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1 Proof of Theorem 1

For this proof and all other proofs in the supplement, op, o, Op and O refer to uniform

bounds over a ∈ [α1, α2].

1.1 The First Part

In this part we show
√
n {fn(µ̂)− fn(µ)} (a)

d−→U(a) in `∞([α1, α2] \ Iδ) as n → ∞,

where Iδ can be constructed as
⋃J
`=1(c` − δ/J, c`), c` for ` = 1, . . . , J < ∞ are the

(finitely many) discontinuities of µ(·), and δ can be any small positive number that is

less than the minimal distance between any two c`’s and between any c` and α1 or α2,

divided by 2. Since most parts of the proof still work when [α1, α2] \ Iδ is replaced by

[α1, α2], we will use [α1, α2] as default in this subsection and use [α1, α2] \ Iδ only when

needed (especially in the last paragraph of this subsection). It suffices to check the

conditions of a changing-class Donsker Theorem (Kosorok, 2008b,a). To that end, we

make use of an “almost” uniform continuity property of a right-continuous function G(a)

that has bounded variation on [α1, α2]: for all ε > 0, there exists a δ′ > 0 such that for

all a, b ∈ [α1, α2], a < b and (a, b] does not include a discontinuity of magnitude ≥ ε/2,

b − a < δ′ implies |G(b)−G(a)| < ε (this can be shown along the lines of the proof

of the Heine–Cantor Theorem). This implies that several quantities appearing later

in the proof, namely, E{V (a)}, E{D(a)} and the sample paths of T (a), are almost

uniformly continuous, where recall that V is defined in Remark 4 after Theorem 1 as

the total variation of T over [α1, a], D(a) = V (a) − T (a), fn,a(g) = fn(g)(a), F (g) =

|g(α1)|+ total variation of g over [α1, α2] for g ∈ B ∩ C, B = {g : [α1, α2] 7→ [0, τ ], g is

of bounded variation}, and C = {g : [α1, α2] 7→ [0, τ ], g is right-continuous}.
The classes of functions in question are Fn = {fn,a : B ∩ C 7→ R, a ∈ [α1, α2] \ Iδ}.

The classes Fn satisfy the almost measuarable Suslin condition, by the separability of Fn
shown as follows. By definition of Gn, we have supa∈[α1,α2] infb∈Gn |fn,b(T )− fn,a(T )| =
0 almost surely. This implies the desired separability P{supa∈[α1,α2] infb∈Gn |fn,b(T )−
fn,a(T )| > 0} = 0. The same function F (as defined above) will be used as an envelope

function for every Fn. Since EV 2(α2) and ET 2(α1) are finite, EF 2(T ) < ∞. This

and the dominated convergence theorem imply that EF 2(T )I{F (T ) > η
√
n} → 0 as

n → ∞, for each η > 0. The bounded uniform entropy integral condition is shown as

follows. Each g ∈ B ∩ C satisfies g = v(g) − d(g), where v(g)(a) is the total variation

of g over [α1, a], d(g) = v(g) − g, and both v(g)(a) and d(g)(a) are non-decreasing

functions of a ∈ [α1, α2] (Carothers, 2000, Theorem 13.5). By linearity of fn,a, we

have that fn,a(g) = fn,a ◦ v(g)− fn,a ◦ d(g). Hence for any finitely discrete probability

measure Q with ‖F‖Q,2 > 0 (see, e.g., Kosorok, 2008b, page 18) and any fn,a, fn,b ∈
Fn, ‖fn,a − fn,b‖Q,2 ≤ ‖fn,a ◦ v(g)− fn,b ◦ v(g)‖Q,2+‖fn,a ◦ d(g)− fn,b ◦ d(g)‖Q,2 by the
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triangle inequality, where ‖f‖Q,2 ≡ {Qf2}1/2, which implies

N(ε ‖F‖Q,2 ,Fn, L2(Q)) ≤ N(ε ‖F‖Q,2 /2,Vn, L2(Q))N(ε ‖F‖Q,2 /2,Dn, L2(Q))

for any ε ∈ (0, 1). Here N(ε,G, L2(Q)) is the minimal number of balls of radius ε with re-

spect to the L2(Q)-norm ‖f‖Q,2 needed to cover the set G, Vn = {fn,a ◦ v : B ∩ C 7→ R, a
∈ [α1, α2]}, and Dn = {fn,a ◦ d : B ∩ C 7→ R, a ∈ [α1, α2]}. By Lemma 9.18 of Kosorok

(2008b), for Gn = Vn or Dn, N(ε ‖F‖Q,2 /2,Gn, L2(Q)) ≤ N[](ε ‖F‖Q,2 /2,Gn, L2(Q)),

where N[](ε,G, L2(Q)) is the minimal number of ε-brackets with respect to the L2(Q)-

norm needed to cover the set G. Further, we can show that N[](ε ‖F‖Q,2 /2,Gn, L2(Q)) ≤
8/ε2 for all n, for Gn = Vn or Dn, by extending a proof (van der Vaart and Wellner, 1996,

Example 2.11.16) involving right-continuous monotone stochastic processes. These re-

sults imply N(ε ‖F‖Q,2 ,Fn, L2(Q)) ≤ 64/ε4. We then obtain the bounded uniform

entropy integral condition

lim sup
n→∞

sup
Q

∫ 1

0

√
logN(ε ‖F‖Q,2 ,Fn, L2(Q))dε ≤

∫ 1

0

√
log(64/ε4)dε <∞.

The covariance of the limiting process at the index pair (a, b) is limn→∞E{fn,a(T )−
Efn,a(T )}{fn,b(T ) − Efn,b(T )} = ET (a)T (b) − ET (a)ET (b), where the equality fol-

lows by the almost uniform continuity of the sample path of T (a), Slutsky’s lemma

and the dominated convergence theorem. The same reasoning implies limn→∞ ρn(a, b)

exsits for all a, b ∈ [α1, α2] and equals ρ(a, b) = [E{T (a)− T (b)}2]1/2, where ρn(a, b) =

[E{fn,a(T )− fn,b(T )}2]1/2.
The last condition for the changing classes Donsker Theorem is that for all deter-

ministic sequences {an}, {bn} ⊂ [α1, α2] \ Iδ, ρn(an, bn) → 0 if ρ(an, bn) → 0, which

we show as follows. Given ε > 0, we want to show there exists N ∈ N such that

for all n > N , ρn(an, bn) < ε. Since ρn(an, bn) ≤
√
τE |fn,an(T )− fn,bn(T )|, it suf-

fices to show E |fn,an(T )− fn,bn(T )| < ε2/τ . By the almost uniform continuity of

E{V (a)} and E{D(a)}, there exists a δE > 0 such that for all a, b ∈ [α1, α2], a < b

and (a, b] does not include a discontinuity of magnitude ≥ ε2/(12τ), b − a < δE im-

plies E{V (b) − V (a)}, E{D(b) − D(a)} < ε2/(6τ). Denote the mesh of Gn by un.

By ρ(an, bn) → 0 and un = o(1) as n → ∞, there exists N ∈ N such that for all

n > N , ρ(an, bn) < ε2/(3τ) and un < min{δ/J, δE}. Then for each n > N , note that

(an, an + un] and (bn, bn + un] do not contain any discontinuity of µ(a) (and hence any

discontinuity of E{V (a)} and E{D(a)}) because un < δ/J and an, bn ∈ [α1, α2] \ Iδ.

4



This leads to

E |fn,an(T )− fn,bn(T )|

≤ E |fn,an(T )− T (an)|+ E |T (an)− T (bn)|+ E |fn,bn(T )− T (bn)|

≤ E |fn,an(V )− V (an)|+ E |fn,an(D)−D(an)|+ ρ(an, bn)

+ E |fn,bn(V )− V (bn)|+ E |fn,bn(D)−D(bn)|

≤ E {V (an + un)− V (an)}+ E {D(an + un)−D(an)}+ ε2/(3τ)

+ E {V (bn + un)− V (bn)}+ E {D(bn + un)−D(bn)}

< 4× ε2/(6τ) + ε2/(3τ) = ε2/τ,

where the first inequality is due to the triangle inequality, the second inequality is due

to T (a) = V (a)−D(a) and the Cauchy-Schwarz inequality, the third inequality is due

to monotonicity of E{V (a)} and E{D(a)}, and the last inequality is due to un < δE

and the almost uniform continuity of E{V (a)} and E{D(a)}. Since all the conditions

for the changing classes Donsker Theorem are satisfied, we have
√
n {fn,a(µ̂)− fn,a(µ)}

converges weakly in `∞([α1, α2]\ Iδ), as n→∞, to a tight, mean zero Gaussian process

U(a) (as defined in Section 2.2) with covariance function at the index pair (a, b) being

Cov{T (a), T (b)}.

1.2 The Second Part

It suffices to show
√
n{fn(µ)(a)− µ(a)} → 0 uniformly over a ∈ [α1, α2] \ Iδ as n→∞.

Since the sample paths of T (a) has bounded variation, it can be shown that µ(a) is

also of bounded variation. By the Lebesque decomposition of a function of bounded

variation, and the condition that µ(a) is right continuious with finitely many jumps, we

can write µ(a) = h1(a)+h2(a), where h1(a) is a continuous function of bounded variation

and h2(a) =
∑

b≤a{µ(b) − µ(b−)} is a piecewise-constant, right continuous function of

bounded variation. The desired result follows if we can show
√
n{fn(h1)(a)−h1(a)} → 0

and
√
n{fn(h2)(a)− h2(a)} → 0 uniformly over a ∈ [α1, α2] \ Iδ as n→∞.

We first deal with h1(a). By the condition of bounded right-hand β-Dini derivatives,

we can show that D+(h1, β)(a) and D+(h1, β)(a) are also bounded over a ∈ [α1, α2].

Then by a similar reasoning as in the results 34.4 and 34.5 of McShane (1944), we can

show that for all a, b ∈ [α1, α2],

|h1(a)− h1(b)| ≤ κ |a− b|β , (S.1)

where κ < ∞ is a bound of |D+(h1, β)(a)| and |D+(h1, β)(a)| over a ∈ [α1, α2]. Given

η > 0, by the assumption placed on the mesh un of Gn, there exists an N1 = N1(η) ∈ N

5



such that for all n > N1,
√
nuβn ≤ η/κ. Then

∣∣√n {fn(h1)(a)− h1(a)}
∣∣ ≤ sup

h≤un

{
|h1(a+ h)− h1(a)|

hβ
×
√
nhβ

}
≤ κ×

√
nuβn ≤ η.

This means supa∈[α1,α2]

√
n{fn(h1)(a)− h1(a)} → 0 as n→∞.

As for h2(a), there exists an N2 = N(δ) ∈ N such that for all n > N2, un < δ/J ,

leading to

sup
a∈[α1,α2]\Iδ

√
n{fn(h2)(a)− h2(a)} = 0.

This means
√
n{fn(h2)(a)− h2(a)} → 0 uniformly over a ∈ [α1, α2] \ Iδ as n→∞.

2 Details regarding remarks after Theorem 1

2.1 Constructing a simultaneous confidence band for µ(·) for essen-

tially all a ∈ [α1, α2]

Let rn(µ)(a) be some random function of µ(·) in `∞[α1, α2]. In this subsection, we ex-

plain how we use the limiting process rL(a) of rn(µ)(a) in `∞{[α1, α2] \ Iδ} for each suf-

ficiently small δ > 0 to construct a simultaneous confidence band for µ(·) for essentially

all a ∈ [α1, α2]. Here we use “essentially all” a to mean that it is for all a except for a set

Iδ having arbitrarily small Lebesgue measure δ, and both δ and Iδ are defined in Supple-

ment Section 1.1. This result can then be applied to rn(µ)(a) = |
√
n{fn(µ̂)− µ}(a)| in

Theorem 1, or other confidence bands/test statistics in the manuscript that involve the

same construction (i.e. the same rn(µ)(a) and critical value is used) for each sufficiently

small δ > 0. Furthermore, the same reasoning holds when the limiting process needs to

be estimated by bootstrap.

