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Abstract

We study the generation of prediction in-
tervals in regression for uncertainty quan-
tification. This task can be formalized as
an empirical constrained optimization prob-
lem that minimizes the average interval
width while maintaining the coverage accu-
racy across data. We strengthen the existing
literature by studying two aspects of this em-
pirical optimization. First is a general learn-
ing theory to characterize the optimality-
feasibility tradeoff that encompasses Lips-
chitz continuity and VC-subgraph classes,
which are exemplified in regression trees and
neural networks. Second is a calibration ma-
chinery and the corresponding statistical the-
ory to optimally select the regularization pa-
rameter that manages this tradeoff, which by-
passes the overfitting issues in previous ap-
proaches in coverage attainment. We empiri-
cally demonstrate the strengths of our inter-
val generation and calibration algorithms in
terms of testing performances compared to
existing benchmarks.

1 Introduction

While most literature in machine learning focuses on
point prediction, uncertainty quantification plays, ar-
guably, an equally important role in reliability assess-
ment and risk-based decision-making. In regression, a
natural approach to quantify uncertainty is the predic-
tion interval (PI), namely an upper and lower limit for
a given feature value X that covers the corresponding
outcome Y with high probability. The interval center
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represents the expected outcome, whereas the width
represents the uncertainty. A test point with a high
expected outcome, but wide PI width, means that the
outcome can still be low with a significant chance, thus
signifies a downside risk that should not be overlooked.

In this paper, we study the construction of PIs that
satisfy an overall target prediction level across data,
known as the expected coverage rate (Rosenfeld et al.,
2018). Compared to widely used conditional (on X)
coverage rate, this notion is advantageously more tan-
gible to measure and easier to achieve. This means
that a much wider class of models can be trained to
build PIs, as less conditions are needed to impose on
the true relation and the model class to obtain satisfac-
tory guarantees. In general, constructing a good PI in
this framework requires balancing a tradeoff between
the expected interval width and coverage maintenance,
which can be formalized as an empirical constrained
optimization. This viewpoint has been used in Khos-
ravi et al. (2010) and Pearce et al. (2018) that focus on
neural networks, Rosenfeld et al. (2018) that studies a
dual formulation, and Galvéan et al. (2017) that uses
multi-objective evolutionary optimization. It also re-
lates to the learning of minimum volume sets (Polonik,
1997; Scott and Nowak, 2006) in which a similar trade-
off between volume and probability content appears.
Building on these works, our goal in this paper is to
study two key inter-related statistical aspects of this
empirical constrained optimization that enhances pre-
vious results both in theory and in practice:

Feasibility-Optimality Tradeoff for Interval
Models. We develop a learning theory for the Pls
constructed from empirical constrained optimization
that statistically achieves both feasibility (coverage)
and optimality (interval width). Methodologically, we
build a general “sensitivity measure” that controls this
tradeoff, which in turn requires developing deviation
bounds for simultaneous empirical processes. Our the-
ory in particular covers the Lipschitz continuous model
class (in parameter) and finite Vapnik—Chervonenkis
(VC)-subgraph class, exemplified by a wide class of
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neural networks and regression trees. Such type of
joint coverage-width learning guarantees appears the
first in the literature. It expands the coverage-only re-
sults and the considered model classes in Rosenfeld
et al. (2018). It also generalizes Scott and Nowak
(2006) as both our constraints and objectives possess
extra sophistication related to the shape requirement
of the set as an interval, and also we characterize fea-
sibility and optimality attainments explicitly instead
of the implicit metric in Scott and Nowak (2006).

Calibration Method and Performance Guar-
antees. We propose a general-purpose, ready-to-
implement calibration methodology to guarantee over-
all PI coverage with prefixed confidence. This ap-
proach is guided by a novel utilization of the high-
dimensional Berry-Esseen theorem (Chernozhukov
et al., 2017). It is designed to combat the overfit-
ting issue of interval models and perform accurately
on the test set. We demonstrate empirically how our
approach either outperforms other methods in terms
of achieving correct coverages or, for those methods
with comparable coverages, we attain shorter interval
widths. Moreover, our approach applies, with little
adjustment, to accurately construct multiple Pls at
different prediction levels simultaneously. This adds
extra flexibility for decision-makers to construct Pls
without needing to pre-select the prediction level in
advance.

2 Related Work

We first review two most closely related methods, and
then move on to other works.

Conformal Learning (CL). First proposed in Vovk
et al. (2005), conformal learning (CL) is a class of
methods that leverage data exchangeability to con-
structs PIs with finite-sample and distribution-free
coverage guarantees. The original CL requires retrain-
ing for each possible test point and is therefore com-
putationally prohibitive in general. Split/inductive CL
(Papadopoulos, 2008; Lei et al., 2015, 2018) improves
the computational efficiency based on a holdout vali-
dation that avoids retraining, but at the cost of higher
variability and wider intervals due to less efficient data
use. Lying in between are variants based on more ef-
ficient cross-validation schemes, including leave-one-
out (or the Jackknife; Barber et al. (2019); Alaa and
van der Schaar (2020); Steinberger and Leeb (2016)),
K-fold (Vovk, 2015) and ensemble methods (Gupta
et al., 2019; Kim et al., 2020). Recently, quantile re-
gression are combined with CL (Kivaranovic et al.,
2020; Romano et al., 2019) to take into account the
heterogeneity of uncertainties across feature values.
Despite its generality, the coverage guarantees from

CL are only marginal with respect to the training data
(except split CL (Vovk, 2012)), whereas our proposed
calibration method provides a stronger high confidence
guarantee. Moreover, our approach explicitly opti-
mizes the interval width, therefore typically generates
shorter PIs than CL.

