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ABSTRACT

This paper develops an equilibrium model of a competitive futures market in which
investors trade to hedge positions and to speculate on their private information.
Equilibrium return and trading patterns are examined. ~1! In markets where the
information asymmetry among investors is small, the return volatility of a futures
contract decreases with time-to-maturity ~i.e., the Samuelson effect holds!. ~2! How-
ever, in markets where the information asymmetry among investors is large, the
Samuelson effect need not hold. ~3! Additionally, the model generates rich time-to-
maturity patterns in open interest and spot price volatility that are consistent
with empirical findings.

AN ISSUE CENTRAL TO THE ANALYSIS of futures markets is the relationship be-
tween speculation and futures price volatility. A long line of models ~see, e.g.,
Grossman ~1977!, Bray ~1981!! have tried to understand the effects of spec-
ulation on futures price volatility. This line of research is economically rel-
evant as speculative trades appear to be an important determinant of volatility
in futures markets. For instance, Roll ~1984! finds that public information
accounts for only a fraction of the movement in orange juice futures prices,
which suggests that investors bring their own private information into the
market through their trades. Unfortunately, existing models of speculation
in futures are essentially static ones and cannot speak to a number of in-
teresting aspects of returns and trading in futures markets.

An example is the relationship between the price volatility and the time-
to-maturity of a futures contract. The analysis of this issue is an important
one and has a long history. Assuming the existence of a representative in-
vestor and an exogenous spot price process, Samuelson ~1965! shows that
when there is a mean-reverting component in the spot price process and no
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arbitrage, the return volatility of a futures contract monotonically rises as
the contract expires. This monotonic time-to-maturity pattern has come to
be known as the “Samuelson effect” or the “Samuelson hypothesis.” An al-
ternative to the Samuelson hypothesis is the state variable hypothesis, which
argues that heterogeneous information f lows lead to violations of the Sam-
uelson effect ~see, e.g., Richard and Sundaresan ~1981!, Anderson and Dan-
thine ~1983!!.1 Despite the popularity of these two hypotheses ~see textbooks
on futures markets such as Kolb ~1991!!, little is known about the robust-
ness of these models to speculation by investors since the models generally
assume that investors are symmetrically informed.

In this paper, I develop a dynamic model to study the effects of speculation
on various aspects of returns and trading in futures. In my model, investors
trade in futures to hedge positions and to speculate on their private infor-
mation. Futures are not redundant securities and cannot be priced by risk-
less arbitrage through trading in the risky and the risk-free asset ~cash and
carry!.2 Rather, spot and futures prices are simultaneously determined in
equilibrium. Interestingly, the model is capable of producing a variety of
return and trading patterns in futures that are consistent with existing em-
pirical evidence. I will review this evidence in detail in Section I below.

My model features two classes of investors: the “informed” and the “un-
informed.” These investors trade competitively in a risky asset ~the spot!
and a futures contract written on the spot. The payoff to holding spot posi-
tions changes over time, depending on the “fundamental” of the risky asset.
To fix ideas, think of the futures as a one-year silver futures contract and
the fundamental as the expected growth rate of the supply of silver. The
fundamental is stochastic and mean reverting. Only informed investors have
private information on how the fundamental evolves. They trade in futures
to speculate on their private information. Because they are risk averse, they
also trade in futures to hedge their spot positions as well as nonmarketed
risks, which have varying degrees of persistence.3 The uninformed investors
trade only for hedging reasons. They are willing to trade with informed in-
vestors since the informed may be trading for hedging reasons as well. Un-
informed investors try to learn about the fundamental by rationally extracting
information from prices. Their learning is incomplete, however, because of
the noise in prices generated by hedging trades.

I begin by showing that when there are only informed investors in the
economy, the Samuelson effect holds. The intuition is simple. Consider one-
year silver futures. Suppose there is a mean-reverting, negative supply shock

1 Anderson and Danthine ~1983! offer grain trade as an example where more production
uncertainty about harvests tends to be resolved during certain times of the year. Since these
times of the year need not coincide with the expiration dates of futures contracts, they point out
that this can lead to higher price volatility for a contract far from as opposed to near expiration.

2 This differs from many of the existing dynamic models of futures prices, which tend to use
the representative agent approach to price futures ~see, e.g., Jagannathan ~1985!, Schwartz
~1997!!.

3 These nonmarketed risks can arise, for example, from their positions in other markets.
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today with a half-life of one month. Holding demand fixed, the spot price of
silver will no doubt rise. However, the one-year futures price is largely un-
changed because much of the shock dies away by the time the contract ex-
pires. As the futures contract approaches its expiration ~from a one-year to
a one-month contract!, its price elasticity to such shocks increases and so its
return volatility rises. So the Samuelson effect is really just a “price elas-
ticity effect.” This result merely extends Samuelson ~1965! to a more general
setting that allows for heterogeneity among investors in nonmarketed risks.

Things get more interesting when there are also uninformed investors in
the economy ~so informed investors trade to both hedge positions and spec-
ulate on their private information!. In this instance, I show that the Sam-
uelson effect need not hold. To see why, consider again one-year silver futures.
Suppose that shocks to the fundamental are strongly persistent ~close to a
random walk!, but shocks to the nonmarketed risks are highly mean revert-
ing ~a half-life of one month!. The futures price when time-to-maturity is
large is insensitive to nonmarketed risk shocks; uninformed investors can
then infer that movements in the futures price are most likely due to changes
in the fundamental and hence they learn the private information of the in-
formed investors. So there is little information asymmetry when time-to-
maturity is large.

As the futures contract rolls to its expiration date, however, its sensitivity
to the nonmarketed risk shocks increases and uninformed investors can learn
less about the fundamental—so information asymmetry rises. As a result,
less private information is impounded into the futures price and so, all else
equal, the futures price moves less as the contract expires. This effect, which
I term the “speculative effect,” can overwhelm the price elasticity effect iden-
tified by Samuelson ~1965! and lead to rich, nonmonotonic time-to-maturity
patterns in futures return volatility.4

Beyond return volatility, this model also generates a number of other aux-
iliary predictions. For instance, I show that open interest can take on rich
time-to-maturity patterns. When information asymmetry among investors is
important, uninformed investors face an adverse selection cost in trading
with informed investors. The higher the information asymmetry, the higher
is this cost and the lower the open interest. The variation in information
asymmetry that affects the term structure of futures return volatility is also
an important determinant of open interest. Additionally, the model can also
speak to the effects of new futures on spot price volatility. In my model, new
futures allow investors to better hedge spot price risk and hence increase
the willingness of investors to take on larger spot positions. As such, new
futures tend to result in lower spot price volatility.

In what follows, I develop a simple infinite horizon model that captures
these ideas and explore their empirical content. I begin in Section I by dis-
cussing the empirical evidence that motivates my work. I present my model

4 Unlike the state variables hypothesis, this occurs even assuming homogeneous information
f low.
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in Section 2 and the definition and solution of the equilibrium in Section 3.
I then discuss the solution in Sections IV and V. I draw out the model’s
empirical implications in Section VI. I conclude in Section VII.

I. Empirical Findings

A. Futures Price Volatility

A long line of empirical work has tried to document the Samuelson effect
and the state variable hypothesis. The Samuelson effect has been docu-
mented in a number of markets such as crude oil and many agriculturals
like wheat.5 For many of these markets, there is still a Samuelson effect
after normalizing for nonstationarities in the information f low. Interest-
ingly, there are exceptions. For example, Anderson ~1985! finds little sup-
port for the Samuelson effect in corn even after controlling for seasonality.
Khoury and Yougourou ~1993! find the Samuelson effect in a number of com-
modities but not in canola. This evidence suggests that heterogeneous infor-
mation f low may not be the only reason behind violations of the Samuelson
effect. The model is capable of generating nonlinear time-to-maturity pat-
terns in futures return volatility even in the presence of homogeneous in-
formation f low ~see Section VI.A!.

B. Open Interest

Although extensive empirical studies have been made of futures price
volatility, relatively little empirical work has been done on open interest.
Two exceptions are Bessembinder ~1992! and Milonas ~1986!. Using data on
hedging demand from many futures markets, Bessembinder finds that,
conditional on the demand for hedging being net short ~long!, mean returns
to trading in futures tend to be positive ~negative!. This evidence is con-
sistent with the predictions of the model in Section VI.B. Milonas considers
the time-to-maturity patterns in open interest for various markets. He
finds that for the liquid contracts of intermediate maturities, there can be
different time-to-maturity patterns, with more distant contracts having more
or less open interest than those nearer to expiration.6 He does not explain
why such systematic patterns vary across different markets. The proposed
model provides one explanation for such differences across markets ~see
Section VI.B!.

