (A — pcb;) /0 > 0 denote the maximum queue
length on the fluid scale if balking were not allowed. The magativity ofg,,., follows from Propositioh2.
Due to the overloaded assumption and the priority givenitizal patients, for any fixed < g,,.., the queue
length will be equal td:. If & > ..., then the queue length is equalig... Then the corresponding queue
length costincurred i@g min{k, Gmax } @and the balking cost i\ — b; e — 0 min{k, Gmax ) Twl. Because
we are in the overloaded regime, the IClalsraysfilled with critical patients. As such, the balking thresh-
old only impacts the queue length and balking costs, butmttumping costs (recall Corollaky 1). We
determine thresholk*, which minimizes the cost functiafing<;<g,... { (WS — wg)k +wE (X — bruc) }.

Sincewg/e >w§, we have that* = 0. That is, having no queue is optimal.
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The following proposition summarizes the above discussion

Proposition 3 In the fluid model, under the overloaded regime, the optina#itibg threshold is given as:
k* = oo, if we :wg/ﬁgwg;
k=0, if we=wE <wZ/0.

The proof is embedded in the above discussion and is hendtedmi

3.2. NurseAllocation

We now consider the optimal nurse allocation. We start byndejia critical cost as:
we =min{w? /0, w5}

Note thatw captures the costs of lack of ICU access for critical pasiditvc = wg /60 (Queue-Dominated
Case), there is no balking. Under our overloaded assungptienhave, by Corollafyl ; < \/juc. Thus,
the fluid-scaled abandonment rate is equal to the scaledhbrate minus the scaled service capacity, or
(A= bruc). Under this allocation, the ICU is always full with criticeatients as there is not enough (or just
enough) capacity to serve all critical patients. Hencegtieno room for semi-critical patients in the ICU.
Thus, the fluid-scaled queue length is equal to the scaleggte abandonment rate divided by the individ-
ual abandonment raté\ — b; 1) /6. This results in an expected scaled queue length cost eq%l(ﬁ\ —
brpe) = we (X — brue). Using a similar argument, i, = wg (Balking-Dominated Case), then there is no
gueue and, under our overloaded assumptions, the fluidesbalking rate is equal t@_\ — bmc)- Thus, in
both regimes, the total balking and queue length costsiiadwrill be:ws (5\ — b[,uc)-

The fluid-scaled bumping rate from the SDU is equal to thetpespart of the scaled SDU arrival rate
minus its service rateb; ucp — bspsc) ™. Combining these two expressions together gives us thageer
cost. Recognizing that constraiht (3) is satisfied as anliiguader the optimal allocation, we can specify

our fluid objective in terms of;.

Optimization Problem 2 (Fluid Cost) Our goal is thus to determin®, < b; < (7“1 A %) and0 < bs <

rg, the allocation of nurses to ICU and SDU beds, respectigalgs to minimize the cost function:

: - b *
min - _ {wc ()\ - bl,uc) +wse <blﬂcp —Ts <1 - T—I> Msc) } )

ogb,g(rm%) 1

We can solve the preceding optimization problem to detegrhiow to allocate nurses between the ICU and
SDU. Note that the objective in Equatidd (5) is piecewisedininb;. As such, the minimization is obtained
at the boundary points, which essentially proves Promg#i (below), so the proof is omitted.

We find that the optimal policy is highly dependent on thetieteship betweem - andws-. When the

cost for lack of ICU accessu(;) is very large, the optimal policy is to allocate as many ear® the ICU
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as needed in order to satisfy all critical patients demdab@sible). If there are not enough nurses to meet
all of this demand (i.er; ;. < ), then all nurses should be allocated to the ICU. We callrémigime the
ICU-Driven (ID) regime. On the other hand, when the cost oklaf access to care for semi-critical patients
(wsc) is close to that for critical patients, then the optimalippls to allocate some nurses to the SDU and
reduce access to care for critical patients. We call thismeghe Capacity-Driven (CD) regime: the larger
the capacity gained by transferring a nurse from the ICU &©S3SbU (increasing), the more likely the
CD regime is to be optimal. Additionally, if many critical fients become semi-critical (largg the SDU

becomes more beneficial. More formally, we have:

Proposition 4 In the fluid model, under the overloaded regime, the optirflatation of nurses can be split

into two cases. The cost minimizing allocation of nurse€id beds is given by:

l . wo .
rrA if wes > ID regime

b*
by = and b =rg (1——’)
L, if :ch <k, CD regime 1
where
y = [5HsC andsk =p+v
vy le;

Our proposed nurse allocation to ICU and SDU beds, respdgtivased on fluid analysis is thus:
B;=b;N, Bi=0biN.

Note that for notational simplicity, from here on we igndne integrality constraints. Naturally, our numer-
ical solutions in Section]5 will incorporate integralityregiraints. Note that one must verify that the value
of b under the second scenario does not excegd:, which is true due to the overloaded condition.

In interpreting the threshold, which specifies the nurse allocation regime, we noticeitimtomprised
of p andr. We make particular note of this quantity as it continuesriseaas a main driver of the nurse
allocation decisionp is a measure of the demand to the SDU as it indicates the piopaoif patients who
become semi-critical and can be treated in the SDU. In cshiraaptures the supply side of the SDU as
it indicates the effective capacity gains by moving a nureenfthe ICU to the SDU. Hence, we see that
the optimal nurse allocation is a matter of carefully baiagthe supply gains and the demand needs of the
semi-critical patients with the relative cost of lack of &ély access to the ICU for critical patients. The fact
that these parameters are additive also suggests thatlthesrpequally important role.

We observe that the fluid regime is ‘bang-bang’ so that, whengossible, one would incur either critical
patients related costs or semi-critical patients relatsts; but not both. Indeed, in the ID regime only
bumping costs are incurred, as long as there is enough tapa@ccommodate all critical patients. In
contrast, in the CD regime, the system will only incur cetipatients related costs. Moreover, in the latter

regime, the system incurs either balking costs or queus dast not both. We additionally observe that the
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bed-allocation scheme proposed by our fluid analysis is rarystwith respect to the system parameters,
as long as the system operates away from the threslﬂ@éld: K.

In further interpreting the results of Propositidn 4, wedthat in the CD regime, the SDU size is selected
such that the SDU isritically loaded,\spy ~ Bjucp ~ Biusc, while the ICU is strictly overloaded
(by Propositior 11). This is surprising because it occursevken lack of access to the ICU, via balking
or queue length costs, is more costly than bumping an SDW@ntatvet, this allocation results in having
balking rate (or queue length cost) which is of ordérand bumping rate which is of ordefN). In the
CD regime, the capacity gains of allocating nurses to the &lmore substantial than the gain of keeping
the nurses in the ICU to serve the high priority (criticaljipats. In the ID regime, the needs of the critical
patients dominate. In fact, we see that in both the ID and @idrre, if it is possible, the optimal solution is
such that enough nurses should be allocated to one of thertitgta make it critically loaded, necessarily
making the other unit overloaded. The dominating unit degemn the relationship between the system
parametersyc = min{ws /6, wE}, wse, ands = p + v.

In practice, we see that some hospitals have SDUs while®twenot. Our analysis suggests that, under
the optimal sizing decision of ICU and SDU, one should expeste variation in the use of SDUs. While
we cannot assess whether each hospital is sizing their SLKseasonable manner, our analysis suggests
that some of the variation seen in practice may be justifiedkéd, the threshokd defined in Proposition]4
is the main driver dictating whether having an SDU is optioraiot. This threshold depends on the capacity
needs of critical and semi-critical patients (as captuned;- and(rsusc,p), respectively), which will
vary based on patient mix and regulation, thereby resuittiifferent thresholds for different hospitals. We

will see that these factors will again have a prominent nolthe sizing decision as we refine our analysis.

4. Second order driversof the nurseallocation and balking decision
In this section, we consider refining our analysis from S&¢8 by examining the impact of reallocating a
small number of nurses to either the ICU or SDU. Our startioigtds the analysis of the fluid approxima-
tion in SectiorB, which identified as a key parameter influencing the management of the ICU akd SD
Under the ID regime it is optimal to have as big of an ICU as ssagy/possible, while in the CD regime,
it is optimal to have an SDU which is comparable in size to 8¥.lIn this section, we consider how the
reallocation of a small number of nurses may help. We findithedme cases, this reallocation can be quite
impactful. Moreover, the parameter= p + v again proves to be a critical component in determining how
such reallocations should be determined.