Quantile Regression (QR). Quantile regression
(QR) estimates the conditional quantiles of Y that
can be used to construct PIs. Classical QR meth-
ods require strong assumptions (e.g., linearity or other
parametric forms; Chapter 4 in Koenker and Hal-
lock (2001)). Approaches that relax these assump-
tions include quantile regression forests (QRF) (Mein-
shausen, 2006) and kernel support vector machine
(SVM) (Steinwart et al., 2011). However, little is
known about their finite-sample coverage performance
because of estimation errors in the quantiles. Re-
cently, Kivaranovic et al. (2020) proposes calibrating
the weight parameter in the pinball loss on a hold-
out data set to enhance PI coverage. This calibration
scheme, however, does not address overfitting on the
holdout set, thus could fall short of providing correct
coverages on test data as our experiments show.

Other Approaches. PI construction has been sub-
stantially studied in classical statistics. To understand
this construction, the error of a (point) prediction can
typically be decomposed into two components: model
uncertainty, which comes from the variability in the
training data or method, and outcome uncertainty,
which comes from the noise of Y conditional on X.
The classical literature often assumes well-defined and
simple forms on the relation between X and Y (e.g.,
linear model, Gaussian; Seber and Lee 2012). In this
case, model uncertainty reduces to parameter estima-
tion errors. Outcome uncertainty, on the other hand,
is intrinsic in the population distribution but not the
training, i.e. it arises even if the model is perfectly
trained. An array of methods account for both sources
of variability, which utilize approaches ranging from
asymptotic normality (Seber and Lee, 2012), deconvo-
lution (Schmoyer, 1992), and resampling schemes such
as the bootstrap (Stine, 1985) and jackknife (Stein-
berger and Leeb, 2016).

To overcome the strong assumptions in classical statis-
tical models, several model-free approaches have been
developed. Nonparametric regression, such as spline or
kernel-based methods (Doksum and Koo, 2000; Olive,
2007), removes rigid model assumptions but at the ex-
pense of strong dimension dependence. Gaussian pro-
cesses or kriging-based methods (Sacks et al., 1989),
popular in the areas of metamodeling and computer
emulation, regard outcomes as a response surface and
perform Gaussian posterior updates. In particular,
stochastic kriging (SK) model (Ankenman et al., 2010)
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constructs PIs that account for both model and out-
put variabilities by using a prior correlation structure
that entails both. However, SK does not deliver a
frequentist coverage guarantee nor convergence rate.
More recently, uncertainty quantification of neural net-
works regarding their model and output variabilities
are studied, via methods such as the delta method
and the bootstrap (Papadopoulos et al., 2001; Khos-
ravi et al., 2011). Nonetheless, like in classical statis-
tical models, these approaches can only capture vari-
ability due to data and training noises, but not the
bias against the true relation.

Lastly, our PI construction follows the high-quality cri-
terion in works including Khosravi et al. (2010, 2011);
Galvan et al. (2017); Pearce et al. (2018); Rosenfeld
et al. (2018); Zhang et al. (2019); Zhu et al. (2019),
which propose various loss functions to capture the
width-coverage tradeoff. They are also related to the
highest density intervals in statistics (Box and Tiao,
2011). Our investigations in this paper provide theo-
retical guarantees in using this criterion.

3 PI Learning as Empirical
Constrained Optimization

We consider the general regression setting where X €
X C R4 is the feature vector and Y € I C R is the out-
come. Given an ii.d. data set D := {(X;,Y:)}iz=1,..n
each drawn from an unknown joint distribution 7, our
goal is to find a PI defined as:

Definition 3.1. An interval [L(x),U(x)], where both
LU : X — R, is called a prediction interval (PI)
with (overall) coverage rate 1 —a (0 < a < 1) if
P.(Y € [L(X),U(X)]) > 1 — «, where P, denotes
the probability with respect to the joint distribution .

We aim to find two functions L and U, both in a hy-
pothesis class H. To learn the optimal high-quality PI
that attains a given coverage rate 1 — «, we consider
the following constrained optimization problem:
i E . [UX) - L(X
L,Ue?—rtna}rrlld L<U «[U(X) (X)] (3.1)
subject to P, (Y € [L(X),U(X)]) > 1 -«

where E, . denotes the expectation with respect to
the marginal distribution of X. Given the data D, we
approximate (3.1) with the following empirical con-
strained optimization problem

Eix [U(X) = L(X)] = £ X7, (U(X,) = L(Xi)). The
adjustment ¢, which can be viewed as a penalty term
for the empirical coverage rate, is used to boost the
generalized coverage performance for the optimal in-
terval solved from opt(t): If no adjustment is made in
the constraint (¢t = 0), then, because of noise, the true
coverage can be lower than 1 — « with significant prob-
ability even if the empirical coverage is above 1 —a.. A
positive ¢t decreases the probability of such an event.
Choosing t too large, however, would eliminate more
intervals from the feasible set, leading to a deteriora-
tion in the obtained expected width (objective). One
of our main investigations is to balance the coverage
and width performance by judiciously choosing ¢.