For each sufficiently small δ > 0, an asymptotic 100(1−α)% simultaneous confidence

band for µ(·) over [α1, α2] \ Iδ is

{(a, µ̃(a)) : rn(µ̃)(a) ≤ cα,δ, a ∈ [α1, α2] \ Iδ}, (S.2)

where cα,δ denotes the upper α-quantile of supa∈[α1,α2]\Iδ rL(a). Let cα be the upper

α-quantile of supa∈[α1,α2] rL(a). Since cα,δ ≤ cα, replacing cα,δ by cα in (S.2) still gives

an asymptotic 100(1− α)% simultaneous confidence band for µ(·) over [α1, α2] \ Iδ for

every δ:

{(a, µ̃(a)) : rn(µ̃)(a) ≤ cα, a ∈ [α1, α2] \ Iδ}.

Essentially, this band can be constructed over the entire interval [α1, α2], because it is

valid for every sufficiently small δ > 0 and because cα does not depend on δ. Therefore,

we term it as a simultaneous confidence band for µ(·) for essentially all a ∈ [α1, α2].
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2.2 Boundedness of the right-hand β-Dini derivatives

Recall that in Theorem 1, we need the condition that D+(µ, β)(a) and D+(µ, β)(a) are

bounded over a ∈ [α1, α2] for some β > 0. Here we provide some examples of functions

satisfying this condition. Taking µ(a) = aγ , a ∈ [0, 1], for some 0 < γ < 1, note that

µ(a) has uniformly bounded right-hand β-Dini derivatives over a ∈ [0, 1] when β = γ.

However, the right-hand β-Dini derivatives are unbounded at a = 0 for any β > γ.

Another example in which we have uniformly bounded right-hand β-Dini derivatives

for any β < 1/2 (although not for β = 1/2) is the sample path of a Brownian motion;

but note that our T (a) cannot be a Brownian motion due to the bounded variation

assumption.

Note that if D+(µ, β)(a) is uniformly bounded by some positive constant κ for some

β > 1, then under the condition of the first part of Theorem 1, µ(a) is a piecewise

constant function of a. The proof is as follows. Since∣∣∣∣lim sup
h→0+

µ(a+ h)− µ(a)

h

∣∣∣∣ =

∣∣∣∣lim sup
h→0+

µ(a+ h)− µ(a)

hβ
hβ−1

∣∣∣∣ ≤ κ lim
h→0+

hβ−1 = 0,

and similarly for |lim infh→0+[{µ(a+ h)− µ(a)}/h]|, the right-hand derivative of µ(a)

exists and equals zero. Under the assumption (from the first part of the theorem) that

T (a) is right-continuous in a (which leads to the right-continuity of µ(a)), this means

that µ(a) is a piecewise constant function of a.

3 Bootstrap in Section 2.2

3.1 Proof of Corollary 1

To show bootstrap consistency of fn,a(U
∗
n), we write it as

∑n
i=1(Wni − 1)fn,a(Ti)/

√
n

=
∑n

i=1(Wni− 1){fn,a(Ti)− fn,a(µ)}/
√
n, where recall from Section 2.2 that Wni is the

number of times that fn(Ti)(a) is redrawn from {fn(T1)(a), . . . , fn(Tn )(a), a ∈ [α1, α2]}.
We first introduce a partly Poissonized version of fn,a(U

∗
n). The reason for Poissoniza-

tion is to remove the dependence among the multinomial distributed Wn1, . . . ,Wnn,

so that a changing classes bootstrap central limit theorem can be utilized. Secondly,

we show the conditional asymptotic equivalence of fn,a(U
∗
n) and the partly Poissonized

version of fn,a(U
∗
n). Finally we show the bootstrap consistency of the partly Poissonized

version of fn,a(U
∗
n). Then by a routine extension of the conditional Slutsky’s lemma

(Cheng, 2015, Appendix A.2, (i)) to the case of random elements of a metric space, we

have the bootstrap consistency of fn,a(U
∗
n). The aforementioned bootstrap consistency

results are provided conditional on T1, T2, . . .. The extension to conditioning on the

discretized data is postponed until the last part of the proof.

The partly Poissonized version is obtained by taking a Poisson number Nn (instead
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of n) of bootstrap draws from the original sample, where Nn has mean n and is in-

dependent of the original sample. Then WNn,i is the resulting number of times that

Ti(a) is redrawn from the original sample, i = 1, . . . , n. This construction leads to i.i.d.

WNn,1, . . . ,WNn,n, each having Poisson distribution with mean 1. The partly Pois-

sonized version of fn,a(U
∗
n) is defined as fn,a(U

∗
n,Nn

), where U∗n,Nn(a) =
∑n

i=1(WNn,i −
1){Ti(a)− µ(a)}/

√
n.

To show the conditional asymptotic equivalence of fn,a(U
∗
n) and fn,a(U

∗
n,Nn

), we

use similar reasoning as in the proof establishing such equivalence for classes of func-

tions not changing with n (van der Vaart and Wellner, 1996, page 347–348) and the

following additional result. We show in the following that conditional on the ob-

served processes T1, T2, . . . a.s.,
∑

i∈Ijn{fn,a(Ti) − fn,a(µ)}/#Ijn = op(1) for any j,

where Ijn is the set of indices i ∈ {1, . . . , n} such that |WNn,i −Wni| ≥ j. Since

supa∈[α1,α2]

∣∣∣∑i∈Ijn{fn,a(Ti)− fn,a(µ)}/#Ijn
∣∣∣ ≤ supa∈[α1,α2]

∣∣∣∑i∈Ijn{Ti(a)− µ(a)}/#Ijn
∣∣∣

by definition of fn,a, it amounts to showing the right hand side is op(1) conditional

on the observed processes a.s. This is true (van der Vaart and Wellner, 1996, Lemma

3.6.16) because the class of evaluation functions FC = {qa : B ∩ C 7→ R, a ∈ [α1, α2]} is

strong P -Glivenko–Cantelli, where qa(g) = g(a) for g ∈ B, and P is the distribution of

T . The proof utilizes the fact that the class of functions F = {qa : B 7→ R, a ∈ [α1, α2]}
is P -Donsker (see Supplement Section 11), Donsker preservation for a restriction in the

sample space (van der Vaart and Wellner, 1996, Theorem 2.10.6 and page 200), and

the fact that a Donsker class is also strong Glivenko–Cantelli (Kosorok, 2008b, Lemma

8.17).

Now we show the bootsrap consistency of fn,a(U
∗
n,Nn

), which we decompose as

Nn

n

1√
n

n∑
i=1

(
WNn,i

Nn/n
− 1

)
{fn,a(Ti)− fn,a(µ)}+

√
n

(
Nn

n
− 1

)
{fn,a(µ̂)− fn,a(µ)} .

(S.3)

In the first term of (S.3), the quantity after Nn/n satisfies the conditions for a chang-

ing classes bootstrap central limit theorem (Kosorok, 2008b, Theorem 11.23) as fol-

lows. All the conditions except one has been checked in Supplement Section 1.1. The

one additional condition is that the WNn,i are positive, i.i.d. random variables in-

dependent of T1, T2, . . . with finite variance, which holds by the Poissonization con-

struction. This, Nn/n = 1 + o(1) a.s. (by the strong law of large numbers) and

another routine extension of the conditional Slutsky lemma (Cheng, 2015, Appendix

A.2, (ii)) to the case of random elements of a metric space, imply the bootstrap con-

sistency of the first term of (S.3). In the second term, the quantity in the brack-

ets is o(1) a.s., by the fourth paragraph of Supplement Section 4 and the fact that

supa∈[α1,α2] |fn,a(µ̂− µ)| ≤ supa∈[α1,α2] |µ̂(a)− µ(a)| per definition of fn,a. This, the

conditional weak convergence of
√
n(Nn/n − 1) as n → ∞ (due to the central limit

theorem), and aforementioned conditional Slutsky’s lemma imply the second term of
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(S.3) converges weakly to zero as n→∞, conditional on T1, T2, . . ., in probability. This

conditional weak convergence to zero implies conditional convergence in probability to

zero as n → ∞, based on a similar proof as in the unconditional version. Combining

the results from the two terms using a routine extension of the conditional Slutsky’s

lemma (Cheng, 2015, Appendix A.2, (i)) to the case of random elements of a metric

space, we have the bootstrap consistency of fn,a(U
∗
n,Nn

). Then by the same extension of

the conditional Slutsky’s lemma and the conditional asymptotic equivalence of fn,a(U
∗
n)

and fn,a(U
∗
n,Nn

), we have the bootstrap consistency of fn,a(U
∗
n).

We now show the desired bootstrap consistency of fn,a(U
∗
n) given the discretized

data {fj(Ti), i = 1, . . . , j, j = 1, 2, . . .} in probability. Let the σ-fields generated by

the fully-observed and discretely-observed data be denoted A = σ(T1, T2, . . .) and

A0 = σ(fj(Ti), i = 1, . . . , j, j = 1, 2, . . .), respectively. Since it can be shown that

fj is measurable for each j = 1, 2, . . ., we have A0 ⊂ A. Let U ′ be a copy of U that

is independent of T1, T2, . . ., and let BL1 be the set of all real-valued functions on

`∞{[α1, α2] \ Iδ} with Lipschitz norm bounded by 1 and supg∈`∞{[α1,α2]\Iδ} |h(g)| ≤ 1,

where Iδ is defined in Supplement Section 1.1. Then

sup
h∈BL1

|E {h (fn,a (U∗n)) |A0} − Eh (U)|

= sup
h∈BL1

∣∣E {h (fn,a (U∗n)) |A0} − E
{
h
(
U ′
)
|A0

}∣∣
≤E

[
sup
h∈BL1

|E {h (fn,a (U∗n)) |A} − Eh (U)| |A0

]
P−→0,

where we use the tower property of conditional expectation (see, e.g., Shao, 2003, Propo-

sition 1.10 (v)) and E {h (U ′) |A0} = Eh (U ′) = Eh (U) = E {h (U ′) |A}; the conver-

gence is due to the conditional version of the dominated convergence theorem (see, e.g.,

Shao, 2003, Proposition 1.10 (x)), suph∈BL1
|E {h (fn,a (U∗n)) |A} − Eh (U)| P−→0 (the

bootstrap consistency of fn,a(U
∗
n)), and arguing along subsquences.

3.2 Details in implementing bootstrap and computing c∗NS,α

A bootstrap sample is obtained by drawing n curves independently with replacement

from the data {fn(T1)(a), . . . , fn(Tn)(a), a ∈ [α1, α2]}. Based on this bootstrap sam-

ple, compute a value of supa∈[α1,α2] |fn(U∗n(a))|, where recall from Section 2.2 that

U∗n(a) =
√
n{µ̂∗(a) − µ̂(a)}, µ̂(a) =

∑n
i=1 Ti(a)/n is the full trajectory of the mean

of the original sample, µ̂∗(a) =
∑n

i=1WniTi(a)/n is the full trajectory of the mean of

the bootstrap sample, and Wni is the number of times that fn(Ti)(a) is redrawn from

{fn(T1)(a), . . . , fn(Tn)(a), a ∈ [α1, α2]}.
Repeat the procedure in the previous paragraph B times to obtain B bootstrapped

values for supa∈[α1,α2] |fn(U∗n(a))|; our simulation study (see Section 3) uses B = 1000.
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Let c∗NS,α denote the upper α-quantile of these B bootstrapped values of supa∈[α1,α2]

|fn(U∗n(a))|. Then the asymptotic 100(1 − α)% NS simultaneous confidence band for

µ(·) is computed as fn(µ̂)(a)± n−1/2c∗NS,α for essentially all a ∈ [α1, α2].

