
Minimum Cost Flow

Notations:

• Directed graph G = (V,E)

• Let u denote capacities

• Let c denote edge costs.

• A flow of f (v, w) units on edge (v, w) contributes cost c(v, w)f (v, w) to

the objective function.

Different (equivalent) formulations

• Find the maximum flow of minimum cost.

• Send x units of flow from s to t as cheaply as possible.

• General version with supplies and demands

– No source or sink.

– Each node has a value b(v) .

– positive b(v) is a supply

– negative b(v) is a demand.

– Find flow which satisfies supplies and demands and has minimum

total cost.



General version of min-cost flow

• Directed graph G = (V,E)

• non-negative edge capacities u

• edge costs c

• Supply/demand b on each vertex

min
∑

(v,w)∈E
c(v, w)f (v, w)

subject to

f (v, w) ≤ u(v, w) ∀(v, w) ∈ E∑
w∈V

f (v, w)− ∑
w∈V

f (w, v) = b(v) ∀v ∈ V

f (v, w) ≥ 0 ∀(v, w) ∈ E



Assumptions

• if (v, w) ∈ E , then (w, v) 6∈ E

• ∑
v b(v) = 0

• Graph is directed

• costs/capacities are integral

• There exists a directed path of infinite capacity between each pair of

nodes.



Residual Graph

• Capacity is as for flow (now use uf(v, w) for residual capacity

• If (v, w) ∈ E and (w, v) ∈ Ef then c(w, v) = −c(v, w) .



Optimality of a flow 1: Negative Cycles

Characterization 1: A feasible flow f is optimal iff Gf has no negative

cycles.

Note 1: A feasible flow is one satisfying all supplies/demands. The 0-flow

is not feasible (unless all b(v) = 0 .

Note 2: Flow decomposition for min-cost flow. The difference between

any two feasible flows is a collection of cycles.



Node Potentials

• Similar to shortest paths, we use node potentials π(v) .

• Reduced cost of edge (v, w) ,

cπ(v, w) = c(v, w)− π(v) + π(w)

• For any cycle X , we have

∑
(v,w)∈X

cπ(v, w) =
∑

(v,w)∈X
c(v, w)



Optimality 2: Reduced Cost Optimality

Reduced Cost Optimality: A feasible flow f is optimal iff there exsits

potentials π such that

cπ(v, w) ≥ 0 ∀(v, w) ∈ Gf



Optimality 3: Complimentary Slackness

A feasible flow f is optimal iff there exsits potentials π such that for

all edges (v, w) ∈ G

• if cπ(v, w) > 0 then f (v, w) = 0

• if 0 < f (v, w) < u(v, w) then cπ(v, w) = 0

• if cπ(v, w) < 0 then f (v, w) = u(v, w) .



More on f and π

Two Questions;

• Given an optimal f , how do we compute π ?

• Given an optimal π , how do we compute f ?



First Answer

• Given an optimal f , how do we compute π ?

Solution:

• Use Reduced Cost Optimality,

• Compute shortest path distances d in Gf ,

• Let π = −d



Seond Answer

• Given an optimal π , how do we compute f ?

Solution

• Use Complimentary Slackness

• Fix f on the edges with cπ(v, w) < 0 or cπ(v, w) > 0

• Solve the resulting max flow problem on edges with cπ(v, w) = 0



Algorithms for Minimum Cost Flow

There are many algorithms for min cost flow, including:

• Cycle cancelling algorithms (negative cycle optimality)

• Successive Shortest Path algorithms (reduced cost optimality)

• Out-of-Kilter algorithms (complimentary slackness)

• Network Simplex

• Push/Relabel Algorithms

• Dual Cancel and Tighten

• Primal-Dual

• . . .



Cycle Cancelling Algorithm

Basic Algorithm (Klein’s Algorithm)

• Find a feasible flow f (solve a maximum flow)

• While there exists a negative cost cycle X in Gf

– Let δ = min(v,w)∈X uf(v, w)

– Send δ units of flow around X

Analysis:

• Let U = max(v,w)∈E u(v, w)

• Let C = max(v,w)∈E |c(v, w)|

• For any feasible flow −mCU ≤ c(f ) ≤ mCU

• Each iteration of the Basic Cycle Cancelling Algorithm decreases objec-

tive by at least 1.

• Conclusion: At most 2mCU iterations.

• Running time = O(nm2CU) . Not polynomial.



Ideas for Improvement

– Send flow around most negative cycle. (NP-hard to find)

– How many iterations would that be?



Ideas for Improvement

– Send flow around most negative cycle. (NP-hard to find)

– How many iterations would that be?

Analysis:

– The difference between any two feasible flows is the union of at most

m cycles.

– Let f be the current flow, f ∗ be the optimal flow.

– Consider f − f ∗ . It is the union of at most m cycles.