The fluid analysis finds the optimal allocation of nurses ® U and SDU up to an order of V).
In particular, the fluid analysis excludes these lower @@ddgerms and so it might still be beneficial to
reallocate a small number of nurses, say of ofdey'N) to the SDU or ICU. We will uséiffusionanalysis

to examine these two regimes. This approach involves dagtére system byV times its fluid limit and
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then scaling byl /+/N, so that only fluctuations which are on the ordex/V are considered. More details

about diffusion analysis can be founo‘ in Halfin and yllllzitt (ﬂpw I(;O_lIZ) and Chapter 10.4hitt

20028)

4.1. Diffusion Analysisin theID regime

In this section we assume that
we A
— >rk=p+vandNr; > — +o(N). (6)
Wsc 276;
As such, by Propositionl 4, the fluid solution determines thist optimal to operate in the ID regime and
allocate enough nurses to the ICU so that all critical denigntet. That is, the number of nurses allocated
to the ICU satisfied37 = \/uc + o(NN), and the ICU is considered to be critically loaded with respe
the critical patientsl (Mandelbaum and Zg“yn ﬁoog). Nosg thVr; < % +0o(N), then the ICU would be

overloaded and reallocating any nurses to the SDU wouldioohgase costs.

We now postulate the following refinement of the above nuliseaion scheme:

szi%—ﬁ\/’uz%—o(\/ﬁ), BS:Ti(NTI_i_ﬁ i)*'o(\/ﬁ), (7)
c

He T1 He He
wheref is only restricted by the non-negativity constraints®ynand Bs. In particular, the ICU is critically
loaded and operates in the QED (Quality and Efficiency Diivegime with respect to the critical patients

itt 1l_G_a.m_e_tI_e_L$L_2§ 02). Because, underQED regime, there will be times when
some ICU beds are not occupied by critical patients, the fibtlie semi-critical patients is more intricate

in this setting than in the fluid scale.

Before we can determine the optimal allocation of nursesywst first understand more precisely when
and to what extent semi-critical patients will be treatedhie ICU. Theoremll in the Appendix precisely
characterizes the patient dynamics at the diffusion |&gcifically, the dynamics of our system—according
to TheoreniIl—can be summarized as follows:

1. The ICU is operated in the QED-regime with respect toaaitpatients, so the number of critical
patients can be approximated by the diffusion analysis dErkeng-A (M /M /B; + M) model with finite

or infinite buffer kgiamett et gl. ZQl)Z, Kocaga and \A/Larg £010)

2. Both units are always full when considering fluctuatiotsol are of ordex/N or larger. If there are

fewer thanB; critical patients in the system, then semi-critical pasefill the remaining ICU beds. We
refer to this result as a ‘State-space collapse’, becagsenb-dimensional queueing system collapses to
one dimension in this regime.

The second point implies that even if the ICU is not overlywied with critical patients it will always be
full and thus appear as if it is operating in the overloadgihne. This raises an important practical insight:

an ICU that is always full may appear to be the system bottleméhen, in fact, the reason why it is full
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could be due to spillover from the SDU. While a natural reacto observing ICUs which are constantly
full is to add more ICU capacity, the real culprit of such cestipn may be inadequate SDU capacity.

The intuition behind Theoref 1 is as follows: The SDU is ovaded. In particular, the rate at which it
is losing patients due to lack of space is of ordérAt the same time the ICU is in the QED regime with
respect to critical patients. In particular, the number@{f/ibeds that are not occupied by critical patients
is at most of orde®(v/N). As soon as some of these beds are empty, they almost instauisly become
occupied by semi-critical patients. Hence, all beds aregbaull.

We now leverage our results from above to examine the nuleeasibn and balking threshold problem.
Our aim is to derive expressions for the cost function usidgfasion approximation. Lef) := Q—Z and
N = % be the scaled queue length and “idleness” processes, Wheiethe number of ICU beds not
occupied by critical patients. Note that due to Theorém*is also approximately equal to the number of
semi-critical patients who are being treated in the ICU hvitslight abuse of notation we also gt and

IV represent these quantities in steady-state. Alsd,Yebe the steady-state balking rate.

To evaluate the steady-state cost, over which we will ozimnive leverage results from Kocaga and \Ward
_@) (Theorernl2 in the appendix) who generalize resuta/féarnett et al. (2002) aljd Browne and Whitt
) to include a balking threshold. Consistent with gegter, we consider a balking threshéd” which
is of orderO(v/N). Specifically, we assume thafN = k+/N. For a fixed balking threshold and nursing

allocation, Theorerl2 provides diffusion approximatioasthe balking ratef., and queue IengﬂE[Q],

which can be used to determine the balking and queue cospeatvely.

We now derive diffusion approximations for the bumping sdteorder to evaluate the bumping costs—the
last component of our cost function. To do this, we leverdgedstate-space collapse results of Theorem
[I. The starting point is that the bumping rate is approxitgaqual to the semi-critical arrival rate minus
its total service rate. The arrival rate may be expresse&@ g&:|ucp, whereZ. is the number of critical
patients in ICU beds. By Theorem 1, the number of semi-afifi@tients in an SDU or ICU bed is equal
to the total number of SDU beds plus the ‘idle’ ICU beds, whack not currently occupied by critical
patients. Thus, the departure rate may be expressefasic + E[I]usc + o(v/N). Putting all of the
above together we can determine, under the ID regime andutse allocation(7), the corresponding cost
function (centered bywsc (Ap+ :—f (Nr, — %) /tsc) and scaled byt /v/\) which we wish to optimize

over.

Optimization Problem 3 (Diffusion Cost in ID regime) We optimize ovef and k, which determine the

nursing allocation and balking threshold, respectively.

min C(8,k) = rgiglwgﬁ +wgE[Q] + wsc [BW_c(er V) — (usc + ucp)E[f]] : (8)

where the expressions fér, £[Q] and E[I] are explicitly given in Theoref 2.
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As in our fluid analysis of Sectidd 3, we see in the expressimva that the ratio of capacity gains,
and the semi-critical demand, measuredpbplay a prominent role in the optimal balking threshold and
nurse allocation decision. Again, they are additive, sstjgg their comparable importance. As semi-critical
demandp, or SDU capacity gains; increase 3 will decrease, meaning more nurses will be allocated to
the SDU.

Let (5*,k*) := argming ; C(53, k), where we choose the supremum @itand ) if there are multiple
values of8 (k) that minimize the cost'(3, l?;). Then our proposed solution in the ID regime is:

Br= g | Bgzri(Nr,—i—ﬂﬂ/i), K*=k*VN.
%6 %6 rr %6 %6

Note that in the queue-dominated ca&@(@ <w}k), one can verify that it is never optimal to let a patient

balk and that* = oo as is stated by Proposition 1|of Kocaga tli&OlS).

Recall that by assumption, the system operates in the IDnegHowever, when computing*, it is
possible that its value will be so small that, in fact, theuioh proposed is effectively in the CD regime.
By the fluid analysis we know that this is first-order suboptinThus, we set a lower bound @7} and an
upper bound orBj in order to guarantee that the solution is still in the ID negias dictated by the fluid

solution. In doing so, the allocation of nurses is given by:

and

A [ A
Bg—min{Ti(er———ﬂ* —),r5<1—z>N}.
Tr 2% 2% K

In Sectiorb, we see cases where the values of both the optiaral 3 are non-trivial.

In the ID regime, the ICU is operated in QED with respect to¢hgcal patients. Hence, some semi-
critical patients will be treated in the ICU, so we can se¢tth@reallocation of beds in this regime translates
to balancing the tradeoff between capacity for the modtatipatients (ICU beds) versus overall capacity
(SDU beds). Note that in the ID regime, this tradeoff onlysasi in this second order analysis. In the fluid
analysis, ensuring enough capacity for the critical péigras all that mattered.