4 Proof of Theorem 2

For simplicity of exposition, we first study the large sample behavior of the fully observed

trajectories of the EL statistic process −2 logR(µ)(·). Then we discretize this large

sample result and study the asymptotics of −2 log fn(R(µ))(·) accordingly. But note

that, as in Section 2.3, the quantities we use in the process of this proof are available

to us only in their discretized forms. Since most parts of the proof still work when

[α1, α2] \ Iδ is replaced by [α1, α2], we will use [α1, α2] as default in this subsection and

use [α1, α2] \ Iδ only when needed (especially in the last paragraph of this subsection).

We need to show weak convergence of −2 logR(µ)(·) as a random element of `∞[α1,

α2] when n → ∞. The denominator of (2) is obviously n−n. The constrained opti-

mum of the numerator is found by Lagrange’s method to be
∏n
i=1 p̃i(a), where p̃i(a) =

[n{1 + λ̃(a)Ỹi(a)}]−1, Ỹi(a) = Ti(a) − µ̃(a), and λ̃(a) satisfies the estimating equation∑n
i=1 p̃i(a)Ỹi(a) = 0. It follows that −2 logR(µ̃)(a) = 2

∑n
i=1 log{1+ λ̃(a)Ỹi(a)}. In the

sequel, we use −2 logR(µ)(a), Yi and λ to denote the corresponding quantities at the

true value µ(a).

The first step is show that λ(a) = Op(1/
√
n). This step uses the inequality

|λ(a)|σ(a) ≤ ζ(a)T (a) {1 + |λ(a)|Z(a)} , (S.4)

where ζ(a) is such that λ(a) = ζ(a)|λ(a)| and |ζ(a)| = 1, T (a) =
∑n

i=1 Yi(a)/n =

µ̂(a)−µ(a), σ2(a) =
∑n

i=1 Y
2
i (a)/n, and Z(a) = maxi=1,...,n |Yi(a)|. Here (S.4) is shown

using the estimating equation

n−1
n∑
i=1

Yi(a)

1 + λ(a)Yi(a)
= 0 (S.5)

and a similar argument to Section 11.2 of Owen (2001), which leads to

ζ(a)T (a) =
|λ(a)|
n

n∑
i=1

Y 2
i (a)

1 + λ(a)Yi(a)
,

and

|λ(a)|σ2(a) ≤

{
|λ(a)|
n

n∑
i=1

Y 2
i (a)

1 + λ(a)Yi(a)

}
{1 + |λ(a)|Z(a)} .

Then (S.4) and the large sample properties of T (a), σ2(a) and Z(a) are used to establish

the asymptotic order of λ(a) as follows. By Theorem S.1 (see Supplement Section 11),
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we have T (a) = Op(1/
√
n). Furthermore,

σ2(a) = σ2(a) + o(1) (S.6)

a.s. This follows by Glivenko–Cantelli preservation (Kosorok, 2008b, Lemma 9.28),

and the fact that F is P -Donsker (see Supplement Section 11) and strong P -Glivenko–

Cantelli (Kosorok, 2008b, Lemma 8.17). In (S.6), note the assumption that infa∈[α1,α2]

σ2(a) > 0 means σ2(a) ≥ infa∈[α1,α2] σ
2(a) + o(1) is bounded away from 0 as n → ∞

a.s.

As for Z(a), we begin with showing supa∈[α1,α2] Z(a) ≤ maxi=1,...,n{Vi(α2)+|Ti(α1)|}+
supa∈[α1,α2] |µ(a)| by the decomposition of Ti(a) and monotonicity. Utilizing the finite

second moment conditions for V (α2) and T (α1), we obtain maxi=1,...,n Tα1,i, maxi=1,...,n

Vα2,i = o(
√
n) a.s. (Owen, 2001, Lemma 11.2), and supa∈[α1,α2] |µ(a)| ≤ EV (α2) +

E |T (α1)| < ∞ by Jensen’s inequality. The three strings of (in)equalities above imply

supa∈[α1,α2] Z(a) = o(
√
n) a.s. These large sample properties of T (a), σ2(a) and Z(a),

together with (S.4), lead to λ(a) = Op(n
−1/2).

Based on the asymptotic order and the fact that λ(a)Yi(a) = Op(n
−1/2)o(

√
n) =

op(1), we apply Taylor’s theorem and get

−2 logR(µ)(a) = 2nλ(a)T (a)− nλ2(a)σ2(a) + op(1). (S.7)

We also expand (S.5) around 0 and get

0 =
1

n

n∑
i=1

Yi(a)
{

1− λ(a)Yi(a) +O(λ2(a)Y 2
i (a))

}
= T (a)− λ(a)σ2(a) + op(n

−1/2),

which implies

λ(a) = σ−2(a)T (a) + op(n
−1/2) (S.8)

and

λ(a)T (a) = λ2(a)σ2(a) + op(n
−1). (S.9)

Substituting (S.9) into (S.7) gives −2 logR(µ)(a) = nλ(a)T (a) + op(1). This and (S.8)

imply

−2 logR(µ)(a) = Ψ̂2(a) + op(1), (S.10)

where Ψ̂(a) is given in Remark 2 of Theorem 2.

As mentioned in the beginning of this Supplement Section, to study the asymptotics

of −2 log fn(R(µ))(·), we consider discretizing (S.10). Since supa∈[α1,α2] |−2 log fn(R(µ)

−Ψ̂2)(a)| ≤ supa∈[α1,α2] | − 2 logR(µ)(a)− Ψ̂2(a)| by definition of fn, we have

−2 log fn(R(µ))(a) = fn(Ψ̂)2(a) + op(1). (S.11)
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The uniform convergence of the first term on the right hand side of (S.11) can only be

established in `∞([α1, α2] \ Iδ), where Iδ can be constructed as
⋃Q
`=1(d` − δ/Q, d`), d`

for ` = 1, . . . , Q <∞ are the (finitely many) discontinuities of µ(·) and σ2(·), and δ can

be any small positive number that is less than the minimal distance between any two

d`’s and between any d` and α1 or α2, divided by 2. The uniform convergence of the

denominator fn(σ2)(a) on the right hand side of (S.11) to σ2(a) is obtained as follows.

First, σ2(a) can be shown to be of bounded variation and right continuous by the right-

continuity of T (a) and the dominated convergence theorem. This implies σ2(a) satisfies

the almost uniform continuity property described in Supplement Section 1.1. Then for

all ε > 0, there exists a δσ > 0 such that for all a, b ∈ [α1, α2], a < b and (a, b] does not

include a discontinuity of magnitude ≥ ε/2, b−a < δσ implies
∣∣σ2(b)− σ2(a)

∣∣ < ε. Then

there exists an N = N(ε, δ) such that for all n > N , un < min{δ/Q, δσ}, where recall

from Supplement Section 1.1 that un is the mesh of Gn. Then for all a ∈ [α1, α2] \ Iδ,
(a, a+ un] does not include any discontinuities. Then the almost uniform continuity of

σ2(a) and un < δσ imply

sup
a∈[α1,α2]\Iδ

∣∣fn(σ2)(a)− σ2(a)
∣∣ < ε.

By this uniform convergence of fn(σ2)(a), the first part of Theorem 1, Slutsky’s Lemma

and the continuous mapping theorem, we have the desired result.

5 Handling data that violate the nonzero variance condi-

tion

In this section we explain situations when violation of the nonzero variance condition

can occur, and utilize existing approaches in the literature to deal with them.

5.1 Adapting Nair’s two-step approach to the simultaneous confidence

bands for the functional means

In constructing the EL and Wald-type EP bands, there can be situations when the

endpoints α1 and α2 do not respect the infa∈[α1,α2] σ
2(a) > 0 condition. One such

example occurs in our application to occupation time, where the marginal variance of

L(a) can shrink to zero as a approaches α2 (see Supplement Section 5.3 below for more

details). Existing bands in the literature (Degras, 2011; Cao et al., 2012; Choi and

Reimherr, 2018) have a similar problem because they use standardized estimators in

forming the simultaneous confidence bands. In this case, one can still construct the

bands, but with some modifications we describe as follows. Note in our simulation

study in Section 3 we show the bands before and after modifications both work well,

for the infa∈[α1,α2] σ
2(a) > 0 and infa∈[α1,α2] σ

2(a) = 0 scenarios, respectively.
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For application to occupation time, to modify the bands to respect the nonzero

variance condition, we adapt the following two-step approach that has been proposed in

Nair (1984) for the equal precision confidence bands of a survival function, where zero

variance occurs when the survival function is 0 or 1. First, construct the prescribed band

up to a certain point r̂ = r̂(z) in terms of z ∈ [0, 1], where r̂ = sup{a : fn(µ̂)(a)/τ >

z}; we use z = 0.05 in our simulation study and data analysis, as it works well in

our experience. Second, use a principled approach as follows to extend the confidence

band beyond r̂: for the upper boundary of the confidence bands beyond the right

endpoint, we use the same upper bound (of the confidence bands) at r̂, according to the

monotonicity of the mean occupation time. As for the lower boundary of the confidence

bands beyond r̂, we use the lower bound of the mean occupation time 0 for the EL band

and lcbI{lcb < 0} for other bands, where lcb is the lower bound of the specific band at

r̂. This lcbI{lcb < 0} is devised to preserve monotonictiy (as best as possible) of the

lower boundary when lcb < 0.

5.2 Adapting Uno et al.’s selection approach to the functional ANOVA

tests

The nonzero variance condition is also needed in certain functional ANOVA tests for

which pointwise test statistics are standardized or of F -type. These include our EL

test and existing Wald-type ANOVA tests such as the maximally-selected F -statistic

of Zhang et al. (2019) and the integrated F -statistic GPF (Zhang and Liang, 2014).

For any of the aformentioned tests, to deal with data that violate the nonzero variance

condition, we can adapt the Uno et al. (2015) approach to automatically choose the test

calibration that gives the smallest p-value among {B(z), z ∈ Z} as follows, where B(z)

is the test constructed up to r̂k(z) = minj=1,...,k sup{a : fn(µ̂j)(a)/τ > z} and Z is a

grid of points in [0, 1] generalizing the choice of z mentioned in the previous subsection.

First, we use the bootstrap method mentioned in our manuscript to estimate the null

distribution of {B(z), z ∈ Z}. Let D denote the resulting 1000 bootstrapped values for

{B(z), z ∈ Z}. Then the p-value p(z) = P{B(z) > b(z)} can be estimated from D,

where b(z) is the value of B(z) based on the observed data. Let ps = minz∈Z p(z). A

small ps should lead to a rejection of H0. Since this p-value is obtained after selection, we

can no longer compare it with the original level of significance; instead, a post-selection

approach is needed. The key is to approximate the null distribution of Ps = min{P (z) :

z ∈ Z}, where P (z) = SB(z)(B(z)) and SB(z)(b) is the survival function of B(z). This

can be done by using D to compute one minus the empirical cumulative distribution

function (cdf) of B(z) at each B(z), leading to an estimate for P (z) and hence Ps. This

allows us to estimate the post-selection p-value P(Ps < ps) of the test accordingly. Note

that this procedure does not require double bootstrap nor a huge Z—we find a very

simple grid Z = {0, 0.01, 0.05} suffices in our simulations and data analysis.
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5.3 Variances of occupation time at extreme values of a

The marginal variance of L(a) near a = 0 is bounded away from 0 because different

subjects spent different time in 0 activity. However, the marginal variance of L(a) can

shrink to zero as a approaches α2, for example when L(a) → 0 a.s. as a → α2. This

may be due to the fact that α2 (e.g., if we set it to the maximal activity level in the

device) is not achievable by the study subjects. By the dominated convergence theorem,

we then have Var{L(a)} → 0 as a→ α2.

6 Bootstrap in Section 2.3

6.1 Proof of Corollary 2

It suffices to show that supa∈[α1,α2]\Iδ

∣∣∣fn(Ŝ − σ)(a)
∣∣∣→ 0 a.s. This, the uniform conver-

gence of fn(σ2)(a) to σ2(a) in the last paragraph of Supplement Section 4, the bootstrap

consistency of fn(U∗n)(a) in Supplement Section 3.1, and a routine extension of the proof

for the conditional Slutsky’s lemma in Cheng (2015) to the case of random elements

of a metric space, imply that [fn(U∗n), fn(Ŝ)]T is bootstrap consistent for [U, σ]T in

{`∞([α1, α2] \ Iδ)}2. The desired result follows by the continuous mapping theorem for

the bootstrap (see, e.g., Kosorok, 2008b, Theorem 10.8).