5 See, for example, Bessembinder et.al. ~1996! for a current study and review of the litera-
ture. The Samuelson effect is weak in some precious metals and financials. This is not neces-
sarily evidence consistent with my model since these markets are near cost-of-carry and my
model is really about non-cost-of-carry markets.

6 The very distant and the nearest contracts tend to have the least open interest because
they are highly illiquid.
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C. New Futures and Spot Price Volatility

Finally, the other aspect of futures markets that has received some atten-
tion is the effect of new futures on spot price volatility. A number of these
studies are surveyed in Damodaran and Subrahmanyam ~1992!. Their study
concludes, “In summary, there seems to be a consensus that listing futures
on commodities has resulted in lower variance in commodity prices.” Re-
cently, Netz ~1995! finds that this decrease in volatility in the corn market
coincides with the increased sensitivity of spot holdings ~inventory! to sup-
ply and demand shocks. This finding suggests that the channel in which
new futures lead to lower spot price volatility is through the increased will-
ingness of storage companies to absorb supply and demand shocks by taking
on larger inventories as they can better hedge these risks with new futures.
These findings are consistent with the predictions of the model documented
in Section VI.B.

II. The Model

The economy is defined on a discrete time, infinite horizon T 5 $0,1,2, . . . ,`%
with a single good that can be consumed or invested. There are two classes
of investors denoted by i 5 a, b. Investors are identical within each class but
different across classes in physical endowments and private information. Let
the population weights of these two classes be v and 1 2 v, respectively,
where v [ @0,1# . Investors in class-i are also referred to as investor-i. The
economy is further specified as follows.

A. Investment Opportunities

There are three publicly traded assets in the economy: a riskless asset, a
risky asset ~“spot”!, and a futures contract written on the spot. The riskless
asset is assumed to have an infinitely elastic supply at a positive constant
rate of return r. Let R 5 1 1 r be the constant gross rate of return per period
on the riskless asset.

Investors can trade shares of the spot in a competitive spot market.
The shares of the spot are perfectly divisible and traded at no cost. Each
share of the spot generates a payoff of Dt at time t. Dt is governed by the
process

Dt 5 Zt 1 eD, t , ~1!

where Zt follows an AR~1! process

Zt 5 aZ Zt21 1 eZ, t , 0 # aZ # 1. ~2!
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Here eD, t and eZ, t are independent and identically distributed ~i.i.d.! shocks
to Dt and Zt respectively. Zt is the persistent component in the spot payoff
and eD, t is the idiosyncratic component. Zt will be referred to as the “fun-
damental” of the spot as it fully determines the expectation of future spot
payoffs.7 I define St to be the spot price at time t.

Investors can also trade in a competitive futures market. They can start
trading in the first futures contract at time t1 5 0. This contract expires M
periods later at time m1 5 t1 1 M. N periods later, at time t2 5 m1 1 N,
investors can trade in another futures contract of maturity M. This second
contract expires at m2 5 t2 1 M. Additional futures are then periodically
introduced into the economy in a similar manner. That is, the ~k 2 1!th
contract expires at mk21 and the kth contract starts trading at tk 5
mk21 1 N and expires at mk 5 tk 1 M for k 5 1,2,3, . . . . When N 5 0, we have
tk 5 mk21 and mk 5 tk11. Figure 1 illustrates this special case.

Since there is at most one futures contract traded at any point in time, I
define Ht to be the price of the contract at time t. It is then understood that
the price of the kth contract is Ht for t [ Hk, where Hk 5 $tk, . . . , mk% .8

B. Endowments

Without loss of generality, I assume that each investor is endowed with
one share of the spot and that the futures contract is in zero net supply. In
addition to these publicly traded securities, it is assumed that investors in

7 Dt is often referred to as a “convenience yield” ~see, e.g., Brennan ~1991!!—the value of any
benefits that inventories provide, including the ability to smooth production or facilitate the
scheduling of production and sales. See Schwartz ~1997! for models of the convenience yield and
evidence that the convenience yield is in fact mean reverting. Think of the risky asset as a
claim to an apple tree that exogenously pays out dividends each period in the form of apples
~the consumption good and numéraire!. These dividends can be consumed, invested in the risk-
free asset, or invested to purchase more shares of the stock. The risky asset can be interpreted
as a stock ~which is a claim on dividends! or a currency ~which is a claim on the foreign interest
rate! or a storable commodity like silver ~which is a claim on convenience yields as defined
above!.

8 Note that at t 5 mk, the price of the kth contract has to equal the spot price, given no
arbitrage. Thus, there is no ambiguity if the ~k 1 1!th contract is introduced at the same date
on which the kth contract expires.

Figure 1. Periodic introduction of futures. The ~k 2 1!th contract expires at mk21, the kth
contract is introduced at tk and expires M periods later at mk, and the ~k 1 1!th contract is
introduced at tk11.
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class-a receive a nonmarketed income with the following payoffs. The non-
marketed income qt is given by

qt11 5 Yt 1 Yt eq, t11, ~3!

where Yt determines the expected return and volatility of the nonmarketed
risk. Here eq, t11 is the i.i.d. idiosyncratic shock to the return. Furthermore,
I assume Yt 5 1 1 Y1, t 1 Y2, t , where Yi, t ~i 5 1,2! follows an AR~1! process

Yi, t 5 aYi
Yi, t21 1 eYi , t , 0 # aYi

, 1. ~4!

The innovation eYi , t is assumed to be i.i.d. over time. Clearly, Yi, t for i 5 1,2
fully determines the evolution of investor-a’s nonmarketed risk.

In addition to having different physical endowments, investors also have
different informational endowments. It is assumed that all investors observe
the history of payoffs to the spot and market prices. That is, at time t, let
Nt 5 $Ds,Ss, Hs : s # t% be the set of publicly available information. In gen-
eral, only class-a investors additionally observe the fundamental as well as
the expected return on their nonmarketed incomes. In other words, class-a
investors observe It 5 $Ns,Zs,qs,Y1,s,Y2,s : s # t% , the complete set of infor-
mation in the economy. Thus, class-a investors in general have superior in-
formation to class-b investors about future payoffs to holding the spot.

C. Policies, Preferences, and Distributional Assumptions

Each investor chooses consumption and investment policies to maximize
the expected utility over lifetime consumption. For investor-i ~i 5 a, b!, let
ci, t be his consumption at date t, ui, t

S the number of shares of the spot asset
he holds, and ui, t

H for t [ Mk 5 $tk, . . . , mk 2 1% his position in the kth con-
tract. Then investor-i ’s consumption policy and investment policy in the spot
asset are given by $ci, t : t [ T % and $ui, t

S : t [ T % , respectively; his investment
policy in futures is given by $ui, t

H : t [ M% , where M 5 økMk . Investors’
policies are adapted to their information sets.

For tractability, I assume that all investors have constant absolute risk
aversion ~CARA!:

i 5 a, b : Ei, tF2(
s5t

`

r~s2t!e2gci,sG, ~5!

where Ei, t is the expectation operator conditional on investor-i ’s information
set, r is the time discount factor, and g is the risk-aversion coefficient.

Finally, it is assumed that all e-shocks are jointly normal and i.i.d. over time.
All shocks in the economy are uncorrelated except for innovations to the spot
payoffs and investor-a’s nonmarketed risks, eD, t and eq, t , respectively. These
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two shocks are assumed to be positively correlated, Corr~eD, t ,eq, t ! 5 kDq . 0.
For future convenience, I denote the volatility of a normally distributed vari-
able eX, t as sX . For example, the volatility of innovation eD, t is sD.

D. Comments on the Model

Many of the assumptions of the model, such as preferences, resemble Wang
~1994! and are easy to justify given the goals of the paper.9 The ones that
deserve more comments are the following. First, the assumption that the
spot pays an exogenous convenience yield is for convenience of modeling,
bypassing the difficulty of dealing with the consumption and production of
commodities. However, Routledge, Seppi, and Spatt ~1998! point out that the
convenience yield may arise endogenously from a nonnegativity constraint
on inventory, in which case stockouts then play an important role in gener-
ating state dependent correlation between spot and futures prices.10 Al-
though my model does not account for nonnegativity constraints on inventory,
the results are not likely to be colored since the results of the model are
really time-to-maturity effects; stockouts are likely to be seasonal effects.11

The assumption of a periodic market structure for futures is merely for trac-
tability. My paper is really about what happens when a typical contract ex-
pires. Because of the periodic structure, I can focus on the behavior of the kth
contract ~since each contract has qualitatively the same behavior!. I allow N to
be an arbitrary parameter and, by setting N large, the solution is similar to a
terminal period model ~as is typically considered in the literature! in which there
is only one contract traded and no other opportunities after the contract expires.