4.2. Diffusion Analysisin the CD regime
Recall that the fluid analysis identified two operating reggrfor the system: the ID and CD regimes. Now
we take a closer look at the CD regime. In particular, we fanughe case where
e <K=p+vr.
Wsc
In this case, according to Propositidn 4, we have that

B =b:N+o(N), bi=r;2, andBs=>biN +o(N), bg:r5(1—5).
K K



19

In particular, we have that the ICU is overloaded and the S®ttitically loaded. Our aim here is to see
whether an order of/ N refinement for the(V) terms above can lead to a lower cost. We further assume
thatA = O(N) so that the ICU operates in the efficiency-driven (ED) reg({@ans_e_t_éLZQ_&?:). Otherwise,

the ICU will be ‘super’ overloaded, and refinements of thidesrwill not make a noticeable difference. Set

A
By =b;N+0o(N)=~R;+0v/R;+0o(~/R;), R;:= =t 9)
C
wherey = Nﬁﬁj)c is less than 1 due to Assumptigh 2. Also, let
. B __ Brucp
Bs=biN +0(N)=Rs+ v/ Rs+0(\/Rs), Rs:= a— (10)
SC

The relationy + £ = N +o(v/N) gives us

o B Nrsp u
5'_5(5)__5\/ Ausc (p+s?c)3/2’

whereg is only restricted by the non-negativity constraints®nandBs. We aim to find a value fof that

minimizes the expected balking plus queue plus bumping cost

By definition, R; is the offered load of the ICU. We argue that is the offered load of the SDU. To
see this, note that, sinee< 1, the ICU is operated in the overloaded regime. In particalhiCU beds are
full with critical patients all the time, almost surely. Ham the arrival rate into the SDU is equalBoycp,
and the offered load is indeed equaﬁlys‘g—p. As expected, the SDU is critically loaded, and operatelsén t
QED regime.

We first argue that in the CD regime, the optimal balking thedgis K* = oo or K* = o(v/N) depending
on whether the queue or the balking dominated case holgmcetgely. This implies that the system incurs
either queue or balking cost, but not both (up to an order(¢fN)). We have already established that in
the queue-dominated case the optimal threshold is equal. tih turns out that in the balking-dominated
caseK™* = o(v/N) (see Corollar{B in the appendix). Unlike in the ID regime,deenot see a second order
impact of optimizing the balking threshold in the CD regime.

An interesting conclusion from these results is that, inGeregime, the system will either incur queue
costs or balking costs but not both. In the balking-domid&izse the balking rate is equalXe- ucB; +
o(v/'N), and the corresponding balking costi$ - (A — pcB;) + o(v/N). In the queue-dominated case
we have that the average queue length sati#i@s= % + o(v/N), and the corresponding queue cost
is we - 22481 4 o(y/N). Thus, recalling thatve = min{w /6, wE}, we have that the total queue plus

balking cost in the CD regime is

we - (A= peBr) +o(VN) =we - A <1—7—6/\/Mzc> +o(VN).
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We leverage results fro@@%@ to determine tiEapility of bumping:

1
VBs

Adding the two cost components together, centeringby(1 — ), scaling byl /+/N, and lettingV — oo,

Pr{Bump} i=limsup . / BQ), Ze(t), Zse(£)) = ——h(~B) + o(1/VR).

we obtain the relevant diffusion cost function.

Optimization Problem 4 (Diffusion Cost in CD regime) In this regime, the optimal balking threshold

(up to orderv/N) is either 0 oroco. Thus, we are left to optimize ovgt which determines the nursing

min C(8) = min isc /prjpy <wcp _f — wsch<—6)) . (11)

Again, we see the paramete# v plays a vital part in determining the optimal nursing allooa.

allocation.

Let 5* := argming C(3), and leto* := §(3*). Similar to the ID regime, we set an upper boundh
and a lower bound o3}, to ensure the allocation is still in the CD regime as giventi®y ftuid solution.

Then our proposed solution in the CD regime is:

A A
B}‘:mm {")/R]—i‘(s*\/ R[,T’]N,_}y RI =, (12)
27¢] Hc
and
B — « s /pr s A .. Bjucp
c=maxq R;+p8"VR;,— (Nrj—— ), Rii=——-. (13)
rr e Hsc

5. Simulation: Robustness of Main Drivers

We have utilized fluid and diffusion analysis to identify tmain drivers which dictate how nurses should
be allocated to ICU and SDU beds and when patients shoulddo&dad from entering the system. We find
that two operational regimes exist: the ID regime in which 8DU has very few beds, if any, and the CD
regime in which the SDU is comparable in size to the ICU. Mesgpwe find that the balance between
semi-critical demandy, SDU capacity gainsy, and the relative cost of lack of access to care for critical
patients drive the nurse allocation decision. Our anakysis based upon a parsimonious model of patient
flows through the ICU and SDU. While this model captures maatigist features of the patient dynamics,
we wish to examine whether our insights translate to a moneptex system which includes additional
features which arise in practice, such as SDU arrivals froitswther than the ICU, patient returns to the
ICU or SDU after transferring elsewhere, and off-placenwdrdritical patients in the SDU. To do so, we
use simulation to examine the quality of our approximatiasgleriving closed form expressions for this

more general model seems unlikely.
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5.1. Simulation Model
We begin by describing our simulation model. We considerstesy with N; and Ng nurses in the ICU
and SDU, respectively. This dictates that the number of bedach unitisB; = r;N; andBs =rsNs. In
order to focus on the ICU and SDU nurse / bed allocation datjsive assume there is ample capacity in
the general ward. As in our original model, we consider twaetyof patientsCritical andSemi-Critical.
Critical patients arrive to the system according to a Poisson prag#sgpossibly time-varying) rate
Ac. If a critical patient arrives and there is an available bethe ICU, he is immediately admitted to the
ICU and his ‘service time’, i.e. the time spent in the critistate, is log-normally distributed with mean

1/pc and standard deviatian,. We use a log-normal distribution as it has been found torately capture

LOS in the hospitaL(ALman;Lel_HL_Zdw) and ICI_l.L(LiIMa.k_eHm.O_é). If there are no available beds in the
ICU a number of things can happen: 1) if there is a semi-alfiti@tient in the ICU, she will be bumped
and the critical patient will take her ICU bed. 2) If all ICUdieare occupied by critical patients, but there
are available SDU beds, the critical patient is admittecheS3DU but is ‘served’ at a rafe= p/x, where

x > 1. Thus, if the patient would have been critical fbitime in the ICU, the same patient would require
x x T time if treated in the SDU. We refer to such a critical patiastan ‘off-placed’ critical patient. The
dis-utility to a critical patient who is off-placed in the &Ds not equivalent to waiting in the queue (outside
of the ICU and SDU). Thus, instead of incurring ca@, we assume these patients incur a cost at rate
y X wg wherey € [0,1]. 3) If there are no available ICU and SDU beds, the patiertemiler the queue
(and potentially abandon later) as long as the total numberitecal patients in the system is less than the
balking threshold¥ . If there are more thai critical patients in the system, the patient will balk.

Once a patient is no longer in the critical state, one of foxanés can occur 1) he will immediately
become semi-critical with probability, 2) he will return to the system as critical after an exporadigt
distributed delay with mea with probability p¢ -, 3) he will return to the system as semi-critical after
an exponentially distributed delay with meamwith probability p ., or 4) he will leave the ICU/SDU
system.

If an ICU bed becomes available, priority for that bed is gias follows: 1) if the critical patient occu-
pying that bed becomes semi-critical, she keeps the bedtidr@ise, if there are any off-placed critical
patients in the SDU, the patient with the longer remaininggtin the critical state is transferred into the
ICU. 3) A critical patient who is in the queue will be admittéal the ICU bed (potentially bumping a
semi-critical patient) with priority given to patients whee in the return queue. 4) Finally, if there are any
semi-criticalpatients who are off-placed outside of the ICU and SDU, thewith the longest remaining
time in the semi-critical state is transferred into the ICU.

