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a b s t r a c t

This paper surveys recent techniques that have been developed for rare-event analysis of stochastic
systems via simulation. We review standard (state-independent) techniques that take advantage of large
deviations results for the design of efficient importance sampling estimators. Classical examples and
counter-examples are discussed to illustrate the reach and limitations of the state-independent approach.
Then we move to state-dependent techniques. These techniques can be applied to both light and heavy-
tailed systems and are based on subsolutions (see e.g. Dupuis and Wang (2004) [5], Dupuis and Wang
(2007) [6], Dupuis and Wang (2009) [80], Dupuis et al. (2007) [7]) and Lyapunov bounds (Blanchet and
Glynn (2008) [9], Blanchet et al. (2007) [11], Blanchet (2009) [12]). We briefly review the ideas behind
these techniques, and provide several examples in which they are applicable.
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1. Introduction

In recent years, there has been a substantial amount of research
related to the efficient design of state-dependent importance
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sampling estimators. This research has been motivated by a series
of examples and counter-examples (see [1,2]) related to the use
of large deviations principles in the design of efficient importance
sampling estimators for light-tailed systems. The development of
efficient importance sampling estimators for heavy-tailed systems,
which as explained in [3] must often be state-dependent, has
also driven the research developments that are the focus of this
survey (the paper [4] discusses additional challenges that arise
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in the context of efficient rare-event simulation for heavy-tailed
systems).

In order to systematically address the construction of state-
dependent importance sampling estimators that can be rigorously
shown to be efficient in large deviations environments for light-
tailed systems, Dupuis, Wang, and their students have developed
a method based on control theory and the use of subsolutions
of an associated Isaacs equation for constructing and testing
asymptotically optimal importance sampling estimators [5–8].
A related approach, based on the construction of Lyapunov
inequalities, has been used in [9–11] for the construction and
analysis of state-dependent importance sampling estimators for
heavy-tailed systems. The Lyapunovmethod has also been used for
counting bipartite graphs with a given degree sequence in [12].

In this paper we summarize the ideas behind the development
of state-dependent importance sampling estimators and illustrate
their applications in some simple examples. However, in order to
put these recent ideas in context we will review some of the basic
notions and techniques that motivated the development of state-
dependent samplers and their efficiency analysis.

We shall start by discussing standard notions of statistical
efficiency that are used in order to rigorously test the optimality
of a simulation estimator. This will be done in Section 2. As
we shall see, when the cost per replication of the estimator is
appropriately controlled, these notions guarantee a substantial
improvement, in terms of running time, relative to crude
Monte Carlo evaluation—which typically offers a natural general
benchmark. The introduction of these notions of efficiency will
naturally lead to the question of how to actually construct
importance sampling estimators that can be rigorously shown to
be efficient. The zero-variance change-of-measure, while virtually
impossible to implement in most situations of interest, provides
a good guidance in order to construct such estimators. It is very
important to emphasize, as we shall see, that importance sampling
allows to efficiently estimate conditional expectations given the
event of interest.

The zero-variance change-of-measure turns out to be the
conditional distribution of the underlying process given the rare
event of interest. So, it is natural to leverage-off the available
asymptotic theory for rare events in order to understand such a
conditional distribution. This is basically the departing point in
the design of efficient importance sampling estimators for rare
events, especially in the setting of light-tailed systems, which
will be our main focus in the first part of the paper and which
encompasses most classical models such as Jackson networks.
Regardless of whether one is studying systems with light or heavy
tails, it is extremely important, however, to note that once an
efficient importance sampling estimator is in place, then one
obtains a computational mechanism (via Monte Carlo) that allows
to enhance a given asymptotic result by providing an estimate
(obtained by averaging iid replications) whose accuracy can be
improved to any desired level of relative precision by increasing
the sample size. In turn, the guaranteed efficiency will typically
ensure that the number of replications will remain under control
as the event of interest becomes more and more rare according to
the underlying large deviations parameter.

In Section 3 we will review some of the earlier ideas in the
literature showing the basic connection between large deviations
theory and the design of efficient importance sampling estimators.
As an illustrative example, we will study the sample-path large
deviations of randomwalk, how it suggests a conditional path and
how it leads to an efficient state-independent exponential tilting
scheme for a first passage problem.

The successful application of large deviations theory in
the design of efficient importance sampling estimators is not
straightforward and this feature turned out to be the norm
rather than the exception, especially in Operations Research
applications such as the analysis of queueing networks. This might
be somewhat surprising given the fact that large deviations theory
allows to characterize the asymptotic conditional distribution (i.e.
the zero-variance change-of-measure) leading to the occurrence
of the rare event. The problem, as we shall see, arises from the fact
that such characterization is done in fluid scale (i.e. in the spatial
and temporal scales corresponding to the Law of Large Numbers)
and there are many equivalent changes-of-measure that possess
the same Law of Large Numbers limit and that coincide with that
of the zero-variance change-of-measure. In Section 3 we will first
illustratewith an example the successful application of direct large
deviations results and then study in detail counter-examples that
flesh-out precisely the issues that can go wrong in the variance
control of importance sampling estimators.

Our discussion in Section 3 then will lead us to introduce
the approach proposed by Dupuis and Wang, which formulates
the design of state-dependent importance sampling estimators in
terms of a stochastic control problem inwhich the value function is
the secondmoment of the estimator. Taking an asymptotic limit, as
we shall see in Section 4, the stochastic control problem becomes
a deterministic control problem. The simplification comes from
the fact that only a subsolution is needed for the design of an
efficient sampling scheme. A trivial supersolution is given, thanks
to Jensen’s inequality, by twice the underlying large deviations
rate function. The whole point of Dupuis and Wang’s approach is
to construct a subsolution that matches the trivial supersolution
at one point, namely, the initial condition of the system under
consideration. In many problems of interest it turns out that such
a subsolution is piecewise affine and therefore relatively easy to
manipulate.

We will then move to the analysis of heavy-tailed systems,
which will be introduced in Section 5. These types of systems
arise in the analysis of finance and insurance models. There are
fundamental qualitative differences between light and heavy-
tailed systems when it comes to the analysis of rare events. This
is why it is incorrect to use a model with light-tailed components
to study large deviations properties of systems that are built from
heavy-tailed building blocks. Light-tailed large deviations occur
gradually, while heavy-tailed large deviations occur suddenly and
this feature manifests itself in the design of efficient importance
sampling estimators for heavy-tailed systems. This difference is
illustrated by, for example, the problem of estimating the first
passage probability for a random walk i.e. P(τn < ∞), where
τn = inf{k ≥ 0: Sk > n}, Sk = X1 + · · · + Xk and Xi’s are iid
increments with negative mean. If Xi has exponential moments i.e.
E exp(θXi) < ∞ for any θ ∈ R, then the most likely way for the
first passage to occur is by small gradual contribution from each
increment to drift upwards. This translates into an exponential
tilting for each increment until τn is hit. On the other hand, if
Xi is regularly varying (i.e. basically having a tail distribution
function with power-law decay) then the large deviations event
occurs typically by a big jump in one of the increments, whereas
all the other increments behave like the nominal (unconditional)
distribution (i.e. with the same unconditional negative mean
under fluid scale). One efficient importance sampling scheme in
this case will be a mixture algorithm that recognizes a suitably
chosen probability for a sudden jump to occur. This first passage
problem will be visited in Example 1 (for the light-tailed case) and
Example 5 (for the regularly varying case and beyond).

Throughout the paper we use Landau’s notation for the
asymptotic behavior of functions. In particular, given two non-
negative functions (f (N):N ≥ 1) and (g(N):N ≥ 1) we say that
f (N) = O (g(N)) if there exists a constant c ∈ (0,∞) independent
ofN such that f (N) ≤ cg(N) forN ≥ 1.Wewrite f (N) = Ω (g(N))
if f (N) ≥ c ′g(N) for some constant c ′

∈ (0,∞) independent
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of N . We write f (N) = Θ(g(N)) if both f (N) = O (g(N)) and
f (N) = Ω (g(N)). Finally we say that f (N) = o (g(N)) as N → ∞

if f (N)/g(N) → 0 as N → ∞.
We emphasize that this paper aims to introduce readers the

key concepts and ideas in rare-event problems. Throughout the
exposition we may drop some mathematical details and highlight
only the central arguments, pointing readers to other references.
The rest of the paper is organized as follows. In Section 2 we
introduce the basic notions, criteria and guidelines for rare-event
simulation estimators. In Section 3, we discuss the classical large
deviations theory for light-tailed systems from a sample path
perspective, and how it leads to the idea of exponential tilting
in importance sampling. There we will also point out some
issues of this classical idea through examples. Section 4 will
then be devoted to the recent developments of state-dependent
techniques that aim to fix these issues, using a subsolution
approach as discussed briefly above. Lastly, Section 5 focuses on
heavy-tailed systems, including large deviations results, classical
estimators using conditionalMonte Carlo and hazard rate twisting,
and the recent work on state-dependent importance samplers via
weak convergence and Lyapunov technique.

2. Notions on efficiency and importance sampling techniques

The central question that we study consists in estimating via
simulation P(A), where A is some rare event of interest, which
implies that P(A) ≈ 0. For instance, the event A might correspond
to the probability of bankruptcy within a given time horizon of
a financial or insurance company. A related question consists
in computing conditional expectations of certain quantities of
interest given that A occurs. For instance, what is the mean value
of the deficit at the time of ruin or, in the case of companies that
pay dividends to their shareholders, what is the distribution of the
net present value of the dividends paid up to the time of ruin. In
this sectionwe discuss notions that allow to quantify the efficiency
of rare event simulation estimators and review basic properties of
importance sampling estimators for rare events.

2.1. Notions of efficiency

In order to design algorithms that achieve high accuracy in
relative terms and that are designed to perform well in rare
event settings, a typical approach is to embed the question of
interest in a suitable asymptotic regime, often motivated by an
applied standpoint. For example, in the setting of bankruptcy of an
insurance company, it is often the case that the capital or reserve
of the company is large relative to individual claim sizes, and this
is basically why one might expect the probability of bankruptcy,
P (A), to be small. So, one might introduce a parameter, say n,
for instance as the initial capital in the insurance example, and
consider αn = P (An) as a function of the parameter n which is
often referred to as the ‘‘rarity parameter’’. From now on we will
assume that underlying the rare event there is a rarity parameter
n such that αn −→ 0 as n −→ ∞.

The idea is then to design a simulation estimator whose error
is controlled in relative terms as n ↗ ∞ compared to crude
(or naive) Monte Carlo, which provides an obvious alternative
and, therefore, a general benchmark. Note that crude Monte Carlo
involves simulatingN iid Bernoulli’s, In(1), . . . , In(N), with success
parameter αn, thereby producing an estimator of the form

αc
n(N) =

1
N

N−
j=1

In(j). (1)

The super-index ‘‘c ’’ that appears in αc
n(N) corresponds to crude

Monte Carlo. Sinceαc
n(N) is an unbiased estimator of αn, its mean
squared error equals Var(αc
n(N))

1/2
= α

1/2
n (1 − αn)

1/2/N1/2.
In turn, we obtain a relative mean squared error equal to the
coefficient of variation ofαc

n(N), namely,

CV (αc
n(N)) :=

(1 − αn)
1/2

α
1/2
n N1/2

.

In order to control the relative error of αc
n(N) (i.e. CV (α̂c

n(N))
remains bounded as n ↗ ∞), one needsN = Ω(1/αn) Bernoulli’s.

The problem with the estimator αc
n(N) is that each of the

underlying replications, the In(j)’s, has a very big variance in
relative terms. Thenumber of replicationsN must growat the same
rate as CV (In(j))2 = (1−αn)/αn. The same phenomenon occurs in
any estimator obtained out of averaging iid replications, as in (1).
The objective is then to design an estimator Rn with a controlled
mean squared error. We concentrate only on unbiased estimators,
so controlling the behavior of the mean squared error boils down
to controlling the behavior of the second moment. The overall
estimate is then obtained by averagingN iid copies ofRn. Motivated
by these considerations we have the following definitions.

Definition 1. An estimator Rn is said to be strongly efficient if

ER2
n = O


α2
n


as n ↗ ∞.

Definition 2. Rn is said to be weakly efficient or asymptotically
optimal if for each ε > 0 we have that

ER2
n = O


α2−ε
n


as n ↗ ∞.

Definition 3. We say that Rn has polynomial complexity of order at
most l ≥ 0 if

ER2
n = O


α2
n(log (1/αn))

2l , (2)

or in other words, if its relative mean squared error (or coefficient
of variation) grows at most at a polynomial rate with degree l in
log (1/αn). The estimator is strongly efficient if l = 0 in (2).

In most cases the analysis of importance sampling estimators
(especially state-dependent samplers in light-tailed cases) con-
cludes only weak efficiency of the estimators. Another class of im-
portance sampling changes-of-measure that have been proposed
recently exhibits asymptotically negligible relative mean squared
error, defined next (see [13]):

Definition 4. The estimator Rn exhibits asymptotically negligi-
blerelative error if given any ε > 0 one has that

lim
n→∞

ER2
n

α2
n

≤ 1 + ε,

or in other words, if its relative mean squared error (or coefficient
of variation) is less than ε.

