Minimum Cost Flow

Notations:

- Directed graph $G = (V, E)$
- Let u denote capacities
- Let c denote edge costs.
- A flow of $f(v, w)$ units on edge (v, w) contributes cost $c(v, w) f(v, w)$ to the objective function.

Different (equivalent) formulations

- Find the maximum flow of minimum cost.
- Send x units of flow from s to t as cheaply as possible.
- General version with supplies and demands
	- No source or sink.
	- Each node has a value $b(v)$.
	- positive $b(v)$ is a supply
	- negative $b(v)$ is a demand.
	- Find flow which satisfies supplies and demands and has minimum total cost.

General version of min-cost flow

- Directed graph $G = (V, E)$
- \bullet non-negative edge capacities $\,u\,$
- \bullet edge costs c
- \bullet Supply/demand $\ b\ \ \text{on each vertex}$

$$
\min \sum_{(v,w)\in E} c(v,w)f(v,w)
$$
\n
$$
\text{subject to}
$$
\n
$$
f(v,w) \le u(v,w) \quad \forall (v,w) \in E
$$
\n
$$
\sum_{w\in V} f(v,w) - \sum_{w\in V} f(w,v) = b(v) \quad \forall v \in V
$$
\n
$$
f(v,w) \ge 0 \quad \forall (v,w) \in E
$$

Assumptions

- \bullet if $(v,w) \in E$, then $(w,v) \not\in E$
- $\bullet\, \Sigma_v\, b(v) = 0$
- Graph is directed
- costs/capacities are integral
- There exists a directed path of infinite capacity between each pair of nodes.

Residual Graph

- Capacity is as for flow (now use $u_f(v, w)$ for residual capacity
- If $(v, w) \in E$ and $(w, v) \in E_f$ then $c(w, v) = -c(v, w)$.

Optimality of a flow 1: Negative Cycles

Characterization 1: A feasible flow f is optimal iff G_f has no negative cycles.

Note 1: A feasible flow is one satisfying all supplies/demands. The 0-flow is not feasible (unless all $b(v) = 0$.

Note 2: Flow decomposition for min-cost flow. The difference between any two feasible flows is a collection of cycles.

Node Potentials

- \bullet Similar to shortest paths, we use node potentials $~\pi(v)$.
- \bullet Reduced cost of edge (v,w) ,

$$
c^{\pi}(v,w) = c(v,w) - \pi(v) + \pi(w)
$$

 \bullet For any cycle $~X$, we have

$$
\sum_{(v,w)\in X} c^{\pi}(v,w) = \sum_{(v,w)\in X} c(v,w)
$$

Optimality 2: Reduced Cost Optimality

Reduced Cost Optimality: A feasible flow f is optimal iff there exsits potentials π such that

 $c^{\pi}(v, w) \geq 0 \quad \forall (v, w) \in G_f$

Optimality 3: Complimentary Slackness

A feasible flow f is optimal iff there exsits potentials π such that for all edges $(v, w) \in G$

- if $c^{\pi}(v, w) > 0$ then $f(v, w) = 0$
- if $0 < f(v, w) < u(v, w)$ then $c^{\pi}(v, w) = 0$
- if $c^{\pi}(v, w) < 0$ then $f(v, w) = u(v, w)$.

More on f and π

Two Questions;

- Given an optimal f, how do we compute π ?
- Given an optimal π , how do we compute f?

First Answer

 \bullet Given an optimal f , how do we compute $~\pi$?

Solution:

- Use Reduced Cost Optimality,
- \bullet Compute shortest path distances $\ d\ \ \text{in}\ \ G_f$,
- \bullet Let $~\pi=-d$

Seond Answer

 \bullet Given an optimal $~\pi$, how do we compute $~f$?

Solution

- Use Complimentary Slackness
- Fix f on the edges with $c^{\pi}(v, w) < 0$ or $c^{\pi}(v, w) > 0$
- Solve the resulting max flow problem on edges with $c^{\pi}(v, w) = 0$

Algorithms for Minimum Cost Flow

There are many algorithms for min cost flow, including:

- Cycle cancelling algorithms (negative cycle optimality)
- Successive Shortest Path algorithms (reduced cost optimality)
- Out-of-Kilter algorithms (complimentary slackness)
- Network Simplex
- Push/Relabel Algorithms
- Dual Cancel and Tighten
- Primal-Dual
- \bullet . . .

Cycle Cancelling Algorithm

Basic Algorithm (Klein's Algorithm)

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_f
	- $-\mathbf{Let} \quad \delta = \min_{(v,w)\in X} u_f(v,w)$
	- Send δ units of flow around X

Analysis:

- Let $U = \max_{(v,w)\in E} u(v,w)$
- Let $C = \max_{(v,w)\in E} |c(v,w)|$
- For any feasible flow $-mCU \le c(f) \le mCU$
- Each iteration of the Basic Cycle Cancelling Algorithm decreases objective by at least 1.
- Conclusion: At most 2mCU iterations.
- Running time $= O(nm^2CU)$. Not polynomial.

Ideas for Improvement

– Send flow around most negative cycle. (NP-hard to find)

– How many iterations would that be?

Ideas for Improvement

- Send flow around most negative cycle. (NP-hard to find)
- How many iterations would that be?

Analysis:

.