Semi-critical patients can arrive to the system via three pathways: 1) ax@mnal arrival which is
given by a Poisson process with (possibly time-varyingyakrate \537, 2) transitioning to semi-critical

immediately after being critical, or 3) returning to the & after some time. If an SDU or ICU bed is
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available, the semi-critical patient will be immediatelgnaitted to the bed. The time spent in the semi-
critical state is log-normally distributed with meapu.sc and standard deviations., irrespective of the
unit in which the patient resides. If there are no SDU or ICdsavailable, the semi-critical patient will be
off-placed in the general medical-surgical ward. If a beddmes available, priority is given to the patient
with the longest remaining time in the semi-critical stdt@. semi-critical patient completes service in the
ward (while off-placed), this is counted as part of the bumpiate.

Once a patient is no longer in the semi-critical state, orh@fe events can occur 1) she will return to
the system as critical after an exponentially distributethy with meary with probability pg. .., 2) she
will return to the system as semi-critical after an expoi@delay with mear with probability pg,, s, or
3) she will leave the ICU/SDU system.

If a patient returns to the system as critical (semi-crijiaad there are no ICU (ICU/SDU) beds available,
the patient will wait in a virtual queue. Practically, thisudd correspond to the patient being treated in the

Emergency Department or general ward.

AET(@®

Off-placement
in Ward

Off-placementinSDU | e

___________
-
- o
- ~,
- ~
- ~
e
-
-

-

A ()

ICU SDU
—J lp Pgsc LI—J p.?c,sc
R
Pce

returns to
semi-critical

returns to critical

R
Psc.c

Figure 3

Figure3 depicts our simulation model. We consider the atioo of N nurses between the ICU and SDU
to care for patients who enter the system as critical. In moukations, we consider five different policies:

1. No SDU: All N nurses are allocated to the ICU.

2. Half-half: Half of the N nurses are allocated to the ICU and the remainiff@ are allocated to the
SDU.

3. Fluid: We use our fluid solution from Sectidh 3, which ignores reasions, off-placements, and
external arrivals.

4. Diffusion: We use our diffusion solution from Sectibh 4, which ignomesdmissions, off-placements,

and external arrivals.
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5. Simulation: We use simulation to run an exhaustive search over all plessitlocations and present
the best performing option.
In our original model of Sectiohl 2, we did not incorporateegral arrivals of semi-critical patients. To
account for these additional patients, we include an adfeitiBL " = A5 7 /usc beds and, correspond-
ingly, N¥oF = BESY /rs nurses (in addition to th& nurses) to treat the external semi-critical arrivals.

We also optimize over the balking threshold. For the No SD#lfialf and fluid policies, we use the
balking threshold dictated by the fluid solution in Propiosif3. For the Diffusion solution, we use the
balking threshold specified by the solution of equat[dn (8{dl), depending on whether the system is in
the ID or CD regime, respectively. For the Simulation pgligg search over all possible balking thresholds
K €10,50] in the balking dominated regime, and $ét= o in the queue dominated regime.

5.2. Calibrating our Simulation

To start, we must first calibrate the parameters of our malieto this, we utilize the existing medical
literature. We leverage the resultsl_o_f_C_a.d;L&tLa.L_dL995) W& at the impact of adding an SDU to the
cardiothoracic ICU at the University of Missouri Hospitédscalibrate many of our parameters. We have

thatl/uc = 2.5 days ,1/usc = 1.2 days,p = .65 of the patients become semi-critical after being critical,
and the nurse to patient ratio in the SDULisrg = 1 : 3. The ICU nurse-to-patient ratio is not given in
this article, so we assume it to be one-to-anes 1. We set the probability of return to critical and semi-

critical pg o = pé s = PSc.c = PSc.sc = -07, which is similar to the rates given ln_Qha.n_elt LL_dOlG).
Based on estimates from personal communication with mepliofessionals, we sét= 1 so that patients
can tolerate waits of 1 day on average and 1.5 so that treating critical patients in the SDU takes 50%
as long as in the ICU. Because the queue Qogt,incorporates holding and abandonment costs, which are
likely more detrimental than being off-placed, we assunaggh< 1. Specifically, we assume that the cost
of off-placement of critical patients is 30% less than thewgicost, i.ey = .3. We consider the average
time to return to service as 1 day, so that 1, based on estimates from conversations with clinicians. In
Sectior 5.6, we consider other valuesiads robustness checks. We set the arrival rate of new créiual
external semi-critical patients to be, = A2 = 8 patients per day, witlB5?} = 10, and we consider
how to allocatelV = 20 nurses amongst the ICU and SDU. This corresponds to an ICchvsicritically
loaded if all nurses are allocated to the ICU, Ag.= ucr; N. We use a warmup of 1,000 days and average
our results over 1,000,000 days.

Because the use of SDUs varies, we also use data from theau@QU/SDU at New York-Presbyterian

Hospital kEachgmpati et EI. 2d04). For this set of parametee have that /- = 4.8 days ,1/usc = 2.3

days,p = .8, r; = 2, andrg = 4. As before,we set the arrival ratesXg = ucr; N = 8.33 and\EXT =38.

Table[l summarizes our simulation parameters.
Lastly, we note that we also ran simulations with a time-i rrival rate with a daily period to mimic

the daily-cycles documented in the literature ( . )). Similar tlJ_Qhan_eﬂ 4b), we
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Model Primitives Additional Parameters
Source pe | T/pse | p Jrirs [0 XN "] 2]yl
Cady et al. (1995) 2.5dayd 1.2 dayg 0.65|17 | 2-3 118 | o715l 3] 1
Eachempati et al. (2004%.8 dayg 2.3days 0.8 2 | 4 8.33|" ~

Table 1 ~ Summary of patient flow parameters for simulation mod el. The parameters 1/uc,1/usc,p,rrand rs
are from the corresponding article on SDUs. TThe ICU nurse-to-patient ratio is not given in this article, so we
assume it to be one-to-one. The model primitives are the para meters which overlap between the analytic
model in Section 2[dnd the simulation model of Section 5. Thé a dditional parameters are those which have
been added to be included in the simulation model. Note that A=Xc=A52"T and p® =pf; for i,j € {C,SC}.

find that ignoring the time-variability, by simply using adik arrival rate equal to the daily average, results
in practically the same performance and policy. This is nopssing due to the fact that the time-scale of

variability is on the order of hours whereas the averageiserttimes’ are in days.

5.3. Simulation Results

We start by examining the average costs incurred underisciost settings. In considering the staffing level
in the ICU, we expectthe number of ICU beds to be non-deangasithe ratio between the critical cost and
bumping costwc /wsc. It turns out that because we have two different solutiomeg (ID and CD) at
the diffusion level, it is possible the monotonicity is \atéd near the transition between these two regimes,
i.e. whenwes/wse = k :=p+v. Indeed, we encounter this issue in our numeric analysisrimtesscenarios.
For such scenarios, in order to translate our diffusiontgmiuto maintain the desired monotonicity, at
we assigned the number of ICU beds to be the average betwedb @nd CD diffusion solutions. That
is, let B;(ID, k) be the ID solution (minimizes Eqri.1(8)) and I8t (CD, ) be the CD solution (minimizes
Eqgn. [11)) whenove /wsc = . Then, our diffusion solution iB; = £[B;(ID, k) + B; (CD, )], which also
serves as a lower (upper) bound for the number of ICU bedsitd{CD) regime.

Figure[4 compares the number of SDU beds from our analysietesthaustive search when there are 20
nurses to split amongst the ICU and SDU in the balking and gukeuminated cases. The number of ICU
beds can be easily determined via the following relatiomsBi = r; x (20 — Bg/rs). Note that because 1
nurse can treat up to 3 patients in the SDU, we see discrefasjimmultiples of 3 in the number of beds.
As we can see in these figures, the solution determined bymizimig the cost in[(8) and (11) is very close
to the solution determined by using exhaustive search awerigtions. The fluid model is fairly accurate
for many different weights, but can be quite coarse at times.