In order to see the gain in efficiency, suppose that an estimator
Rn has polynomial complexity of order at most l and considerαn(N) =

∑N
i=1 Rn (i) /N where the Rn (i)’s are independent

replications of Rn. It follows from Chebyshev’s inequality that at
most N = O[ε−2δ−1 log (1/αn)

2l
] replications are required to

conclude that αn(N) is ε-close to αn in relative terms with at
least 1 − δ confidence (i.e. P(|α̃n(N) − αn| > εαn) ≤ δ).
Observe that in some sense, assuming that the cost per replication
of Rn (j) is comparable to that of In (j) (in the setting of crudeMonte
Carlo), polynomially efficient estimators provide an exponential gain
in efficiency relative to crude Monte Carlo.The paper of [14] provides
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further study and examples related to each of the aforementioned
classes of estimators.

Besides variance control, it is worth pointing out other
measures for importance sampling estimators, and we refer
interested readers to the following references. One criterion
is the robustness of higher moment estimates as the rarity
parameter goes to zero, as discussed in [15]. In the special case
of second moment, [16,17] introduce the notion of bounded
normal approximation, suggested by Berry–Esseen theorem,
in the context of highly reliable Markovian systems. Related
diagnostic robustness check of confidence interval coverage is
discussed in [18] with so-called coverage functions. Secondly,
recall that our criteria in this section all presume that the costs
of replication are comparable between importance sampler and
crude Monte Carlo. This might not always be true, i.e. the cost of
generating each sample from importance sampling may increase
disproportionately with the rarity parameter. The paper [19]
discusses this issue and suggests the use of so-called relative
efficiency. The paper [20] justifies theoretically how to include
computational effort per sample rightly into efficiency measures.
Finally, [21] provides a survey of the above robustness issues in
rare-event estimators.

2.2. Basic properties of importance sampling estimators

Importance sampling is a variance reduction technique that
is often applied to design an estimator, Rn, with efficiency
characteristics such as those described by Definitions 1–4. We
shall review basic properties of importance sampling next; for a
more detailed discussion see for example [22–24]. The basic idea
is to introduce a probability measureP (·) such that the likelihood
ratio or Radon–Nikodymderivative between the nominal (original)
probability measure, P (·), andP (·) is well defined on the event An
of interest. Then we can simply let

Rn (ω) =
dP

dP (ω) I (ω ∈ An) .

As usual, we use ω to denote the underlying random outcome
which is simulated according to the probability measure P (·).
We useE (·) to denote the expectation operator associated to the
probability measureP (·). Note that

ERn =

∫
An

dP

dP (ω) dP (ω) = P (An) = αn,

so Rn is an unbiased estimator, and

E(R2
n) =

∫
An


dP

dP (ω)
2

dP (ω)
=

∫
An

dP

dP (ω) dP (ω) = E(Rn). (3)

In principle one can design an importance sampling estimatorwith
zero variance. Indeed, if we letP (·) = P∗

n (·) := P (· | An) ,

then

R∗

n :=
dP
dP∗

n
(ω) I (ω ∈ An) = P (An) ,

which is clearly an exact estimate of αn = P (An). Of course,
assuming that one has access to P∗ (·) defeats the point of
using simulation to estimate P (An). However, the underlying
lesson behind the characterization of the zero-variance change-
of-measure as the conditional distribution given the rare event of
interest is that one can use asymptotic theory to describe P∗

n (·)
as n ↗ ∞. As we shall review in the next section, this is often
the starting point in the design of efficient importance sampling
estimators.
3. On large deviations techniques and importance sampling

In order to explain the interplay between large deviations
techniques and the design of importance sampling estimators
we shall concentrate on models whose fundamental building
blocks are given by random walks. Many questions of interest
in Operations Research can be posed in terms of sample-path
properties of random walks; we will see some examples in the
sequel. In order to guide our discussion we shall concentrate on
several specific instances underlying a generic random walk S =

(Sk: k ≥ 1), defined via

Sk = X1 + · · · + Xk,

where the Xi’s are iid random variables. We assume that ψ (θ) =

log E exp (θXi) is finite in a neighborhood of the origin over the
real axis. We use ψ̇ (·) to denote the derivative of ψ (·). Given any
parameter a ∈ R, we will also assume that a solution θa to a root
equation such as ψ̇ (θa) = a exists whenever we require such a
solution. The role of the parameter awill depend on the context of
the examples and applications that we shall discuss.

3.1. Large deviations results for random walks

We shall take advantage of the following fundamental result in
the theory of large deviations, known as Mogulskii’s theorem (see
for instance [25, p. 176 Theorem 5.1.2]).

Theorem 1. Consider the continuous approximation Yn (t) = S⌊nt⌋
/n+(t−⌊nt⌋ /n)X⌊nt⌋+1 obtained by joining the values of the random
walk at the lattice points and by scaling space by 1/n and time by n.
Consider the space C[0, T ] for any T > 0, with the topology generated
by the uniform norm and let us write AC[0, T ] to denote the space of
absolutely continuous function in [0, T ]. Then, for any closed set C

lim
n→∞

1
n
log P (Yn (·) ∈ C)

≤ − inf{I (x(·)) : x (·) ∈ AC[0, T ] ∩ C, x (0) = 0},

and for any open set O

lim
n→∞

1
n
log P (Yn (·) ∈ O)

≥ − inf{I (x(·)) : x (·) ∈ AC[0, T ] ∩ O, x (0) = 0},

where

I (x(·)) =

∫ T

0
J (ẋ(s)) ds

and

J (z) = sup
θ∈R

[θz − ψ (θ)].

Remark 1. Given a set Awe often write

I(A) = inf{I (x(·)) : x (·) ∈ AC[0, T ] ∩ A, x (0) = 0}.

The previous result provides rigorous support for the heuristic
approximation P (Yn(·) ≈ y) ≈ exp (−nI(y)). In most applications
in Operations Research, and in particular in Examples 1 and 2 to be
discussed below, we are interested in a set A such that

P(Yn (·) ∈ A) = exp (−nI(A)+ o(n)) . (4)

That is, sets for which the limits in the previous theorem coincide
when applied to the interior and the closure of A.

Now, the solution x∗(·) to the calculus of variations problem
defining I(A) is often unique and describes the law of large
numbers of Yn (·) given that Yn (·) ∈ A and in this sense we
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say that x∗(·) approximates the conditional distribution of Yn(·)
given Yn(·) ∈ A. This is easy to see using the earlier heuristic
approximation (a rigorous verification is also almost direct and can
be found in [26, p. 61 Lemma 4.2]). Indeed, note that if x∗

≠ y ∈ A,
then

P (Yn(·) ≈ y|Yn(·) ∈ A) ≈ exp (−nI(y)+ nI(A))
= exp


−nI(y)+ nI


x∗


−→ 0

as n → ∞, since x∗ is the unique optimizer of I (A).
Given that x∗ approximates the conditional distribution of

Yn(·) given the event of interest it makes sense to bias the
paths to track x∗. In order to do this one uses a very particular
importance sampling mechanism called exponential tilting, which
is implemented increment-by-increment in the simulation via

Pθk(Xk ∈ dx) = exp(θkx − ψ(θk))P(Xk ∈ dx). (5)

If Xk has a density with respect to the Lebesgue measure, say
f (·), then P(Xk ∈ dx) = f (x) dx. The notation adopted in the
previous display is simply a mechanism that allows us to consider
general distributions (including discrete or mixtures of discrete
and continuous distributions). We will use Eθk(·) to denote the
expectation operator associated to Pθk(·). The parameter θk might
depend on (X1, . . . , Xk−1) but it is not allowed to depend on future
observations. For example, if under P(·), Xk is standard Gaussian,
then under Pθk(·), Xk is normal with mean θk and unit variance.
On the other hand, if under P(·), Xk is exponentially distributed
with unit mean, then under Pθk(·) (for θk < 1), Xk is exponentially
distributed with mean 1/(1 − θk).

In order to use exponential tilting to track the optimal path x∗(·)
it is natural to select for the k-th increment a value θk such that

EθkXk = ẋ∗(k/n). (6)

Since

log Eθk exp(ηXk) = log E exp((η + θk)Xk − ψ(θk))

= ψ(η + θk)− ψ(θk),

we conclude that EθkXk = ψ̇(θk) and therefore Eq. (6) is equivalent
to

ψ̇(θk) = ẋ∗(k/n). (7)

Note that selecting θk via (7) gives rise to a state-independent
importance sampling estimator because the simulation of the k-th
increment does not depend on the position Sk of the randomwalk.

A natural question that might arise in the reader’s mind is why
shall we use exponential tilting as a biasingmechanism?One could
think, for instance, to simply shift the means of the increments.
This, as we saw earlier, is equivalent to exponential tilting in the
Gaussian case, but it is not so in the case of exponential random
variables. Moreover, in the later case, the change-of-measure
induced by shifting might not be admissible because one could
violate absolute continuity (the supports of the distributionsmight
not even match) and the likelihood ratio might not be even well
defined. The fundamental reason behind the use of exponential
tilting arises from entropy considerations. Recall that the entropy
between two probability measures P(·) andP(·) is defined via

H(P ‖ P) =E logdP
dP


. (8)

Note that H(P ‖ P) ≥ 0 and H(P ‖ P) = 0 if and only if
P = P , so H (·) serves as a measure of ‘‘discrepancy’’ between
two probability measures. Exponential tilting arises as a natural
biasing mechanism because, in connection to (6), the solution to
the optimization problem

min{H(P ‖ P):P(·) such thatEXk = ẋ∗(k/n)}
is precisely given byP(·) = Pθk(·). A proof of this fact can be found
in [27] p. 409 and 421. The reader might wish to verify this fact at
least in the case of distributions with finite support, in which case
is an elementary exercise in convex optimization.

Another reason that motivates the use of exponentially tilted
distributions is that one can sometimes show that the distribution
of (X1, . . . , Xk) given a large deviations event of interest converges
to the optimal exponential tilting (i.e. selecting each tilting
parameter according to (7)); see for instance [23] Chapter VI
Section 5 and [28].

3.2. Applications of large deviations to rare-event simulation

We are now ready to apply the approach discussed in the
previous subsection to a couple of examples. Our goal is to
investigate the extent to which the tracking of the optimal path
via state-independent exponential tilting allows us to obtain
a provably efficient importance sampling estimator. Example 1
illustrates a situation in which weak efficiency is obtained and, as
we shall see, Example 2 shows an instance in which no efficiency
is guaranteed.

The first example is classical in insurance and is of significant
historical importance in rare-event simulation because it was
among the first problems for which an explicit connection to large
deviations theory was used in order to construct and analyze
efficient importance sampling estimators (see [29]).

Example 1 (Using Large Deviations For Efficient Importance Sam-
pling). Suppose that S0 = 0 and let τn = inf{k ≥ 0: Sk > n}.
Assume that EXk < 0 and consider the problem of computing

αn = P (τn < ∞)

as n ↗ ∞. In order to motivate this example note that the surplus
process of a insurance company at time t > 0 in continuous time
can be represented via the process

Y (t) = n + pt −

N(t)−
j=1

Zj, (9)

where N (·) represents a renewal process that counts the number
of arrivals up to time t , p > 0 is a premium rate paid continuously
in time, n := Y (0) is the initial surplus, and the Zj’s represent iid
claim sizes—which are assumed to be positive and independent of
the process N (·). Eventual ruin, namely the event that Y (·) hits
a level below zero at some point into the future, can only occur at
arrival times. Therefore, if Ak is the arrival of the k-th claim into the
system then eventual ruin occurs if and only if there exists k ≥ 1
such that Y (Ak) < 0. In particular, if we write Ak = T1 + · · · + Tk,
where the Tj’s are iid inter-arrival times, then ruin happens if and
only if τn < ∞, where Xj = Zj − pTj.

We now compute the optimal path introduced in Theorem 1,
which involves solving the calculus of variation problem. Recall
that we are assuming EXk = ψ̇(0) < 0. We also will assume
that there exists θ∗ > 0 such that ψ(θ∗) = 0 and ψ̇(θ∗) < ∞.
We are naturally assuming that Xk is non-deterministic (otherwise
αn = 0), therefore ψ (·) is strictly convex and θ∗ is unique (see
[30, p. 352]). Moreover, also by convexity we have that ψ̇(θ∗) > 0.

We need to find x∗ (·) that solves the problem

min
∫

∞

0
I(ẋ(s))ds: x(0) = 0, x(t) ≥ 1 for some t > 0


.