Furthermore, the assumption that investors in class-a face a nonmarketed
risk is a simple way to generate hedging trades in futures. The important
component of this assumption is that kDq . 0.12 Investor-a uses the spot to
hedge his nonmarketed risks. This therefore generates different demands
for the spot asset. In equilibrium, the two classes of investors end up holding
different shares of the spot asset, which leads them to have different de-
mands for and hence to trade in the contract to hedge.13

9 For instance, the constant interest rate is reasonable given Fama and French ~1987! who
show that a stochastic interest rate is an unimportant factor driving weekly to monthly move-
ments in futures prices in most futures markets.

10 A stockout occurs when the inventory of spot is close to running out.
11 Since the existing empirical studies control for month and year effects, the empirical ev-

idence suggests then that the violations of the Samuelson effect are not likely to be due to
stockouts. Additionally, there is no obvious reason to believe that our other results on open
interest and the effect of new futures on spot price volatility are affected.

12 The case of kDq 5 0 reduces to a representative investor economy reminiscent of those in
the existing literature. It is unimportant, however, whether this correlation is positive or negative.

13 Think of investors in class-a as utility companies and investors in class-b as storage com-
panies ~or outsiders! who make the market for a discount in the price. These companies hold
inventories of natural gas and hedge in natural gas futures. One can think of nonmarketed
risks as the utilities’ positions in coal. Fluctuations in the coal price then affect their spot and
futures positions in natural gas. The other component of this assumption is that the nonmar-
keted risks are driven by the two state variables Yi, t ~i 5 1,2!. This is merely to keep the
equilibrium prices from fully revealing all of investor-a’s private information to investor-b.
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III. Equilibrium

A. Definition of Equilibrium

In order to derive an equilibrium of the economy, I begin by stating each
investor’s optimization problem under given spot and futures prices. The
investment policies of investors depend on the returns. I define Qt

S to be the
excess return on one share of the spot ~the return minus the financing cost
at the risk-free rate! and Qt

H to be the return on the futures contract ~the
change in the futures price from time t 2 1 to t!. That is,

Qt
S [ St 1 Dt 2 RSt21, Qt

H [ Ht 2 Ht21. ~6!

Note that Qt
S is the excess return on one share of the spot instead of the

excess return on one dollar invested in the spot. The former is the excess
share return, the latter is the excess rate of return.

Given the investors’ preferences in equation ~5!, investors’ endowments in
equations ~3! and ~4!, and the return processes defined in equation ~6!, the
investors’ optimization problems are given by, for i 5 a, b:

Ji, t [ sup
$ci ,ui

S ,ui
H%

Ei, tF2(
s5t

`

r~s2t!e2gci,sG ~7a!

subject to

Wi, t11 5 ~Wi, t 2 ci, t !R 1 ui, t
S Qt11

S 1 ui, t
H Qt11

H 1 di qt11, ~7b!

where Ji, t is investor-i ’s value function at time t, Wi, t is investor-i ’s wealth at
time t, and di is an index function where di 5 1 if i 5 a and di 5 0 if i 5 b.

For there to be an equilibrium, the following two conditions must hold.
First, the price of the kth contract must equal the spot price at its expiration
date, mk. That is, for k 5 1,2, . . . ,

Hmk
5 Smk

. ~8!

This is simply a no-arbitrage condition. Second, spot and futures prices are
such that investors follow their optimal policies and markets clear:

t [ T : vua, t
S 1 ~1 2 v!ub, t

S 5 1,

t [ M : vua, t
H 1 ~1 2 v!ub, t

H 5 0.
~9!

The resulting equilibrium prices and investors’ optimal policies can in gen-
eral be expressed as a function of the state of the economy and time. The
state of the economy is determined by the investors’ wealth and their expec-
tations about current and future investment opportunities. But due to the
assumptions of a constant risk-free rate and constant absolute risk aversion
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in preferences, investors’ demand of risky investments will be independent
of their wealth ~see, e.g., Merton ~1971!!. Thus I seek an equilibrium in
which the market prices are independent of investors’ wealth. Let • denote
the relevant state variables. Then one can write St 5 S~•; t!, Ht 5 H~•; t!,
and $ci ~•; t!,ui

S~•; t!,ui
H~•; t!%.

Due to the nature of the periodic introduction of futures, I consider peri-
odic equilibria in which the equilibrium price processes and investors’ opti-
mal policies exhibit periodicity in time. Furthermore, I restrict myself to
linear equilibria in which the price functions are linear in •. M and N stay
the same across time.

Definition 1: In the economy defined above, a linear, periodic equilib-
rium is defined by the price functions $S~•; t!, H~•; t!% and policy functions
$ci ~•; t!,ui

S~•; t!,ui
H~•; t!%, i 5 a, b, such that ~a! the policies maximize inves-

tors’ expected utility, ~b! all markets clear, ~c! the price functions are linear
in the state variables • and periodic in time with periodicity M 1 N, and
~d! investors’ policy functions are also periodic in time.

Under Definition 1, the kth contract depends on the underlying uncer-
tainty in the economy in the same way as the ~k 1 1!th contract and so forth.
That is, for k 5 1,2, . . . ,

S~•; tk! 5 S~•; tk11!, H~•; tk! 5 H~•; tk11!. ~10!

Realized values of the spot and futures contracts can be different from pe-
riod to period and contract to contract as the state variables change. Fur-
thermore, periodicity in each investor’s optimization problem and policy
functions yield, for i 5 a, b,

Ji ~•; tk! 5 Ji ~•; tk11!. ~11!

Thus, a periodic equilibrium is given by periodic price functions that satisfy
equation ~8! such that investors optimally solve equations ~7! and ~11!, and
the markets clear—equation ~9! holds. The periodicity conditions for the prices
and value functions, equations ~10! and ~11!, provide the necessary boundary
conditions we need to solve for a periodic equilibrium.

B. Equilibrium Solution

In solving for an equilibrium, I proceed as follows: First, conjecture a par-
ticular equilibrium, then characterize the investors’ optimal policies and the
market clearing conditions under the conjectured equilibrium, and finally
verify that the conjectured equilibrium in fact exists.

Let Gt 5 @Zt ,Y1, t ,Y2, t #
' denote the vector of these state variables. In gen-

eral, the equilibrium also depends on the uninformed investors’ expectations
of these variables. Since Gt is not publicly observable, the uninformed in-
vestors rationally extract information about their values using public sig-
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nals. Let ZGt 5 Eb, t @Gt # be the uninformed investors’ conditional expectations
of Gt based on their information set. The uninformed investors form their
demands on the basis of their forecasts. Consequently, the equilibrium prices
depend not just on Gt but also on ZGt .

As such, I conjecture that the equilibrium asset prices have the following
linear form:

CONJECTURE 1: A linear periodic equilibrium is $St ,Ht % such that, for k51,2, . . . ,

t [ T : St 5 lS,Z~t!Zt 2 lS, X ~t!Xt

t [ Hk : Ht 5 lH,Z~t!Zt 2 lH, X ~t!Xt ,
~12!

where Xt 5 @1,Y1, t ,Y2, t , ~Gt 2 ZGt !
' # ' and equation (8) holds—that is,

lH,Z~mk! 5 lS,Z~mk!, lH, X ~mk! 5 lS, X ~mk!. ~13!

For the conjectured price function, I have imposed the no-arbitrage condi-
tion, equation ~8!, that the price of the kth contract equal the spot price at
its expiration date. For future convenience, I define l~t! to be the time-
varying vector with the price elasticities ~ls! as its elements.

To characterize the equilibrium, I take the price function in equation ~12!
as given and derive each investor’s conditional expectations, policies, and
the market-clearing conditions.

B.1. Conditional Expectations

I now calculate the evolution of the conditional expectations and con-
ditional variances formed by investor-b: ZGt 5 Eb, t @Gt # and o ~t ! 5
Eb, t @~Gt 2 ZGt !~Gt 2 ZGt !

' # . Calculating conditional expectations and variances
is just a Kalman filtering problem whose solution is given in Lemma 1 ~see the
Appendix!.

LEMMA 1: In a linear periodic equilibrium of the form of equation (12), ZGt is
a linear, Gaussian Markov process under investor-b’s information set. And
o~t! evolves deterministically according to a system of difference equations:

o~t! 5 go~o~t 2 1!; l~t!!, ~14!

where go is given in the Appendix.