Though we see discrepancies in the number of beds in the 1@$B under the diffusion approxima-
tions, we find that the actual average cost incurred perfayuite well. Figurd’b compares the simulated
costs under the diffusion and fluid solutions to the minimwst@chieved via exhaustive search. We do
not plot the cost incurred by the half-half allocation agigsformance is much worse than all policies. In

some cases, the performance of the diffusion and fluid gslicg practically indistinguishable from that
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of the exhaustive search. We do see that the quality of thpogex solutions appear to degrade in the
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We can also see that in the ID regime, it is certainly reaslenabput all nurses in the ICU. When the

system is in the CD regime, it is very important to considémoiducing an SDU; not having an SDU can

result in costs which are an order of magnitude higher thahabhieved via the optimal allocation.

In the balking-dominated case, the balking threshold fromdiffusion analysis is quite close to that

from the simulation. In fact the discrepancies between thatisns is at most 1. For the sake of space, the

corresponding figure is not included, but is available ugmuest. In the queue-dominated case, all of the

balking thresholds coincide with” = oco.
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Figureg 6 anfl]7 are the analogs of Figliles 4and 5 with thetabpprameters given IJ:;LEth_Qmp_aLi_elt al.
_El). Because the nurse-to-patient rati(i_sﬁmpjﬂj @h) require fewer nurses per patient than

in IQ_@QLet_J[(LQAS), the sizes of the units are twice as lagthe| Eachempati et Ll‘ (2d04) parameters.

In this case, the balking threshold is equal to O for all sohg in the balking-dominated case. We find that

the qualitative results are similar, though the differenioeperformance of the fluid and diffusion solutions

compared to the exhaustive search are more pronouncedy @oimard, we will only provide results for

the hospital parameters given Ib_Lc_&uitl_MJlQ%).
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5.4. Transition from Markovian Model to High Fidelity Model

In Figuredb and]7, we saw that — especially in the queue ddednzase — the quality of the fluid and
diffusion solutions derived from our analytic model canidéx from the optimal solution, as determined by
exhaustive simulation, in the high fidelity model. We now aimunderstand better what factors contribute
to this degradation in performance. In particular, it is gibke there are two sources of errors. First, the
fluid and diffusion solutions themselves are approximatitor finite systems. Second, our high fidelity

simulation model incorporates a number of features whiehnat present in our analytic model and they

may be causing the errors.
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Figure[8 and© present the cost incurred by the various gtest¢o determine the balking threshold and
. k19_915). Each subfigure corresponds to

(9) Returns + Off-place.

(h) Returns + Ext. Arr.

(i) High Fidelity

nurse allocation where the hospital parameters giv

a different simulation model. Specifically, we begin witte tMarkovian model which corresponds to our
analytic model presented in Sectioh 2. We incrementally fad¢ures to the model — log-normal service

trategies to determine the balking threshold
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times, off-placement of patients, external arrivals of seritical patients, and returns to service — until all

features are incorporated into our high fidelity simulatioodel described in Section®.1.
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We can see that in both the Balking and Queue Dominated ctmesplutions from our analysis of
the Markovian model perform very well when comparing thef@@nance under the simulated Markovian
model. This suggests the deviations in performance areuwotadthe fact that our model has a finite number
of nurses while the fluid and diffusion solutions are soluian asymptotic regimes witly — oc.

We notice that the presence of off-placement and externaa&r of semi-critical patients appears to have
a substantial impact on the quality of our proposed solgtidhis is most evidence in the queue-dominated
case, as seen in Figure 9. We believe this is likely becausmodel considers off-placed patients as part
of the queue, even though they are receiving some ‘treatnimetiite off-placed unit, altering the queueing
dynamics. In the balking-dominated case, there will be Yewy off-placed patients, so the impact on the

quality of the solutions is diminished. The external afdgvseem to slightly deteriorate the performance of
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our solutions in both the queue and balking dominated capasticularly near the thresholdbetween the
ID and CD regimes. It is in this regime that second order ¢ffeeally drive the SDU sizing decision. As
such, the external arrivals of semi-critical patients, akihére of the first order, can have a marked impact

on our proposed solutions.

5.5. Robustness Checks

We also conducted a number of robustness checks of our higlityfidimulation to examine how sensitive
our results are to changes in the parameters. First, wedsmesi the case where off-placement of patients
increased the probability of return to service by 10% and t2@%. Next, we varied the average time to
return to service frona = 1 to § = 2 andd = 3. Finally, we considered arrival rates so that the system was
not critically loaded. Recall that we sat= ucr; N, so that the system would be critically loaded if all
nurses were allocated to the ICU. We then considered thezasios wheré = .8 x pcr; N, .85 X ucri N,
and.9 x ucr;N. In all of these experiments, the qualitative performarfoeuo proposed policies remains
consistent (although there are very slight quantitativeatians). Specifically, both the fluid and diffusion
solutions perform quite well in the Balking-dominated cagkile their performance degrades in the Queue-
dominated case, especially by the threshold between thadC® regimest.

We also examined the impact of the off-placement cy)sw@ by varyingy € [0, 1]. The results in the
Queue dominated case can be found in Figure ECLT of|[EC-3. &tiermance of the diffusion/fluid solu-
tions are reasonably accurate for moderate valuggefg. 10%-60%). We find that when~ 1, there are
substantial deviations between the fluid and diffusiontimhs with the optimal solution. As seen in Figure
[EC.1, the off-placement results in these deviations angaging the costs associated with off-placement
seems to magnify this effect. Interestingly, whees- 0, the optimal solution puts all nurses in the SDU
(having no ICU). All patients are off-placed at no cost, t8sg in very poor performance of the fluid and
diffusion solutions. That said, it seems unreasonable lieusethat off-placement would come at zero cost.

Next we examine the robustness of our insights to systemgffefent sizes. In particular, we simu-
late systems witm = 5,10, 20, and40 nurses to allocate between the ICU and SDU. Note that foethes
simulations we scale the arrival rate so that r; o N. Figured ID anf11 show the performance of our
proposed policies under Markovian dynamics (i.e. our ditatgodel presented in Sectibh 2) in the Balking
and Queue dominated cases, respectively. We can see tletpested, the performance of the fluid and
diffusion policies improve as the system size increases.

Figuresd 1P an@13 depict the high fidelity simulation modeldiferent number of nurses. Here, we
see that the quality of the solutions does not seem to impratesystem size. In particular, it seems that
the impact of the external arrivals and off-placement, Wwidegrades the performance of our policies (see

Sectior{ 5.4), outweighs the impact of system size. Thus,wektliat while the performance of the fluid and

diffusion policies improve under tIJu_e_Ea.Qh_emp_ali_étl_a.L_équrameters than under {h_e_C_a.dLJalJ_aL_(}Lg%)
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parameters in the Markovian simulation model due to thedtiglirse to patient ratio which results in larger

systems, this is not true for the high fidelity simulation rabd-or the sake of space, we do not include

figures for thelt_Ea;;h_Qmp_aI;i_ell el.L_(ZJ)O4) simulations, but #re available from the authors upon request.
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6. Conclusionsand Discussion

In this work, we consider the optimal allocation of nursestfe inpatient units used to treat the hospital’s
most critical patients: the ICU and SDU. In doing so, we pdevinsight into when and how the SDU can
be useful in managing patient flow and what factors drive thgnal use of SDUs. Within the medical

community, there is an ongoing debate with regards to howiteds should manage and size SDUs. Our
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work is an important first step towards helping to resolve ttebate.

We propose a queueing model which allows us to examine howttmally tradeoff capacity needs with
capacity gains given the costs associated with lack of adoeCU and/or SDU care. Via our fluid anal-
ysis, we identify two parameter regimes—the ICU-Driven &agpacity-Driven regimes—which dictate the
optimality of allocating a very small (including zero) or abstantial number of nurses to the SDU. Our
results suggest that the first-order optimal solution isiphang’ in that, depending on the regime, only
costs associated with critical or semi-critical patienii§lve incurred, but not both. On the other hand, costs
associated with both critical and semi-critical patientd ke incurred when second order terms are con-
sidered. Through our analysis, we identify the main drivensianaging the ICU/SDU sizing decision and
balking threshold. We isolate two main parameters whichaichthe manner in which the nurse allocation
decision should be made. One captures the demand for SDUasadeasured by the fraction of critical
patients who become semi-critical; the other capturesubpelg gain from SDU beds as measured by the
ratio of the effective capacity of a nurse in the SDU versed@lJ. We see that these two parameters play
a critical role in the nurse allocation decision at both tha&fand diffusion level. Additionally, we find that
optimizing the balking threshold beyond the dichotomy ¢dvaing or not allowing balking only has a sec-
ond order impact on reducing costs, if that. Using simulgtiee find that our analysis in these asymptotic
regimes can be quite accurate, even as we relax our initidkehassumptions.