We point out that, while our focus is on training L
and U directly, our approach can also be applied nat-
urally when we are given in advance a well-trained
point predictor f : X — R (obtained by any means
independent of D). In this case we may seek two
non-negative functions §; : X — [0,00) such that
[L(2),U(z)] = [f(x) — 61(x), f(x) + d2(x)]. Our subse-
quent development applies by constructing lower and
upper bounds for the “translational” data set D :=

{(Xza YL - f(X’i))}izl,.“,n~

4 Joint Coverage-Width Learning
Guarantees

We establish finite-sample generalization error bounds
for two major classes: 1) finite VC dimensions, and 2)
Lipschitz continuous in parameters, by building on a
unified “sensitivity bound” on the oracle optimization.
Corresponding results on consistency are provided in
Appendix A. To begin, let R} (#H) be the optimal value
of

Ery [U(X) — L(X))]

t(t) : i
opt(t): | min

subject to P (Y € [L(X),UX)]) >1—a+t

(4.1)
which is (3.1) but with a higher target prediction level,
and correspondingly R*(#H) be the optimal value of
(3.1). We make the following assumptions on the hy-
pothesis class H, and the conditional distribution of Y’
given X:

Assumption 1. For every function h € H, we have
h+c e H for every constant c € R.

Assumption 2. The conditional distribution of Y
given X = x has a density p(-|z) for every x € X.
Moreover, for every x,y such that P (Y <y|lX =z) €

subject to Px(Y € [L(X), U(X)]) 21— a+t (0,1), we have p(y|z) > 0 and that p(-|z) is continuous

opt(t) : i By [U(X) — L(X
oB(E) | _min B [U(X) ~ L(X)

(3.2)
parameterized by t € [0,a], where E;,, Pz are ex-

pectation and probability with respect to the empir-
ical distribution constructed from the data D, e.g.,

aty.

The simple closedness property in Assumption 1 turns
out to allow sufficiently tight and tractable analysis for
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many, potentially complicated, function classes under
the same roadmap. Many common classes (e.g., lin-
ear, piece-wise constant such as tree-based models, and
neural networks with linear activation in the output
unit) satisfy Assumption 1. It is also straightforward
to enforce a class to satisfy Assumption 1 by simply
adding one extra parameter. Assumption 2 is a mild
non-degeneracy condition on the conditional distribu-
tion (e.g., Assumption 2 holds when p(:|z) is Gaussian
or uniform over a certain interval for each x).

We have the following upper bound for R} (H)—
for0 <t <a:

R (M)

Theorem 4.1 (Sensitivity bound with respect to tar-
get prediction level). Suppose Assumptions 1-2 hold.
For every x € X and 5 € (0,1), let I'(x, B)

inf {p(y1|z) + p(y2]x) : Pr(yy <Y < gp|X = 2) <
1 -8} and v5 :==sup{z > 0: P, (I'(X, ) < z) < B}.
Then, for every a € (0,1) and t € (0,a), we have
R; (M) = R*(M) < 6t/ (0~ )(a0):

We briefly explain how Theorem 4.1 helps develop gen-
eralization guarantees. Let H2, H2 C H? := H x H
be the feasible set of opt(t) and opt(t) respectively.
If a uniform error bound At over the class H? can
be established for the empirical coverage constraint in
(3.2), then H7, A, C H?, therefore the shortest inter-
val we can potentially learn from opt(¢) can only be
wider than the oracle optimum from (3.1) by at most
Ry A;(H)—R*(H). The density lower bounds in The-
orem 4.1 ensure a sufficient increase of the coverage
probability as interval width increases, which inversely
constrains the growth of interval width as the required
coverage increases.

To derive finite-sample convergence rate, we first as-
sume the availability of certain deviation bounds for
the empirical coverage rate and interval width that ap-
pear in opt(t):

Theorem 4.2 (Rate of convergence). Sup-
pose  Assumptions 1-2 hold, and the follow-
ing deviation bounds hold for every e,t > 0:

P(supp,ep|Bay [2(X)] =Exy [((X)]]| > €) < ¢1(n,¢,H)
and P(SupL,UGH and L<vPz(Y € [L(X),U(X)]) —
P.(Y € [L(X),UX)])| > t) (n,t,H). Then

< @2
for every t € (0,5) and € > 0, with probabil-
n,

ity at least 1 — ¢1(n,e, H) — ¢a(n,t,H), we have,
(

for every optimal solution (L, U) of opt(t),
that P-(Y € [Ly(X),Us(X)) > 1 - a and
Er U (X) - Ly (X)] < R*(H) + m + de.

Theorem 4.2 translates the deviation bounds of two
empirical processes into the probability of jointly
achieving optimality and feasibility. With this, our
focus is to derive deviation bounds for important hy-
pothesis classes. Such bounds are well-understood in

the literature, e.g., Chapter 2.14 in Van der Vaart and
Wellner (1996) and Chapter 3 in Vapnik (2013). How-
ever, in our case, we need to go beyond the standard
theory to control two empirical processes simultane-
ously by choosing a single function class H. Next we
present two fairly general choices of H for which ex-
ponential deviation bounds can be obtained for both
processes.

To present the results, we introduce some terminolo-
gies. Let vc (S) be the VC dimension of a class S of
sets. The VC dimension vc (G) of a class G of func-
tions from X to R is defined to be the VC dimension
of the set of subgraphs Sg := {{(z,z) € X xR :
z < g(x)} : g € G}. G is called VC-subgraph if
ve (G) < oo. For a vector, || - ||, represents its /,-norm
for p > 1. For a function £ : X — R, we denote by
€]l ps = inf{c > 0: E, [exp(£%(X)/c?)] < 2} its sub-
Gaussian norm under the distribution 7x, and denote
by (€]l = (Exy [I€COI) " its L, norm.