The first sentence in the previous paragraph is true due to the strong consistency of Ŝ

for σ in `∞([α1, α2]) and the fact that supa∈[α1,α2]

∣∣∣fn(Ŝ − σ)(a)
∣∣∣ ≤ supa∈[α1,α2]

∣∣∣Ŝ(a)− σ
(a)|. The strong consistency of Ŝ for σ is in turn due to Glivenko–Cantelli preserva-

tion (Kosorok, 2008b, Lemma 9.28) and the fact that F is P -Donsker (see Supplement

Section 11).

6.2 Details in implementing bootstrap and computing c∗EL,α and c∗EP,α

A bootstrap sample is obtained by drawing n curves independently with replacement

from the data {fn(T1)(a), . . . , fn(Tn)(a), a ∈ [α1, α2]}. Based on this bootstrap sam-

ple, compute a value of M∗n and a value of supa∈[α1,α2]

∣∣∣fn(Ψ̂∗)(a)
∣∣∣, where recall from

Sections 2.2 and 2.3 that M∗n = supa∈[α1,α2] fn(Ψ̂∗)2(a), Ψ̂∗(a) = U∗n(a)/Ŝ(a), U∗n(a) =
√
n{µ̂∗(a)− µ̂(a)}, µ̂(a) =

∑n
i=1 Ti(a)/n, µ̂∗(a) =

∑n
i=1WniTi(a)/n, Wni is the number

of times that fn(Ti)(a) is redrawn from {fn(T1)(a), . . . , fn(Tn)(a), a ∈ [α1, α2]}, and

Ŝ(a) = [
∑n

i=1{Ti(a)− µ̂(a)}2/n]1/2 is the sample version of σ(a).

Repeat the procedure in the previous paragraph B times to obtain B bootstrapped

values for M∗n and B bootstrapped values for supa∈[α1,α2]

∣∣∣fn(Ψ̂∗)(a)
∣∣∣; our simulation

study (see Section 3) uses B = 1000. Let c∗EL,α and c∗EP,α denote the upper α-quantile

of these B bootstrapped values of M∗n and supa∈[α1,α2]

∣∣∣fn(Ψ̂∗)(a)
∣∣∣, respectively. Then

the desired asymptotic 100(1−α)% EL simultaneous confidence band for µ(·) for essen-

tially all a ∈ [α1, α2] is computed as {(a, µ̃(a)) : −2 log fn(R(µ̃))(a) ≤ c∗EL,α, µ̃ ∈ Dn},
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where Dn is defined back in Section 2.3 as the class of functions of the form in (1).

The asymptotic 100(1− α)% EP simultaneous confidence band for µ(·) is computed as

fn(µ̂)(a)± n−1/2c∗EP,αfn(Ŝ)(a) for essentially all a ∈ [α1, α2].

Regarding performance, the use of the aforementioned bootstrap method is compu-

tationally more efficient than an alternative bootstrap procedure based on calculating

the local EL ratio in each of the bootstrap sample (see, e.g., Owen, 2001, Section 3.3 for

the bootstrap-calibrated EL for a multivariate mean), since the alternative calculation

requires performing optimization for each a ∈ Gn. As for the theoretical performance,

both bootstrap procedures are asymptotically first-order equivalent. A more detailed

comparison could be done based on their higher-order properties (see, e.g., Hall, 1992),

but this is outside the scope of the current paper.

7 The EL confidence band

7.1 Construction and asymptotic consistency

For each δ > 0 defined in Supplement Section 1.1, to obtain an EL-based counterpart

of the Wald-type NS band (see Section 2.2)

{
(a, µ̃(a)) :

√
n |{fn(µ̂)− µ̃} (a)| ≤ c∗NS,α, a ∈ [α1, α2] \ Iδ

}
,

the complete trajectory of µ̃(a) (instead of its discretized version) is needed in the

local EL statistic. Since −2 log fn(R(µ̃)(·) depends on fn(µ̃)(a) rather than µ̃(a), it is

replaced by µ̃(a), leading to

−2 log Ř(µ̃)(a) = 2
n∑
i=1

log[1 + fn(λ̃)(a){fn(Ti)(a)− µ̃(a)}].

Then the EL-based counterpart of the Wald-type NS band is

{
(a, µ̃(a)) : −2 log Ř(µ̃)(a) ≤ c∗EL,α, a ∈ [α1, α2] \ I ′δ

}
, (S.12)

where I ′δ is the Iδ defined at the last paragraph of Supplement Section 4. Note the

band in (S.12) is equivalent to the EL simultaneous confidence band in Section 2.3 by

definition.

We now show that the band in (S.12) has asymptotic confidence level 100(1− α)%.

For simplicity of exposition, the sup notation below represents supremum over a ∈
[α1, α2] \ I ′δ; let Mn,δ = sup{−2 log fn(R(µ))(a)} and M∗n,δ = sup fn(Ψ̂∗)2(a). By the

bootstrap consistency result of Corollary 2, a similar reasoning as in Lemma 23.3 of

van der Vaart (2000) (by replacing (θ̂n − θ)/σ̂n, (θ̂∗n − θ̂n)/σ̂∗n, T and ξ̂n,α there with

Mn,δ, M
∗
n,δ, sup{U2(a)/σ2(a)} and c∗EL,α), and the fact that the limiting random vari-
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able sup{U2(a)/σ2(a)} has a continuous limiting distribution, it suffices to show that

sup−2 log Ř(µ)(a) has the same limiting distribution as Mn,δ. This follows from

−2 log Ř(µ)(a)
d−→U2(a)/σ2(a) (S.13)

in `{[α1, α2] \ I ′δ} as n → ∞ and the continuous mapping theorem. To show (S.13),

first rearrange the terms to see that −2 log Ř(µ)(a) = 2
∑n

i=1 log[1 + fn(λYi)(a) +

fn(λ)(a){fn(µ)(a) − µ(a)}]. We consider discretizing the large sample results in Sup-

plement Section 4: we have fn(λYi)(a) = op(1) due to supa∈[α1,α2] |fn(λYi)(a)| ≤
supa∈[α1,α2] |λYi(a)| by the definition of fn. A similar reasoning will be used in the follow-

ing discretization of the large sample results. Discretizing the result λ(a) = Op(1/
√
n)

in Supplement Section 4, we have fn(λ)(a) = Op(1/
√
n). This and the result in Sup-

plement Section 1.2 (based on the conditions of the second part of Theorem 1) gives

n sup[fn(λ)(a){fn(µ)(a)− µ(a)}] P−→0. Applying Taylor’s theorem, we get

sup
{
−2 log Ř(µ)(a)− 2nfn(λT )(a) + nfn(λ2σ2)(a)

} P−→0. (S.14)

Discretizing (S.9) using a similar reasoning for obtaining fn(λYi)(a) = op(1) above, we

have fn(λT−λ2σ2)(a) = op(n
−1), so that fn(λT )(a) = fn(λ2σ2)(a)+op(n

−1) by linearity

of fn. Substituting this into (S.14) gives sup{−2 log Ř(µ)(a)− nfn(λT )(a)} P−→0. This

and the discretized (S.8) imply

sup
{
−2 log Ř(µ)(a)− fn(Ψ̂)2(a)

}
P−→0.

Then (S.13) follows by the same reasoning as the last paragraph of Supplement Section

4.

Remark. From the above proof, we can see that the conditions of the second part of

Theorem 1 only come into play when we deal with the asymptotics relevant to the

complete trajectory of µ(a). This complete trajectory is needed in constructing the

confidence bands, but not in constructing the asymptotics of the discretized EL statistics

in Sections 2.3 and 2.4. Therefore, besides the nonzero variance conditions, Theorems

2 and 3 only involve the conditions of the first part of Theorem 1 or their k-sample

version.

7.2 Monotonicity of the EL band in a

In this section, we show if the observed processes are monotone in a, as is the case for

L(a), then the lower and upper boundaries of the EL band will respect this monotonicity.

We first illustrate this monotonicity in Figure S.1 below based on a simulation model

for L(a) in Section 3.1, and then provide a proof later. In Figure S.1, we can see

−2 log fn(R(µ̃))(aj) as a function of µ̃(aj) is U-shaped for each of the given aj , j = 1, 2.
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Futhermore, for a1 ≤ a2, the function −2 log fn(R(µ̃))(a1) as a function of µ̃(a2) is

to the right of −2 log fn(R(µ̃))(a2) as a function of µ̃(a2). Hence, a horizontal line

through c∗EL,α will intersect the sample path of −2 log fn(R(µ̃))(a2) earlier than that of

−2 log fn(R(µ̃))(a1). Therefore, the resulting confidence region for µ(a2) is to the left

of that of µ(a1).
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Figure S.1: Simulated −2 log fn(R(µ̃))(a) for some a = a1 (solid) or a2 (dashed) such
that a1 ≤ a2, under the simulation model used to assess the performance of the confi-
dence bands, ν = 2 and n = 50. The dotted horizontal line is at c∗EL,α, the solid red
line segment is the confidence region for µ(a1), and the dashed blue line segment is the
confidence region for µ(a2).

Without loss of generality, suppose the observed process T (a) is non-increasing in a.

We first prove for each a, −2 log fn(R(µ̃))(a) is U-shaped as a function of µ̃(a). Second,

we show for a1 ≤ a2 and b such that µ̃(a) = b over a ∈ [α1, α2],

(i) if b ≤ µ̂(a2), then −2 log fn(R(µ̃))(a1) ≥ −2 log fn(R(µ̃))(a2)

(ii) if b ≥ µ̂(a1), then −2 log fn(R(µ̃))(a1) ≤ −2 log fn(R(µ̃))(a2)

(iii) if µ̂(a2) ≤ b ≤ µ̂(a1), then the magnitude of −2 log fn(R(µ̃))(a1) versus −2 log fn(

R(µ̃))(a2) will be determined by how close b is to µ̂(a2) and µ̂(a1): if b is closer

17



to µ̂(a2), then −2 log fn(R(µ̃))(a1) ≥ −2 log fn(R(µ̃))(a2), and vice versa if b is

closer to µ̂(a1).

This can easily be understood graphically from Figure S.1. Finally, by the argument in

the previous paragraph, we have that the lower bound of the line segment {(a1, µ̃(a1)) :

−2 log fn(R(µ̃))(a1) ≤ c∗EL,α} is no less than that of the line segment {(a2, µ̃(a2)) :

−2 log fn(R(µ̃))(a2) ≤ c∗EL,α}, and the same holds for the upper bounds.