In practice, there is high variation across hospitals ashether it has an SDU and if so, how large the
unit is in comparison to the ICU. In some cases, this vaniatiould be attributed to the fact there is limited
consensus in the medical community as to the management dé SBowever, our analysis provides a
complementary explanation. The optimal size of an SDU isljiglependent on patient mix (including
differences in service times and the likelihood of becormangemi-critical patient following ICU care),
staffing requirements in the ICU versus SDU, as well as thegtivel cost of lack of access to care for a
critical versus semi-critical patient. Because theseofacare likely to vary substantially across different
hospitals and geographic areas, it is reasonable—andyhdgkirable—that hospitals utilize and size SDUs
in a heterogenous manner; one size does not fit all. As sucfindiéhat even if hospitals were sizing their
SDUs in an optimal manner, we would still expect to see higiatian in the use of SDUs. Moreover, our
analysis allows us to isolate supply and demand charatitsrisf the ICU and the SDU which can be used
to identify how hospitals should think about managing thases.

This work suggests several potential directions for fut@search. In our analytic model, we focused
on patient flows from the ICU into the SDU and did not incorgierather patient flows through the ICU.
These modeling choices were necessary for tractabilityveadsed extensive simulations to develop and
understanding of how our insights might translate to otledtireys. An interesting direction would be to
consider other patient flows through the SDU. In our simafetj we see that our proposed policies work

reasonably well even with alternative flows, so we conjecthat similar insights will carry over. That
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said, in the queue-dominated case off-placement and ettarrivals contributed to deviations from our
proposed solutions, so these are two features that one maégtitto consider as a reasonable next step. One
could also consider different priority rules, so that in ooases a critical patient will have to wait (and
potentially abandon), even if there is a semi-critical @attiin the ICU which could be bumped. Another
interesting direction one could consider is the impact afestlependent dynamics. A number of recent

works (e.gl Chan et lall (2014|b, 2J)16)) have found that patiew parameters (e.g.c, ©sc, p) can be

dependent on congestion, which begs the question as to le®& ttynamics may impact the management

of the ICU and SDU. Finally, in this paper we have focused amgithe ICU and SDU, while ignoring the
size of the general wards. This is because the ICU is oftesidered the hospital bottleneck. An interesting
direction for future research is to explicitly model theesand dynamics of the general ward along with the
other two units.

Despite some of these limitations of our model, our work jtes an important first step into addressing
the substantial debate in the medical community as to if avd 8DUs should be used. The prevailing
sentiment amongst SDU supporters is that they are a costieffevay to provide care to semi-critical
patients. This is true in some cases (CD regime). HowevérgitD regime, we see that the need of the high
priority patients outweighs the additional capacity getex by moving nurses to the SDU. Still, evenin this
regime, amall SDU can be beneficial in serving as a buffer between the ICUtamtiospital wards. The
insights from our work will be useful for hospital managerassess the pros and cons of SDUs and whether
one is warranted at their hospital. Indeed, we are curremdlsking with a large academic hospital which
treats an underserved population that recently opened &Siw This unit is only used as a true Step-
Down Unit, so that patients are only admitted following ICldaharge. Upon learning of our findings, the
critical care team reached out to us for help assessing thageanent of their new SDU. We are currently
working with them to collect data in order to calibrate systgarameters for their patient population. While
we do not expect the hospital to directly implement the mesizing and balking threshold decision our
model recommends, we do expect to be able to isolate the rmeamgterg andy driving the management
of the SDU in order to assess i) whether a sizable SDU is waadaand ii) whether most critical patients
should wait or balk immediately upon arriving to a full ICU.
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Electronic Companion
EC-1. Technical Resultsand Proofs

PROOF OFPROPOSITIONT:

1. Suppose thdtmsup, _, . A (nio + Tsﬁ’sc> < N. Note, this implies that the offered load in the ICU
can be metlimsup,_, ﬁ < N. Consider the case where there is no balking,kKe= co. Then, the
number of critical patients in the ICU behaves like/if)M /B, + M queue. With traffic intensity2— <

I1HC
1, we have that, b)J_(Q_a.m_e_Lt_e_tI Moz, Theorem 4) with —oo, the rate of abandonment is equal to
A= Buc]" +0o(N)=o(N).

As for the semi-critical patients, the arrival rate intcstbtate is equal touc EZ-, whereE Z- stands for

the expected steady-state number of ICU beds that are @zthyicritical patients. The service rate is equal
to (Bs + B — EZc)usc. By Little’s law, EZ- = (A — o(N))/uc, where theo(N) term is contributed by

the critical patient abandonment rate. The bumping ratensé equal to

lpucEZe — (Bs+ By — EZc)use]” = pse [ur(A+o(N)) — (Bs + B;)] " = o(N).

: 1 P — (L L P
2. Suppose now thdiminf y_,. A (Tmc + TSMSC) > N. We letl/ur = (HC + MSC) be the mean
amount of time a new patient should be treated while in th&atiand semi-critical states if the system has

ample capacity. For any bed allocatioB;, Bs), we letpc = ﬁ andpr = ( . In this case, we

BB
have that for any sequence of bed allocatiéh, Bs), eitherliminfy ., pc > 1, orliminfy_, ., pr > 1,
or both. Iflimsup,_,., pc > 1, then we have that the aggregated abandonment and balkéig &t least
A — brue, which isO(N) (it could be less if semi-critical patients are occupyindgJIBeds, so that less
thanb; beds are available to treat critical patients). On the dthed, iflimsup,_, . pc < 1, then by 1. the

abandonmentis(N). Therefore, the bumping rate is again equal to
lpcEZc — (Bs+ Br — EZc)psc]” = psc [pr(A+0(N)) — (Bs + B;)] " = O(N).

If neither of these cases applies, the argument works aoashg when considering converging subse-

guences such that eitheém y_, .. pc > 1 orlimy_, o, pc < 1. O

EC-1.1. Diffusion Analysisin the|D regime

We examine the two-dimensional process with stéte- Z, Zs), where@ denotes the queue length and
Zc (Zsc) denotes the number of critical (semi-critical) patientsupying a bed. This process is clearly a
Markov process under the strict priority of critical pati®over semi-critical patients in the ICU; however,
the dynamics of this process are intricate. While the dyoarof the critical patients follow that of a fairly
standard multiserver queue with finite/infinite waiting moand abandonment, the dynamics of the semi-
critical patients cannot be analyzed separately from tiiearpatients; the dynamics of the critical patients

determine precisely the arrival rate into the semi-criti&tate and also how many beds are available in
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the ICU to treat these patients. Despite the challengeshadnice with the two-dimensional Markovian
model, we are able to show that this two-dimensional prooesg be accurately approximated by a one-

dimensional process. Let
2= (2= BY). 2= = (2 BY),
VA VA

describe the diffusion scaled number of patients occupgibngd within each of the two states, respectively.