Since I (z) ≥ 0 it is evident that the optimal pathmust be such that
I (ẋ∗(t)) = 0 for t > T ∗, where T ∗

= inf{t ≥ 0: x∗(t) ≥ 1}. This
forces ẋ∗ (t) = ψ̇ (0) for t > T ∗. Therefore, we need to minimize T
0 I(ẋ(s))ds, where T = inf{t ≥ 0: x (t) ≥ 1}. Now, the function
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I (·) is convex because it is the Legendre transform of the convex
function ψ (·) (see for example, [31, Part III, Section 12]). So, by
convexity of I (·) and by Jensen’s inequality we have that

T
1
T

∫ T

0
I(ẋ(s))ds ≥ TI


1
T

∫ T

0
ẋ(s)ds


= TI(1/T ). (10)

Optimizing the right hand side of (10) over T we then must select
T ∗ in order to satisfy the first order conditions of optimality,
namely,

− T ∗
dI (1/T ∗)

dT ∗
= I


1/T ∗


. (11)

Now we will use the previous equation to characterize the
optimal path. Note that

I (z) = zθz − ψ(θz),

where ψ̇ (θz) = z. This implies that dI(z)/dz = θz and therefore
(11) is equivalent to

1
T ∗
θ1/T∗ =

1
T ∗
θ1/T∗ − ψ(θ1/T∗) ⇒ ψ(θ1/T∗) = 0.

The previous equation implies that θ1/T∗ = θ∗ and therefore these
calculations suggest that x∗(t) = tψ̇(θ∗) for t ≤ T ∗

= 1/ψ̇(θ∗). To
complete the argumentwemust show that the lower bound in (10)
is achieved by our selection, but this is clearly the case given that
our candidate path is linear up to T ∗ and therefore its derivative is
constant.

The corresponding importance sampling algorithm then con-
sists in simulating each increment Xk according to the exponen-
tially tilted distribution induced by the tilting parameter θ∗. Of
course, one stops the simulation until time τn which is finite with
probability one because under the importance sampling distribu-
tion Eθ∗Xk = ψ̇(θ∗) > 0. A single replication of the importance
sampling estimator is then given by

Rn :=

τn∏
k=1

dP
dPθ∗

(Xk)I(τn < ∞) = exp(−θ∗Sτn).

We now proceed to verify weak efficiency. We first need to
obtain the asymptotics for αn. One can use the previous optimality
argument for x∗ combined with Theorem 1 to conclude that

αn = exp(−nI(x∗)+ o(n)) = exp(−nθ∗
+ o(n))

as n → ∞ (in particular this corresponds to the limit (4)). On the
other hand, using the expression for the second moment given in
(3) we conclude that

ERn = E[exp(−θ∗Sτn)I(τn < ∞)] ≤ exp(−nθ∗)P(τn < ∞)

= exp(−2nθ∗
+ o(n)).

The previous expression therefore implies that if there exists θ∗ >
0 such that ψ(θ∗) = 0 and ψ̇(θ∗) ∈ (0,∞), then Rn is a weakly
efficient estimator. Now, in fact, assuming only a mild regularly
condition, for instance if the Xk’s have a continuous distribution,
it turns out that one can apply renewal theory to the increments
of the strictly increasing ladder heights (i.e. the increments of the
sequence of new records of the random walk) to conclude that Rn
is in fact a strongly efficient estimator (see [30, p. 375 Theorem
7.1]). If we have that ψ̇(θ∗) = ∞, then strong efficiency is violated
but one can obtain weak efficiency or polynomial complexity
depending on the tail of the distribution of Xk.

We now move on to study Example 2. We have selected this
example because it illustrates that direct application of state-
independent importance sampling, guided by direct, yet sensible,
large deviations principles, might not yield efficient estimators.
Example 2 (Lack of Efficiency from Tracking the Optimal Path in a
State-Independent Way). Given a < 0 < b and S0 = 0 we are
interested in efficient estimation via simulation of the probability

αn = P[ min
0≤k≤n

Sk ≤ an, Sn > nb]. (12)

Such probability can be interpreted as the price of a digital knock-
in option in the absence of interest rates. That is, the price of an
option that upon exercise pays one unit at time n if and only if
both Sn > nb and, in addition, the random walk hits a level less
or equal than an before time n. (See [32] for more applications of
importance sampling to option pricing.)

For concreteness, in order to facilitate the discussion, let us
assume that Xk is standard Gaussian. The calculus of variations
problem that must be solved takes the form

inf

1
2

∫ 1

0
ẋ (s)2 ds: x(0) = 0, min

0≤u≤1
x (u) ≤ a, x (1) ≥ b


. (13)

The solution x∗ attaining the infimum in (13) can be computed
explicitly as

x∗ (t) = s1tI (t ≤ t0)+ [s2 (t − t0)− a]I (t0 < t ≤ 1) ,

where

s1 = a/t0, s2 = (b − a) / (1 − t0) , t0 = −a/(b − 2a).

Verifying that this indeed is the optimal path is done using Jensen’s
inequality and convexity arguments similar in spirit to those used
in Example 1. In turn, we obtain that

αn = exp(−n(b − 2a)2/2 + o(n)) (14)

as n → ∞ by evaluating I (x∗). Alternatively, given that we are
working with Gaussian increments, we can replace the random
walk by Brownian motion B (·) and then, using the reflection
principle, we can conclude that

P(min
0≤t≤n

B (t) ≤ an, B(n) > bn) = P(B(n) ≤ − (b − 2a) n)

= exp(−n(b − 2a)2/2 + o(n))

as n → ∞, obtaining the asymptotic rate indicated earlier for αn.
Since we are assuming Gaussian increments, the tilting

parameter for the increment Xk, namely θ∗

k , matches ẋ∗(k/n) and
this yields

θ∗

k = − (b − 2a) I (−na/(b − 2a) > k)

+
(b − a) I (−na/(b − 2a) ≤ k)

1 − (−a) /(b − 2a)
= − (b − 2a) I (−na/(b − 2a) > k)

+ (b − 2a) I (−na/(b − 2a) ≤ k) .

The importance sampling estimator then takes the form

Rn = exp(−[θ∗

0 Sk0 − k0θ∗2
0 /2] − θ∗

n (Sn − Sk0))

× exp((n − k0)θ∗2
n /2)I( min

0≤k≤n
Sk ≤ an, Sn > bn),

where k0 = ⌊−an/ (b − 2a)⌋.
We now show that Rn might not be efficient. We write P (·)

to denote the probability measure induced by sampling the Xk’s
independently according to the exponential tilting parameter θ∗

k .
First we develop a lower bound forE[R2

n] by constructing a suitable
set under which the path deviates a distance of size ε > 0 (in
supremum norm) from the optimal trajectory. In order to simplify
the notation let θ∗

= (b − 2a) and then note that

R2
n = exp(−nθ∗2) exp


2θ∗


Sk0 −


Sn − Sk0


+ nθ∗


× I( min

0≤k≤n
Sk ≤ an, Sn > bn).
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We write An = {min0≤k≤n Sk ≤ an, Sn > bn} and introduce the
sets

Bε(n) = An ∩

Sk0 + nθ∗

≥ nε

,

Cε(n) = Bε(n) ∩

Sk0 −


Sn − Sk0


+ nθ∗

≥ nε

.

Then,E[R2
n] = exp


−nθ∗2E exp 2θ∗


Sk0 −


Sn − Sk0


+ nθ∗


; An


≥ exp


−nθ∗2E exp 2θ∗


Sk0 −


Sn − Sk0


+ nθ∗


; Bε(n)


≥ exp


−nθ∗2 exp 4θ∗εn

P (Cε(n)) .
Next, because Cε(n) involves a deviation of size ε in supremum
norm relative to the optimal trajectory, it is not difficult to verify
that

lim
n→∞

logP (Cε(n))
n

= −2θ∗ε + O

ε2

.

So,

lim
n→∞

1
n
logE[R2

n] ≥ −θ∗2
+ 2θ∗ε + O


ε2


≥ −θ∗2
+ δ, (15)

if one picks ε small enough such that 2θ∗ε + O

ε2


≥ δ > 0 for
some δ > 0.

Combining (14) together with (15) we conclude that Rn is not in
general even weakly efficient.

3.3. Notes on state-independent importance sampling and large
deviations

Theory of large deviations from a function space and sample
path perspective is comprehensively documented in [25]. On
more specific application areas, [33] discusses large deviations in
queueing and computer science, while [34] focuses on applications
in statistical mechanics. Ref. [35] provides an alternative approach,
based on control theory andweak convergence analysis, to develop
large deviations results.

The types of importance samplers discussed in Examples 1 and
2 originate from the work of [29] in the context of sequential
analysis. Another early reference in this spirit is [36]. Thepaper [37]
develops and proves several general results on importance
samplers for Markov chains and semi-Markov processes. Level-
crossing probabilities on randomwalks, as discussed in Examples 1
and 2, have important connections to insurance and performance
evaluation of queueing systems. For the former, readers are
referred to [38,39] and Chapter X of [40]. The paper [41] studies
the extension to Markov-modulated walks on general state space.
For queueing, [28] discusses exponential change-of-measure in
several applications, and points out a duality link to steady-state
estimation via level-crossing problems. Other related papers on
change-of-measure from a random walk perspective applied to
queueing models include [42–44].

The fact that reasonable importance samplers based on large
deviations results can lead to efficiency deterioration was first
pointed out in the 90’s. The paper [1] studies the problem in the
context of tandem queues, which is further analyzed in [45]. The
issue is elaborated and strengthened in several examples in [2].
Ref. [46] and Chapter 5 of [47] discuss such inefficiency from so-
called dominating point geometry in a general setting, while [48]
extends the conditions using Varadhan’s lemma. The recent work
of [6] aims to remedy such problems in generality, drawing upon
the theory of subsolution in Isaacs equation (this will be our main
topic of discussion in the next section).

For general review on rare-event simulation and exponential
change-of-measure, readers are referred to [49,47] and Chapter
VI of [23]. The work of [50] provides a comprehensive discussion
on the active research directions and list of references. For ease
of explanation of recent advances and as supplement to [50],
in this paper we focus mainly on random walk problems, and
we emphasize that the scope of applications for importance
sampling is much wider. For more specific references on general
queueing applications, readers are referred to [51,52]. In the
context of infinite and many-server systems especially, recent
work include [53–55]. Another related application area is the
reliability estimation of highly dependable Markovian systems, of
which [51] again provides an excellent list of earlier references.
More recent documentation is in [56]. Other applications of
importance sampling are in finance (see for example [32]), physics
(see for example [57]), systems biology (see [58]), combinatorics
and counting (see [59,60,12]), among others.

We also want to mention that besides importance sampling,
another powerful tool for variance reduction in rare-event prob-
lems is known as the splitting algorithm. Rather than modifying
the underlying probability distribution, splitting algorithm divides
the simulation trajectory space into levels (more precisely a nested
sequence of subsets), with the hope that the success rate of pass-
ing through each level stands high even though the target proba-
bility is rare. Sample trajectories then split or branch out at each
level to enhance arrivals at the next level, and finally up to the
target set of interest. Hence the weights of the samples are based
on the calculation of the associated branching process instead of
a change-of-measure. Interested readers can go to [61] and Chap-
ter VI Section 9 of [23]. The use of large deviations in analyzing
splitting algorithms is studied in [62,63]. After that, [64] proposes a
subsolution approach which is also closely related to our next sec-
tion, while recently [65] discusses such algorithms in counting and
computer science. Relatedmethodology for the case of a fixed large
deviations parameter, based on Feynman–Kac flowswhich accom-
modate most of the particle methods used in practice, is studied
in [66].

Finally, besides drawing upon the theory of large deviations,
importance samplers, with the goal of minimizing estimation
variance, can also be implemented from an empirical perspective.
These are schemes whose parameters are unknown and are
updated from past samples in the simulation (note that the
set of parameters can be huge, such as all the entries of
a transition matrix in a Markov chain). As opposed to the
optimal exponential change-of-measure in Examples 1 and 2 (and
also the state-dependent samplers in the next sections) whose
exponential parameters can be solved by looking at the associated
optimization or variational problems, these empirical Monte
Carlo schemes do not have analytical solution to the change-of-
measure parameters, and hence empiricalmeasurement is needed.
Under appropriate assumptions, they can be proved to reduce
variance or lead to exponential convergence of the estimate. Some
important approaches in such setting are adaptive Monte Carlo
(see e.g. [67,68]), the cross-entropy method (see [69–72]), and
stochastic approximation based method (see [73,74]). Moreover,
recent work of [75] considers an interesting importance sampling
with resampling approach for Markov-modulated problems that
avoids the need for computing the associated eigenfunctions.

4. State-dependent techniques for light-tailed systems

4.1. Solutions to a deterministic control problem and efficient
importance sampling

In order to deal with the types of issues illustrated by Example 2
above [5] proposed a control theoretic approach for the problem
of designing efficient importance sampling estimators. We will
formally characterize the solution to a deterministic control
problem proposed by Dupuis and Wang [5] in the setting of
multidimensional random walks.
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In this section we assume that (Xk: k ≥ 1) is a sequence of iid
rv’s taking values in Rd and such that ψ(θ) = log E exp(⟨Xk, θ⟩) is
finite everywhere. We then let Sk = X1 + · · · + Xk and consider a
scaling similar to that introduced in Mogulskii’s theorem. We let
Yn (t) = y + S⌊nt⌋/n,

for some y ∈ Rd. Let B be a closed set with non-empty interior
and define τB(n) = inf{t > 0: Yn (t) ∈ B}. We assume that B is
attainable in the sense that P(τB(n) < ∞|Yn (0) = y) > 0 for each
y ∈ Rd.

Consider the question of computing via simulation for two
disjoint sets B and C; in addition to the regularity imposed on B
we will impose an additional large deviations requirement below.
We are interested in computing
αn(y) = Py(τB(n) < τC (n), τB(n) < ∞)

:= P(τB(n) < τC (n), τB(n) < ∞|Yn(0) = y).
We assume that B and C are regular in the sense that

lim
n→∞

1
n
logαn(y) = −IB,C (y),

where

IB,C (y) = inf
∫ t

0
J (ẋ(s)) ds: x(0) = y, x(t) ∈ B for some

t < ∞ & x (s) ∉ C if s < t

.