Theorem 4.3 (Joint coverage-width guarantee for
VC-subgraph class). If the hypothesis class H is such
that the augmented class Hy = {h+c: h € H,c €
R} is VC-subgraph, and H(xz) = suppcylh(z) —
E. [R(X)]| satisfies ||H|p, < oo, then the deviation
bounds in Theorem 4.2 satisfy

2

ne
<2 -
ol ) <2050 (= Gy ot )

( ) 4" exp(—t2n) ifn < LICQ(H)

n,t,H) < Cve(H)

" (25) """ exp(otm) i > 2520
(4.2)

where C is a universal constant, and e is the
base of the natural logarithm. If Assumptions 1-2
also hold (in which case H = Hy), then for ev-

ery n € (0,1), Greli)
1 8 | Cve(H) 2en
\/; log n + n log Cvc(H) <
least 1—7, we have, for every optimal solution (L}, U})
of opt(t), that Pr(Y € [L¥(X),U;(X)]) > 1 -« and

when n > and we set t =

%, with probability at

Enr [UF (X) = L (X)] < R*(H)
24 |1 8  Cvc(H) 2en
-l-% Elog;—f— log Cve (H)

+ \/VC(H*) 6C | H|2, log =
n n

Theorem 4.3 reveals that, after ignoring logarith-
mic factors, the sample size n needed to learn a
good PI with guaranteed coverage from opt(t) is
of order Q(vc(H)), if ¢ of order O(y/vc(H)/n) is
adopted. The corresponding optimality gap (in width)
is O(y/vc (H4) /n). Appendix B provides further dis-
cussion regarding the use of H versus H in the bound.

Similar sample complexities for VC-major H have been
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proposed in Rosenfeld et al. (2018) for a formula-
tion that can be viewed as the dual of (3.1), where
the coverage rate is maximized under a mean width
constraint. Comparing VC-major and VC-subgraph
classes, they both cover many hypothesis classes com-
monly used in practice, e.g., linear functions, regres-
sion trees, and neural networks that are to be dis-
cussed momentarily. Nonetheless, in general neither
VC-major nor VC-subgraph implies the other, and
therefore our VC-subgraph results are in parallel to
those in Rosenfeld et al. (2018). More importantly,
their results provide finite-sample errors only for the
coverage rate, but not the interval width, whereas
we characterize performances jointly in coverage and
width, thanks to our novel sensitivity measure from
Theorem 4.1. Moreover, our results appear to bypass
a technical issue of Rosenfeld et al. (2018). A key re-
sult there is that for a VC-major class H, the induced
set of between-graphs {{(z,2) : L(z) < z < U(x)} :
L,U € Hand L < U} is a VC class. When the class
‘H is uniformly bounded from below, say 0, then this
is equivalent to H being VC-subgraph. However, a
counter-example for this conclusion is constructed in
Theorem 2.1, statement f, in Dudley (1987). Our ap-
proach overcomes such technical ambiguities.

Our next considered hypothesis class is on Lipschitz
continuity with respect to the class parameter:

Theorem 4.4 (Joint coverage-width guarantee for the
Lipschitz class in parameter). Suppose H = {h(-,0) :
0 € O} where the parameter space © is a bounded
set in R, If the functions are Lipschitz continu-
ous in the parameter, i.e., |h(z,61) — h(z,03)] <
L(x)||01 — 022, for all 61,02 € ©,x € X for some
L : X — R such that ||L||2 < oo, and H(z) :=
SuDpeo h(w,0) — Eny [(X,0)]| satisfies | Hlly, < oo,
then the deviation bounds in Theorem 4.2 satisfy

621’L

C'max{log T2mRUEL 13112 z)

d1(n €. H) < 2exp ( -

2

1
< 2C log log C'y n 2 2
d2(n,t, H) (CH max{ 501 })) exp(—2t"n)

where diam (©) := supy, g,ce 01 — O2|2 is the diam-
eter of ©, Dy|x := sup, , p(y|z) is the supremum of
the conditional density, C := 12diam (©) Dy x ||L||1,
and C is a universal constant. If Assumptions 1-
2 also hold, then for every 7 € (0,1), when we
set t = \/1 log + L. 4C1og(Cy)loglog(Cx) < 4,
with probability at least 1 —n, we have, for every
optimal solution (L},U;) of opt(t), that P.(Y €

[L3(X),U(X)]) >1—« and
Ery [U7(X) - EI(X )] <R (H)

24\/
+ Zlog
aye \[ n
diam (©) [|£]]2

l
+ 4/ — - 16C' max { log
¢ n { 12

- + — - 4C'log(C) log log(Cw)

4
I, logg
(4.3)

The Lipschitz class is beyond the scope of Rosenfeld
et al. (2018). Theorem 4.4 states that the required
sample size for this class to achieve a certain learning
accuracy is of order (llog(||£|]1)), which depends on
the dimension of the parameter space and the Lips-
chitz coefficient. Correspondingly, the optimality gap
on the interval width is O(y/llog(||£||2)/n). Here the
logarithmic factor associated with the Lipschitz co-
efficient is significant because ||£||2 can be exponen-
tial in the number of layers for deep neural networks
(see more details below). Note that our Lipschitz-
ness is in the class parameter 6 rather than the in-
put z. The latter has recently been used to regularize
neural networks to improve generalization gaps (e.g.,
Bartlett et al. (2017); Yoshida and Miyato (2017);
Gouk et al. (2018)) and robustness against adversar-
ial attacks (e.g., Cisse et al. (2017); Hein and An-
driushchenko (2017); Tsuzuku et al. (2018)), but can
potentially lead to a loss in expressiveness of the net-
work (Huster et al., 2018; Anil et al., 2019) because
of the size restriction on network weights. Our result
does not restrict the sensitivity of the network in the
inputs, and in turn its expressiveness.