Given the price coefficients, l~t!, equation ~14! guides the deterministic evo-
lution of o~t! given an initial value. For instance, given an initial value
o~tk!, I can integrate equation ~14! to get o~t! for some t . tk. This is the
standard initial value problem. A periodic solution to equation ~14!, and hence
to the filtering problem, further requires that for k 5 1,2, . . .

o~tk! 5 o~tk11!. ~15!
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B.2. Optimal Policies

Given the price functions and conditional expectations, I can solve for the
optimal policies of the investors. Investor-i ’s control problem as defined in
equation ~7! can be solved explicitly. The following lemma summarizes the
results.

LEMMA 2: Let Xi, t 5 Ei, t @Xt # , i 5 a, b. Given the price functions in system
(12), investor-i’s value function has the form:

t [ T : Ji, t 5 2r t exp H2 rg

R
Wi, t 2

1

2
~Xi, t
' vi ~t!Xi, t !J, ~i 5 a, b!, ~16!

where vi~t! are symmetric matrices that satisfy a system of difference equa-
tions given by

vi ~t 2 1! 5 gi,v~vi ~t!;o~t!; l~t!!, ~17!

where gi,v is given in the Appendix. His optimal investment policies in the
spot $ui, t

S : t [ T % and futures contract $ui, t
H : t [ M% are linear in the state

variables:

ui, t
S 5 hi

S Xi, t , ui, t
H 5 hi

H Xi, t , ~18!

where hi
S and hi

H are functions of o, vi , and l and are given in the Appendix.
Moreover, his optimal consumption policy is

t [ T, ci, t 5 2
1

g
logF 1

g

?Ji, t

?Wi
G.

Given l~t! and o~t!, Lemma 2 expresses investor-i ’s optimal policies as func-
tions of the matrices vi~t!, to be solved from system ~17!. A periodic solution
for investor-i ’s control problem further requires that, for k 5 1,2, . . . ,

vi ~tk! 5 vi ~tk11!. ~19!

B.3. Market Clearing

In equilibrium, the markets must clear. From equation ~9! and Lemma 2,
the market clearing conditions define a system of difference equations for l:

l~t 2 1! 5 gl~l~t!;v1, v2, o!, ~20!
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where gl is given in the Appendix. The periodic condition for prices further
requires that

l~tk! 5 l~tk11!. ~21!

B.4. Existence and Computation of Equilibrium

The previous discussion characterizes the investors’ expectations and op-
timal policies in a linear, periodic equilibrium of equation ~12!. Solving for
such an equilibrium now reduces to solving equations ~14!, ~17!, and ~20!, a
system of first-order difference equations, for o, va, vb, and l subject to
boundary conditions ~15!, ~19!, and ~21!. The solution of a system of differ-
ence equations depends on the boundary condition. For the familiar initial-
value problem, the boundary condition is simply the initial value of the system.
It seeks a solution given its value at a fixed point in time. My problem,
however, has a different boundary condition. I need to find particular initial
values o~tk!, vi~tk! ~i 5 a, b!, lS,Z~tk!, lS, X ~tk!, lH,Z~tk!, and lH, X ~tk! such
that the periodic conditions hold. This is known as a two-point boundary
value problem, which seeks a solution of the system with values at two given
points in time satisfying a particular condition.

Theorem 1 states the result on the existence of a solution to the given
system, which gives a linear periodic equilibrium of the economy.

THEOREM 1: For v (the fraction of informed investors in the economy) close to
one or sY1

and sY2
(the volatility of innovations to nonmarketed risks) close to

zero, a linear periodic equilibrium of the form in equation (12) exists gener-
ically in which the uninformed investors’ expectations are given by Lemma 1
and the optimal policies of both investors are given by Lemma 2.

Here, the conditions on the parameters v, sY1
, and sY2

arise from the par-
ticular approach I use in the proof as opposed to economic rationales ~see the
Appendix!.14 In general, the model needs to be solved numerically. In my
numerical calculations, I make sure that the solution I obtain is robust to a
variety of standard numerical checks. The numerical methods used to solve
this system of difference equations are standard ~see the Appendix!. Once
these coefficients are established, we can numerically calculate the uncon-
ditional return volatility of the spot and futures, Var~Qt

S! and Var~Qt
H!, and

the open interest in a contract—investor-a ’s average ~over all shocks! posi-
tion in the futures scaled by the population weight of class-a investors.

14 My proof relies on a continuity argument. For instance, it is first shown that a solution to
the given system exists for sY1

5 sY2
5 0 ~v and the rest of the parameters of the system can

take on arbitrary values!. Since the system is smooth with respect to sY1
and sY2

, it is then
shown that a solution also exists for sY1

and sY2
close to zero. I do not specify in the proof,

however, how close it has to be. Analogously, I use the same proof technique to show that there
exists a solution for v close to one but the rest of the parameters can take on arbitrary values.
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IV. A Special Case: Symmetric Information

To build intuition, I first consider a special case of the model in which
investors differ only in their exposures to nonmarketed risks—that is, all
investors are completely and symmetrically informed.

The solution to this special case follows from the general solution given in
Section III.B by setting ZGt 5 Gt . First, consider the spot price. St is given by

t [ T : St 5 lS,Z Zt 2 ~lS,0 1 lS,1Y1, t 1 lS,2Y2, t !, ~22!

where lS,Z 5 aZ0~R 2 aZ! is the spot price elasticity to the fundamental Zt
and the remaining price coefficients, lS, i . 0 ~i 5 0,1,2!, are determined
numerically ~see Section III.B.4!. The equilibrium futures price is given by

t [ Hk : Ht 5 lH,Z Zt 2 ~lH,0 1 lH,1Y1, t 1 lH,2Y2, t !, ~23!

where lH,Z~t! 5 lS,Z aZ
~mk2t! is the futures price elasticity to the fundamental

Zt and lH, i . 0 ~i 5 0,1,2! are also determined numerically.
The spot price is simply the value of expected future convenience yields,

~lS,Z Zt !, minus a risk discount ~lS,0 1 (i lS, i Yi, t !. The risk discount natu-
rally depends on uncertainty in the convenience yield since investors are
risk averse. Additionally, it also depends on the covariance between con-
venience yields ~Dt11! and nonmarketed risks ~qt11!, given by ~1 1
Y1, t 1 Y2, t !kDqsDsq. Suppose Y1, t . 0, then, all else equal, the covariance of
Dt11 and qt11 becomes more positive, which leads class-a investors to reduce
their demands for the spot to hedge their nonmarketed risks. When class-a
investors sell the spot to rebalance their portfolios, the spot price has to drop
to attract class-b investors. The price drop rewards class-b investors for bear-
ing additional risks by taking on more shares of the spot. Note that this
price change occurs without any change in the spot’s payoffs. Therefore, the
equilibrium spot price depends not only on convenience yield movements but
also on class-a investors’ nonmarketed risks.

The futures price also consists of two parts. The first part, lH,Z Zt , is
simply the futures price in a risk-neutral world ~i.e., obtained from the cost-
of-carry formula!. The second part, which depends on Yi, t ~i 5 1,2!, arises
from the hedging demand of investors. Since class-a and b investors have
different spot positions, they trade in the futures to hedge spot price risk
due to f luctuations in Zt . Thus, the investors’ policies given in equation ~18!
depend on nonmarketed risks.

A. Nonmarketed Risks are i.i.d.

To see the behavior of return volatility and open interest, suppose that
nonmarketed risks are i.i.d. Then we obtain closed-form solutions and es-
tablish the following proposition.
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PROPOSITION 1: When nonmarketed risks in the economy are i.i.d. (i.e.,
sY1

5 sY2
5 0), the Samuelson effect holds and open interest monotonically

declines as the futures expires.

In this instance, Var~Qt
H! only depends on innovations to Zt . Since the fu-

tures price elasticity to Zt , lH,Z~t!, declines with time-to-maturity when
aZ , 1, Var~Qt

H! increases monotonically as the futures expires. So the Sam-
uelson effect is just a “price elasticity effect.”

Furthermore, investor-a ’s position in the futures given in equation ~18!
reduces to a simple mean variance hedge:

t [ Mk : ua, t
H 5 bS, H D, ~24!

where bS, H is the regression coefficient of spot returns on futures returns
and D is a constant spot position. The optimal hedge ratio bS, H naturally
increases with the covariance of qt and Dt , now given by kDqsDsq. Moreover,
it also increases with time-to-maturity when the fundamental Zt is mean
reverting. The intuition is simple. The farther the contract is from expira-
tion, the less sensitive is its price to Zt , and hence a larger position in the
contract is required to hedge a given spot position. It follows that open in-
terest increases with time-to-maturity.