- The difference between any two feasible flows is the union of at most m cycles.
- $-\text{Let } f$ be the current flow, f^* be the optimal flow.
- − Consider $f f^*$. It is the union of at most m cycles.
- The most negative cycle in $f f^*$ must have cost at least

$$
\frac{1}{m}c(f^*-f)
$$

Analysis continued

- Each iteration gets $\frac{1}{m}$ of the way to the optimal flow.
- Equivalently, each iteration decreases the distance to the optimal flow by a $1-\frac{1}{m}$ $\frac{1}{m}$ factor.
- Initial distance is at most $2mCU$.
- Once we get within one of the optimal flow, we are done, since flows, and costs of flows are integers.

Conclusion: The number of iterations is

 $\lg_{1/(1-1/m)}(mCU)$

Analysis:

.

$$
\lg_{1/(1-1/m)}(mCU) = \frac{\lg(mCU)}{\lg(1/(1-\frac{1}{m}))}
$$

$$
\approx \frac{\lg(mCU)}{\frac{1}{m+1}}
$$

$$
= (m+1)\lg(mCU)
$$

There are $O(m \lg(mCU))$ iterations.

Cycle Cancelling

- If we could find most negative cycle, there would be a polynomial number of iterations.
- Finding the most negative cycle is NP-hard.
- Solution: Find minimum mean cycle and cancel it.
- We will show that the minimum mean cycle "aproximates" the most negative cycle well.

Mnimum Mean Cycle Algorithm

- Find a feasible flow f (solve a maximum flow)
- While there exists a negative cost cycle X in G_f
	- $\mathbf{-}$ Let X be the minimum mean cycle
	- Let $\delta = \min_{(v,w)\in X} u_f(v,w)$
	- Send δ units of flow around X (Maintain potentials π at nodes).
- Note: Flows are always feasible in this algorithm
- Def: A flow f is ϵ -optimal if there exists potentials π such that $c^{\pi}(v, w) \geq -\epsilon \ \ \forall (v, w) \in G_f$

ϵ -optimality

Lemma:

- Any feasible flow is C -optimal.
- \bullet If $~\epsilon<1/n$, then an $\epsilon\textrm{-optimal}$ flow is optimal.

Main Theorem

Defining ϵ given f and π : Given π and f , let $\epsilon^{\pi}(f) = -\min_{(v,w) \in G_f} \{c^{\pi}(v,w)\}$. This value is the smallest ϵ for which the flow f is ϵ -optimal.

Choosing π , given f

- Note that f is not optimal, so we cannot just run shortest paths to find an optimal π
- Let $\epsilon(f) = \min_{\pi} \epsilon^{\pi}(f)$.
- Let $\mu(f)$ be the minimum mean cycle value in G_f .

Theorem Given any feasible flow f

 $\epsilon(f) = -\mu(f)$

More analysis

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f . Then there exist π s.t.

 $c^{\pi}(v, w) = \mu(f) = -\epsilon(f) \ \ \forall (v, w) \in X$

Progress

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum mean cycle in G_f . Suppose we push flow around $|X\rangle$ to obtain $|f\rangle$. Then $\epsilon(f') \leq \epsilon(f) = \epsilon$

Measured Progress

Lemma: Let f be a feasible non-optimal flow. Suppose that we execute m iterations of the minimum-mean cycle algorithm to obtain f . Then, if the algorithm has not terminated, we have that

$$
\epsilon(f') \leq \left(1-\frac{1}{n}\right)\epsilon(f)
$$

.

Summary

- In m iterations, ϵ decreases by a $1 1/n$ factor.
- In *nm* iterations, ϵ decreases by a $(1 1/n)^n \approx 1/e$ factor.
- Initially $\epsilon \leq C$
- We stop when $\epsilon \leq 1/n$
- Decrease by a factor of $e \ln(nC)$ times.
- Therefore, number of iterations is $O(nm \log(nC))$
- Running time is $O(n^2m^2 \log(nC))$

Nice feature of algorithm: No explicit scaling. Eplicit scaling enforces a lower bound.

Strongly Polynomial Algorithm

- Recall that strongly polynomial means polynomials in n and m and "independent" of C and U .
- We have seen strongly polynomial algorithms for maximum flow.
- No strongly polynomial algorithm is known for linear programming.
- No strongly polynomial algorithm is known for multicommodity flow.
- We will see a strongly polynomial algorithm for minimum cost flow, one of the "hardest" problems for which such an algorithm exists.
- Strongly polynomial is mainly a theoretical issue.

Theorem: The minimum mean cycle algorithm runs in $O(n^2m^3 \log n)$ time.

Analysis

Ideas for strongly polynomail algorithm

- If, at some point $|c^{\pi}(v,w)| >> \epsilon(f)$, then (v, w) if fixed, the flow will never change.
	- If $c^{\pi}(v, w)$ large positive, you never want to put most flow on it.
	- If $c^{\pi}(v, w)$ large negative, you never want to remove flow from it.

More precisely

- \bullet An edge if ϵ -fixed if the flow on that edge is the same for all ϵ' -optimal flows, for all $\epsilon' \leq \epsilon$.
- Once an edge is ϵ -fixed, we can freeze the flow on that edge, and ignore the edge for the remainder of the algorithm.
- We therefore have a notion of progress that depends on the number of edges of the graph.

Analysis

Theorem If $|c^{\pi}(v, w)| \geq 2n\epsilon(f)|$, then (v, w) is ϵ -fixed.

Analysis Continued

Theorem: Every $nm(\ln n + 1)$ iterations, at least one edge becomes ϵ -fixed.

Corollary: Total of $O(nm^2 \lg n)$ iterations and $O(n^2m^3 \lg n)$ running time.