Given a ∈ [α1, α2], to show the sample path of −2 log fn(R(µ̃))(a) is U-shaped

in µ̃(a), it suffices to show −2 logR(µ̃)(ba) is U-shaped in µ̃(ba). Thus, we restrict

attention to a ∈ Gn in studying the shape of −2 logR(µ̃)(a) as follows. First note

that −2 logR(µ̃)(a) = 2
∑n

i=1 log[1 + λ̃(a){Ti(a) − µ̃(a)}] is a function of n + 1 of

the n + 2 variables λ̃(a), Ti(a) and µ̃(a), because one of the variables will be deter-

mined by the estimating equation
∑n

i=1 p̃i(a){Ti(a) − µ̃(a)} = 0, where recall from

Supplement Section 4 that p̃i(a) = [n{1 + λ̃(a)(Ti − µ̃)(a)}]−1. Since the data Ti(a)

changes with a and we have fixed a here, −2 logR(µ̃)(a) can be viewed as a func-

tion of µ̃(a) only. The derivative of −2 logR(µ̃)(a) with respect to µ̃(a) can be shown

to be −2nλ̃(a). Next, to study the sign of the derivative, we study how the sign of

λ̃(a) is affected as µ̃(a) changes. The relationship between λ̃(a) and µ̃(a) can be seen

from the estimating equation
∑n

i=1 p̃i(a){Ti(a)− µ̃(a)} = 0. Rewriting the equation as∑
i:Ti(a)6=µ̃(a) 1/{1/(Ti − µ̃)(a) + λ̃(a)}/n = 0 and investigating the partial derivatives

of its left-hand side, we see that the left-hand side ≡ LHS(µ̃, λ̃, T1, . . . , Tn)(a) is non-

increasing in λ̃(a) and µ̃(a), respectively. When µ̃(a) = µ̂(a), we have λ̃(a) = 0 and

−2 logR(µ̃)(a) = 0. As µ̃(a) decreases from µ̂(a), LHS(µ̃, λ̃, T1, . . . , Tn)(a) increases,

and thus λ̃(a) needs to increase in order to make LHS(µ̃, λ̃, T1, . . . , Tn)(a) decrease back

to 0 (to satisfy the estimating equation). This means for µ̃(a) ≤ µ̂(a), λ̃(a) ≥ 0, leading

to a non-positive derivative of −2 logR(µ̃)(a) with respect to µ̃(a). By a similar rea-

soning, we can show for µ̃(a) ≥ µ̂(a), λ̃(a) ≤ 0, leading to a non-negative derivative of

−2 logR(µ̃)(a) with respect to µ̃(a). Thus, −2 logR(µ̃)(a) is U-shaped in µ̃(a).

Secondly, to show (i)–(iii) in the second paragraph of this Section, by a similar

reasoning as in the previous paragraph, it suffices to restrict attention to a ∈ Gn and

study (i)–(iii) in terms of −2 logR(µ̃)(a). Since b = µ̃(a1) = µ̃(a2), the change from

a1 to a2 results in changes in Ti(a), and λ̃(aj) (j = 1, 2) will be determined by the

estimating equation as mentioned in the previous paragraph, it amounts to study the

shape of −2 logR(µ̃)(a) as a function of Ti(a), i = 1, . . . , n, while holding µ̃(a) fixed at

b. First we derive the (partial) derivative of −2 logR(µ̃)(a)with respect to Ti(a) as

2nλ̃(a)p̃i(a),

i = 1, . . . , n. To study the sign of this derivative, we study how the sign of λ̃(a) is

affected as each Ti(a) changes. We use the fact that LHS(µ̃, λ̃, T1, . . . , Tn)(a) is non-
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increasing in λ̃(a) (by the previous paragraph) and non-decreasing in each Ti(a) because

∂LHS(µ̃, λ̃, T1, . . . , Tn)(a)/∂Ti(a) ≥ 0. As each Ti(a) increases, LHS(µ̃, λ̃, T1, . . . , Tn)(a)

increases, and thus λ̃(a) needs to increase in order to make LHS(µ̃, λ̃, T1, . . . , Tn)(a)

decrease back to 0 (to satisfy the estimating equation). Since −2 logR(µ̃)(a) would be

0 at some point (T1(a), . . . , Tn(a)) = (t1, . . . , tn) such that their sample mean equals

µ̃(a), as each Ti(a) increases from this point, λ̃(a) increases and is non-negative. Thus,

by the partial derivative of −2 logR(µ̃)(a) displayed above, we have that −2 logR(µ̃)(a)

increases. Likewise, as each Ti(a) decreases from this point, λ̃(a) decreases and is non-

positive, so −2 logR(µ̃)(a) increases. These imply that −2 logR(µ̃)(a) as a function of

each Ti(a) is U-shaped as well, with the minimum occurring at (t1, . . . , tn).

Thus, to study (i)–(iii) in terms of −2 logR(µ̃)(a) for a ∈ Gn, we first determine

the point (t1, . . . , tn) where −2 logR(µ̃)(a) as a function of (T1(a), . . . , Tn(a)) hits 0,

and then see which side (T1(a1), . . . , Tn(a1)) and (T1(a2), . . . , Tn(a2)) fall onto the U-

shaped −2 logR(µ̃)(a) curve. Under (i) when b ≤ µ̂(a2), suppose that −2 logR(µ̃)(a)

as a function of (T1(a), . . . , Tn(a)) would be 0 at the set of coordinates (t1, . . . , tn)

such that their sample mean equals b. This set can be chosen to be pointwise no

greater than (T1(a2), . . . , Tn(a2)) by b ≤ µ̂(a2), so that (T1(a2), . . . , Tn(a2)) is on the

right-hand arm of this U-shaped −2 logR(µ̃)(a) curve. By µ̂(a2) ≤ µ̂(a1) and mono-

tonicity of Ti(a) we know (T1(a1), . . . , Tn(a1)) is further away from (t1, . . . , tn) than

(T1(a2), . . . , Tn(a2)). In this case, −2 logR(µ̃)(a1) ≥ −2 logR(µ̃)(a2). Similarly, we

can show under (ii) when b ≥ µ̂(a1), −2 logR(µ̃)(a1) ≤ −2 logR(µ̃)(a2). Furthermore,

under (iii) when µ̂(a2) ≤ b ≤ µ̂(a1), the point (t1, . . . , tn) where −2 logR(µ̃)(a) = 0

can be chosen to be pointwise no less than (T1(a2), . . . , Tn(a2)) and no greater than

(T1(a1), . . . , Tn(a1)). This means (T1(a2), . . . , Tn(a2)) and (T1(a1), . . . , Tn(a1)) will be

on the left-arm and right-arm of the U-shaped −2 logR(µ̃)(a) curve, respectively. As

a result, the magnitude of −2 logR(µ̃)(a1) versus −2 logR(µ̃)(a2) will be determined

by how close (T1(a2), . . . , Tn( a2)) and (T1(a1), . . . , Tn(a1)) are to the point (t1, . . . , tn)

where −2 logR(µ̃)(a) = 0, or equivalently how close b is to µ̂(a2) and µ̂(a1). When the

point (t1, . . . , tn) is closer to (T1(a2), . . . , Tn(a2)) (or equivalent when b is closer to µ̂(a2)),

−2 logR(µ̃)(a1) ≥ −2 logR(µ̃)(a2), and otherwise −2 logR(µ̃)(a1) ≤ −2 logR(µ̃)(a2).

This establishes the desired second claim.

8 Proof of Theorem 3

For simplicity of exposition, we first study the large sample behavior of the fully observed

trajectories of the EL statistic process −2 logRk(·). Then we discretize this large sample

result and study the asymptotics of −2 log fn(Rk)(·) accordingly. But note that, as in

Sections 2.3 and 2.4, the quantities we use in the process of this proof are available to

us only in their discretized forms.
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Clearly the denominator of (3) is
∏k
j=1

∏nj
i=1(1/nj). The constrained optimum in the

numerator of (3) can be found by the Lagrange method and is given by
∏k
j=1

∏nj
i=1 p̂ij(a),

where p̂ij(a) = n−1γ̂−1j [1 + {λ̂j−1(a) − λ̂j(a)}gij(µ̂j,EL)(a)]−1, γ̂j = nj/n (as defined

in Section 2.4), gij(µ̃j)(a) = {Tij(a) − µ̃j(a)}/γ̂j for any given µ̃(a) (i = 1, . . . , nj),

λ̂0(a) ≡ λ̂k(a) ≡ 0, µ̂j,EL(a) and λ̂j(a) satisfy the system of estimating equations∑nj
i=1 p̂ij(a)gij(µ̂j,EL) (a) = 0 and µ̂j+1,EL(a) − µ̂j,EL(a) = 0 for j = 1, . . . , k, and

µ̂k+1,EL(a) ≡ µ̂k,EL(a). This results in

−2 logRk(a) = 2

k∑
j=1

nj∑
i=1

log
[
1 +

{
λ̂j−1(a)− λ̂j(a)

}
gij(µ̂j,EL)(a)

]
. (S.15)

Note that gij(µ̂j,EL)(a) = o(
√
n) a.s., because |gij(µ̂j,EL)(a)| ≤ max1≤i≤nj |gij(µ̂j,EL)(a)|,

which is shown to be o(
√
n) a.s. in Supplement Section 9.

Let ∆̂j(a) = λ̂j−1(a) − λ̂j(a) for j = 1, . . . , k. By the fact that ∆̂j(a) = Op(n
−1/2)

(see Supplement Section 9) and gij(µ̂j,EL)(a) = o(
√
n) a.s., we apply Taylor’s theorem

to (S.15) and get

− 2 logRk(a) = 2
k∑
j=1

{
∆̂j(a)

nj∑
i=1

gij(µ̂j,EL)(a)−
∆̂2
j (a)

2

nj∑
i=1

g2ij(µ̂j,EL)(a)

}
+ op(1)

= 2
k∑
j=1

[
∆̂j(a)

nj∑
i=1

gij(µj)(a)− n∆̂j(a) {µ̂j,EL(a)− µj(a)} −
n∆̂2

j (a)

2
θj(a)

]
+ op(1),

(S.16)

where θj(a) = σ2j (a)/γj , and the last equality follows by (S.27), (S.28) and the fact that

µ̂j,EL(a)−µj(a) = Op(n
−1/2) (see Supplement Section 9). By expanding γ̂j

∑nj
i=1 p̂ij(a)

gij(µ̂j,EL)(a) = 0 around (µ̂j,EL(a), ∆̂j(a)) = (µj(a), 0), we get

0 =
1

n

nj∑
i=1

gij(µj)(a)− ∆̂j(a)

n

nj∑
i=1

g2ij(µj)(a)− {µ̂j,EL(a)− µj(a)}+ op(n
−1/2), (S.17)

j = 1, . . . , k. Multiplying both sides by n∆̂j(a), we have ∆̂j(a)
∑nj

i=1 gij(µj)(a) −
n∆̂j(a){µ̂j,EL(a)− µj(a)} = ∆̂2

j (a)
∑nj

i=1 g
2
ij(µj)(a) + op(1) = n∆̂2

j (a)θj(a) + op(1). This

implies that (S.16) can be written as

k∑
j=1

∆̂2
j (a)nθj(a) + op(1). (S.18)

On the other hand, by µ̂j,EL(a) = µ̂j+1,EL(a) and µj(a) = µj+1(a) for j = 1, . . . , k −
1, (S.17) leads to ∆̂j(a)

∑nj
i=1 g

2
ij(µj)(a)/n − ∆̂j+1

∑nj+1

i=1 g2i,j+1(µj+1)(a)/n =
∑nj

i=1 gij

(µj)(a)/n−
∑nj+1

i=1 gi,j+1(µj+1)(a)/n+ op(n
−1/2). This can be expressed in matrix form

20



as

−Θ(a)λ̂(a) = ψ̂(a) + op(n
−1/2), (S.19)

where ψ̂(a) ≡ [ḡ1 − ḡ2, . . . , ḡk−1 − ḡk]T , λ̂(a) ≡ [λ̂1(a), . . . , λ̂k−1(a)]T , Θ(a) is the (k −
1)× (k − 1) non-singular tridiagonal matrix

θ̂1 + θ̂2 −θ̂2 0 · · · 0

−θ̂2 θ̂2 + θ̂3 −θ̂3 0 · · · 0

0 −θ̂3 θ̂3 + θ̂4 −θ̂4 0 · · · 0

. . .
. . .

. . .
. . .

. . .

... 0

0 · · · −θ̂k−2 θ̂k−2 + θ̂k−1 −θ̂k−1
0 · · · 0 −θ̂k−1 θ̂k−1 + θ̂k



, (S.20)

ḡj = ḡj(µj)(a), θ̂j = θ̂j(µj)(a), and ḡj(µ̃j)(a) = n−1
∑nj

i=1 gij(µ̃j)(a) and θ̂j(µ̃j)(a) =

n−1
∑nj

i=1 g
2
ij(µ̃j)(a) for any given µ̃j(a). (Note in the definition of ψ̂(a) and Θ(a) above

we surppress the dependence on µj(a) and a.) In general a recursive algorithm is used

for inverting tridiagonal matrices (Usmani, 1994), but we can take advantage of the

more specific structure of Θ(a) and obtain an explicit expression in a similar fashion

as in the supplement of Chang and McKeague (2019). The latter paper analyzes a

matrix having the same structure as Θ(a), except with different θ̂j (derived in the

setting of a nonparametric k-sample testing problem with right-censored survival data).