B. Nonmarketed Risks Are Persistent

The behavior of return volatility and open interest established in Propo-
sition 1 remains qualitatively the same in the general case of persistent
nonmarketed risks. I make this point by numerically calculating the equi-
librium for a set of parameters.15

Figure 2 ~A! illustrates the time-to-maturity patterns of the futures price
elasticities, lH,Y1

and lH,Y2
, for an arbitrary kth contract.16 They increase

monotonically as the contract expires. For this figure, I have set aY1
5 0.97

to be greater than aY2
5 0.8, so Y1, t is more persistent than Y2, t . Not sur-

prisingly, lH,Y2
is nearly zero far from expiration and rises dramatically as

the futures nears expiration, whereas lH,Y1
exhibits a less dramatic decline

with time-to-maturity. For brevity, I leave out the corresponding figures for
the spot in this section ~see Section VI.B for a discussion!.

15 I want each period of trading to correspond roughly to a week so, throughout, I set the
constant risk-free rate per period, r, to be 0.05 percent. The maturity length for a given con-
tract, M, will be set to thirty periods. This approximately corresponds to a typical six-month
futures. I choose v 5 0.05 so that the number of class-a traders is a relatively small fraction of
the population. This parameter is chosen merely for ease of comparison with the asymmetric
information case in Section V. For simplicity, I set N to zero in this section. Setting N small has
the disadvantage of interacting the pure effect of a contract expiring with the “introduction
effect” ~see Section VI.B below!. In later sections, I set N 5 30 to separate these two effects. The
remaining parameters are chosen to illustrate the main insights of the model.

16 I omit the behavior of lH,0~t!. Its time-to-maturity pattern is similar to the closed form
solution obtained for the i.i.d. case given in the Appendix. It falls as the contract rolls to expiration.
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Figure 2~B! illustrates the concomitant return volatility and open interest
patterns for the kth contract. Since lH,Z is also monotonically increasing as
the contract expires, it follows from the discussion above on lH,Y1

and lH,Y2

that the return volatility of the contract increases as it expires. In other
words, there is now an additional channel for the Samuelson effect—through
the risk premium portion of prices. And the open interest of the contract
continues to decline.

V. General Case of Asymmetric Information

I now assume that investors in class-b no longer have complete informa-
tion about the state variables in the economy. Instead, they can only noisily
estimate the true values of Zt , Y1, t , and Y2, t using public information, while
class-a investors continue to observe these values. I refer to class-a investors
as the “informed” and class-b investors as the “uninformed.”

The futures price function, under asymmetric information, is now

t [ Hk : Ht 5 lH,Z Zt 2 lH,0 2 lH,1Y1, t 2 lH,2Y2, t 1 lH, ZZ~Zt 2 ZZt !, ~25!

where lH,Z 5 lS,Z aZ
~mk2t! and lH, i . 0 ~i 5 0,1,2! and lH, ZZ . 0 are deter-

mined numerically. The first four terms of the price function are similar to
the case of symmetric information. The last term, ref lecting differences in
the informational endowments of the investors, arises from the speculative
trades of the informed on their private information. For example, when the
uninformed investors underestimate the fundamental, Zt 2 ZZt . 0, the in-
formed investors purchase futures in expectation of future price increases,

(A) (B)

Figure 2. Time-to-maturity patterns of futures price elasticities, return volatility, and
open interest under symmetric information. The figures plot the time-to-maturity pat-
terns of ~A! the futures price elasticities, lH,Y1

and lH,Y2
, and ~B! the return volatility and open

interest of the kth contract. The parameters are: kDq 5 0.5, sD 5 0.2, sq 5 0.025, aZ 5 0.98, sZ 5
0.025, aY1

5 0.97, sY1
5 0.075, aY2

5 0.8, sY2
5 0.05.

974 The Journal of Finance



thereby driving up the futures price. This speculative motive for trade is
also ref lected in the holdings of the informed investors from equation ~18!
since they now depend on ~Zt 2 ZZt !.17

A. Information Asymmetry, Return Volatility, and Open Interest

Both the return volatility and open interest of a futures contract depend
crucially on the degree of information asymmetry in the economy. A natural
measure of this information asymmetry among investors is

t [ T : d~t! 5 % Eb, t @~Zt 2 ZZt !
2 # , ~26!

the conditional standard deviation of the uninformed investor’s estimation
error of the fundamental. d~t! is deterministic through time and is obtained
easily from the solution of o~t! from equation ~14!. All else equal, a larger d
implies that uninformed investors have less information about Zt and hence
that less of the informed investor’s private information is impounded into
prices, so the lower is the return volatility. Similarly, a larger d implies that
there is higher information asymmetry ~and so higher adverse selection cost
to trading for the uninformed!, so the lower is the open interest.

B. Shocks to the Fundamental Are More Persistent
than Nonmarketed Risks

In this section, I consider the case in which aZ is larger than either aY1
or

aY2
. So shocks to the fundamental are longer lived than those to nonmar-

keted risks ~or the “noise” in prices!. In Figure 3, I illustrate the time-to-
maturity pattern for d and the concomitant patterns for return volatility and
open interest. I use the same parameters as described in Section IV.B. Note
that aZ is set to 0.98, so Zt is highly persistent—close to a random walk. The
nonmarketed risks are relatively more transitory, with aY1

and aY2
set to

0.97 and 0.8, respectively.
Consider Figure 3~A!. On the x-axis is time-to-maturity and on the y-axis

is d, the measure of information asymmetry. Notice that information asym-
metry is monotonically increasing as the futures contract expires. The rea-
son is as follows. From the analysis of the Samuelson effect above, it follows
that the the futures price is equally sensitive to Zt across the life of the
contract since Zt is close to a random walk. However, the futures price elas-
ticity to nonmarketed risk shocks falls with the time-to-maturity of the con-
tract more quickly than the elasticity to the fundamental. Hence, with large
time-to-maturity, the futures price is very informative about Zt since it is

17 An uninformed investor cannot perfectly identify the informed investors’ trading motives.
His market making trade is based only on his expectation about the informed investors’ hedg-
ing needs, as seen from the dependence on ZY1, t and ZY2, t and not on the actual values, Y1, t and
Y2, t . Part of the market making trade actually corresponds to the informed investors’ specula-
tive trade.
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relatively inelastic to nonmarketed risk shocks ~the noise in the futures price
signal!. As the contract rolls to its expiration, its sensitivity to these noise
shocks increases and information asymmetry rises. I term this variation in
information asymmetry with the time-to-maturity of the futures contract
“the speculative effect” of futures expiration.

Next consider Figure 3~B!. Notice that the Samuelson effect need no lon-
ger hold. The reason is due to the interaction of the price elasticity effect
pointed out by Samuelson ~1965! and the speculative effect. With lots of time
to expiration, there is little information asymmetry between the two classes.
Hence, the return volatility is driven mainly by the price elasticity effect—
the Samuelson effect holds with lots of time to expiration. But as the con-
tract expires, information asymmetry, in this case, rises substantially. All
else equal, this implies that the return volatility of the contract tends to fall.
In this instance, the speculative effect outweighs the Samuelson effect and
the return volatility of the futures falls near expiration. In general, a num-
ber of other time-to-maturity patterns can occur. For one, the two effects
may just offset each other, leaving only a relatively f lat time-to-maturity
pattern. Regardless, the point is that the speculative effect works against
the Samuelson effect in this instance.

Now observe that open interest is monotonically declining as the contract
expires. From the discussion in Section IV, this is to be expected. Under
asymmetric information, open interest also depends on information asym-
metry, or the degree of adverse selection. The higher the adverse selection,
the lower the open interest. In this instance, since information asymmetry
~adverse selection! is lowest with lots of time to maturity and increases as
the futures expires, open interest also falls as the futures expires because of
an increase in adverse selection.

(A) (B)

Figure 3. Time-to-maturity patterns of information asymmetry, futures return vola-
tility and open interest. The figures plot the time-to-maturity patterns of ~A! information
asymmetry, d, and ~B! the return volatility and open interest of the k-th contract. The param-
eters are set at the following values: kDq 5 0.5, sD 5 0.2, sq 5 0.025, aZ 5 0.98, sZ 5 0.025,
aY1

5 0.97, sY1
5 0.075, aY2

5 0.8, sY2
5 0.05.
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C. Shocks to the Fundamental Are Less Persistent
than Nonmarketed Risks

Here I consider the case in which aZ is smaller than either aY1
or aY2

, so
shocks to the fundamental are shorter lived than those to nonmarketed risks.
In Figure 4, I illustrate the time-to-maturity pattern for d and the concom-
itant patterns for return volatility and open interest. I use the same param-
eters as in Figure 3, except that aZ is set to 0.95 and aY1

and aY2
are set to

0.98 and 0.97, respectively. So Zt is relatively more transitory, and Y1, t and
Y2, t are more persistent.