See for instance the text of [35, p. 66] or [25, p. 176].
We are interested in choosing a suitable importance sampling

estimator with optimal performance in the sense of minimizing its
secondmoment. The class of policies thatwe consider are based on
exponential tilting so that the estimator ultimately takes the form

Rn = exp


−

nτB(n)−
k=1

⟨θk, Xk⟩

+

nτB(n)−
k=1

ψ(θk)


I(τB(n) < τC (n), τB(n) < ∞), (16)

where θk is adapted to the sequence

Xj: j ≥ 1


in the sense that

θk is allowed to depend only on X1, . . . , Xk−1. The selection of
exponential tiltings as the family of controls is motivated by the
discussion involving the optimization problem (8).

Let Vn(y) denote the optimal secondmoment of Rn with y being
the initial position of the random walk. It follows immediately
that the HJB (Hamilton–Jacobi–Bellman) equation corresponding
to finding the optimal policy (i.e. the optimal sequence of θk’s) to
minimize the second moment of Rn takes the form
Vn(y) = inf

θ
Eθ [exp(−2⟨θ, X⟩ + 2ψ(θ))Vn(y + X/n)]

= inf
θ

E[exp(−⟨θ, X⟩ + ψ(θ))Vn(y + X/n)] (17)

for y ∉ B∪C and subject to the boundary condition that Vn(y) = 1
for y ∈ B and Vn(y) = 0 if y ∈ C . If there is an optimal policy
(θ∗

k : k ≥ 1) generated by the previous HJB equation, then generally
it would be the case that

Vn(y) = E exp


−

nτB(n)−
k=1

⟨θ∗

k , Xk⟩

+

nτB(n)−
k=1

ψ(θ∗

k )


I(τB(n) < τC (n), τB(n) < ∞)

≤ E exp


−

nτB(n)−
k=1

⟨θk, Xk⟩

+

nτB(n)−
k=1

ψ(θk)


I(τB(n) < τC (n), τB(n) < ∞),
for any adapted policy (θk: k ≥ 1) (adapted in the sense described
earlier below display (16)).

The large deviations scaling suggests writing Vn(y) = exp
(−nHn(y)) and thus we should expect Hn(y) → H(y) as n → ∞

for some function H (y). If we proceed using this postulated limit
in the previous HJB equation, after taking logarithms, formally and
without being careful about underlying smoothness assumptions
and errors incurred, we arrive at the approximation

− nH(y) ≈ min
θ

log E[exp(−⟨θ, X⟩ + ψ(θ)− nH(y + X/n))]

≈ min
θ

log E[exp(−⟨θ, X⟩

+ψ(θ)− nH(y)− ⟨∇H(y), X⟩)]. (18)

Equivalently, we have that

0 ≈ min
θ

log E[exp(−⟨θ, X⟩ + ψ(θ)− ⟨∇H(y), X⟩)]

= min
θ

log exp(ψ(θ)+ ψ(−∇H(y)− θ))

= min
θ

[ψ(θ)+ ψ(−∇H(y)− θ)]. (19)

First order optimality conditions imply that at the optimal value
θ∗(y) one has

∇ψ(θ∗(y)) = ∇ψ(−∇H(y)− θ∗(y)),

which yields θ∗(y) = −∇H(y)/2 and therefore we conclude that
Eq. (19) can be expressed as

2ψ(−∇H(y)/2) = 0, (20)

subject to the boundary conditions (inherited from (17)) equal to
H(y) = 0 for y ∈ B and H(y) = ∞ for y ∈ C . Eq. (20) is an instance
of a so-called Isaacs equation.

On the other hand, we have assumed

αn(y) = exp(−nIB,C (y)+ o(n))

as n → ∞ and, by conditioning on the first increment of the
random walk, we also have that

αn(y) = Eαn(y + X/n) (21)

subject to the constraints that αn(y) = 1 for y ∈ B and αn(y) = 0
if y ∈ C . Proceeding to analyze equality (21) formally as we did for
the discussion leading to (20), we conclude that

exp(−nIB,C (y)+ o(n)) = E exp(−nIB,C (y + X/n))
≈ E exp(−nIB,C (y)− ⟨∇IB,C (y), X⟩).

Equivalently, taking logarithms, we arrive at

ψ(−∇IB,C (y)) = 0,

subject to the boundary conditions implied by αn(y), namely,
IB,C (y) = 0 for y ∈ B and IB,C (y) = ∞ if y ∈ C . These
considerations, togetherwith our analysis leading to (20) yield that
H(y) = 2IB,C (y) and therefore, under suitable regularity conditions
we obtain that applying importance sampling with exponential
tilting given by the tilting parameter θ∗(y) = −∇IB,C (y)
allows us to obtain an asymptotically optimal estimator. Sufficient
conditions required to rigorously substantiate this result are given
in the following theorem formulated by Dupuis and Wang [5] in
the case of large deviations problems for Sn/n.

Theorem 2 (Adaptation From [5] Theorem 2.1). Let Sn, Yn andψ(θ)
be defined as in the beginning of this section. Consider the problem of
estimating P(Sn/n ∈ A|S0 = 0) where A is a closed set that satisfies

inf
y∈A◦

I(y) = inf
y∈A

I(y)

and I(y) = supθ∈Rd [⟨θ, y⟩ − ψ(θ)]. Let us use ∇x for the gradient
of a function with respect to the component x. Suppose that there
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is a classical sense solution corresponding to the Isaacs equation
analogous to (20) given by

∂tH (x, t) = 2ψ (∇xH (x, t) /2)

subject to the boundary condition limt↘0 H (x, t) = ∞ × I (x ∉ A)
(by conventionwe consider ∞×0 = 0). The optimal state-dependent
exponential tilting scheme with k-step exponential parameter θ∗

k =

∇xH (Sk/n, k/n) generates the estimator

exp


n−

k=1

(−⟨θ∗

k−1, Xk⟩ + ψ(θ∗

k−1))


I(Sn/n ∈ A).

Let Vn(0) be the second moment of this estimator and let Hn(0) be
such that Vn(0) = exp(−nHn(0)). We have that

lim
n→∞

Hn(0) = 2 inf
y∈A

I(y) = H (0) .

The problem with the previous result is that it is rarely
applicable in most situations of interest, especially because it is
often the case that there is no classical solution to the Isaacs
equation. Other connections are discussed in [76]. The function
H(y) = 2IB,C (y) typically provides a solution in a weak sense (a
so-called viscosity subsolution). The extent towhich this condition
can be relaxed and the type of optimality results that can be
obtained beyond weak efficiency is not fully understood.

4.2. Subsolutions to a deterministic control problem and efficient
importance sampling

We take as starting point the HJB equation introduced in (17).
The next lemma provides an inequality whose solution gives an
upper bound for the value function in (17).

Lemma 1. Suppose that one finds a non-negative function U(·) such
that

Un(y) ≥ E[exp(−⟨θ, X⟩ + ψ(θ))Un(y + X/n)]
≥ inf

θ
E[exp(−⟨θ, X⟩ + ψ(θ))Un(y + X/n)],

where y ∉ B∪C and subject to the boundary condition that Un(y) ≥ 1
for y ∈ B. Then,

Un(y) ≥ E


exp


−

τB,C−
j=1

⟨θj, Xj⟩

+

τB,C−
j=1

ψ(θj)


I(τB,C < ∞, τB < τC )


for any adapted policy


θj: j ≥ 1


, where τB,C = n(τB ∧τC ) and τB, τC

are defined as in the beginning of Section 4.1.

Proof. Recall τB,C = n× (τB(n)∧τC (n)) and fix any policy (θk: k ≥

0) for which

Un(y) ≥ E[exp(−⟨θ, X⟩ + ψ(θ))Un(y + X/n)],

and τB,C < ∞. Consider the process

Mk+1 = Un(SτB,C∧(k+1)/n) exp


−

τB,C∧(k+1)−
j=1

⟨θj, Xj⟩

+

τB,C∧(k+1)−
j=1

ψ(θj)


.

We claim that (Mk: k ≥ 0) is a supermartingale. Note that

E[Mk+1|(Sj : 1 ≤ j ≤ k)] = E[Mk+1|(Sj: 1 ≤ j ≤ k)]I(τB,C > k)
+ E[Mk+1|(Sj: 1 ≤ j ≤ k)]I(τB,C ≤ k).
It follows that on {τB,C > k},

E[Mk+1|(Sj : 1 ≤ j ≤ k)] = exp


−

k−
j=1

⟨θj, Xj⟩

+

k−
j=1

ψ(θj)


EUn(Sk+1/n) exp(−⟨θ, Xk+1⟩ + ψ(θk+1))

≤ exp


−

k−
j=1

⟨θj, Xj⟩ +

k−
j=1

ψ(θj)


Un(Sk/n).

Evidently, on {τB,C ≤ k},

E[Mk+1|(Sj: 1 ≤ j ≤ k)]

= Un(SτB,C /n) exp


−

τB,C−
j=1

⟨θj, Xj⟩ +

τB,C−
j=1

ψ(θj)


.

Therefore,

E[Mk+1|(Sj: 1 ≤ j ≤ k)]

≤ exp


−

k−
j=1

⟨θj, Xj⟩ +

k−
j=1

ψ(θj)


Un(Sk/n)I(τB,C > k)

+Un(SτB,C /n) exp


−

τB,C−
j=1

⟨θj, Xj⟩

+

τB,C−
j=1

ψ(θj)


I(τB,C ≤ k)

= Mk

and, if S0 = ny,

Un(y) ≥ E


Un(SτB,C∧k/n) exp


−

τB,C∧k−
j=1

⟨θj, Xj⟩ +

τB,C∧k−
j=1

ψ(θj)



≥ E


Un(SτB,C /n) exp


−

τB,C−
j=1

⟨θj, Xj⟩

+

τB,C−
j=1

ψ(θj)


I(τB,C ≤ k)


.

By Fatou’s lemma, we obtain that

Un(y) ≥ E


Un(SτB,C /n) exp


−

τB,C−
j=1

⟨θj, Xj⟩

+

τB,C−
j=1

ψ(θj)


I(τB,C < ∞)


.

Using the boundary condition on B and the fact that Un(y), being
non-negative, must satisfy that Un(y) ≥ 0 on C we obtain

Un(y) ≥ E


exp


−

τB,C−
j=1

⟨θj, Xj⟩

+

τB,C−
j=1

ψ(θj)


I(τB,C < ∞, τB < τC )


. �

Using a similar formal argument as the one introduced in the
previous section in (18) we write Un(y) = exp(−nGn(y)) and
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postulate Gn(y) → G(y) as n → ∞ for some function G (y). If
we proceed using this postulated limit in the inequality obtained
in the previous lemma, after taking logarithms, we arrive at

−nG(y) ' min
θ

log E[exp(−⟨θ, X⟩ + ψ(θ)− nG(y + X/n))]

≈ min
θ

log E[exp(−⟨θ, X⟩ + ψ(θ)− nG(y)

− ⟨∇G(y), X⟩)].

We then conclude, as in the analysis leading to (23), that

0 ≥ min
θ

[ψ(θ)+ ψ(−∇G(y)− θ)]. (22)

First order optimality conditions imply that at the optimal value
θ∗(y) one has

∇ψ(θ∗(y)) = ∇ψ(−∇G(y)− θ∗(y)),

which yields θ∗(y) = −∇G(y)/2 and therefore we conclude that
inequality (22) can be expressed as

0 ≥ 2ψ(−∇G(y)/2), (23)

for y ∉ B ∪ C and subject to the boundary conditions (inherited
from Lemma 1) equal to G(y) ≤ 0 for y ∈ B. Inequality (23) is
the corresponding subsolution to the Isaacs equation developed in
(20). In order to conclude asymptotic optimality for αn(y0) (here
we let y0 as the initial position) we must have G(y0) ≥ 2IB,C (y0).
Sufficient conditions required to rigorously substantiate this result
are given in the following theorem.

Theorem 3 (Adaptation from [6] Theorem 8.1). Let Xk and Sk be
defined as usual, with ψ(θ) = E exp(⟨θ, Xk⟩) < ∞ for any θ ∈ Rd.
Suppose that G(y) satisfies (22) with the boundary condition G(y) ≤

0 for y ∈ B. Let θ∗(y) = −∇G(y)/2. Then, the state-dependent
sampler using k-th step exponential parameters θ∗(Sk/n) given by

Rn = exp


τB,C−
k=1


−⟨θ∗(Sk−1/n), Xk⟩

+ψ(θ∗(Sk−1/n))


I(τB,C < ∞, τB < τC )

has second moment satisfying

lim inf
n→∞

−
1
n
log E[R2

n] ≥ G(y0)

where S0 = y0. Consequently, if G(y0) ≥ 2IB,C (y0), then Rn is an
asymptotically optimal estimator.

We now apply the previous result to a couple of examples.