Multiplying both sides of λ̂(a) = −Θ−1(a){ψ̂(a) + op(n
−1/2)} by −Λ, where

Λ ≡



1 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 0 · · · 0

. . .
. . .

. . .
. . .

... 0

0 · · · 0 −1 1

0 · · · 0 0 −1


k×(k−1)

,

we obtain

∆̂(a) = ΛΘ−1(a)
{

ΛTA(a) + op(n
−1/2)

}
, (S.21)

where ∆̂(a) = −Λλ̂(a) and A(a) = [ḡ1(µ1(a)), . . . , ḡk(µk(a))]T . By inserting the ex-
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plicit expression for Θ−1(a) along the lines of Supplement Section S.1.2 of Chang and

McKeague (2019), we obtain

[ΛΘ−1(a)ΛT ]ij(a) =


1

θ̂i(µ)(a)φ̂(a)

∑
l 6=i

∏
g∈El

θ̂g(µ)(a), i = j,

− 1

θ̂i(µ)(a)φ̂(a)

∏
g∈Ej

θ̂g(µ)(a), i 6= j,
(S.22)

where Ej = {1, . . . , k} \ {j} and φ̂(a) =
∑k

l=1

∏
g∈El θ̂g(µ)(a). Inserting (S.22) into

(S.21), algebraic manipulation of the j-th element in the leading term of (S.18) then

leads to

∆̂2
j (a)nθj(a) =

Ψ̂j(a)− 1

φ(a)

k∑
l=1

∏
g∈El

θg(a)Ψ̂l(a)

√
θl(a)√
θj(a)


2

+ op(1) (S.23)

for j = 1, . . . , k, where φ(a) =
∑k

l=1

∏
g∈El θg(a). The leading term above can be ex-

pressed in terms of the weights wj(a) and the Ψ̂j(a) processes as wj(a){Ψ̂j(a)/
√
wj(a)−

Ψ̌(a)}2. This, (S.16) and (S.18) imply −2 logRk(a) is asymptotically equivalent to the

weighted sum of squares between blocks ŜSB(a).

We now discretize the above result to study the asymptotics of −2 log fn(Rk)(·), as

mentioned in the beginning of this Supplement Section. Since supa∈[α1,α2] |fn(−2 logRk−
ŜSB)(a)| ≤ supa∈[α1,α2] | − 2 logRk(a)− ŜSB(a)| by definition of fn, we have

−2 log fn(Rk)(a) = fn(ŜSB)(a) + op(1).

On the other hand, the uniform convergence of Ψ̂j(a) to Ψj(a) as n→∞ can be obtained

by the uniform convergence of ḡj(µj)(a) obtained in Supplement Section 9. Application

of the continuous mapping theorem then leads to ŜSB(a)
d−→SSB(a) in `∞([α1, α2]) as

n→∞.

9 Asymptotic Orders of ∆̂j(a)

If ∆̂j(a) = 0 for all j = 1, . . . , k, then they are triviallyOp(n
−1/2), and µ̂j,EL(a)−µj(a) =

ḡj(µj)(a) = Op(n
−1/2), where the second equality holds by adding the subscript j to

the
√
n-consistency of µ̂(a) given in Supplement Section 11. On the complementary

event, let ηj(a) be such that ∆̂j(a) = ηj(a) max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣, j = 1, . . . , k. Denote

∆̂j(a)gij(µ̂j,EL)(a) by ζij(a). Substituting 1/{1 + ζij(a)} = 1− ζij(a)/{1 + ζij(a)} into
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ηj(a)γ̂j
∑nj

i=1 p̂ij(a)gij(µ̂j,EL)(a) = 0, we get

0 =
ηj(a)

n

nj∑
i=1

gij(µ̂j,EL)(a)− ηj(a)∆̂j(a)

n

nj∑
i=1

g2ij(µ̂j,EL)(a)

1 + ζij(a)
(S.24)

=
ηj(a)

n

nj∑
i=1

gij(µ̂j,EL)(a)−
η2j (a) max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣

n

nj∑
i=1

g2ij(µ̂j,EL)(a)

1 + ζij(a)
. (S.25)

Note that 1 + ζij(a) > 0 by p̂ij(a) > 0 for all i, j. Thus we can obtain the following

(in)equalities:

η2j (a) max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣

n

nj∑
i=1

g2ij(µ̂j,EL)(a) ≤
η2j (a) max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣

n

nj∑
i=1

g2ij(µ̂j,EL)(a)

1 + ζij(a)
×

{
1 + max

1≤i≤nj
ζij(a)

}
≤ ηj(a)

n

nj∑
i=1

gij(µ̂j,EL)(a)

{
1 + max

1≤l≤k

∣∣∣∆̂l(a)
∣∣∣ max
1≤i≤nj

|gij(µ̂j,EL)(a)|
}
,

where the last equality follows from (S.25). This can be written as

max
1≤l≤k

∣∣∣∆̂l(a)
∣∣∣ η2j (a)θ̂j(µ̂j,EL)(a) ≤ ηj(a)ḡj(µ̂j,EL)(a)

{
1 + max

1≤l≤k

∣∣∣∆̂l(a)
∣∣∣Zj(µ̂j,EL)(a)

}
,

(S.26)

where Zj(µ̂j,EL)(a) = max1≤i≤nj |gij(µ̂j,EL)(a)|. By adding the subscript j in the proof

that leads to (S.6) and the
√
n-consistency of µ̂(a) given in Supplement Section 11, we

can show the uniform convergence of θ̂j(µj)(a) and ḡj(µj)(a) as n→∞, leading to

θ̂j(µ̂j,EL)(a) = θj(a) + {ḡj(µj)(a) + µj(a)− µ̂j,EL(a)}2 /γ̂j + op(1) (S.27)

and

ḡj(µ̂j,EL)(a) = µj(a)− µ̂j,EL(a) +Op(n
−1/2). (S.28)

In (S.27), the fact that {ḡj(µj)(a) + µj(a)− µ̂j,EL(a)}2 ≥ 0 means θ̂j(µ̂j,EL)(a) ≥
infa∈[α1,α2] θj(a) + op(1). As for Zj(µ̂j,EL)(a), first note that supa∈[α1,α2] Zj(µ̂j,EL)(a) ≤
supa∈[α1,α2] max1≤i≤nj |gij(µj)(a)|+supa∈[α1,α2] |µj(a)| /γ̂j+supa∈[α1,α2] |µ̂j,EL(a)| /γ̂j by

triangle inquality. Second, supa∈[α1,α2] |µ̂j,EL(a)| ≤ supa∈[α1,α2] max1≤i≤nj |Tij(a)| ≤
max1≤i≤nj{Vij(α2) + |Tij(α1)|}, where Vij(a) is the total variation of Tij(·) over [α1, a].

Using a similar reasoning as in the proof that leads to Z(a) = o(
√
n) a.s. in Supplement

Section 4, we have that max1≤i≤nj |gij(µj)(a)| = o(
√
n) a.s., supa∈[α1,α2] |µj(a)| < ∞,

and |µ̂j,EL(a)| = o(
√
n) a.s. Thus, Zj(µ̂j,EL)(a) = o(

√
n) a.s. From these results and
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(S.26), we have

max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣ η2j (a)θ̂j(µ̂j,EL)(a)

1 + max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣max1≤l≤k Zl(µ̂l,EL)(a)

≤ ηj(a) {µj(a)− µ̂j,EL(a)}+Op(n
−1/2),

(S.29)

j = 1, . . . , k. By adding up (S.29) for j = 1, . . . , k and the fact that
∑k

j=1 ∆̂j(a) = 0

and µj(a)− µ̂j,EL(a) = µj+1(a)− µ̂j+1,EL(a) for j = 1, . . . , k − 1, we have

max
1≤l≤k

∣∣∣∆̂l(a)
∣∣∣ k∑
j=1

η2j (a)θ̂j(µ̂j,EL)(a)

1 + max1≤l≤k

∣∣∣∆̂l(a)
∣∣∣max1≤l≤k Zl(µ̂l,EL)(a)

≤ Op(n−1/2). (S.30)

This, Zj(µ̂j,EL)(a) = o(
√
n) a.s.,

∑k
j=1 η

2
j (a) > 0, θ̂j(µ̂j,EL)(a) ≥ infa∈[α1,α2] θj(a) +

op(1) (shown above), and the assumption that infa∈[α1,α2] σ
2
j (a) > 0 imply max1≤l≤k

∣∣∣∆̂l

(a)| = Op(n
−1/2). These imply that the l.h.s. of (S.29) is Op(n

−1/2) for all j. By the fact

that
∑k

j=1 ∆̂j(a) = 0, for a fixed  there exists ′ 6=  such that ∆̂(a) and ∆̂′(a) have

different signs. Without loss of generality suppose ∆̂(a) > 0, ∆̂′(a) < 0. Then (S.29)

for the -th and ′-th samples imply that both µ̂,EL(a)−µ(a) and µ(a)− µ̂,EL(a) are

bounded above by Op(n
−1/2) terms, using the fact that µj(a) − µ̂j,EL(a) = µj+1(a) −

µ̂j+1,EL(a) for j = 1, . . . , k − 1. And thus µ̂,EL(a)− µ(a) = Op(n
−1/2).

10 Bootstrap in Section 2.4

A bootstrap sample is obtained by drawing nj curves independently with replacement

from the j-th sample {fn(T1j)(a), . . . , fn(Tnjj)(a), a ∈ [α1, α2]}, for j = 1, . . . , k. Based

on this bootstrap sample, compute a value of K∗n, where recall from Sections 2.3 and

2.4 that K∗n = supa∈[α1,α2] fn(ŜSB
∗
)(a),

ŜSB
∗
(a) =

k∑
j=1

ŵj(a)

{
Ψ̂∗j (a)√
ŵj(a)

− Ψ̌∗(a)

}2

,

ŵj(a) ∝ γ̂j/Ŝ2
j (a) are normalized to sum to 1 across the groups, Ψ̂∗j (a) = U∗nj(a)/Ŝj(a),

U∗nj(a) =
√
nj{µ̂∗j (a) − µ̂j(a)}, µ̂j(a) =

∑nj
i=1 Tij(a)/nj , µ̂

∗
j (a) =

∑nj
i=1WnijTij(a)/nj ,

Wnij is the number of times that fn(Tij)(a) is redrawn from {fn(T1j)(a), . . . , fn(Tnjj)(a),

a ∈ [α1, α2]}, Ŝj(a) = [
∑nj

i=1{Tij(a)− µ̂j(a)}2/nj ]1/2 is the sample version of σj(a), and

Ψ̌∗(a) =
∑k

j=1

√
ŵj(a)Ψ̂∗j (a).

Repeat the procedure in the previous paragraph B times to obtain B bootstrapped

values for K∗n; our simulation study (see Section 3) uses B = 1000. Let c∗K,α denote

the upper α-quantile of these B bootstrapped values of K∗n. To calibrate the test,

we compare c∗K,α with our test statistic Kn based on the original data. We reject H0

24



if Kn > c∗K,α. As for calibrating the Wald-type test Kn,Wald, due to the asymptotic

equivalence of Kn,Wald and Kn, again we reject H0 if Kn,Wald > c∗K,α.

Similar to the point we made in Supplement Section 6.2, the use of the aforemen-

tioned bootstrap method is computationally more efficient than an alternative bootstrap

procedure based on calculating the local EL ratio in each of the bootstrap sample. As

for the theoretical performance, again both bootstrap procedures are asymptotically

first-order equivalent.

11 Results based on Fully Observed Trajectories

Here we provide the results throughout the paper based on fully observed trajectories,

for comparison purposes.