Consider Figure 4~A!. Since fundamental shocks now are less persistent
than nonmarketed risk shocks, information asymmetry now monotonically
decreases as the contract expires.18 Next consider Figure 4~B!. Notice that
the return volatility of the futures contract is now increasing everywhere as
the contract expires. This is to be expected since the speculative effect in this
instance reinforces the Samuelson effect. As the contract expires, un-
informed investors are able to better track Zt and hence revise their expec-
tations more frequently. So return volatility increases because of both the
price-elasticity and the speculative effect.

Now notice that the open interest in the contract takes on an inverted
U-shaped pattern, rising initially and then decreasing as the contract ex-
pires. The reason is simple. The price elasticity effect implies that open in-
terest increases with time-to-maturity. However, since information asymmetry
rises with time-to-maturity, it follows that the adverse selection cost to trad-

18 The time variation in information asymmetry is now the opposite of that considered in
Section V.B.

(A) (B)

Figure 4. Time-to-maturity patterns of information asymmetry, futures return vola-
tility, and open interest. The figures plot the time-to-maturity patterns of ~A! information
asymmetry, d, and ~B! the return volatility and open interest of the kth contract. The param-
eters are set at the following values: kDq 5 0.5, sD 5 0.2, sq 5 0.025, aZ 5 0.95, sZ 5 0.025,
aY1

5 0.98, sY1
5 0.075, aY2

5 0.95, sY2
5 0.05.
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ing is higher the farther the contract is from expiration. All else equal, this
tends to lead to lower open interest with time-to-maturity. The interaction of
these two effects produces the nonlinear pattern shown.

VI. Empirical Implications

In this section, I turn to some comparative static exercises, in order to
draw out the testable implications of the model.

A. Futures Return Volatility

From the analysis above, one out-of-sample prediction of the model is that
the Samuelson effect is more likely to be violated in high information asym-
metry markets with fundamental shocks that are relatively more persistent
than noise shocks.

First, I highlight how the level of information asymmetry is crucial to
producing nonmonotonic patterns by varying sD ~0.1, 0.15, and 0.2!, the vol-
atility of payoffs to holding the spot in Figure 5. The parameters are the
same as in Figure 3. Figure 5~A! illustrates the time-to-maturity pattern of
information asymmetry for various levels of sD. Notice that as sD rises, the
level of information asymmetry ~across the entire life of the futures! in-
creases since payoffs to the spot provide noisier signals about Zt . Also,
information asymmetry increases as a contract expires and does so at a
faster rate when sD is large.

Figure 5~B! shows the corresponding futures return volatility pattern. The
level of futures return volatility ~across the entire life of the futures! falls
with sD for the following reason. Since a larger d implies that uninformed

(A) (B)

Figure 5. Time-to-maturity patterns of information asymmetry and futures return
volatility for various values of sD—the standard deviation of convenience yield inno-
vations. The figures plot the time-to-maturity patterns of ~A! information asymmetry, d, and
~B! the return volatility of the kth contract. The parameters are set at the following values:
kDq 5 0.5, sq 5 0.025, aZ 5 0.98, sZ 5 0.025, aY1

5 0.97, sY1
5 0.075, aY2

5 0.8, sY2
5 0.05.
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investors are less certain about future spot payoffs, futures prices move less.
When sD is small, information asymmetry is less important and the Sam-
uelson effect dominates throughout most of the life of the contract. When sD
is large, information asymmetry increases dramatically near expiration and
counteracts the Samuelson effect, leading to futures return volatility that
actually falls even when the contract is reasonably far from expiration.

Next, I demonstrate the importance of the persistence of shocks to investor-
a ’s hedging trades, aY1

and aY2
. Without loss of generality, I assume that Y1, t

is more persistent than Y2, t , aY1
. aY2

. Holding aY1
fixed, decreasing aY2

implies that the noise in the price signals becomes less serially correlated.
Figure 6~A! illustrates the time-to-maturity pattern of d for various values of
aY2

~0.9, 0.8, and 0.6!. All other parameters are similar to Figure 3. Notice
that for smaller values of aY2

, the level of information asymmetry over the
entire life of the contract falls. The reason is that the uninformed investors
learn more from a sequence of prices at lower levels of aY2

.19 What is most
prominent about the figure is that for smaller values of aY2

, information
asymmetry increases at a much faster rate as the contract expires.

Figure 6~B! shows the corresponding time-to-maturity patterns for futures
return volatility. For larger values of aY2

, the Samuelson effect remains.
However, we obtain an inverted U-shaped time-to-maturity pattern for smaller
values of aY2

. This is because information asymmetry needs to increase
sufficiently rapidly as the contract expires to counteract the Samuelson

19 For instance, in the extreme case when aY2
is close to zero, neighboring prices provide

close to independent signals ~about Zt !, which tend to reveal more of the informed investors’
private information about Zt .

(A) (B)

Figure 6. Time-to-maturity patterns of information asymmetry and futures return
volatility for various values of aY2

—persistence of nonmarketed risk shocks. The fig-
ures plot the time-to-maturity patterns of ~A! information asymmetry, d, and ~B! the return
volatility of the kth contract. The parameters are set at the following values: kDq 5 0.5,
sD 5 0.2, sq 5 0.025, aZ 5 0.98, sZ 5 0.025, aY1

5 0.97, sY1
5 0.075, sY2

5 0.05.
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effect. In this sense, we are more likely to see an inverted pattern in futures
return volatility in markets whose fundamental shocks are relatively more
persistent compared to those for nonmarketed risk.

B. Open Interest and Spot Return Volatility

My model also provides a number of auxiliary implications for the open
interest and spot return volatility. For brevity, I leave out the figures illus-
trating the comparative statics.

First, the current level of open interest helps predict the expected return
to trading futures. This follows from equations ~12! and ~18! since the risk
premium of the futures and the holdings of investors depend on nonmar-
keted risks Yi, t . This aspect of the model is consistent with the evidence
cited in Section I.B.

Second, the time-to-maturity pattern of open interest depends on informa-
tion asymmetry in the economy. When investors only differ in physical en-
dowments, open interest tends to monotonically decline as the contract expires.
When private information is important and information asymmetry in-
creases with time-to-maturity, the analysis shows that open interest can take
on nonmonotonic patterns. It follows that this nonmonotonic pattern is more
likely in markets where private information is more important and funda-
mental shocks are shorter lived relative to noise shocks. This may explain
the documented variation in time-to-maturity patterns in open interest across
futures markets ~see Section I.B!.

Up to this point, I have focused mainly on the implications of the model
for the return and trading patterns in futures. Because spot and futures
prices are determined endogenously, this model can also be used to study the
effects of new futures on the underlying spot return process. In this model,
the introduction of new futures tends to lower spot return volatility. The
reason is as follows. Recall that the spot price in equation ~25! is sensitive to
Yi, t ~i 5 1,2!. The effect of introducing new futures is to decrease the sensi-
tivity of the spot price to Yi, t ~i 5 1,2!—the reason being that the futures
allows investors to better hedge their nonmarketed risks, so investors are
willing to absorb more of the nonmarketed risk shocks in their spot holdings.
That is, the hs in equation ~18! increase. This finding is consistent with the
empirical studies on the effect of new futures on spot price volatility ~see
Section I.C!.

VII. Conclusions

In this paper, I build a parsimonious model of returns and trading in fu-
tures markets. In the model, investors differ in both physical and informa-
tional endowments. I show that although the Samuelson effect survives
heterogeneity in physical endowments, it need not hold when investors also
differ in informational endowments. I relate this violation of the Samuelson
effect to attributes of markets such as the importance of information asym-
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metry and persistence of underlying shocks. I also develop auxiliary predic-
tions for ~1! the time-to-maturity patterns of open interest ~hence providing
a link between prices and quantities in futures markets! and ~2! the effect of
new futures on spot price volatility.