Example 3 (Multidimensional First Passage Time Problems).Assume
that µ = EXi ≠ 0 and consider vectors a1, . . . , am ∈ Rd such
that ⟨µ, ai⟩ < 0 for all i ∈ {1, . . . ,m}, where ⟨x, y⟩ is used to
denote the inner product between the vectors x, y ∈ Rd. Define
the event B = ∪

m
i=1{y: ⟨y, ai⟩ ≥ 1} and consider the first passage

time probability

αn(y) = P(τB(n) < ∞|Yn(0) = y),

where τB(n) = inf{t ≥ 0: Yn(t) ∈ B}. Suppose that for each
i ∈ {1, . . . ,m} there exists θ∗

i ≠ 0 such that ψ(aiθ∗

i ) = 0 and
⟨ai,∇ψ(aiθ∗

i )⟩ < ∞. Just as we explained in Example 1, since
EaTi Xk < 0 we must have that θ∗

i > 0 and also that
⟨ai,∇ψ(aiθ∗

i )⟩ ∈ (0,∞). This problem is the natural generaliza-
tion of Example 1 and can also be interpreted in terms of an in-
surance formulation in which one computes a ruin probability of
an insurance companywith several lines of business and for which
one is allowed to borrow some resources from one line to another
one. This formulation is discussed in [77].
We can take advantage of Example 1 in order to obtain
the asymptotics for αn. In particular, define τi(n) = inf{t > 1:
⟨Y (t), ai⟩ ≥ 1} for each i ∈ {1, . . . ,m} and note that one has the
elementary inequalities

m
max
i=1

P(τi(n) < ∞|Yn(0) = y)

≤ αn(y) ≤

m−
i=1

P(τi(n) < ∞|Yn(0) = y). (24)

Evidently, P(τi(n) < ∞|Yn(0) = y) is equivalent to the one di-
mensional first passage timeprobability discussed in Example 1. To
see this, one simply needs to work with the one dimensional ran-
domwalkwith iid increments (X1(i), X2(i), . . .)defined viaXk(i) =

⟨Xk, ai⟩. We then obtain that

P(τi(n) < ∞|Yn(0) = y) = exp[−nθ∗

i (1 − ⟨y, ai⟩)+ o(n)] (25)

as n → ∞ and therefore,

lim
n→∞

1
n
logαn(y) = −

m
min
i=1

θ∗

i (1 − ⟨y, ai⟩).

The natural state-independent technique, analogous to that of Ex-
ample 1, consists in computing j such that

θ∗

j (1 − ⟨y, aj⟩) =
m

min
i=1

θ∗

i (1 − ⟨y, ai⟩)

and applying exponential tilting according to the tilting parame-
ter ajθ∗

j . Unfortunately, just as we showed in Example 2, it turns
out that this strategy is not guaranteed to yield an efficient esti-
mator; such a counter-example can be constructed using a two di-
mensional Gaussian random walk using a lower bound analogous
to that developed for Example 2; the details are left as an exercise
to the reader.

We now use the subsolution approach to construct an impor-
tance sampling change-of-measure for this problem. Ultimately
we need to find a function G(·) satisfying the inequality (23) to-
gether with the corresponding boundary condition that G(y) ≤ 0
for y ∈ B. Moreover, since in the end we are after an asymptotic
upper bound for the second moment of the importance sampling
estimator and we wish to achieve the same decay rate as αn(y)2, it
makes sense to use the union bound (24) and (25) to postulate

exp(−nG(y)) =


m−
i=1

exp[−nθ∗

i (1 − ⟨y, ai⟩)]

2

.

Wenowverify that our selection is indeed a valid subsolution. First,
note that

∇G(y) = −2
m−
j=1

θ∗

j ajpj(y, n),

where

pj(y, n) =
exp[−nθ∗

i (1 − ⟨y, ai⟩)]
m∑
i=1

exp[−nθ∗

i (1 − ⟨y, ai⟩)]
.

Note that for each y, (p1(y, n), . . . , pm(y, n)) can be interpreted
as a probability vector. Moreover, observe that as n → ∞, the
probability vector degenerates and concentrates its mass on the
indexes corresponding to the tilting parameters θ∗

j that drive the
most likely way inwhich the randomwalk hits the target set. Now,
using Jensen’s inequality and convexity of ψ (·)we conclude that

ψ(−∇G(y)/2) = ψ


m−
j=1

θ∗

j ajpj(y, n)



≤

m−
j=1

pj(y, n)ψ(θ∗

j aj) = 0.
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In the last equality we used that ψ(θ∗

j aj) = 0 for each j =

1, . . . ,m. Now, if y ∈ B, then there exists i such that 1−⟨y, ai⟩ ≤ 0
and therefore evidently exp(−nG(y)) ≥ 1 or, equivalently, G(y) ≤

0. We then conclude that the importance sampling scheme gener-
ated by using as exponential tilting

θk(Sk−1/n) =

m−
j=1

θ∗

j ajpj(Sk−1/n, n) (26)

for k/n < τB(n) is asymptotically optimal.

Remark 2. Note that we have restricted ourselves to importance
sampling estimators of exponential tilting form. Nevertheless, the
form of (26), which is expressed in terms of a mixture, suggests
considering mixtures of exponential tiltings, or in other words,
distributions of the form

Q (Xk ∈ dy) =

m−
j=1

pj(Sk−1/n, n) exp(θ∗

j ay)P(Xk ∈ dy). (27)

Dupuis and Wang [6] also study these types of ‘‘generalized’’
controls which are asymptotically equivalent (in the sense of
achieving also weak efficiency) to those in (26), see also [7]. The
paper [78] shows that using Lyapunov inequalities the sampler
(27) actually yields strong efficiency.

The subsolution approach is better appreciated in situations in
which the system exhibits piecewise random walk dynamics, as
it happens in the setting of Jackson networks. The next example
illustrates this situation in the context of a two dimensional
random walk.

Example 4 (A First-Passage Time Problem With Discontinuous
Statistics). Let (Zk: k ≥ 1) be a sequence of iid two dimensional
standard Gaussian random variables (i.e. having zero mean and
identity covariance matrix). Let µ1 = (cos(9π/8), sin(9π/8))T
and µ2 = (cos(11π/8), sin(11π/8))T . We let W = (Wk: k ≥ 0)
be a two dimensional process defined via

Wk+1 = Wk + Zk+1 + I(Wk(1) < Wk(2))µ1 + I(Wk(1)
≥ Wk(2))µ2,

with W0 = ny, where y = (y(1), y(2))T is such that y(1) < 1 and
y(2) < 1. Define Yn(t) = W⌊nt⌋/n, B = {x = (x(1), x(2))T : x(1) ≥

1 or x(2) ≥ 1} and consider the problem of efficiently estimating
via simulation

αn(0) = P(τB(n) < ∞|Yn(0) = 0),

where τB(n) = inf{t > 0: Yn(t) ∈ B}.
Although the process (Wk: k ≥ 0) is not a random walk,

note that it behaves like a Gaussian random walk above and
below the 45° line (i.e. the line y(1) = y(2)); only the drift
changes in each of these two regions. We have selected the drift
parameters to simplify our analysis and flesh out the main issue
arising in constructing the subsolution in the current setting. A
picture illustrating the drift of the process in the whole space is
given next (see Fig. 1).

In this case it is not difficult to convince ourselves that if y(1) <
y(2) < 1, then

lim
n→∞

1
n
logαn(y) = 2µ1(2)(1 − y(2)).

and if 1 > y(1) ≥ y(2), then

lim
n→∞

1
n
logαn(y) = 2µ2(1)(1 − y(1)).
Fig. 1. Vector field of fluid paths.

The previous limits correspond to the first passage time problem of
a one dimensional random walk with Gaussian increments having
negative drift equal to µ1(2) = sin(9π/8) = µ2(1).

A similar development to that leading to (23) leads to the
subsolution inequality for G (·) given by

2ψ(y,−∇G(y)/2) ≤ 0,

where, for y = (y(1), y(2))T ,

ψ(y, θ) = log E exp (⟨Z1, θ⟩
+ I(y(1) ≥ y(2)) ⟨µ1, θ⟩ + I(y(1) < y(2)) ⟨µ2, θ⟩)

= ‖θ‖2/2 + I(y(1) ≥ y(2)) ⟨µ1, θ⟩

+ I(y(1) < y(2)) ⟨µ2, θ⟩ ,

and the corresponding boundary condition G(y) ≤ 0 for y ∈ B.
Now, let us first attempt a construction of the subsolution

similar to that given in Example 3, namely by considering the
functionG(·) such that

G(y) = −
2
n
log(exp[2nµ1(2)(1 − y(2))]

+ exp[2nµ2(1)(1 − y(1))]).

Note that in this case we have that

− ∇G(y)/2 =p1(y, n)θ∗

1 +p2(y, n)θ∗

2 , (28)

where

p1(y, n) =
exp[2nµ1(2)(1 − y(2))]

exp[2nµ1(2)(1 − y(2))] + exp[2nµ2(1)(1 − y(1))]
;

θ∗

1 = −(0, 2µ1(2)),

and

p2(y, n) =
exp[2nµ2(1)(1 − y(1))]

exp[2nµ1(2)(1 − y(2))] + exp[2nµ2(1)(1 − y(1))]
;

θ∗

2 = −(2µ2(1), 0).

Observe that

ψ(y,−∇G(y)/2) ≤ p1(y, n)ψ(y, θ∗

1 )+p2(y, n)ψ(y, θ∗

2 )

≤ 2p1(y, n)I(y(1) ≥ y(2))
+ 2p2(y, n)I(y(2) > y(1)).

Therefore, if |y(1)− y(2)| ≥ δ for some δ > 0 then

ψ(y,−∇G(y)/2) ≤ 2 exp(2δnµ1(2)). (29)

So, while the subsolution inequality is not satisfied, the size of the
violation converges to zero exponentially fast as n → ∞. On the
other hand, we can easily deduce that

ψ(y, θ∗

1 )p1(y, n)+ ψ(y, θ∗

2 )p2(y, n) > δ > 0

on a region of size O(1/n) around the 45° line, namely the line
y(1) = y(2). While this region might look small, note that in the



J. Blanchet, H. Lam / Surveys in Operations Research and Management Science 17 (2012) 38–59 49
Fig. 2. Plot of the function max

−4µ1(2)y(1),−4µ1(2)y(2), 2


θ ′, y


+∆


.

Fig. 3. Plot of the functionF0(y) = −4µ1(2)max(y(1), y(2)).

original scaling of the processW the region is of order O(1), so the
processmight spend a significant amount of time (in fact a random
amount of time of order O(1)) in a region where the likelihood
ratio of the importance sampling distribution is not appropriately
controlled.

The main difficulty with G(y) arises precisely because of the
discontinuous dynamics of the process W right on the line y(1) =

y(2). In order to deal with this problem we note that

lim
n→∞

G(y) = −2max {⟨θ1, y⟩ + µ2(1), ⟨θ2, y⟩ + µ1(2)}

= 2µ2(1)max{y(2), y(1)} − 2µ2(1). (30)

We will need to slightly modify the functionG(·) right on the set
y(1) = y(2) and in such a way that one can obtain a smooth
function G(·) whose gradient can be represented as a weighted
sum, just as in (28). In order to do this, definef1(y) = 2


θ∗

1 , y

, f2(y) = 2


θ∗

2 , y

,

and define the convex functionF0(y) = max{f1(y),f2(y)} = −4µ2(1)max{y(2), y(1)},

which is just a translation to the origin of the limit obtained in (30).
The plot ofF0(·) is given in Fig. 3.

The idea is to introduce an affine functionf0(y) = 2

θ∗

0 , y

+

∆, for some ∆ > 0, so that we can define corresponding
probabilities p0(y, n), p1(y, n) and p2(y, n), associated to θ∗

0 , θ
∗

1
and θ∗

2 , respectively, with the property that p1(y, n), p2(y, n) =

o(p0(y, n) exp(−εn)) for some ε := ε(∆) > 0 uniformly over y
such that |y (1)− y (2)| ≤ δ := δ(∆) and such that ψ(y, θ∗

0 ) ≤

0 for all y. We also wish the behavior of p0(y, n), p2(y, n) =

o(p1(y, n) exp(−εn)) uniformly over y(2) > y(1)+δ and similarly
p0(y, n), p1(y, n) = o(p2(y, n) exp(−εn)) uniformly over y(1) >
y(2)+ δ. If in addition, we selectψ(θ0, y) ≤ 0, just as we obtained
in the analysis (29), we will be violating the subsolution only by an
exponentially small amount in n, which as it turns out, is enough
to conclude asymptotic optimality.

A natural approach that comes to mind to construct such a
function f0(·) is by considering a supporting hyperplane to the
function F0(·) right along the axis y(1) = y(2). Let us denote
such supporting hyperplane by f (y) = 2 ⟨η, y⟩. By shifting such
hyperplane an amount ∆ we obtain a picture such as the one
shown in Fig. 2.
All subgradients corresponding to supporting hyperplanes strictly
along y(1) = y(2) are potential candidates for 2θ∗

0 . However, as
Fig. 4. Plot of the level curves {θ : ψ (θ, y) = 0} for y = (y (1) , y (2)) with
y (1) < y(2) and y(1) > y(2).

we indicated before, we also wish to select ψ(θ∗

0 , y) ≤ 0. So, it is
useful to plot the functionsψ(·, y) for y(2) > y(1) and y(2) < y(1)
respectively, as we do next.