To further distinguish the technical novelty of Theo-
rem 4.3 and Theorem 4.4, note that established re-
sults on uniform convergence bounds (UCBs) assum-
ing VC or Lipschitzness on the hypothesis class H can
only handle the objective (width) on #, but not the
constraint (coverage) on a different hypothesis class
of indicator functions on the joint (x,y) space. Our
analysis explicitly controls this constraint complex-
ity to achieve joint optimality-feasibility guarantees.
The proof of Theorem 4.3 involves bounding the VC-
dimension of the indicator class through intersections
of VC set classes, while that of Theorem 4.4 requires
directly bounding the bracketing number and evaluat-
ing the entropy integral. Moreover, even for the objec-
tive, it appears that the explicit UCBs with potentially
unbounded VC or Lipschitz classes considered here are
new to the best of our knowledge.

We showcase the application of Theorems 4.3 and 4.4
in two important classes: Regression trees and neural
networks. Appendix C presents an additional class of
linear hypothesis.

Regression Tree. Suppose we build two binary
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trees to construct L, U respectively. The tree has at
most S + 1 terminal nodes, and each non-terminal
node is split according to z;« < g or x;= > ¢ for
some i* € {1,...,d} and ¢ € R. In other words,
at most S splits are allowed. A regression tree con-
structed this way is therefore a piece-wise constant

function: h(z) = Zf;l ¢slzer,, where each ¢; > 0,
Ussille = X, and each R; is a hyper-rectangle in R?
that takes the form

Tip, < Qi fork=1,...,5
Tiyy > Qi fork=1,...,5
each ¢;, ., i, , € [—00, +00]
0<5+5<S

Let hypothesis class H be the collection of all such re-
gression trees. We use Theorem 4.3. Note that the
augmented class H, = H. Since the regression tree
takes constant values on each rectangle, its subgraph
in the space X x R is a union of hyper-rectangles, i.e.,
{(z,2) € X xR : h(z) > 2} = USH] (Rs U (=00, ¢y)).
Note that each Ry U (—00,¢s) is an intersection of at
most S + 1 axis-parallel cuts in R?*!, and the set of
all axis-parallel cuts is shown to have a VC dimen-
sion O(log(d)) (Gey, 2018). vc(H) can therefore be
obtained by applying VC bounds for unions and in-
tersections of VC classes of sets (Van Der Vaart and
Wellner, 2009):

Theorem 4.5 (Regression tree). The class H of re-
gression trees described as above is the same class
as its augmentation Hy, and is VC-subgraph with
ve (H) = ve (Hy) < CS?%(log(S))? log(d) for some uni-
versal constant C. If the trees are constructed in such
a way that maxy h(x) — ming h(z) < M < oo, then
Theorem 4.8 can be applied with | H|y, < C'M for
another universal constant C'.

We note that, although upper bounds of VC dimen-
sion have been available for classification trees with bi-
nary features, and bounds for classification trees with
continuous features appeared very recently (Leboeuf
et al., 2020), here we consider continuous-valued re-
gression trees with continuous features whose VC di-
mensions have not been addressed by previous works.
Our proof of Theorem 4.5 is based on recently devel-
oped VC results for axis-parallel cuts (Gey, 2018).

Neural Network. Consider the class H of feed-
forward neural networks with a fixed architecture and
fixed activation functions, indexed by the weights and
biases. Suppose the network has S — 1 hidden layers,
one input layer, and two output units. Denote by W
the total number of parameters for weights and biases,
and by U the total number of computation units (neu-
rons). Let Oy € R™ . s = 0,...,5 be the output of
the s-th layer. Then Oy = ¢4(W;0s_1 + bs) where
Wy € R"=*"s-1 ig a matrix of weights, by € R"s is a

vector of biases, and ¢s = (Ps1,--.,Psn.) IS a vec-
tor of activation functions. ng denotes the number of
neurons in the s-th layer. In particular Oy = z is the
input vector and Og = (L(x),U(x)) is the final output
vector. We aim to characterize the class of one output
unit L(z) since the class of U(z) is the same.

We utilize Theorem 4.4. This approach can advan-
tageously handle activation functions beyond sigmoid
and piece-wise polynomial (An alternate approach,
which we present in Appendix D, uses Theorem 4.3
and Pollard’s pseudo-dimension (Pollard, 2012) that
applies to sigmoid and piece-wise polynomial). As-
sume that each activation function ¢, j is globally M-
Lipschitz so that for some constant M, the growth
condition |¢s ()] < My + M|z| holds for all z € R,
and that each weight or bias parameter is restricted
to the bounded interval [—B, B] for some B > 0. To
apply Theorem 4.4, we show the following Lipschitz
property by a backpropagation-like calculation:

Theorem 4.6 (Neural network). The neural net-
work class H = {h(-,0) : 0 € [-B,B]"W} defined
above satisfies the Lipschitzness condition with L(x) =
CVS(BMNVW)S(||z||s + MoV'U + BMVW) where C
s a universal constant. Therefore Theorem 4.4 can be
applied with | = W, diam (©) = 2BVW, and ||£||2 <
CVS(BMVW)S(||| X |l2]l2 + MoVU + BMVW).

We make two remarks. First, the sample size required
in Theorem 4.4 to achieve a certain learning accuracy
is of order llog(Cyx)loglog(Cy). Applying the Lips-
chitz constants from Theorem 4.6 to evaluate the Cy
reveals a required sample size of order WS, up to log-
arithmic factors, for neural networks. Second, the size
restriction B on the weights and biases enters into the
error bounds in a logarithmic manner. Therefore B
is allowed to be (exponentially) large and exerts little
impact on the training of the network.