Theorem S.1. Suppose the sample path of T (a) is of bounded variation, and ET 2(a)

is bounded over a ∈ [α1, α2]. Then

√
n {µ̂(a)− µ(a)} d−→U(a)

in `∞([α1, α2]) as n→∞.

Remark. Comparing the conditions of Theorem 1 with those in Theorem S.1, we see

that additional assumptions of right-continuity, finiteness in the number of discontinu-

ities, and boundedness of D+(µ, β)(a) and D−(µ, β)(a) are needed to take the domain

discretization into account. These assumptions are key for the discretized observations

to approximate the full trajectories. Note that the right-continuity assumption can be

replaced by left-continuity, with ba in the definition of fn(g)(a) changing to the closest

point on Gn to the left of a, and limits changing to left-hand ones instead in defining

the β-Dini derivatives.

Proof. It suffices to show the class of evaluation functions F is P -Donsker, where F is

defined in Supplement Section 3.1. We start with decomposing this class. Each g ∈ B
satisfies g = v(g)− d(g), where recall that B, v(g) and d(g) are defined in Supplement

Section 1.1. Further, for e(g) = v(g) or d(g), let r(e(g)) = s(e(g)) and `(e(g)) =

e(g) − s(e(g)), where s(e(g))(a) is the sum of left discontinuities of e(g) up to a ∈
[α1, α2]. It can be shown that r(e(g))(a) and `(e(g))(a) is non-decreasing right- and left-

continiuous in a, respectively. Let the classes Vr = {r ◦ v : B 7→ R, a ∈ [α1, α2]}, V` =

{` ◦ v : B 7→ R, a ∈ [α1, α2]}, Dr = {r ◦ d : B 7→ R, a ∈ [α1, α2]}, and D` = {` ◦ d : B
7→ R, a ∈ [α1, α2]}. Then we can see that F = Vr + V` −Dr −D`.

Now we show that ‖P‖G < ∞ for G = Vr,V`,Dr or D` to enable an application

of Donsker preservation in the next paragraph (see, e.g., van der Vaart and Wellner,
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1996, Theorem 2.10.6), where ‖P‖G = sup{|Pg| : g ∈ G}. ‖P‖Vr , ‖P‖Dr < ∞ because

E{r(V )(a)} and E{r(D)(a)} are bounded by being cadlag on [α1, α2]. Next we have

‖P‖V` < ∞ because 0 ≤ `(V )(a) ≤ V (a) a.s. and supa∈[α1,α2]EV (a) ≤ EV (α2) < ∞.

Then by triangle inequality we have ‖P‖D` <∞.

We can show that Vr and Dr are P -Donsker, by the proof for establishing bracketing

entropy for right-continuous monotone stochastic processes (see, e.g., van der Vaart and

Wellner, 1996, Example 2.11.16). Modifying the proof by including the right endpoint

instead of the left in forming the brackets, it can be shown that V` and D` are P -

Donsker. Therefore, by Donsker preservation (see, e.g., van der Vaart and Wellner,

1996, Theorem 2.10.6) we have the desired result.

Corollary S.1. Under the conditions of Theorem S.1, U∗n converges weakly to U as

n→∞, given T1, T2, . . ., in probability.

Proof. To show bootstrap consistency of U∗n(a), we first write it as
∑n

i=1(Wni−1){Ti(a)−
µ(a)}/

√
n. The bootstrap consistency of U∗n(a) (in `∞([α1, α2])) holds due to the boot-

strap central limit theorem (see, e.g., Kosorok, 2008b, Theorem 2.6) and the fact that

F is P -Donsker.

Theorem S.2. Suppose the conditions of Theorem S.1 hold. In addition, suppose

infa∈[α1,α2] σ
2(a) > 0. Then we have −2 logR(µ)(a)

d−→U2(a)/σ2(a) in `[α1, α2] as

n→∞, where the process U(a) is defined in Section 2.2.

Remark. This result is a stochastic process version of the univariate Wilks type theorem

of Owen (2001), page 16.

Proof. We can use the same proof in the second paragraph through (S.10) in Supplement

Section 4. Then by the
√
n-consistency of µ̂(a) given in Theorem S.1 and the continuous

mappting theorem, we have the desired result.

Corollary S.2. Under the conditions of Theorem S.2, Ψ̂∗2(a) converges weakly to

U2(a)/σ2(a) in `∞([α1, α2]) as n→∞, given T1, T2, . . ., in probability.

Proof. To prove Corollary S.2, we use the bootstrap consistency of U∗n shown in Corol-

lary S.1 and the strong consistency of Ŝ shown in Supplement Section 6.1. Then by a

routine extension of the proof for the conditional Slutsky’s lemma in Cheng (2015) to

the case of random elements of a metric space, we have [U∗n, Ŝ]T is bootstrap consistent
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for [U, σ]T in {`∞([α1, α2])}2. The desired result follows by the continuous mapping

theorem for the bootstrap (see, e.g., Kosorok, 2008b, Theorem 10.8).

Theorem S.3. Suppose the conditions of Theorem S.2 hold for each group indexed by

j = 1, . . . , k. Then, under H0, the fully-observed version Kn,full of Kn satisfies

Kn,full
d−→ sup

a∈[α1,α2]
SSB(a)

as n→∞.

Proof. We can use the same proof in the second paragraph through the second to the

last paragraph in Supplement Section 8. Then by the uniform convergence of ḡj(µj)(a)

obtained in Supplement Section 9 and the continuous mapping theorem, we have the

desired result.

12 Derivation and illustration of E{L(a)} in Section 3.1

It suffices to compute L(a) based on X(t) having π(t) = t. For clarity, we first consider

X(t) without domain discretization. This leads to L(a) = max
{

1−max
(
εc4a/c1, U

)
, 0
}

,

where ca is the closest point in {0}∪N to the right of a and accounts for the floor function

in the definition of X(t), and ε ∼ Log-normal(0, ν2L) + 10−6 here is defined in Section

3.1 and different from ε used in the previous sections in this Supplement. Denote the

cdf and density of εc4a/c1 as QL and qL, resepctively. Letting c1 = 1010, c2 = 10−6 and

A = max
(
εc4a/c1, U

)
, the cdf and density of A can be computed as

P
(
εc4a/c1 ≤ x

)
P (U ≤ x) = QL(x) (xI {0 < x < 1}+ I {x ≥ 1})

and

qL(x) (xI {0 < x < 1}+ I {x ≥ 1}) +QL(x)I {0 < x < 1} ,

respectively, where QL(x) = Φ
[
{lnh(x, a)− log

(
c4a/c1

)
}/νL

]
I{h(x, a) > 0}, qL(x) =

exp
[
−
{

lnh(x, a)− log
(
c4a/c1

)}2
/(2ν2L)

]
/{h(x, a)νL

√
2π}I{h(x, a) > 0}, and h(x, a) =

x− c2c4a/c1. Thus, we can write E{L(a)} as QL(1)−
∫ 1
0 A

2qL(A)dA−
∫ 1
0 AQL(A) dA.

Since ∫ 1

0
AQL(A)dA =

∫ 1

0
A

∫ A

0
qL(y)dydA =

1

2
QL(1)−

∫ 1

0

y2

2
qL(y)dy,
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where the last equality follows from Fubini’s theorem, we have

E{L(a)} =
1

2
QL(τ)− 1

2

∫ 1

0
A2qL(A)dA.

Computing E{L(a)} amounts to deriving a more explicit expression for the last term

in the above display:∫ 1

0
A2qL(A)dA =

∫ 1

c2c4a/c1

x2
1

h(x, a)νL
√

2π
exp

{
− (lnh(x, a)− µa)2 /(2ν2L)

}
dx

= exp
(
2µa + 2ν2L

)
Φ

{
log
(
1− c2c4a/c1

)
− µa

νL
− 2νL

}
+ 2c2c

4
a/c1 exp

(
µa + ν2L/2

)
×Φ

{
log
(
1− c2c4a/c1

)
− µa

νL
− νL

}
+
(
c2c

4
a/c1

)2
Φ

{
log
(
1− c2c4a/c1

)
− µa

νL

}
,

where µa = log(c4a/c1) and the last equality follows by a change of variables and com-

pleting the square.

Taking the more complicated scenario of domain discretization of X(t) into ac-

count, recall from Section 3.1 that Hn is a finite grid of points t ∈ [0, 1) at which

X(t) is observed; by convention, we add ∞ as an extra point. Then we have L(a) =

max
{

1−max
(
cHa , U

H
)
, 0
}

, where cHa and UH is the smallest point in Hn that is

no less than εc4a/c1 and U , respectively. Note that cHa and UH are discrete random

variables taking values in Hn. Here we illustrate how to compute their distributions

numerically. We use the fact that for each t ∈ Hn, cHa ≥ t if and only if εc4a/c1 > t−,

where t− is the largest element in Hn that is less than t and 0− is defined as 0; by a

similar reasoning, we have UH ≥ t if and only if U > t−. Therefore, the quantities

P
(
cHa ≥ t

)
= P

(
εc4a/c1 > t−

)
= 1 − QL(t−) and P

(
UH ≥ t

)
= P (U > t−) = 1 − t−

can be computed for each t ∈ Hn. Similarly, P
(
cHa > t

)
= P

(
εc4a/c1 ≥ t+

)
and

P
(
UH > t

)
= P (U ≥ t+) can be computed for each t ∈ Hn, where t+ is the small-

est element in Hn that is greater than t and ∞+ is defined as ∞. Subtracting from 1

the four quantities computed above, we get P
(
cHa < t

)
, P

(
cHa ≤ t

)
, P

(
UH < t

)
, and

P
(
UH ≤ t

)
. Letting AH = max

(
cHa , U

H
)
, we get P (AH ≤ t) = P

(
cHa ≤ t

)
P
(
UH ≤ t

)
and similarly for the < t version. This leads to P (AH = t) = P (AH ≤ t)−P (AH < t),

so that E{L(a)} is readily obtained by∑
t∈Hn

max{1− t, 0}P (AH = t) .

The following Figure S.2 shows (part of) a simulated sample path of X along with

E{L(a)} for νL = 2.
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Figure S.2: A simulated sample path of X(·) (left) up to t = 0.1, along with the mean
occupation time E{L(a)} (right) under the second simulation example in Section 3.1
used to assess the performance of the confidence bands, νL = 2.

13 Additional numerical details and results

13.1 Rationale for covariance in the first paragraph of Section 3.1

The non-smooth covariance function

Cov{J(a), J(b)} = (0.6 + νT )I{a < 0.25, a = b}+ 0.6I{a ≥ 0.25, a = b}+

1.5I{a, b < 0.25, a 6= b}+ 0.5I{a or b ≥ 0.25, a 6= b}

is the sum of an exchangeable part (with variances 0.6 and covariances 0.5) and a part

having a jump at a = 0.25: νT I{a < 0.25, a = b} + I{a, b < 0.25, a 6= b} for some

νT > 1.

13.2 Simulating U(a) directly using estimate of Cov{T (a), T (b)}

In calibrating our EL procedures, instead of bootstrap, one can simulate an estimated

verison of U(a) based on repeated generations of Gaussian process over the grid Gn

with the covariance function of the process Cov{T (a), T (b)} estimated by the sample

covariance. Here we compare the performance of the EL simultaneous confidence band

using this method with the one using bootstrap (the results of which have been shown

in Section 3.1), based on the first simulation example with νT = 10 in Section 3.1.

For one dataset with n = 100 with 1000 bootstrap samples and 1000 replications of

the Gaussian process, it takes about 45.78 and 47.52 seconds to construct the two EL

bands, respectively, on a server with Intel Xeon CPU E5-2620 v4 @ 2.10 GHz 2.10

GHz and 384 GB RAM. The U(a) simulation approach, therefore, has a slightly longer

computation time than the bootstrap approach.