Appendix

I define the following notation for future convenience. For a set of ele-
ments e1, e2, . . . , em ~of proper order!, let diag$e1, e2, . . . , em% denote a diagonal
matrix, stack$e1, e2, . . . , em% the column matrix, and @e1, e2, . . . , em# the row
matrix, from these elements. Let ii, j

~l, k! be a l 3 k matrix with its ~i, j !th
element equal to one and all of its other elements equal to zero. Let 1~m! be
the identity matrix of rank m and 0~m, n! be the zero matrix of dimension
m 3 n. For a matrix m, m~i, j ! denotes its ~i, j !th element, m~i,{! its ith row,
and m~ p:q,{! the matrix comprised of the pth to qth rows. Given two vectors
of random variables X and Y of appropriate order, sX,Y denotes their covari-
ance matrix. Let et 5 @eD, t ,eq, t ,eZ, t ,eY1, t ,eY2, t #

'. Recall that all shocks are
jointly normally distributed and i.i.d. over time. Define bD 5 sD i1,1

~1,5! , bq 5
sq i1,2

~1,5! , bZ 5 sZ i1,3
~1,5! , bY1

5 sY1
i1,4

~1,5! , and bY2
5 sY2

i1,5
~1,5! . I prove results for the

case of N 5 0. The case of N . 0 follows easily.

Proof of Lemma 1: The system of interest is the vector of state variables
Gt 5 @Zt ,Y1, t ,Y2, t #

', which follows the process

Gt 5 aG Gt21 1 bG et , ~A1!

where aG 5 diag$aZ , aY1
, aY2

% and bG 5 stack$bZ , bY1
, bY2

%. Given the conjec-
tured price function in equation ~12!, the effective spot price signal received
by investor-b is ESt 5 lS,G Gt where lS,G 5 @lS, ZZ ,2lS,Y1

,2lS,Y2
# . The effective

futures price signal is FHt 5 lH,G Gt where lH,G 5 @lH, ZZ ,2lH,Y1
,2lH,Y2

# . Let
Nt 5 @ ESt , FHt , Dt # be the signal vector received by investor-b, which follows
the process

Nt 5 aN Gt 1 bN et , ~A2!

where aN 5 stack$lS,G ,lH,G , i1,1
~1,3! % and bN 5 stack$0~1,5!,0~1,5!, i1,1

~1,5! %.
Calculating ZGt and ot is a Kalman filtering problem. From Theorem 7.2 in

Jazwinski ~1970!,

ZGt 5 aG ZGt21 1 k~t 2 1!~Nt 2 Eb, t @Nt # !, ~A3!

where

k~t 2 1! 5 ~aG o~t 2 1!aG
' 1 sGG !aN

' @aN ~aG o~t 2 1!aG
' 1 sGG !aN

' 1 sNN #21.
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Equation ~14!, which guides the evolution of o~t!, is just

go~t, o~t 2 1!! 5 ~1~3! 2 k~t 2 1!aN !~aG o~t 2 1!aG
' 1 sGG !. ~A4!

Furthermore, ZGt is a Gaussian Markov process under investor-b’s informa-
tion set. Q.E.D.

Proof of Lemma 2: Given the evolution of the uninformed investors’ con-
ditional expectations, it is easy to derive the dynamics of Xi, t . Let ea, t 5 et
and

eb, t 5 @~Gt21 2 ZGt21!',et
'# '. ~A5!

It follows from equations ~A2! and ~A3! that

ZGt 5 aG ZGt21 1 b ZG ~t!eb, t , ~A6!

where b ZG ~t! 5 @$k~t!aN ~t!aG %, $k~t!~aN ~t!bG 1 bN ~t!!%# . Let Dt [ Gt 2 ZGt .
Equations ~A1! and ~A6! together imply that

Dt 5 aD~t!Dt21 1 bD~t!et , ~A7!

where aD~t! 5 ~1~3! 2 k~t!aN ~t!!aS and bD~t! 5 bG 2 k~t!~aN ~t!bS 1 bN ~t!!.
Hence, Xi, t follows

Xi, t 5 ai, X Xi, t21 1 bi, X ei, t , ~A8!

where

aa, X ~t! 5 diag$1, aY1
, aY2

, aD~t!%, ba, X ~t! 5 stack$0~1,5!, bY1
, bY2

, bD~t!%,

ab, X ~t! 5 diag$1, aY %, bb, X ~t! 5 stack$0~1,8!, @b ZG ~t!# ~2:3,{!%.

Observe that Xi, t follows a Gaussian Markov process under investor-i ’s in-
formation set.

I next derive the return process, Qt
S and Qt

H . Let h 5 stack$0~1,3!,
i1,2

~1,3! , i1,3
~1,3! ,1~3! %. Define the following time-varying matrices:

aa,Q~t! 5 stack$RlS, X ~t 2 1! 2 lS, X ~t!aa, X ~t!,lH, X ~t 2 1! 2 lH, X ~t!aa, X ~t!%,

ba,Q~t! 5 stack$bD 1 bZ 1 lS,Z bZ 2 lS, X ~t!ba, X ,lH,Z~t!bZ 2 lH, X ~t!ba, X %,

ab,Q 5 aa,Qstack$1~3!,0~3,3! %, bb,Q 5 @aa,Qh, ba,Q# .
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I then define the return process ~comprising of the spot and futures! for each
investor as Qi, t , which follows

Qi, t 5 ai,Q Xi, t21 1 bi,Qei, t . ~A9!

Let e 5 @1,1,1,0,0,0# , then qt11 defined in equation ~3! can be rewritten as

qt11 5 eXa, t 1 e 'Xa, t bqea, t11. ~A10!

Given these processes, I now derive the system of nonlinear difference
equations that govern vi~t!. Suppose that at t, the value function is given by
Ji~Wi, t ; Xi, t ; t!. Let ui, t 5 stack$ui, t

S ,ui, t
H %.

Using the above notation, both the informed and the uninformed inves-
tors’ optimization problems can be expressed in the form of the Bellman
equation:

0 5 sup
$ci ,ui, t %

$2r t e2gci, t 1 Ei, t @J ~Wi, t11; Xi, t11; t 1 1!# 2 J ~Wi, t ; Xi, t ; t!% ~A11a!

subject to

Wi, t11 5 ~Wi, t 2 ci, t !R 1 ui, t
' Qi, t11 1 di qt . ~A11b!

Consider the following trial solution for the value function:

Ji ~Wi, t ; Xi, t ; t! 5 2r t exp $2aWi, t 2 2
12~Xi, t

' vi ~t!Xi, t !%, ~A12!

where a is a constant and vi~t! is a symmetric matrix to be determined. I
next define a number of time-varying matrices. I suppress the time index for
simplicity. Let vi, aa 5 ai, X

' vi ai, X , vi, ab 5 ai, X
' vi bi, X , and vi, bb 5 bi, X

' vi bi, X .
Then define Vi 5 @si, ee

21 1 vi, bb#21, where si, ee is the covariance matrix of ei, t .
Next let Si 5 ~bi,QVi bi,Q

' !21. Also, let di 5 6Vi
21 si, ee 6

2102. It follows from nor-
mality of ei, t11 that

Ei, t @Ji, t11# 5 2dr t11 exp $2aR~Wi, t 2 ci, t ! 2 aXi, t
' gi

'ui, t 1 1
2
_ a2ui, t

' Si
21 ui, t

2 2
12Xi, t

' @vi, aa 2 ~vi, ab 1 adi hq!Vi ~vi, ab 1 adi hq!'

1 di aq# Xi, t % , ~A13!

where gi 5 @ai,Q 2 bi,QVi~vi, ab 1 adihq!' # , hq 5 e 'bq, aq 5 stack$i1,1
~1,6! ,

i1,1
~1,6! , i1,1

~1,6! %, and di is an index function that equals one if i 5 a and zero if
i 5 b. The first-order conditions for the optimal investment-consumption
policies are

ui, t 5 hi Xi, t , ci, t 5 Sci 1
aR

g 1 aR
Wi, t 1

1

2~g 1 aR!
Xi, t
' mi Xi, t , ~A14!
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where

hi 5
1

a
Si gi , Sci 5

1

g 1 aR
logS g

arRdi
D

and

mi 5 vi, aa 2 ~vi, ab 1 adi hq!Vi ~vi, ab 1 adi hq!' 1 di aq 1 gi
'Si gi .

Substituting equation ~A14! back into the Bellman equation, we obtain
a 5 rg0R

Sci 5 2
1

gR
log~rrdi !, Svi 5 Fg Sci 1 logS r

RDGi1,1
~ni , ni ! ,

1

R
mi ~t! 2 vi ~t 2 1! 1 Svi 5 0,

~A15!

where n1 5 6 and n2 5 3. This gives the recursive relationship for vi~t 2 1!
given vi~t!. So we can define gi,v in equation ~17! as

gi,v 5
1

R
mi ~t! 1 Svi . ~A16!

vi in Lemma 2 satisfies the following nonlinear two-point boundary value
problem if for k 5 0,1,2, . . . equation ~19! holds. Q.E.D.