The intersection of the areas enclosed by both circles shown in
Fig. 4 above correspond to the points θ for which ψ(θ, y) ≤ 0,
for each y ∈ R2. A natural selection for θ∗

0 (although clearly not the
only one) is θ∗

0 = (−µ2(1),−µ2(1))T . Clearly, since −µ2(1) ∈

(0, 1) we have that ψ(θ∗

0 , y) < 0 for each y ∈ R2 and such a
selection indeed corresponds to the supporting hyperplane that
makes the plot of Fig. 2 symmetric around the line y(1) = y(2).

We now have all the necessary elements required to define our
subsolution. In particular, by virtue of our considerations leading
to the definition ofF0(·) and our selection of θ∗

0 , we let

G(y) = −
2
n
log(exp[n(f1(y)+ µ2(1))] + exp[n(f2(y)+ µ2(1))]

+ exp[n(f0(y)+ µ2(1))]).

The importance sampling scheme is generated by using as
exponential tilting parameter at time k:

θk(Wk−1/n) =

2−
j=0

θ∗

j pj(Wk−1/n, n),

where pj(Wk−1/n, n) is as given in Box I below. Under the
importance sampling distribution the process evolves according to
the Markov chainWk+1 = Wk +Zk+1 + θk(Wk/n), W0 = 0,

where (Zk: k ≥ 1) is a sequence of iid two dimensional standard
Gaussian random variables. The importance sampling estimator,
namely,

Rn = exp


−

nτB(n)−
k=1

θk(Wk−1/n)(Wk − Wk−1)

+

nτB(n)−
k=1

ψ(Wk−1/n, θk(Wk−1/n))


I(τB(n) < ∞),

satisfies

lim
n→∞

log ERn

logαn(0)
≥ 2 +∆/µ2(1).

One can select ∆ := ∆n −→ 0 at a suitable speed in
order to conclude asymptotic optimality. These types of issues
are discussed in the next subsection on remarks and further
considerations on state-dependent importance sampling for light-
tailed systems.
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pj(Wk−1/n, n) =
exp[n(fj(Wk−1/n)+ µ2(1))]

exp[n(f1(Wk−1/n)+ µ2(1))] + exp[n(f2(Wk−1/n)+ µ2(1))] + exp[n(f0(Wk−1/n)+ µ2(1))]
,

whenever k/n < τB(n).
Box I.
4.3. Notes on state-dependent importance sampling for light-tailed
systems

The discussion so far in this section is takenmainly from a series
of papers by [5,79,6]. It is important to note, however, that we
have restricted ourselves to exponential changes-of-measure. They
formulate optimal state-dependent twisting as an HJB equation
that leads to a differential game and a corresponding Isaacs
equation in [5]. The case for uniformly recurrent Markov chain
is studied in [79], and the general method of finding subsolution
in a variety of examples is shown in [6]. Moreover, [7] studies
the subsolution approach to the tandem queue problem spotted
by [1], as well as some generalizations. Importance sampling for
Jackson network using similar approach is done in [80]. The use of
viscosity solution in large deviations analysis of queueingnetworks
can be seen in [81]. Recently, rare event simulation estimators
for measure-valued light-tailed systems are developed in [55,82].
Developing Isaacs equations in these settings appears to be a very
challenging task.

Other related approaches and general conditions for asymp-
totically optimal importance samplers are studied in [83,46,84,
48]. Sharper analysis (beyond weak efficiency) of state-dependent
(subsolution based) importance sampling estimators is given
in [55].

5. Large deviations and importance sampling for heavy-tailed
random walks

We now move to the study of Monte Carlo methods for
random walks with heavy-tailed increments. Large and moderate
deviations for heavy-tailed random walks are studied in the
classical papers of [85–90]. More recent work on first passage and
other related quantities include [91–94]. The paper [95] studies
conditional limit theorems and their applications to insurance risk
analysis.

Let us start by discussing classical simulation techniques in this
setting. This discussion will allow us to explain the basic principles
that govern the occurrence of rare events when heavy tails are
present and itwill also allowus to set the stage for state-dependent
techniques.

5.1. Classical simulation techniques for heavy-tailed random walks

Let us start by collecting some useful definitions related to
heavy-tailed systems (see, for instance, [96]).

Definition 5. A non-negative random variable X is said to be
subexponential if given m independent copies X1, X2, . . . , Xm of X
we have P (X1 + X2 + · · · + Xm > x) ∼ mP (X > x) as x ↗ ∞.

The subexponential property, as we shall see, provides insight
into how large deviations tend to occur in heavy-tailed models.

Proposition 1. Suppose that Sm = X1 + · · · + Xm where the Xi’s are
iid non-negative subexponential rv’s.

P

max
1≤j≤m

Xj > n|Sm > n


−→ 1 (31)
as n ↗ ∞. Moreover, for each Borel set A ⊂ Rd, definePn(·) via
Pn((X1, . . . , Xm) ∈ A) =

m−
j=1

P((X1, . . . , Xm) ∈ A|Xj > n)
1
m
,

then

sup
A

|P((X1, . . . , Xm) ∈ A|Sm > n)−Pn((X1, . . . , Xm) ∈ A)|

−→ 0

as n ↗ ∞.

Proof. The first part follows by definition of subexponentiality.
Indeed, it follows by Bonferroni inequalities that

P (Sm > x) ∼ mF (x) ∼ P

max
1≤j≤m

Xj > x


as x ↗ ∞. (32)

For the second part, first note that

P ((X1, . . . , Xm) ∈ A|Sm > n)

= P

(X1, . . . , Xm) ∈ A| max

1≤j≤m
Xj > n



×

P

max
1≤j≤m

Xj > n


P(Sm > n)

+

P

(X1, . . . , Xm) ∈ A, max

1≤j≤m
Xj ≤ n, Sm > n


P(Sm > n)

.

Noting that

P

(X1, . . . , Xm) ∈ A, max

1≤j≤m
Xj ≤ n, Sm > n


P(Sm > n)

≤

P

max
1≤j≤m

Xj ≤ n, Sm > n


P(Sm > n)
→ 0

as n → ∞ and using (32) we conclude thatP ((X1, . . . , Xm) ∈ A|Sm > n)

− P

(X1, . . . , Xm) ∈ A| max

1≤j≤m
Xj > n

 → 0

uniformly over all Borel sets A as n → ∞. Similarly, it follows that

sup
A

P (X1, . . . , Xm) ∈ A| max
1≤j≤m

Xj > n


−Pn ((X1, . . . , Xm) ∈ A)

 −→ 0

and therefore we conclude our result. �

The previous proposition illustrates the so-called ‘‘catastrophe
principle’’ behind extreme behavior of heavy-tailed systems,
which postulates that large deviations are caused by extremes
in one or few components. In this case, the sum is large
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because one single component, namely the maximum, is large. In
previous sections we saw that a convenient change-of-measure
for importance sampling is suggested by studying the asymptotic
conditional distribution of the underlying process given the rare
event of interest. Now, consider applying the idea behind such
conditional description to a simple example. Suppose that we
are interested in estimating P (Sm > n) efficiently as n ↗ ∞.
Proposition 1 indicates that an asymptotic conditional description
of the Xj’s given Sm > n assigns zero mass to sample paths for
which all the random variables are less than n. As a consequence,
the natural asymptotic description of the Xj’s given Sm > n is
singular with respect to the nominal (original) distribution and
therefore, contrary to the light-tailed case, a direct importance
sampling approach is not feasible. This featurewas observed by [4],
which provides an extended discussion of the difficulties that are
inherent to the design of efficient simulation estimators for heavy-
tailed systems.

Perhaps the most relevant special subclass of subexponential
random variables is given by those whose right tail is regularly
varying, which we define next.

Definition 6. A random variable X with tail distribution F (·) =

P (X > ·) = 1 − F (·) has a regularly varying right tail with index
α > 0 if F (βx) /F (x) −→ β−α as x ↗ ∞ for any β > 0. Similarly,
X has a regularly varying left tail with index α > 0 if −X has a
regularly varying right tail with index α > 0.

A function L (·) is slowly varying at infinity if L (βx) /L (x) −→ 1
as x → ∞ for each β > 0. Therefore, if X has regularly varying
right tail with index α > 0 we often write F (t) = t−αL (t).

In addition to regularly varying distributions, subexponential
random variables include models that incorporate Weibull-type
tails with index γ ∈ (0, 1), which satisfy F (x) ∼ c exp (−βxγ )
for c, β > 0 as x ↗ ∞. Other popular special models include log-
normal, log-gamma and t distributions (the last two models are
particular cases of regular variation).

We summarize a few important properties of regularly varying
distributions that will be used in our future development; see for
instance, [97] or [96].

Theorem 4. Suppose that X possesses a regularly varying right tail
with index α > 0; in particular, P(X > t) := F(t) = t−αL(t). Then,
(i) (Karamata’s theorem) If α > 1, then∫

∞

t
F(s)ds =

t−α+1L(t)
α − 1

(1 + o(1))

as t → ∞.

(ii) (Breiman’s theorem) Let Z be positive random variable such that
EZα+ε < ∞ for some ε > 0, then

P (ZX > t) = t−αL(t)EZα(1 + o(1))

as t → ∞.

(iii) (Pareto conditional excess tail) For any x > 0 we have that

P(X − nx > nt|X > nx) →
1

(1 + t/x)−α

as n → ∞.

(iv) (Long tails) For any x ∈ R

P(X > t + x)
P(X > t)

−→ 1

as t → ∞.
The first provably efficient rare-event simulation algorithms for
heavy-tailed random walk problems focused on the problem of
estimating

αn = P(Sm > n), (33)

efficiently as n → ∞. This calculation is motivated by the
ruin problem explained in Example 2 in the case of Poisson
arrivals. In this case, there exists a representation, known as
Pollaczek–Khintchine’s formula (see [30, p. 237]) which allows
to express the probability of eventual ruin, given that the initial
reserve of the company is n, as P(SM > n), where M is a
suitably defined geometric random variable independent of an
appropriately defined random walk (Sk: k ≥ 1).

The first weakly efficient algorithm for estimating (33) was
designed by [98] for regularly varying increments and it was based
on a conditional Monte Carlo idea (see also [4]). They note that
it is straightforward to have direct access to the distribution of
X(m) := max1≤j≤m Xj. Using the fact that the event {Sm > n}belongs
to the single jump domain as n → ∞ it is natural to condition on
the first m − 1 order statistics X(1), . . . , X(m−1) corresponding to
the Xj’s (j ≤ m) (i.e. integrating out the contribution of X(m) which
is the most relevant one). Following this idea, [98] provided the
following result.

Proposition 2. Assume that X1 has a density and a regularly varying
right tail with index α > 0. Define S(m−1) = X(1) + · · · + X(m−1) and
set

Z0 (n) = P

Sm > n|X(1), . . . ., X(m−1)


=

F

n − S(m−1)


∨ X(m−1)


F

X(m−1)

 .

Then, Z0 (n) is a logarithmically efficient estimator for P (Sm > n) as
n ↗ ∞.

Proof. Note that

EZ0 (n)2 = E[Z0 (n)2 ; X(m−1) ≤ n/2]

+ E[Z0 (n)2 ; X(m−1) > n/2].

Now, let us denote the density of X1 by f (·). It follows that the
density of X(m−1), which we shall denote by f(m−1) (·) satisfies

fm−1 (x) = m (m − 1) F (x)m−2 F (x) f (x) .

Therefore,

E(Z0 (n)2 ; X(m−1) > n/2) ≤ P

X(m−1) > n/2


= O(F (n)2)

as n ↗ ∞. In addition,

E(Z0 (n)2 ; X(m−1) ≤ n/2) =

∫ n/m

0
E(Z0 (n)2 ; X(m−1) ∈ dx)

+

∫ n/2

n/m
E(Z0 (n)2 ; X(m−1) ∈ dx).

Observe that on X(m−1) < n/mwe have S(m−1) < (m − 1) n/m and
therefore (by Karamata’s theorem)∫ n/m

0
E(Z0 (n)2 ; X(m−1) ∈ dx) ≤

∫ n/m

0

m2F (n/m)2 f (x)

F (x)
dx

= O(F (n)2 log (n)).

The last integral piece (from n/m to n/2) is handled as in the
previous display. Logarithmic efficiency then follows as a result of
the previous estimates. �
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Regular variation has been used extensively in the previous
result, so it may not be surprising that the estimator Z0 (n), in
the presence of other types of heavy-tailed assumptions such as
Weibull tails, fails to be logarithmic efficient. Improved Monte
Carlo estimators have been recently proposed by [99]. In particular,
they observe that in order to reduce some uncertainty, one can also
consider the index corresponding to the largest jump and note that

P (Sm > n) =

m−
j=1

E

P

Sm > n, X(m) = Xj|X1,

. . . , Xj−1, Xj+1, . . . , Xm


= mE

P

Sm > n, X(m) = Xm|X1, . . . , Xm−1


.

Therefore, a natural conditionalMonte Carlo estimator that one can
consider is

Z1 (n) = mP

Sm > n, X(m) = Xm|X1, . . . , Xm−1


= mF


(n − Sm−1) ∨ max(Xj : j ≤ m − 1)


.

The paper [99] proves the following result (the analysis is similar
to that given in the proof of Proposition 2 and therefore the details
are omitted).