The empirical coverage rates, average widths and range-violation of the EL bands
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Table S.1: Simulation study for 95% simultaneous confidence bands: empirical coverage
(percentage), average width (rounded to four decimal places, in parenthesis) and range-
violation rate (percentage, in square brackets); 1000 Monte Carlo replications, 1000
bootstrap samples and 1000 replications of Gaussian process, jump parameter νT = 10,
n = 100, 200.

νT = 10
Calibration methods n = 100 n = 200

94.5 94.8
(0.4735) (0.3535)Bootstrap

[0] [0]
94.5 94.9

(0.4746) (0.3532)U(a) simulation
[0] [0]

are given in Table S.1. The empirical coverage rates of the two calibration methods are

similar, both close to the nominal 95% level. They are both range-repecting. Compared

with bootstrap, the band based on simulating the limiting U(a) is wider in n = 100 and

slightly shorter in n = 200.

13.3 Measurement error

We first consider a measurement error version of our general framework, and then spe-

cialize to the occupation time setting. The following measurement error model is just to

illustrate that as long as the mean of the observed (measurement-error-contaminated)

process remains the same as the mean of the measurement-error-free process, our meth-

ods continue to work. We utilize a multiplicative measurement error model to account

for non-negative sample paths that appeared in our application to occupation time, in

contrast to additive measurement errors typically employed in the functional data anal-

ysis literature (Wang et al., 2016). The observed process {T o(a), a ∈ [r1, r2]} is given

by T o = fn(T )fn(ε), where ε = {ε(a)} is a right-continuous error process of bounded

variation, E{ε(a)|T} = 1 and Eε2(a) < ∞ for all a ∈ [α1, α2]. When ε ≡ 1 a.s., the

model reduces to the case without measurement error. More constraints can be added

to ε according to the desired features for T o, as shown in the next paragraph. The

sample mean and its bootstrap based on observation of T o has the same form of limit

process as without measurement error (Theorem 1 and Corollary 1), except that the

covariance function now becomes Cov{(Tε)(a), (Tε)(b)}. The same result will continue

to hold for other (perhaps more sophisticated) measurement error models, as long as the

mean of the observed process E(T o) is the same as the target functional mean E(T ).

For the above reasons, the results in Section 2 of the main text continue to hold for

their measurement-error-contaminated counterparts.

Now we consider a simulation example in the occupation time setting which explicitly
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specifies measurement error. We generated the measurement-error-free occupation time

L(a) the same way as the second simulation example in Section 3.1. The observed

process {Lo(a), a ∈ [r1, r2]} is given by Lo = fn(L)fn(ε), where ε = {ε(a)} is a right-

continuous error process of bounded variation, E{ε(a)|L} = 1 a.s. and Eε2(a) < ∞
for all a ∈ [r1, r2]. Note that supa∈[α1,α2] L(a) = L(0) < τ a.s. because L(0) = τ

represents the impossible case that a subject always has activity. When ε = 1 a.s., the

model reduces to the case without measurement error. As mentioned in the previous

paragraph, more constraints are needed according to the desired features for Lo: to

make sure Lo ∈ [0, τ ], for a ∈ Gn, we need 0 ≤ ε(a) ≤ τ/L(a) when 0 < L(a) < τ ,

and to ensure that Lo is non-increasing, for a, b ∈ Gn, we need ε(b)/ε(a) ≤ L(a)/L(b)

for a < b. To satisfy these conditions, conditionally on L, for each a ∈ Gn we generate

independent ε(a) from Uniform(C1/Y1, Y2/C2), where

Y1 = min
(a,b):a,b∈Gn,a<b,L(a)>L(b),L(b)6=0

√
L(a)/L(b)

+δLI[{(a, b) : a, b ∈ Gn, a < b, L(a) > L(b), L(b) 6= 0} = ∅],

δL > 0, Y2 = min(Y1, Y3), Y3 = mina∈Gn{τ/L(a)}, C1 = (1 − c)Y1 + cC3 for some

c ∈ [0, 1], C2 = (Y1Y2)/(2Y1 − C1), C3 = max{2Y1 − Y1Y2, 1}, and the minimum in

the definition of Y1 is set to 1 when there are no a, b ∈ Gn such that a < b, L(a) >

L(b), L(b) 6= 0. The magnitude of measurement error is controlled by c and δL, with

larger values indicating a larger measurement error; c, δL = 0 corresponds to no mea-

surement error. In the first dataset simulated from νL = 1.5, δL = 7 and c = 1 results

in supa∈[α1,α2] Var{ε(a)|L} = 0.019, which is 20% of the maximal variance of L(a),

whereas δL = 7 and c = 0.5 results in supa∈[α1,α2] Var{ε(a)|L} = 0.005, which is 5% of

that maximal variance.

Empirical coverage rates of E{L(a)}, average widths, range-violation and mono-

tonicity preservation of the various bands are given in Table S.2. We see similar results

as those produced by the measurement-error-free counterparts in Table 1 (also provided

on the right-side of Table S.2). This suggests our method outperforms the competing

methods under varying degrees of measurement error.

13.4 Controlling the functional means and variances used in Section

3.2

In this subsection, we utilize the subscript j in the notation to denote the j-th group.

Let Σj be the beta random variable Beta(ιj , ωj) independent of Lj(a), j = 1, . . . , k.

Then the functional mean and variance for the j-th group is

E {Lj(a)Σj} = E [ΣjE {Lj(a)|Σj}] = E {Lj(a)} ιj/ωj
1 + ιj/ωj

(S.31)
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Table S.2: Simulation study assessing the effect of measurement error contamination
on the 95% simultaneous confidence bands: empirical coverage (percentage), average
width (in parenthesis), range-violation rate (percentage, in square brackets) and average
number of confidence band boundaries that satisfy monotonicity (rounded to two deci-
mal places, in curly brackets); 1000 Monte Carlo replications, 1000 bootstrap samples,
n = 100, log-normal scale parameter νL = 1.5, 2, measurement error parameters δL = 7,
c = 0.5 and 1.

Error-contaminated Error-free

tests νL = 1.5 νL = 2 νL = 1.5 νL = 2
c = 0.5 c = 1 c = 0.5 c = 1

94.1 94.0 94.3 94.4 93.9 94.3
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

[0] [0] [0] [0] [0] [0]
EL

{2} {2} {2} {2} {2} {2}
91.4 91.2 92.1 92.2 91.7 92.2

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
[0] [0] [0] [0] [0] [0]

EP

{2} {2} {2} {2} {2} {2}
93.8 93.6 93.7 93.7 93.9 93.6

(0.14) (0.14) (0.14) (0.14) (0.14) (0.14)
[100] [100] [100] [100] [100] [100]

NS

{2} {2} {2} {2} {2} {2}
90.7 90.7 90.9 90.9 90.6 90.8

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
[0.4] [0.4] [2] [2] [0.4] [2.2]

MFD

{0.19} {0.19} {1.25} {1.25} {0.19} {1.24}
98.5 98.6 99.0 99.0 98.6 99.0

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
[0] [0] [0.1] [0.1] [0] [0.1]

MFDbs

{2} {2} {2} {2} {2} {2}
89.0 89.0 88.5 88.4 89.1 88.4

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
[0] [0] [0] [0] [0] [0]

Cao1

{2} {2} {2} {2} {2} {2}
90.1 89.8 89.3 89.4 89.7 89.0

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
[0] [0] [0] [0.1] [0] [0]

Cao2

{2} {2} {2} {2} {2} {2}
75.0 74.9 74.2 74.0 74.9 74.4

(0.16) (0.16) (0.16) (0.16) (0.16) (0.16)
[100] [100] [100] [100] [100] [100]

Geo

{0} {0} {0} {0} {0} {0}
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and

Var {Lj(a)Σj} = Var {Lj(a)}

{
ιj

ω2
j (ιj/ωj + 1)2 (ιj/ωj + 1 + 1/ωj)

+

(
ιj/ωj

1 + ιj/ωj

)2
}

+ [E {Lj(a)}]2 ιj

ω2
j (ιj/ωj + 1)2 (ιj/ωj + 1 + 1/ωj)

, (S.32)

respectively, where the equality in (S.32) is due to the law of total variance. From

these equations, we can see that both the functional means and variances contain mo-

ments of Lj(a) that depend on parameters of the underlying Ornstein–Uhlenbeck pro-

cesses, where the dependence has no closed form expressions. However, we can control

E {Lj(a)Σj} and Var {Lj(a)Σj} through different parameters, using ιj/ωj (see (S.31))

and (ιj , ωj) (see (S.32)), respectively. For example, to keep E {Lj(a)Σj} the same across

the groups, we need to ensure the parameters of the underlying Ornstein–Uhlenbeck pro-

cesses and ιj/ωj are the same for all j = 1, . . . , k. While doing that, by (S.32), we can

still change either ιj or ωj so that Var {Lj(a)Σj} are different for different j.

13.5 Raw activity curves for accelerometery data

A graphical comparison on the basis of sample means for the (unregistered) raw activ-

ity data is provided in Figure S.3. For clarity, different days of data are displayed in

separate panels, for four consecutive days. A comparison of the sample means (groups

1:3) suggests higher mean raw activity in the younger group of veterans, which is con-

sistent with the results given in Table 3. However, the data are extremely noisy, so

functional smoothing and curve-registration techniques would be needed to provide an

effective bias-variance tradeoff and to validate a functional ANOVA testing approach

in terms of a direct analysis of the raw activity data. In contrast, the corresponding

mean occupation time curves in Figure S.4 are smooth apart from barely visible jump

discontinuities, which is consistent with what we observe for individual occupation time

curves in Section 2.1. Further, these curves are automatically aligned on the grid of

activity levels. These features of occupation time motivate our non-smoothing approach

without curve alignment, as explained in the Introduction and Section 2.1.

14 Missing Sensor Readings

In computing the occupation time a 7→ L(a), if X is not observed for part of the

study period [0, τ ] (i.e., there are missing sensor readings), it is necessary to rescale the

corresponding occupation time to compensate. Here we propose a simple imputation

method (essentially mean imputation) of doing this.

In the functional data analysis literature, there is very little discussion of how to

handle missing data. In the context of sensor data, Song et al. (2019) pointed out
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Figure S.3: Comparison of veterans aged 75-and-older (group 1, acqua) and veterans
aged 65–74 (group 3, coral) in terms of sample means of the raw activity curves over
four consecutive days. Time unit = 1 minute on each horizontal axis, as in Figure 1.

the potential for bias caused by the presence of associations between the device wear

pattern (causing missing sensor readings) and the underlying physical activity process.

To address this problem, they use a semiparametric mean regression model for panel

count data (defined as cumulative minutes of moderate to vigorous physical activity), in

which the observation scheme and the event process are allowed to be dependent through

covariates and an unobserved (multiplicative) frailty term. However, their approach

still faces the curve registration problem mentioned earlier, because the baseline mean

function in their model (Wang et al., 2013) is the same for all subjects and the frailty

term is non-time-dependent. Yang and Wang (2021) treated device nonwear as “window

censoring” and utilized techniques from recurrent event data to handle the missing data

problem. However, their theory only dealt with one time point and did not consider the

effect of discretization as we do.

In analyzing the NHANES data, we used the following simple rescaling of the ob-

served occupation time to compensate for the missing sensor readings in a few subjects.

Let the observed occupation time above level a be denoted Oa, and let Υ denote the

total time during [0, τ ] that X(t) is not observed. The idea is to impute L(a) by the

rescaled version Oaτ/(τ − Υ) of Oa. This rescales the observed occupation time by

taking into account that it only refers to the proportion 1 − Υ/τ of the full follow-up

interval [0, τ ]. More sophisticated imputation approaches might be considered (e.g.,

estimating the mean and covariance function of X, and using a Gaussian process simu-

lation to fill in the missing data), but in our numerical experiments we have found that

the results using the suggested imputation method are remarkably insensitive to mild

levels of missingness.
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Figure S.4: Comparison of veterans aged 75-and-older (group 1, acqua) and veterans
aged 65–74 (group 3, coral) in terms of sample mean occupation time (as percentage of
one day) up to a = 499 over four consecutive days.
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