Also, let=- represent weak convergence. Then we have:

Theorem 1 (State-Space Collapse) In the ID regime and under the nurse allocation[df (7) we haseate-

space collapse. More formally, assuming that at timg8(0) + ZX,(0) = 0, asN — oo, then
ZY + 7N, =0, asN — oo,

where the convergence is il the space of all RCLL (Right Continuous with Left Limits)diions with
gi;a t (200b)).

values inR, equipped with the Skorohall metric (se

ProOF OFTHEOREM[L: Suppose thal4) holds in the limit. That is, assume that

A
liminf ——(p+v) > 1. EC-1
it S (Pt Y) (EC-1)

Additionally, assume that the system operates in the IDmegind thaf(6) and@X7) hold. L&t" := ZJCV +
ZY.. And suppose thdt v (0) = 0. It is our goal to show that for any> 0,

P{ inf UN(t) <—e} —0, as N — .
0<t<1

The proof follows along the lines @a@%). Rix> 0 and letry = inf{t > 0; UN(t) <
—e} andrl, = sup{t < 7y; UN(t) > —e/2}. During [r},, 7] there are empty beds in either the ICU or

SDU (or both), so no bumping will occur. In particular, duyithis interval
25 (8) + Zsc(t) = Z5 (1y) + Zse (i) + AN (73, t) + 0% (v, t) — DE (Tiy,t) — Dso(Ty, 1),

where, fors < t, AV (s,t) is the number of critical patients that arrived directlyoithe ICU (and did not
wait in queue) durings, t]; % (s, t) is the number of critical patient arrivals into the ICU frohetqueue in
(s,t]; DY (s,t]is the number of critical patients who have completed thay s the ICU and did not switch
to a semi-critical state durings, ¢]; and, D3 (s, t) is the number of service completions of semi-critical

patients in(s, t|]. More specifically, letS;, i = 1, 2, 3 be independent unit Poisson processes, then
t
AN(Svt) + <DN(S>t) =5 (/ Al{Zg(r)<BI} + NCZéV(T)l{ZéV(r):Bp Q>0} " d’r> = (t - S) ’ (>‘ + O(A))a

D (s,t) = S ((1 —p)uc/ Zg (r) 'dT> = (t—=s)- (1 =p)A+o(N), (EC-2)
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t t
DY = i (use [ 2200 ar) <81 (se [ (B + B~ 2() -

= (t—s)- (“ST_CITS <Nr1 - u%) +0(A)> :

Recall that the ICU is operating in the QED regime with respecritical patients; thereforgy- 2% =
A+o(N) andB; — Z& = o()). Finally, we have:

A N N N N
P {infogtgl UN(t) < —6} S P {infogsgtgl A (e (50— Dg (sd)—Diso(st) < —6/2}

VA

_t—s
‘(A(pripctiscrs)—ngcporsriN)+o(vV)
et < —€/2

=P 1nf0§s§t<1 V5

— 0, by (EC-1)

|

Given the state-space collapse result that applies to twepgQ + Z-, Zs), it is reasonable to expect

that a similar state-space collapse applies in steadg-@tatin expectation (elg. Gurvich an I'Lit_t(goga),

)). A lengthy and rather technical mathenadicgument is required to formally establish this
result. This is outside the scope of this work; we simply plagé here that the same state-space collapse
holds in steady-state and in expectation.

According to Theorerhll, in the diffusion scale, all beds anegs full. In particular, it is sufficient to
know the value of the one dimensional proc&ss := Q" + Z in order to figure out the value of the two
dimensional process\), Z2) (up to ordero(+/N)). For example, if there is no queu&{ < B; so that
Q" =0), then we know that any ICU bed which is not occupied by acaitpatient will be used to treat
a semi-critical patient. Hence the term ‘State-space ps#fa We will leverage this result to evaluate the

steady-state cost. To do so, we will rely on a result thad¥ied directly from the results \n Kocaga and V\l’ard

). Note that these results generalize tho ) anh_B_I’_OMLD_e_a.DdMLTtt (1995).

Theorem 2 (ID Diffusion performance) In the ID regime, and under the nurse allocation[ih (7) and for
balking thresholds™ = kv/N, we have thatQ™, IV, LY) = (Q,1,L), asN — o,

1 l-exp(F (R +23k) + 2 fm%(@(g\/%)—@(@(m%)))

E[Q]_H\/,u_c 5 HC‘272 5 B V20 my) _g(m, /2
£ (et e (3 + pef (o (2 () -0 (219)))
and
Bl = (12 (7))

T (e (2y/) v (o (2 ) - (25)))

wherem := Suc ando? = 2. Additionally, we have that the scaled balking rate is:

1 6*29 (k*+231k)

T m (oo (1)« e (3 (200 9) -0 (213)) )

L=



42

EC-1.2. Diffusion Analysisin the CD Regime

We start by examining the optimal balking threshold. Firsttice that by Theorem 4.3 of
Mandelbaum and Zglt/9), we have that in this regimesrwio balking occurlim,, ., EQY /\ =
(1 —+)/6. We now argue that whenever the balking threshigitl is smaller thanEQ", then the queue

length is always equal t&™ up to an order 0b(+/N).

Proposition 5 (Balking threshold in the CD regime) In the CD regime and under the nurse allocation of
@) and [10) if a threshold policy is used with threshéfd’ that satisfies

N

lim sup

= —1-p, 0<p<l, EC-3
mSUP 57 n n ( )

zY(+QN (- (BN +KkN)

then, the buffer is always full. More formally, assumingtthtitime 0, N

=0, as

N — oo, then
ZN+ QY — (BN + K")

VN
where the convergence is i the space of all RCLL (Right Continuous with Left Limits)diions with

=0, asN — oo,

values inR, equipped with the Skorohall metric.

PROOF OFPROPOSITIONE: Suppose thaE(EC-1) holds. Additionally, assume thasyistem operates

in the CD regime and thdfl(9) add{10) hold. L&Y := Z]C”QN?};B}V*KN), and suppose that™ (0) = 0. It

is our goal to show that for any> 0,
P{ inf UN(t) < —e} —0, as N — .
0<t<1

The proof follows along the lines @a@%). Rix> 0 and letry = inf{t > 0; UN(t) <
—e} andr, =sup{t < 7y; UV (t) > —e/2}. During the intervalr},, 7], we have thaZX + Q~ < BN +

K?*, so no balking would occur. In particular, during this invr
Z& () +QN(t) = Z¢ (i) + QY (1) + AV (1, t) — Dei (v, t) — @ (T, 1),

where, fors < t, AV (s, t) is the number of critical patients that arrived to the systieming (s, t], DY (s, t]
is the number of critical patients who have completed thialy 1 the ICU and either switched to a semi-
critical state durind s, ¢ or not. Finally,®" (s, t) is the number of abandonment from the queuésirt].

More specifically, letS;, i = 1,2, 3 be independent unit Poisson processes, andlet s < ¢ < 7y. Then

AN(s.1) = S </t M o3 (<1 -dr) — (t—s)- (A +o(\),

DY (s,t) = S, <uc / Z5(r) -dr> < S (ueBi(t—s)) = (t— ) - (YA + 0o(N)), (EC-4)
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PV (s,t) = S <0/tQN(r)-dr> <83 (KN (t—s))
< S (L= =n/2)(t=5) +0(X) = (t—s)- (1 =) (1 =n/2) +0(})).

Finally, we have:

N N _DN(st)—aN (s
P{infogtgl UN(t) < —E} S P{infogsgtgl A () =D (s:t) Z 27 (s:t) < —6/2}

Vo)
_ P{infogsgtgl (tfs)~)\-(1:/})n/2+o()\) < _6/2}
=P {infogsgtgl (t — S) . \/X (1 - ")/) 77/2 + O(\/X) < —6/2}
—0, by (EC1)

|

Corollary 2 Under the conditions of Propositigh 5, we have that the nurabECU beds that are occupied

by critical patients is equal t@; — o(v/N).

Corollary 3 Under the conditions of Propositidd 5, the optimal threshiol the balking-dominated case
satisfiesk*" = o(v/N).