Proposition 3. Assume that X1 has a density and regularly varying
right tails. Then, the estimator Z1 (n) is strongly efficient as n ↗ ∞.
In addition, if X1 has Weibull-type tails with index γ ∈ (0, .58) then
Z1 (n) is logarithmically efficient.

The previous proposition indicates that Z1 (n) can only be
guaranteed to be efficient if γ is sufficiently small. In the design
of efficient estimators in the heavy-tailed setting it often occurs
that models with less heavy tails than, say regularly varying, tend
to require more and more information of all the components (not
only the largest one). It is partly due to this feature that the
majority of the efficient estimators developed for heavy-tailed
systems assume special characteristics (such as regular variation
orWeibullian-type tails). Notable exceptions are the algorithms by
Blanchet and Glynn [9], Blanchet and Li [123] which are designed
to work basically for all subexponential distributions. Additional
conditional Monte Carlo algorithms have been proposed for the
transient distribution of anM/G/1 queue by [100]. Their estimator
is proved to be strongly efficient for regularly varying input.

The paper [4] discusses the difficulties of applying importance
sampling to heavy-tailed problems—an important problem con-
cerns the singularity issue that we mentioned in the paragraph af-
ter the proof of Proposition 1. Nevertheless, they also study ideas
that give rise to provably efficient algorithms. For instance, they
note that if the Xj’s have a density and regularly varying tails with
index α > 0, then a logarithmically efficient importance sampling
scheme for estimating P (Sm > n) is obtained by sampling the Xj’s
in an iid fashion according to the tail distribution P Xj > x


=

1/ log (e + x) for x ≥ 0. Logarithmic efficiency for this estimator
is very easy to obtain by means of Karamata’s theorem (see, for
instance, [23, p. 176]). This selection of importance sampling dis-
tribution biases the increments to induce very heavy-tailed distri-
butions and therefore over-samples such sample paths for which
several (and not only themaximum) components contribute to the
occurrence of the rare event. However, this importance sampler,
although logarithmically efficient, does not seem to perform well
in practice as reported by [23, p. 176].

Another importance sampling approachwas suggested by [101]
and is based on applying exponential tilting type ideas via the
hazard rate corresponding to the Xj’s. A basic observation behind
Juneja and Shahabuddin’s hazard rate tilting approach is the
fact that if the Xj’s have a positive density, then P


Xj > t


=

exp (−Λ (t)), whereΛ (t) =
 t
0 λ (s) ds and λ (·) is the hazard rate
of Xj. In particular, if T is exponentially distributed with mean 1,
then Λ−1 (T ) is a copy of Xj and therefore, for appropriate θ , we
can define hazard rate tilting densities, fθ (·), via

fθ (x) =
exp (θΛ (x)) f (x)
E exp


θΛ


Xj
 = exp (θΛ (x)) f (x) (1 − θ) .

The corresponding hazard rate importance sampling estimator for
P (Sm > n) takes the form

Z2 (n) =

exp


−

m∑
j=1
θΛ


Xj


(1 − θ)m
I (Sm > n) .

Using Eθ (·) to denote the expectation operator assuming that the
Xj’s are iid with density fθ (·)we obtain

Eθ (Z2 (n)2) = (1 − θ)−2m Eθ

×


exp


−2

m−
j=1

θΛ

Xj


; Sm > n


.

Assuming that Λ (·) is a concave function (as is the case for
standard Pareto and Weibull random variables), then we obtain
that if Sm > n then

m−
j=1

Λ

Xj


≥ Λ


m−
j=1

Xj


= Λ (Sm) ≥ Λ (n) (34)

and therefore, if θ ≥ 0, we obtain

Eθ (Z2 (n)2) ≤ (1 − θ)−2m exp (−2θΛ (n)) .

Taking θ = 1−η/Λ (n) for some η > 0 yields the following result.

Proposition 4. If the Xj’s are non-negative and have a concave
cumulative hazard rate functionΛ (·) then Z2 (n) is a logarithmically
efficient estimator for P (Sm > n) as n ↗ ∞.

The previous hazard rate tilting strategy has been improved for
the case in which the number of increments follows a geometric
distribution as in the M/G/1 setting. Such approaches involve
suitable translation of the functionΛ (·) applied when tilting. This
adjustment is convenient in order to apply the concavity argument
given in (34) at a more convenient location relative to the rare
event Sm > n (see [50] and references therein). The hazard rate
tilting idea has inspired further studies in the field because it tries
to develop rare-event simulationmethodology through a structure
that resembles that of light-tailed input systems (via exponential
tiltings). Nevertheless, virtually all estimators that take advantage
of this idea utilize the random walk structure substantially and
some sort of subadditivity argument onΛ (·) as we did in (34).

5.2. Large deviations for heavy-tailed random walks

As we illustrated by means of the catastrophe principle, the
large deviations theory for heavy-tailed random walks has a
completely different qualitative characteristics than its light-tailed
counter-part. Intuitively, one can explain this because in light-
tailed situations large deviations occur, as we have seen, because
of a ‘‘conspiratorial effect’’ among all the increments; each of
them follows a specific biased (exponentially tilted) distribution
that tracks the ‘‘optimal’’ trajectory. In the heavy-tailed setting, in
contrast, large deviations occur because only one or few jumps
contribute to the occurrence of the rare event; the rest of the
jumps evolve according to the original / nominal distribution. This
intuition has been made rigorous in considerable generality only
in situations in which only one jump contributes to the occurrence
of the rare event in the regularly varying setting [102]. (We shall
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refer to this setting as ‘‘the single jump domain’’.) A few examples
of interest in which large deviations happen by the occurrence
of more than one jump (‘‘multiple jump domain’’) have been
rigorously studied mostly in the setting of queueing systems (see
[103–105]).

Throughout the rest of our technical discussion we shall con-
centrate on regularly varying distributions.Wewill provide further
remarks on other types of heavy-tailed increment distributions at
the end of the section.

In spite of not having a large deviations theory that is as
comprehensive as that of light-tailed systems, in the heavy-tailed
case there is a powerful heuristic that allows to ‘‘guess’’ a plausible
form for large deviations results and the associated ‘‘optimal path’’
to the rare event. This heuristic, which is known as the ‘‘fluid
heuristic’’, is based on elementary Law of Large Numbers analysis
and basic facts of regularly varying distributions. Since, as we shall
explain, the methodology for constructing the algorithms can be
used to rigorously justify (up to a constant) the heuristics, we
content ourselves with explaining how to apply the fluid heuristic
in a few examples and point to relevant references when available.

In order to guide our discussion we shall revisit a couple of
examples studied earlier in the light tailed case.

Example 5 (First Passage Time Probabilities For Heavy-Tailed Ran-
domWalk).We consider once again the surplus process introduced
in Example 1. In this case, however, we shall assume that the claim
sizes, namely the Zj’s, are regularly varying with index α > 1.

We define Xj = Zj − pTj, where Tj (the j-th inter-arrival time),
is exponentially distributed with unit mean. Assume that EXk =

−µ < 0. Suppose that S0 = y, let τn = inf{k ≥ 0 : Sk > n} and
consider the problem of approximating the ruin probability

αn(y) = P (τn < ∞|S0 = y)

as n ↗ ∞.
Because the service times are heavy-tailed we expect that only

a few jumps would contribute to the rare event. By the geometry
of the problem, however, it is natural to expect that only one jump
will contribute to ruin and thus we are in the single jump domain.

The fluid heuristic consists in substituting the random walk by
its fluid or Law of Large Numbers behavior prior to the big jump.
The associated fluid path in this case is S⌊nt⌋/n ≈ y(t) = y − µt
and therefore the fluid heuristic suggests

αn(y) ∼

∞−
k=0

P(Xk+1 + y(k) > n)

∼

∫
∞

0
P (X > n + µt − y) dt

as n ↗ ∞, thereby neglecting the contribution of more than one
jump and fluctuations beyond the Law of Large Numbers.

Letting u = n + µt − y we obtain

αn(y) ∼
1
µ

∫
∞

n−y
P (X > u) dy.

as n ↗ ∞. This approximation turns out to be correct even beyond
the assumption of regularly varying service times (see [106–109]).

We now discuss an example in the multiple jump domain.

Example 6 (A Multiple Jump Large Deviations Event). We revisit
Example 2, now in the context of heavy-tailed random variables. In
particular, we assume that (Xk: k ≥ 1) is a sequence of iid random
variables t distributed with v > 1 degrees of freedom and we are
interested in approximating the probability

αn = P[ min
0≤k≤n

Sk ≤ an, Sn > nb]

as n → ∞, where Sk = X1 + · · · + Xk and a < 0 < b.
The associated fluid path in this case is Sk/n ≈ y(k) := 0 and
therefore, given the geometry of the problem, it is not difficult to
convince ourselves that in the current situation the most likely
path leading to the rare event involves two jumps, therefore, we
are in the multiple jump domain.

The fluid heuristic then suggests

αn ∼

−
1≤k1<k2≤n

P(Xk1 + y(k1 − 1) < an)

× P(Xk2 + y(k2)− y(k1)+ Xk1 > nb|Xk1

+ y(k1 − 1) < an)

∼
n(n − 1)

2
P(X1 < an)P(X2 + X1 > nb|X1 < an).

Once again, note that we replace the path in-between jumps by
the fluid trajectory and neglect the contributions of more than two
jumps. We can further simplify the previous expression using the
fact that for each y < 0,

P(X1 < yn + an|X1 < an) → P(Za < y + a) :=
1

(y/a + 1)v
,

as n → ∞. The previous limit indicates that the distribution of
X1/n given that X1/n < a can be well approximated by Za ≤ a
with the above distribution. This observation, combined with the
heuristic approximation developed earlier in turn suggests

αn ∼
n(n − 1)

2
P(X1 < an)P(X2 > n(b − Za)),

where Za is independent of X2. By the symmetry of the t
distribution it follows that P(X1 < an) = P(X1 > |a| n). Further,
since a t distributionwith v degrees of freedom is regularly varying
with index v, it follows that P(X1 > |a| n) = |a|−v P(X1 >
n)(1 + o(1)) as n → ∞. In this case, evidently, we have that
0 < 1/(b− Za) < 1/(b− a) and therefore we can apply Breiman’s
theorem to conclude that

P(X2 > n(b − Za)) = E(b − Za)−vP(X2 > n)(1 + o(1)),

as n → ∞. We then conclude the following plausible asymptotic
approximation,

αn ∼ n2P(X1 > n)2
|a|−v

2
E(b − Za)−v = Θ(n2P(X1 > n)2),

as n → ∞. We have not been able to locate a reference for this
asymptotic result in the literature, but it is not too difficult to show
rigorously its validity.

5.3. Conditional distributions and implications for simulation

As we discussed in Section 2, it is useful to understand the
conditional distribution of the random walk given the occurrence
of the rare event of interest because such conditional distribution
provides the optimal change-of-measure (in terms of variance
minimization). A natural starting point, aswe followed in the light-
tailed setting would be to obtain a conditional limit theorem for
the Xk’s given the rare event of interest. The asymptotic conditional
distribution would then be a natural candidate for an importance
sampling distribution. Let us pursue this idea in the context of
Example 5.

Once again, we use the fluid heuristic to obtain an asymptotic
result for the conditional distribution of (X1, . . . , Xk) for any fixed
k > 0 given that τn < ∞ and that S0 = 0 as n → ∞. Given
−∞ < x−

j < x+

j < ∞ for j ∈ {1, . . . , k} we note that

P

x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k |τn < ∞


=
P

x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k , τn < ∞


αn (0)
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=
E[I(x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k )αn(Sk)]
αn(0)

.

Note that αn(y) is increasing as a function of y. Therefore, letting
s−k = x−

1 + · · · + x−

k and s+k = x+

1 + · · · + x+

k ,

P(x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k )×
αn(s−k )
αn(0)

≤ P

x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k |τn < ∞


≤ P(x−

1 ≤ X1 ≤ x+

1 , . . . , x
−

k ≤ Xk ≤ x+

k )×
αn(s+k )
αn(0)

. (35)

As we have seen in Example 5,

αn(y) ∼ G(n − y) :=
1
µ

∫
∞

n−y
P (X > t) dt

as n − y → ∞. Now, as a consequence of Karamata’s theorem
(see for example [97, p. 17]), G (·) is also regularly varying (i.e.
exhibits basically power-law tail behavior) and therefore it follows
easily that G (n − y) /G(n) −→ 1 as n → ∞ for each y. We then
conclude (taking the limit in (35)) that the asymptotic conditional
distribution of (X1, . . . , Xk) given that τn < ∞ remains unchanged
as n → ∞.

The fact that the asymptotic conditional distribution of
(X1, . . . , Xk) does not provide a useful description that can be used
as an importance sampling distribution in the prelimit is one of
the main reasons that makes the design of efficient importance
sampling estimators for heavy-tailed systems a challenging
problem. This observation lies at the center of the discussion in
the paper by [4], which provides a number of counter-examples,
in the spirit of the previous analysis, illustrating the challenges
that arise in the design of efficient Monte Carlo methods in heavy-
tailed settings. In the same vein, the papers of [3,110] show that
no state-independent importance sampling estimator can achieve
weak efficiency.