5 Data-Driven Coverage Calibration

In this section, we propose a general-purpose PI cal-
ibration method to balance coverage and width per-
formances in practice. On a high level, our proposal
selects the margin ¢ in (3.2) in a data-driven manner
to guarantee a coverage maintenance.

More precisely, we recall that standard practice in val-
idation requires 1) training models multiple times each
with different hyperparameters, and then 2) evaluat-
ing the trained models on a validation set to select
the optimal one. Our proposal aims to select the opti-
mal PI model in 2). In the following, we thus assume
multiple “candidate” models are already available.

Algorithm 1 shows our procedure, which simultane-
ously outputs K Pls, each at a given prediction level
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1—a; (k=1,..,K). It starts from a candidate set
of PI models, called {PI;(z) = [L;(z),U;(z)] : j =
1,...,m}. These models can be obtained from set-
ting m different values at a “tradeoff” parameter (e.g.,
the dual multiplier in a Lagrangian formulation of the
empirical constrained optimization; see Appendix G
for a neural net example), but can also be a more
general collection of PI models. We then use a val-
idation data set D, := {(X[,Y/) : i =1,...,n,}, in-
dependent of the PI training, to check the feasibility
of each candidate PI using the criterion CR(PI;) :=
(1/ny) 3202 Iyrepr,(x1y > 1—ag+¢; for some selected
margins €;.

Algorithm 1: Normalized PI Calibration

Input: Candidate PIs
{P1; =[L;,U;]: j =1,...,m}, target coverage
rates {1 —ay € (0,1) : k=1,..., K}, calibration
data D, = {(X[,Y/):i=1,...,n,}, and
confidence level 1 — 3 € (0,1).

Procedure:

1. For each PI;, j = 1,...,m, compute its
empirical coverage rate on D,,
CR(PI]) = %U Z:L:Ul IYi'EPIj (X0)- Compute the
sample covariance matrix 3 e R™*™ with
Yjrge = % Z:szl (IYI-'EPIJ& (XD~
CR(PL,)) (Iysepr,, (x1) — CR(PL},)).

2. Let 67 = % ;, and compute g1, the
(1 — B)-quantile of maxi<;j<m{Z;/6; : 6; > 0}

where (Z1,...,Zy) is a multivariate Gaussian
with mean zero and covariance 3.

3. For each coverage rate 1 —ax, k=1,..., K,
compute

iy, = ang min {2 (STPLX)|+ D OIPL (X))
=1 =1

1<j<m SN+ My

s ‘hfﬁ&j}
: CR(PL;) > 1— ——
( J) = Ak + \/TTU
where |PL;(-)| :== U;(-) — L;(-) is the width, and
{X;}7 is the training data set.
Output: Plji‘_ak fork=1,... K.

The key of our procedure is to tune €; based on a
uniform central limit theorem (CLT) that captures
the overall errors incurred in the empirical coverage
rates. Denoting by CR(PI;) := P.(Y € PI;(X)) the
true coverage rate of PI;, this CLT implies that, set-
ting g1 = (1 — B)-quantile of max; Z;/&; for some
properly chosen Gaussian vector (Z;);=1,...m, we have
CR(PI;) > CR(PL)) —q1_p6;//mp forall j =1,....m
uniformly with probability ~ 1 — 3. The uniformity
over j ensures the solution in Step 3, which opti-

mizes the interval width, indeed attains feasibility (tar-
get coverage) with 1 — S confidence. In this “meta-
optimization”, we pool the training and validation sets
together in the objective to improve the width perfor-
mance. We have the following finite-sample guarantee:

Theorem 5.1. Let 1 — o := max;=1,.._m, CR(PL;),
1—Qumin := 1—ming=1 . x o, and & := min{aupmin, 1 —
maxg—=1,. K 0k }. For every collection of interval mod-
els {PL; : 1 < j < m}, every n,, and B € (O,%), the
Pls output by Algorithm 1 satisfy

P’Dv (CR(PI]f_ak) > 1-— A fO’l“ allk = 1, PN 7K)

1

> 1_5_01((W)6+

(aze;

exp ( — C9n, min {e, M})) (5.1)

with € = max{amin

—a - Ci((e(l = a)/n, +

log(nvamin)/ng)log(m/ﬂ))1/2,0}, where Pp, denotes
the probability with respect to the calibration data, and
C1,Cy are universal constants.

The most important implication of Theorem 5.1 is that
the finite-sample deterioration in the confidence level
using our procedure depends only logarithmically on m
and is independent of K. These enable both the use of
many candidate models and the output of many Pls at
different prediction levels. The latter implies that our
algorithm can advantageously generate all PIs for arbi-
trarily many target levels simultaneously with a single
validation exercise, thus is computationally cheap and
comprises a strength. We provide further interpreta-
tion on the error terms of (5.1) in Appendix E. Besides
coverage attainment guarantee in Theorem 5.1, our
calibration procedure also possesses guaranteed per-
formance regarding the optimality of the width, pro-
vided that only the calibration data are used to assess
the width in Step 3 of Algorithm 1. More details can
be found in Appendix E.

In addition, we provide and compare an alternate cal-
ibration scheme, viewed as an “unnormalized” (as op-
posed to “normalized”) version of Algorithm 1 when
handling the standard error ¢;, in Appendix F.

