Unrestricted Variables in LP

Variables

 x_1 – loaves of bread baked

 x_2 – oz. flour bought or sold (positive if bought, negative if sold)

Objective:

$$\max 30x_1 - 4x_2$$

Constraints:

5 packages of yeast

$$x_1 \leq 5$$

need enough flour to bake x_1 loaves

$$5x_1 \le 30 + x_2$$

Nonnegativity: x_1 is nonegative, x_2 is unrestricted.

Can't just run simplex with an unrestricted variable, beacause it won't set x_2 to a negative value.

Dealing with the unrestricted variable

Idea:

Let x_2' be the amount of flour bought Let x_2'' be the amount of flour sold

Now we can replace x_2 with

$$x_2 = x_2' - x_2''$$
$$x_2', x_2'' \ge 0$$

Interpreting the solution: What if both x_2' and x_2'' are positive in solution?

It can't happen with simplex!

\mathbf{LP}

$$\mathbf{maximize} \quad 30x_1 - 4x_2' + 4x_2'' \tag{1}$$

$$\mathbf{subject to}$$

$$5x_1 - x_2' + x_2'' \le 30$$
 (2)

$$x_1 \le 5$$
 $x_1, x_2', x_2'' \ge 0$
(3)

$$x_1 , x_2' , x_2'' \ge 0$$
 (4)

Put into standard form:

$$z = 30x_1 - 4x'_2 + x''_2
s_1 = 30 - 5x_1 + x'_2 - x''_2
s_2 = 5 - x_1$$
(5)
(6)

Choose x_1 to enter Choose s_2 to exit

Iteration 1

$$z = 30x_1 - 4x'_2 + x''_2 s_1 = 30 - 5x_1 + x'_2 - x''_2 s_2 = 5 - x_1$$
(8)
(9)

Choose x_1 to enter Choose s_2 to exit

$$z = 150 - 30s_2 - 4x'_2 + x''_2
s_1 = 5 + 5s_2 + x'_2 - x''_2
x_1 = 5 - s_2$$
(11)
(12)

Choose $x_2^{''}$ to enter Choose s_1 to exit

Iteration 2

$$z = 150 - 30s_2 - 4x'_2 + x''_2
s_1 = 5 + 5s_2 + x'_2 - x''_2
x_1 = 5 - s_2$$
(14)
(15)

Choose x_2'' to enter Choose s_1 to exit

$$z = 170 - 10s_2 - 4s_1$$

$$x''_2 = 5 + 5s_2 + x'_2 - s_1$$

$$x_1 = 5 - s_2$$

$$(17)$$

$$(18)$$

So we set $x_1 = 5$ and $x_2 = x_2' - x_2'' = 0 - 5 = -5$. We bake 5 loaves and sell 5 oz. of flour. Total profit 170

General Rule

- 1. For each unrestricted variable x_i , introduce 2 variables, $x_i^{'}$ and $x_i^{''}$.
- 2. Use the equation $x_i = x_i' x_i''$ to replace x_i in the LP.
- 3. Add the non-negativity constraint, $x_i' \geq 0$ and $x_i'' \geq 0$
- 4. Solve the modified LP.
- 5. In the final LP solution
 - (a) if $x'_i = x''_i = 0$ then set $x_i = 0$.
 - (b) if $x'_{i} > 0$ and $x''_{i} = 0$, then set $x_{i} = x'_{i}$.
 - (c) if $x'_i = 0$ and $x''_i > 0$, then set $x_i = -x''_i$.