PROOF OFCOROLLARY [3: By the fluid analysis we have that*N = o(NV). Therefore K*V satisfies
(EC-3) withn = 1. By Corollary[2, the number of ICU beds available for senilical patients iso(v/N)
and therefore, the bumping cost is independent of the tbtesbvel K~ (up to o(v/N)). It is therefore
sufficient to focus on the queue and balking costs. As a fanctf the threshold levek”” we have that, by

Propositiori b, the total queue plus balking cost rate is egua
wEKN 4wl - (A= peBr —0K"Y) +o(VN) = 0K" - (w2/0 — w8) +w& - (\— peBr) +o(VN).
Under the balking-dominated case, the cost above is migini® KV = o(v/N). 0

EC-2. When bedsarethe constrained resources

Consider a hospital witti critical care beds. The goal is to determine how to spliteHesds between the
ICU (B;) and SDU (). Due to the strict nurse-to-patient ratios which must béntaied, determining
the number of beds at each level of care will dictate how mamges (V) are required to staff the units.
We make this decision in order to minimize staffing costs iditkah to the cost of lack of access to care,
which are given by balking, abandonment, holding and bumpsts in our original model of Sectiéh 2.
For simplicity, we consider the case with no balking. Thiesghoblem we aim to solve is

B,,glsi,rjlvzo wWnIN +we R ap +wsc Rpump (EC-5)

Subjectto  B;/r;+ Bs/rs <N
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B;+Bs<B,

wherewyy is the staffing cost rate per nurse,; = w? /6 is the critical cost s is the bumping cost, and
R4, and R, are the abandonment and bumping rates, respectively.
By observing that the maximum number of nurses needed gifieréinumber of bed® is N = B/r;

(obtained when all beds are designated as ICU hBds; B), the overload Assumptidd 2 translates into

Assumption 3 The system operates in overload. That is,

A B
<p+ TS““) > 2 (EC-6)
Tsisc Tric rr

Assuming a setting with a large number of bdslswe now consider fluid analysis to obtain insights
into the first order drivers of the bed allocation decisioedBfine\ = \/B, b; = B;/B, bg =

Bs/B, and n = N/B. then the corresponding fluid problem that only considerssesf orderB is

b llfgi_{llm wyN + We (5\ —brpe)t +wse(p (bIMc A 5\) - bs,usc)Jr (EC-7)
SubjeCttO b[/T]+b5/T5§7’L
by +bs < 1.

To solve the probleni{EC}7), we first fik< b; <1 A A/ and consider the optimal valuestgf andn
as a function ob;. We will then optimize oveb,. Note that it is sufficient to consider valuestof< /¢
due to Propositioh]2. The next lemma helps to identify thénagitvalue ofbs given a value ob;, by using

the tradeoff between staffing and bumping costs, as welleagdhue ofn in optimality.

Lemmal Given0 <b; < 1AM puc, then

b bs

n 9
rr Ts

(EC-8)

and

HSC wsc

O, if %27’5#50;

bs = { min {1 - blapM,uSC} i <rgpses
PROOF Given0 <b; <1 and0 <bg <1-—b;, we haven > b;/r; + bs/rs from feasibility. Now if
n > ng = b;/r; + bs/rs, then the solutiorib;, bs, n) is feasible and incurs a higher staffing cost than the
feasible solutiorib;, bs, ny) without improving the abandonment or bumping cost. ThiwesdEC-8).
Next fix 0 <b; <1A X/uc. For feasibility, we must have that< bs < 1 — b;, so by [EC-8), we have
thatn =b;/r; +bs/rs. We start by considering the case whereb; < p%. For anybs € (0,1 —b;), let
us examine the marginal value of increasing (decreasingyhenn increases byin, the marginal staffing

cost increases by - dn. At the same time, this increaseinallows us to correspondingly increake
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by rs - dn. Becauses < p%, the bumping cost is non-zero and this additional capa@tyreases the
bumping cost bywscrsusc - dn. All together, the marginal effect on the cost(isy — wscrsisc) - dn.
Thus, depending on whether this marginal cost is positiveegativebs should be minimal®) or maximal
(1 —by), respectively.

Now we consider the case where- b; > p%. In this case, ibs = p% the bumping cost is equal
to zero. Therefore, increasirbg beyond this point will only increase the overall cost. Thidespending on
whether the marginal cost of increasindcalculated above) is positive or negatbgeshould be minimal
(0) or maximal @%), respectively. O

We can now reformulate the objective functign (EIC-7) in terofib; and optimize over this variable.
Specifically, we wish to solve:

min  wy(br/rr +bs/rs) +we (A —brpc) + wse(Pbric — bspsc), (EC-9)

0<br <1IAX/pe
wherebg is determined according to Lemina 1. We have two cases todemdgpending on the relationship

wN
between@ andrgusc.

Proposition 6 (No SDU) If 5TNC > rsusc then the optimal solution of (EG-9) is to have no SDE) £ 0),
an ICU with b} beds, with

wo—pwsc

b} =
! 0 otherwise No critical care

LAX if —“N < p uc-, IDregime
{ e STrfe €g (EC-10)

andn* =b3/r;.

The intuition behind this result is that,y is the marginal cost increase of increasigwhile r;we e
andr;wscpuc are the marginal decrease in abandonment cost and margerebse in bumping cost,
respectively. Thus, depending on whether the marginalispsisitive or negativé,; will obtain its minimal
or maximal possible value.

PROOF. Because%“c > rsisc, by =0 by Lemméel. Minimizing[(EC®) then becomes:

min waI/T1+wc(5\—b1uc)—i—wscpb],uc.

0<br<IAN pc
This is a linear function ob; which obtains its minimum at 0 ar A A/ when the coefficient ob; is
positive or negative, respectively. O
We now examine the case Whefgfg < Trgpsc-

. W
Proposition 7 If ranes <Wsc then

LAN pe i wope >wy(1/rr =1/rs) +wse(puc + psc), 1D regime

b;=140 it ve < L (p+ ), Nocritical care ~ (EC-11)
Ksc i i
et otherwise CD regime

by =(1-07) Apbjpc/pusc andn* =by /1 +b%/rs.
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PrROOFE Because% < rspsc, by Lemmalbs = (1 — b;) A pbruc/psc. We have two cases to
consider depending on the relationship betweerb; andpb; e/ psc-

1. 1—b; <pbruc/psc: Minimizing (EC-8) becomes:

min Awn(br/rr+ (1=0br)/rs) + we (X —brpc) + wse(pbric — (1 —br)psc)

M A
<br<1ngy

SC
prCtrsc

which is a linear function ob;. Thus, on the intervaﬂ%, 1A 2| the optimal value ob; is
prctpsc [ el

b — { 1A % if wepe >wn(1/rr—1/rs) +wse(pue + pse), (EC-12)

HSC 1
Py otherwise

where we note that£s¢ — < A dueto Assumptiohl3.
PrCctpsc %]

2. 1—b; > pbruc/psc: There are no bumping costs in this case. Minimiz[ng (ECeXdmes:

mir}} {wn (b /r1 + pbrpc/pscrs) +we(A—bruc)}.

Similar to case #1, on the interv@, pso ] the optimal value ob; is
ppctusc

rsc i wo 1 TSKSC
b; — { puctpsc if wN < rShsc <p+ rIne )’ (EC_13)
0 otherwise

To complete the proof, we need to see which is the optimaleval; if both conditionswe e >

wn(1/r; —1/rs) + wsc(puc + pse) and 1“;—13 < rsisc (p+ rfli?) are satisfied. In this case, the two

candidate values fdr; are eithen A % or 0. But note that under the assumptions of the proposit@two
inequalities hold if and only ifvc e = wn (1/r;—1/rs) +wsc(ppc + pse) = wn(1/rr+ppc/(scrs))
andwy /wsc = rsusc, in which case both values 6f are optimal. O

We make a few observations about the bed allocation sokitiothis alternative formulation. First, we
note that, again, the optimal SDU size may be substantiatay. Similar to before, whether or not the
hospital should have an SDU depends on the effective cgpafci single nurse in the SDU (usc);
however, because nurses are no longer the bottleneck, ttesponding cost ratio is now between the cost
of that additional nursey, andwgc instead of the cost of misplacing a critical patieng;.

In allocating beds to the ICU and SDU, we see there is stillCatike regime where all (or as much as
possible) of the critical patient demand is met, and a CB-fidgime where a substantial number of beds
is allocated to the SDU and all of the Semi-critical demanchét. The inclusion of nursing costs in the
optimization framework introduces a third regime wheregtedfing costs are so high that it is optimal to
have no ICU and no SDU (Note that the parameterp + v again plays a key role in this decision). While
some (typically small, rural) hospitals do not have an IQUs igenerally due to strategic reasons, rather
than because staffing costs are extraordinarily high.

EC-3. Supplemental Figure
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Figure EC.1
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