Proof of Theorem 1: First, I prove the result for v close to one. The line of
argument is as follows. I show that there exists a linear periodic equilibrium
at v 5 1. At v 5 1, the price functions are determined purely by informed
investors. I show that there exists a periodic solution to the uninformed
investors’ learning and control problem.20 Having done so, I show that a
solution exists generically for v close to one.

The case v 5 1 collapses to a representative investor economy. The exis-
tence of a linear periodic equilibrium of the form in equation ~10! is straight-
forward from Wang ~1994!. Next, I show there exists a covariance matrix,
o~tk!, such that o~t! follows dynamics specified in equation ~A4! and o~tk11! 5
o~tk!. Since aG is diagonal, 6aG 6 # 1, bG bG

' is nonsingular, and the price
coefficients of the signal vector are uniformly bounded in time, by Lemma 5.1
of Anderson and Moore ~1981!, we conclude that 6o~tk11!6 # b06o~tk!6 1 b1,
where 0 , b0 , 1 and b1 . 0 ~b0 and b1 are functions only of the under-

20 Given the price functions, uninformed investors can nonetheless learn from the prices and
solve their control problem even if they have no impact on equilibrium prices.
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lying parameters of the filtering problem and are found in Anderson and
Moore. Given this bound, Brouwer’s fixed-point theorem ~see, e.g., Cronin
~1994!! implies that there exists a symmetric, positive semidefinite periodic
solution.

I next prove that there exists a periodic solution to the value function of
the uniformed investors. I prove the existence of the terminal value problem
for equation ~A6! for i 5 b by bounding ~lower and upper! its solution by the
solutions to two particular matrix Riccati difference equations. First the lower
bound. Define the following auxiliary system, which is derived from equa-
tion ~A16! for i 5 b:

vi
*~t 2 1! 5

1

R
$vi, aa
* ~t! 2 vi, ab

* ~t!Vi vi, ab
* ~t!' % 1 Svi

* , ~A17!

where the notation is the same as in equation ~A16! for i 5 b except that we
have replaced the variable vi by vi

* . This auxiliary system is a Riccati system
~see, e.g., Caines and Mayne ~1970!!. Suppose vi,T $ vi,T

* , then it follows that
vi~t! $ vi

*~t!, where vi
*~t! satifies equation ~A17!. This follows from fact that

gi
'Si gi $ 0. Next, an upper bound. Note that Vi, t 2 ~bi,QVi, t !

'Si, t ~bi,QVi, t ! . 0,
so that equation ~A16! for i 5 b is negative in the quadratic terms involving
vb~t!. So, this keeps the solution bounded. It follows from Theorem 4.1 of
Caines and Mayne that the solution is bounded by the solution to a matrix
linear equation whose linear term is ai, X

' et ai, X and the constant term is
independent of vi, t ∀t. Hence, since we assume that 6ai, X 6 , 1, it follows
that we can find b0 and b1 such that the result holds. Given this bound,
Brouwer’s fixed-point theorem shows that there exists a periodic solution.

I next show that there exists a solution for v close to one. The market-
clearing conditions, equation ~9!, which determine the price coefficients
l~t!, define the following relationship between l~t! and l~t 1 1!: 0 5
F~l~t!,l~t 1 1!;q;v!, where q [ Q with Q 5 $r . 0, g . 0, 1 $ aZ $ 0, 1 .
aYi

$ 0 ~i 5 1,2!, sD $ 0, sq $ 0, sZ $ 0, sYi
$ 0 ~i 5 1,2!,kDq . 0% . By the

implicit function theorem ~see, e.g., Protter and Morrey ~1991!!, F defines
an implicit function: l~t! 5 gl~l~t 1 1!;q,v! if ¹lF is nonsingular. Let
q0 5 @0.001,100,0.99,0.95,0.9,0.05,0.025,0.05,0.025,0.5,0.5# . For q 5 q0 and
v0 5 1, det~¹lF! Þ 0. So, it follows from Lemma 4 of Huang and Wang
~1997! that l ~t ! 5 gl~l ~t 1 1!; q, v! given in equation ~20! exists
generically. Let u 5 stack$l', @o# , @va# , @vb#% . Then u~t 2 1! 5 f ~u~t!!, where
f 5 stack$gl, go, ga,v, gb,v% . Let b~u~tk!, u~tk11!! 5 0 denote the boundary
conditions for the system. Starting at tk11, given a terminal value, we can
integrate backward to get u~tk!. Let v0 5 1. Since I have existence of
u~t;q, v0!, it remains to verify that u~t;q, v0! is an isolated solution
~see Agarwal ~1992! for definition!. From Agarwal, this is equivalent to
showing that m~q,v0! 5 ¹utk

b~u~tk!! 1 ¹utk11
b~u~tk11!!~¹uf !M is nonsingu-

lar. Clearly, m~q,v0! is analytic. It is easy to show that det~m~q0,v0!! Þ 0.
So m~q,v0! is generically nondegenerate. The first part of Theorem 1 follows.
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Next, I show that the theorem also holds for arbitrary v but sY1
and sY2

close to zero. The line of proof is similar to the case of v close to one. First,
observe that when sY1

5 sY2
5 0, we have a unique solution to the equilib-

rium from Proposition 1 below. Observe that the solution for o is merely the
zero matrix as the equilibrium is fully revealing. It follows then from the
arguments above that since there is a unique solution for the case of sY1

5
sY2

5 0, it follows that there generically exists a solution for sY1
and sY2

close
to zero though we do not specify how close they have to be. Q.E.D.

Proof of Proposition 1: Let sS
2 5 sD

2 1 ~1 1 lS,Z
2 !sZ

2, sS, H 5 ~1 1 lS,Z !lS,Z sZ
2,

sH
2 5 lH,Z

2 sZ
2, aQ 5 stack$RlS,0~t! 2 lS,0~t 2 1!,lH,0~t! 2 lH,0~t 2 1!% , and

sQ,Q 5 stack$@sS
2,sS, H # , @sS, H ,sH

2 #%. Let a 5 rg0R, then the market-clearing
condition implies

t [ Mk : v
1

a
sQ,Q

21 ~aQ 2 asDq @1,0# ' ! 1 ~1 2 v!
1

a
sQ,Q

21 aQ 5 @1,0# '.

It follows that, in equilibrium, aQ 5 asQ,Q~ @1,0# ' 1 vsDq @1,0# ' !. The spot
price is given by

t [ T : St 5 lS,Z Zt 2 NlS,0, ~A18!

where lS,Z 5 aZ0~R 2 aZ! and NlS,0 5 ~g0R!@sD
2 1 ~1 1 lZ

2 !sZ
2 1 vsDsqkDq# .

The futures price is

t [ Hk : Ht 5 lH,Z~t!Zt 2 NlH,0~t!, ~A19!

where lH,Z~t! 5 lS,Z aZ
~mk2t! and

NlH,0~t! 5 NlS,0 1
g

R

1 2 aZ
~mk2t!

1 2 aZ
~1 1 lZ !lZ sZ

2.

Since lH,Z~t! decreases with t, the Samuelson effect follows. Substituting aQ
into the investor-a ’s futures position and differentiating with respect to t
gives the desired result for open interest. Q.E.D.

Numerical Procedure

I use the Newton–Kantorovich method to solve this problem numerically
~see, e.g., Agarwal ~1992!!. This recursive method linearizes the system and
the boundary conditions around a conjectured solution to the nonlinear prob-
lem at a discrete number of points in the interval @tk, tk11# . Since the system
is linearized, it is easy to calculate an updated solution that satisfies the
linearized system and boundary conditions from the conjectured solution.
The updated solution is then used as the conjectured solution to start the
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next recursion. It can be shown that the limit of this recursion converges to
the solution of the nonlinear problem given that the initial conjectured so-
lution is not too far away from the true solution.

This method requires a sufficiently accurate initial guess of the true so-
lution. I obtain such a guess by starting the recursion at v 5 1 for any given
set of parameters since a solution exists at v 5 1. In order to calculate a
solution at v0 , 1, I begin by using the solution at v 5 1 as the initial guess
to find a solution for an v close to 1 and I repeat the same procedure to move
toward v0. Since I have no knowledge about the uniqueness of the solution,
the above procedure also guarantees that I stay on the same branch of so-
lutions.21 Additionally, I also check all solutions by recalculating them using
the solution at sY1

5 sY2
5 0 ~but arbitrary v! as the initial guess since we

have the explicit solution for this case ~see Proposition 1!.
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