We discuss Algorithm 1 in relation to a naive, but
natural approach that simply selects the model with
the shortest average interval width, among candidate
models with empirical coverage rates on the validation
dataset reaching the target levels (i.e., t = 0 in (3.2)).
This latter approach is also known as the PAV valida-
tion scheme in Kivaranovic et al. (2020) (which we call
NNVA in Section 6). Our algorithms improve PAV in
two aspects. First, our proposal guarantees with high
probability that the target level will be achieved by the
test coverage thanks to a corrective margin, while PAV
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does not offer such a guarantee and tends to fall short.
Second, our proposal enjoys a higher statistical power
than PAV in that unlike PAV whose analysis is based
on concentration bounds, Algorithm 1 is analyzed via
an asymptotically tight joint CLT. These guarantees
build on recent high-dimensional Berry-Esseen bounds
(Chernozhukov et al., 2017) (which notably does not
require functional complexity measures but only the
geometry of “hit sets”). Moreover, we will observe in
the experiments in Section 6 that our proposal empir-
ically performs better than PAV.

6 Experiments

Datasets. We evaluate our approaches on both syn-
thetic datasets and real-world benchmark datasets
through comparisons to the state-of-the-arts. The
real-world datasets (“Boston”, “Concrete”, “Wine”,
“Energy” and “Yacht”) have been widely used in pre-
vious studies (Hernéndez-Lobato and Adams, 2015;
Gal and Ghahramani, 2016; Lakshminarayanan et al.,
2017) for regression tasks. The generative distribu-
tions for the three synthetic datasets are:

CT

(1) : f(z) = 5= +10sin(5g2) + Ll 2~ N(0, 1),
(2) : f(z) = L(cTx)2sin(cTa) + 2l2e 2 ~ N(0, 1),

8 1
(3): f(z) = 1cTx - cos(cTx)? + %e,x ~ N(0, Iy).

where € ~ N(0,1), and ¢ is a constant in [—2,2]'0,
9

[-2,2]7, [-2,2]° respectively.

Experimental Setup. We conduct experiments un-
der two scenarios: the single PI case, where one PI at
a single prediction level 1 — « are constructed, and the
simultaneous PI case, where K Pls at K different
prediction levels 1 — aq, -+ ,1 — ax are constructed.
Each trial is repeated for N times to estimate the con-
fidence of coverage attainment. We adopt neural net-
works as our PI models with the following loss func-
tion: I(x,y, L,U) := (U(x) — L(x))? + N(max{L(x) —
y,0} + max{y — U(z),0})?, where A\ > 0 is a penalty
for miscoverage and (L(z),U(z)) is the output vector
containing the lower and upper bounds. By adjust-
ing A\, PI models with different coverage levels can be
trained, which are then fed into our calibration algo-
rithms to obtain the final PI. We implement two cal-
ibration strategies: the normalized Gaussian PI cali-
bration in Algorithm 1 (NNGN), and the unnormal-
ized version in Algorithm 2 in Appendix F (NNGU). In
addition, we also test the calibration scheme (NNVA)
that directly compares the empirical coverage rates on
the validation dataset to the target levels, without the
Gaussian margin. Note that this is the PAV validation
scheme in Kivaranovic et al. (2020).

Baselines. We compare our NNGN, NNGU with the
following state-of-art approaches: quantile regression

forests (QRF) (Meinshausen, 2006), CV+ prediction
interval (CV+) (Barber et al., 2019), split confor-
malized quantile regression (SCQR) (Romano et al.,
2019), quantile regression via SVM (SVMQR) (Stein-
wart and Thomann, 2017), and split conformal learn-
ing (SCL) (Lei et al., 2018). Implementation details
can be found in Appendix I.

Evaluation Metrics. For the single PI analysis, our
models are evaluated on both exceedance probability
(EP) and interval width (IW). EP captures the suc-
cess in achieving the target confidence level, while W
indicates the average interval width. For the simulta-
neous PI analysis, we use multiple exceedance prob-
ability (M EP) and multiple interval width (MIW).
M E P measures the proportion of trials where all PIs
reach the target prediction levels simultaneously (i.e.,
family-wise correctness). Formally:

EP: N X HCR; = PL)

W = S Y (Ui — Liy)
MEP: %30, U {CRiy > PLi}}
MIW e Sy o S0 (Ui ik — Liji)

where n is the size of testing data, CR; (CR;y) is
the estimated coverage rate from the i-th repetition
and PL (PLy) is the target prediction level 1 —« (1—
ay). Throughout our experiments, the confidence level
1 — [ is set to 0.9 in the calibration algorithms. For
both cases, the best result is achieved by the model
with the smallest ITW/MIW value among those with
EP/MEP > 0.90. If no model achieves EP/MEP >
0.90, then the one with highest EP/M EP is the best.

Single PI Analysis. Table 1 reports the values of
EP and IW for PI generation at 95% prediction level
on 3 synthetic datasets and 5 real-world datasets. It
is shown that QRF, CV+ and our NNGU and NNGN
are the only four methods that achieve the required
confidence level in all synthetic cases, and among the
four our NNGN consistently generates PIs of shortest
width. Moreover, NNGU attains the target confidence
level on all real datasets as well. NNGN seems to fall
below the target confidence for some real datasets, but
is better than all other baseline methods except CV+
and SCL. Among the methods with high E P, the inter-
val widths of our NNGN and NNGU are the smallest
in 6 out of 8 datasets. In contrast, the F P values by
NNVA are below the target confidence in all cases.
Numerically, the averaged EP of NNGN/NNGU is
1.4/1.7 times higher than the one of NNVA. This shows
in particular that NNVA may fail to ensure a correct
coverage rate with high confidence on test data, which
necessitates our calibration approaches.

Simultaneous PIs Analysis. Table 2 reports the
values of M EP and MIW for simultaneous Pls at 19
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Table 1: Single PI at the 95% prediction level. The best results are in bold.