– The most negative cycle in f − f ∗ must have cost at least

1

m
c(f ∗ − f )

.



Analysis continued

– Each iteration gets 1
m of the way to the optimal flow.

– Equivalently, each iteration decreases the distance to the optimal flow

by a 1− 1
m factor.

– Initial distance is at most 2mCU .

– Once we get within one of the optimal flow, we are done, since flows,

and costs of flows are integers.

Conclusion: The number of iterations is

lg1/(1−1/m)(mCU)

.

Analysis:

lg1/(1−1/m)(mCU) =
lg(mCU)

lg(1/(1− 1
m))

≈ lg(mCU)
1

m+1

= (m + 1) lg(mCU)

There are O(m lg(mCU)) iterations.



Cycle Cancelling

• If we could find most negative cycle, there would be a polynomial num-

ber of iterations.

• Finding the most negative cycle is NP-hard.

• Solution: Find minimum mean cycle and cancel it.

• We will show that the minimum mean cycle “aproximates” the most

negative cycle well.



Mnimum Mean Cycle Algorithm

• Find a feasible flow f (solve a maximum flow)

• While there exists a negative cost cycle X in Gf

– Let X be the minimum mean cycle

– Let δ = min(v,w)∈X uf(v, w)

– Send δ units of flow around X (Maintain potentials π at nodes).

Note: Flows are always feasible in this algorithm

Def: A flow f is ε-optimal if there exists potentials π such that

cπ(v, w) ≥ −ε ∀(v, w) ∈ Gf



ε-optimality

Lemma:

• Any feasible flow is C -optimal.

• If ε < 1/n , then an ε-optimal flow is optimal.



Main Theorem

Defining ε given f and π: Given π and f , let επ(f ) = −min(v,w)∈Gf
{cπ(v, w)}

. This value is the smallest ε for which the flow f is ε -optimal.

Choosing π, given f

• Note that f is not optimal, so we cannot just run shortest paths to

find an optimal π

• Let ε(f ) = minπ ε
π(f ) .

• Let µ(f ) be the minimum mean cycle value in Gf .

Theorem Given any feasible flow f

ε(f ) = −µ(f )



More analysis

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum

mean cycle in Gf . Then there exist π s.t.

cπ(v, w) = µ(f ) = −ε(f ) ∀(v, w) ∈ X



Progress

Lemma: Let f be a feasible non-optimal flow. Let X be the minimum

mean cycle in Gf . Suppose we push flow around X to obtain f ′ . Then

ε(f ′) ≤ ε(f ) = ε



Measured Progress

Lemma: Let f be a feasible non-optimal flow. Suppose that we execute

m iterations of the minimum-mean cycle algorithm to obtain f . Then, if

the algorithm has not terminated, we have that

ε(f ′) ≤
1− 1

n

 ε(f )
.



Summary

• In m iterations, ε decreases by a 1− 1/n factor.

• In nm iterations, ε decreases by a (1− 1/n)n ≈ 1/e factor.

• Initially ε ≤ C

• We stop when ε ≤ 1/n

• Decrease by a factor of e ln(nC) times.

• Therefore, number of iterations is O(nm log(nC)

• Running time is O(n2m2 log(nC))

Nice feature of algorithm: No explicit scaling. Eplicit scaling enforces a

lower bound.



Strongly Polynomial Algorithm

• Recall that strongly polynomial means polynomials in n and m and

“independent” of C and U .

• We have seen strongly polynomial algorithms for maximum flow.

• No strongly polynomial algorithm is known for linear programming.

• No strongly polynomial algorithm is known for multicommodity flow.

• We will see a strongly polynomial algorithm for minimum cost flow, one

of the “hardest” problems for which such an algorithm exists.

• Strongly polynomial is mainly a theoretical issue.

Theorem: The minimum mean cycle algorithm runs in O(n2m3 log n) time.



Analysis

Ideas for strongly polynomail algorithm

• If, at some point |cπ(v, w)| >> ε(f ) , then (v, w) if fixed, the flow will

never change.

– If cπ(v, w) large positive, you never want to put most flow on it.

– If cπ(v, w) large negative, you never want to remove flow from it.

More precisely

• An edge if ε -fixed if the flow on that edge is the same for all ε
′
-optimal

flows, for all ε
′ ≤ ε .

• Once an edge is ε -fixed, we can freeze the flow on that edge, and ignore

the edge for the remainder of the algorithm.

• We therefore have a notion of progress that depends on the number of

edges of the graph.



Analysis

Theorem If |cπ(v, w)| ≥ 2nε(f )| , then (v, w) is ε -fixed.



Analysis Continued

Theorem: Every nm(lnn + 1) iterations, at least one edge becomes ε

-fixed.

Corollary: Total of O(nm2 lg n) iterations and O(n2m3 lg n) running time.