Syntheticl | Synthetic2 | Synthetic3 | Boston Concrete Energy Wine Yacht

Methods |EP IW |EpP IW |EP IW |EP IW |EP IW |EP IW |EP IW |EP IW
QRF 1.00 3.122|1.00 3.667 |{1.00 3.609 [0.46 2.085|0.72 1.995 |0.78 0.664 |0.00 2.671(0.22 1.110
CV+ 1.00 0.302 |1.00 2.039 |1.00 3.523 |0.96 1.538|0.88 1.413|0.98 0.500(1.00 4.359|0.92 0.339
SCQR 0.90 2.264 [0.78 2.863 |0.98 2.804 |0.66 2.309 [0.62 2.289 |0.68 0.837 |{0.30 2.810 |0.86 1.681
SVMQR [0.00 0.256 |0.00 2.351 [0.00 1.855 |0.06 1.340{0.10 1.376 |0.18 0.411 |0.48 2.975]0.30 0.483
SCL 0.98 0.313]0.70 2.211 |1.00 3.754 |0.88 2.053 |0.88 1.630 |0.74 0.769 |0.80 4.437 |0.92 0.906
NNVA  |0.00 0.221|0.74 1.630|0.04 1.991 |{0.58 1.837 |0.28 1.607 |0.44 0.234 |0.00 1.817 |0.80 0.154
Ours-NNGN|1.00 0.296|1.00 1.921|1.00 2.176(0.90 2.477|0.86 2.375|0.62 0.398 |0.74 2.155|0.92 0.217
Ours-NNGU|1.00 0.296|1.00 2.557 |1.00 3.155 |0.96 2.692 |0.96 2.643|1.00 0.561 [0.98 2.648|1.00 0.299

Table 2: Simultaneous Pls at 19 target prediction levels. The best results are in bold.

Syntheticl | Synthetic2 | Synthetic3 Boston Concrete Energy Wine Yacht

Methods |MEP MIW |MEP MIW [MEP MIW |[MEP MIW |MEP MIW |MEP MIW |MEP MIW |MEP MIW
QRF 1.00 1.911]0.92 1.657|1.00 1.805|0.46 1.099| 0.72 1.108] 0.78 0.328 | 0.00 1.460 | 0.22 0.703
CV+ 1.00 0.176| 1.00 1.078 | 1.00 1.935| 0.66 0.780| 0.60 0.736| 1.00 0.245| 1.00 2.289 | 0.86 0.114
SCQR 0.74 1.356 | 0.74 2.218 | 0.56 1.808 | 0.14 1.622| 0.16 1.575| 0.24 0.760 | 0.00 2.493 | 0.20 1.554
SVMQR | 0.00 0.115| 0.00 1.311|0.00 1.215|0.00 0.582| 0.00 0.619| 0.00 0.225| 0.04 1.575| 0.00 0.086
SCL 0.24 0.175|1.00 1.004 | 0.96 1.940| 0.78 1.039| 0.66 0.896| 0.74 0.373| 0.70 2.470 | 0.80 0.325
NNVA 0.00 0.160 | 0.28 0.969 | 0.04 1.606 | 0.26 1.086| 0.16 0.956| 0.00 0.151 | 0.00 1.147 | 0.04 0.079
Ours-NNGN| 1.00 0.170 | 1.00 1.050| 1.00 1.727| 0.76 1.244| 0.72 1.092| 0.90 0.177| 0.72 1.267 | 0.96 0.120
Ours-NNGU | 1.00 0.168| 1.00 1.083| 1.00 1.734 |0.82 1.287|0.78 1.123| 0.60 0.183| 0.98 1.276| 0.72 0.145

target prediction levels: 50%, 52.5%, 55%, 57.5% ...,
95%. Our calibration approaches NNGN and NNGU
are always the best in terms of achieving the tight-
est interval under high M EP, or otherwise achieves
the highest M EP among all. Among the 6 datasets
where the target confidence level 0.9 can be attained,
NNGN/NNGU yields the smallest width in 4/2 of
them. In the remaining 2 datasets, NNGU achieves
the highest M EP. NNGU attains the target M EP or
the highest M EP in 6 out of 8 datasets. Compared to
the case of single-level target, the M EP performance
gaps are more significant in multi-level PI construc-
tions. This is because the coverage rates in baseline
algorithms get increasingly overfitted as more simul-
taneous target levels are compared against. Thanks to
the use of the uniform safety margin, our NNGN and
NNGU schemes are free of overfitting even in this case.
These results demonstrate that our methods can ac-
curately construct multiple PIs at different prediction
levels simultaneously. Finally, compared to NNGU,
NNGN tends to generate shorter Pls, and we recom-
mend NNGN as the preferred choice.

We provide more experimental results in Appendix I.

7 Conclusion

In this paper, we study the generation of Pls for re-
gression that satisfy an expected coverage rate. This
problem can be cast into an empirical constrained opti-
mization framework that minimizes the expected inter-
val width subject to a coverage satisfaction constraint.

We develop a general learning theory to characterize
the optimality-feasibility tradeoff in this optimization,
in particular joint guarantees on both a short expected
interval width and an attainment of the target predic-
tion level. We also propose a readily implementable
calibration procedure, constructed based on a high-
dimensional Berry-Esseen Theorem, to select the best
PI model among trained candidates, which offers a
practical approach to build simultaneous Pls at multi-
ple target prediction levels with statistical validity. We
demonstrate the empirical strengths of our proposed
approach by applying it to neural-network-based PI
models with our proposed calibration procedure, and
comparing them with other baselines across synthetic
and real-data examples.
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