Let us now take a more direct approach to approximate the
increment Xk+1 given the current position Sk = s of the random
walk at time k and given that k < τn < ∞. We note (adopting the
notation introduced in (5)) that

P (Xk+1 ∈ dy|τn ∈ [k + 1,∞), Sk = s)
= P (Xk+1 ∈ dy, τn = k + 1|τn ∈ [k + 1,∞), Sk = s)

+ P (Xk+1 ∈ dy, τn > k + 1|τn ∈ [k + 1,∞), Sk = s) .

Now,

P (Xk+1 ∈ dy, τn = k + 1|τn ∈ (k,∞), Sk = s)

= p∗

n(s)
P (Xk+1 ∈ dy) I(y > n − s)

P (Xk+1 > n − s|s)
, (36)

where

p∗

n(s) =
P (Xk+1 > n − s)

αn(s)
.

Using the approximation in Example 5, we have that

p∗

n(s) ∼ p(n − s) := µ
P (Xk+1 > n − s)
∞

n−s P (Xk+1 > t) dt
∼
µ(α − 1)
(n − s)

as n − s → ∞. On the other hand, we have that

P (Xk+1 ∈ dy, τn > k + 1|τn ∈ [k + 1,∞), Sk = s)

=
P (Xk+1 ∈ dy, τn ∈ [k + 2,∞)|Sk = s) I(y ≤ n − s)

αn(s)

=
P (Xk+1 ∈ dy) I(y ≤ n − s)

P (Xk+1 ≤ n − s)

× P (Xk+1 ≤ n − s)
αn(s + y)
αn(s)

. (37)
If we apply the fluid heuristic locally, that is by replacing Xk+1 by
its mean, namely EXk+1 = −µ, we arrive at
αn(s + Xk+1)

αn(s)
≈
αn(s − µ)

αn(s)

≈
(n − s + µ)−α+1

(n − s)−α+1 ≈ [1 + µ/(n − s)]−α+1

= 1 −
µ(1 − α)

n − s
+ o


1

n − s


.

Therefore, applying the previous local version of the fluid heuristic
into (37) and combining this with (36) we arrive at the non-
rigorous approximation
P (Xk+1 ∈ dy|τn ∈ [k + 1,∞), Sk = s)

≈
P (Xk+1 ∈ dy) I(y > n − s)

P(Xk+1 ≤ n − s)
p(n − s)

+
P (Xk+1 ∈ dy) I(y ≤ n − s)

P (Xk+1 ≤ n − s)
[1 − p(n − s)]. (38)

It turns out that this approximation is indeed valid in total variation
[111], and it can be used to derive other conditional limit theorems,
such as the conditional distribution of τn given that τn < ∞. For
instance, applying the fluid heuristic we have that if τn > nt , then
Sk ≈ −µk whenever k ≤ nt and therefore

P(τn > nt|τn < ∞) ≈

nt∏
k=1

(1 − p(n + µk))

≈ exp


−

nt−
k=1

µ(α − 1)
n + µk



≈ exp


−

∫ nt

0

µ(α − 1)
n + µs

ds


=
1

(1 + µt)α−1 (39)

as n → ∞. This result and analogous joint approximation results
involving τn and other quantities of interest such as the overshoot
and undershoot at the time of ruin have been derived, using ladder
height theory, by [95]; related extensions in continuous time are
given in [112]. The heuristic approach taken to derive (39) and
other conditional limit theorems is made rigorous in [111]. It is
important to note that if 1 < α < 2, then the asymptotic
conditional distribution of the normalized hitting time τn/n given
that τn < ∞ has infinite mean.

5.4. State-dependent importance sampling techniques for heavy-
tailed random walks

In the previous section we argued, using a local version of the
fluid heuristic, that a family of importance sampling distributions
based on a simple mixture appears suitable to design provably
efficient estimators. The family suggested by (38) is a mixture
of two components, one involving the occurrence of the rare
event in question and a second component corresponding to the
nominal/original distribution of the increment distribution. The
form of themixture is consistentwith theway inwhich rare events
occur in a heavy-tailed setting. This type of mixture family was
introduced by [113] in the context of estimating P(Sm > n) as
n → ∞ for fixed m. In this context they were able to design a
strongly efficient estimator for P(Sm > n). In fact, their estimator
was shown to give a relative error of atmost ε > 0 for any fixed ε >
0. Their proof technique is based on a weak convergence analysis,
using Proposition 1, which is facilitated substantially because m
is held fixed and independent of n. We now quickly illustrate the
approach proposed by [113].
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Example 7 (Weak Convergence Approach And State-Dependent
Importance Sampling). We shall estimate αn = P(Sm > n)
efficiently as n → ∞ for fixed m. For simplicity we shall assume
that the Xk’s are non-negative random variables with density
f (·) and tail distribution function F (·). The family of importance
sampling distributions thatwe consider is the following. Given that
Sk−1 = s for 1 ≤ k < m, then the next increment is sampled
according to the density

fk(x|s) =
pk (s) f (x) I (x > a (n − s))

F (a (n − s))

+
(1 − pk (s)) f (x) I (x ≤ a (n − s))

F (a (n − s))
, (40)

where pk (s) ∈ (0, 1) is selected appropriately and a ∈ (0, 1). The
parameter a, as we shall see, is introduced in order to facilitate a
dominated convergence argument. If k = m (i.e. Sm−1 = s), then
the increment is sampled according to the law of Xm given that
Xm > n − s. Dupuis et al. [113] obtains a limiting control problem
that allows to optimally select the pk’s. Note that pk (s) represents
the probability that the rare event is caused in the k-th step given
that Sk−1 = s < n. Therefore, if k ≤ m − 1, we would like to select

pk (s) ≈ P (Sk > n|Sm > n, Sk−1 = s)

=
P (Xk > n − s)

P(Sm > n|Sk−1 = s)
≈

P (Xk > n − s)

(m − k + 1)F (n − s)

≈
1

m − k + 1
.

Motivated by this observation, we shall propose pk (s) = 1/(m −

k + 1) for 1 ≤ k ≤ m − 1 if s ≤ n and pk (s) = 1 is s > n. We then
conclude that the importance sampling estimator, Rn, satisfies

Rn(X1, . . . , Xm)

=
f (X1)

f1 (X1|S0)
×

f (X2)

f2 (X2|S1)
× · · ·

×
f (Xm)

fm (Xm|Sm−1)
I(Sm > n)

=

m−1∏
k=1


F (a (n − Sk−1)) I (Xk > a (n − Sk−1))

pk (Sk−1)

+
F (a (n − Sk−1)) I (Xk ≤ a (n − Sk−1))

(1 − pk (Sk−1))


×

I(Sm−1 < n)F(a (n − Sm−1))+ I(Sm−1 ≥ n)


.

Let P (·) be the probability measure induced by the proposed
importance sampling distribution; we use E (·) to denote the
associated expectation operator. Then

1
P(Sm > n)2

E[Rn(X1, . . . , Xm)
2
]

=
1

P(Sm > n)
E[Rn(X1, . . . , Xm)|Sm > n].

We wish to use Proposition 1 to approximate the previous
expectation. In order to do this we first will argue that Rn/P(Sm >
n) is bounded by some constant uniformly as n → ∞. Note that
there exists 1 ≤ k ≤ m such that Xk > a(n − Sk−1). Otherwise, if
for all 1 ≤ k ≤ m, we have that Sk − Sk−1 = Xk ≤ a(n − Sk−1) or
equivalently we have that

Sk ≤ an + (1 − a)Sk−1,
which iterating yields

Sk ≤ an + (1 − a)[an + (1 − a)Sk−2]

≤ an + a(1 − a)n + a(1 − a)2n + · · · + a(1 − a)k−1n
≤ n(1 − (1 − a)m) < n.

Now let υn = inf{k ≥ 1 : Xk > a(n − Sk−1)} and note that on
υn = iwe have that Si−1 ≤ n(1 − (1 − a)m)

RnI(υn = i) ≤ F

a(1 − a)mn


2mI(υn = i)

×

m−1∏
k=1

1
min(1/(m − k + 1), (1 − 1/(m − k + 1)))

.

Therefore, we have that

Rn(X1, . . . , Xm)

P(Sm > n)
≤

F (a(1 − a)mn)
P(Sm > n)

×

m−1∏
k=1

2
min(1/(m − k + 1), (1 − 1/(m − k + 1)))

= O(1)

as n → ∞. We then conclude thanks to Proposition 1 that

1
P(Sm > n)

E[Rn(X1, . . . , Xm)|Sm > n]

=

m−
j=1

E[Rn(X1, . . . , Xm)|Xj > n]
mP(Sm > n)

(1 + o(1))

as n → ∞. Evaluating the previous expectation we conclude that
m−
j=1

E[Rn(X1, . . . , Xm)|Xj > n]
mP(Sm > n)

→
a−α

m2


m−
j=1

1
1/(m − j + 1)

×

j−1∏
k=1

1
(1 − 1/(m − k + 1))


= a−α.

We can select a ∈ (0, 1) arbitrarily close to one in order to get
an asymptotically negligible relative error. Note however, that it is
crucial to select a ∈ (0, 1) in order to ensure that Rn/P(Sm > n)
remains bounded. This suggests that a ≈ 1 might not be a good
option for a pre-determined n.

As it can be appreciated in the previous development, the
fact that m is bounded substantially simplifies the use of the
weak convergence approach. An alternative technique, which
can be directly applied to Examples 7 and 8 and leverages the
fluid heuristic is the use of Lyapunov inequalities, which were
introduced in [9] andwe discuss in the next lemma. This technique
is closely related and in some sense parallel to the subsolution
approach explained earlier in the light-tailed setting.

Lemma 2. Suppose that there exists r (x, y) > 0 satisfying∫
r−1(x, y)P(Sj ∈ dy|Sj−1 = x) = 1

for all x and j ∈ {1, 2, . . .}. Then, we can define a Markov transition
kernel via K(x, dy) = r−1 (x, y) P(Sj ∈ dy|Sj−1 = x) and an
importance sampling estimator of the form

R =

TA∧TB∏
j=1

r(Sj−1, Sj)I(TA < TB).

Suppose that there exists a non-negative function G (·) and a constant
ρ ∈ (0,∞) such that

E[r(x, S1)G(S1)|S0 = x] ≤ G(x) (41)

for x ∉ A ∪ B and G(x) ≥ ρ for x ∈ A. Then, E [R|S0 = x] ≤ G(x)/ρ.
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The proof of the previous result is completely analogous to
Lemma 1 and therefore is omitted. We now explain how to
apply the previous result, combined with the fluid heuristics to
design efficient importance sampling estimators in the context of
Example 5.

Example 8 (Lyapunov Inequalities And State-Dependent Importance
Sampling). We shall apply importance sampling following the
analysis in the previous section. We distinguish two situations,
first, if the current position s is sufficiently far away from the
boundary n, say if n − s > ∆ for some ∆ > 0, then the intuition
developed in the previous section is accurate and then we apply
importance sampling using the mixture family.

However, in the second situation, if s is sufficiently close to n
we do not need to apply importance sampling. Also, if we use the
previous family when s is sufficiently close to n, we might create
variance because the mixture sampling distribution is derived
using the large deviations regime, so turning off the samplingwhen
s is sufficiently close to n is a sensible defense mechanism. We
introduce a boundary layer 0 ≤ n − s ≤ ∆ for some∆ > 0 and if
s lies in this layer no importance sampling is applied.

Our family, then, takes the formP(Xk+1 ∈ dy|Sk = s)

=
P (Xk+1 ∈ dy) I(y > a(n − s))

P(Xk+1 > a(n − s))
p(n − s)I(n − s > ∆)

+
P (Xk+1 ∈ dy) I(y ≤ a(n − s))

P (Xk+1 ≤ a(n − s))
× [1 − p(n − s)]I(n − s > ∆)

+ P (Xk+1 ∈ dy) I(n − s ≤ ∆).

The parameter a ∈ (0, 1) is selected in order to enforce uniform
integrability conditions, just as we noted in Example 7. Following
the intuition developed earlier we propose

p(n − s) =
θP(X > a(n − s))

∞

n−s P(X > t)dt

for some θ > 0. In fact, we expect θ ≈ µ to be optimal in the sense
of variance minimization.

For notational convenience define

H(n − s) =

∫
∞

n−s
P(X > t)dt.

We now need to construct a valid Lyapunov function. We wish to
prove strong efficiency, so it is natural to suggest

G(n − s) = min(κH2(n − s), 1) = O(αn(s)2)

for some κ > 0. The strategy is then to select (given a ∈ (0, 1))
θ , κ and ∆ in order to satisfy the Lyapunov inequality. If we can
show that there exists a selection of these parameters that satisfies
(41), then, given that the corresponding boundary condition in
Lemma 2, namely

G(n − s) ≥ ρ := min

κ

∫
∞

0
P(X > t)dt, 1


= min(κEX+, 1) > 0

is satisfied, we would conclude strong efficiency of the estimator.
Note that the inequality (41) holds trivially if G(n − s) = 1.

Indeed, in this case, since G (x) ≤ 1 for every x ∈ R, the inequality
(41) takes the form

EG(n − s − X) ≤ G(n − s) = 1.

Now observe that G(n − s) < 1 holds if and only if H(n − s) <
1/κ1/2, which in turn holds if and only if n − s > H−1(1/κ1/2).
Therefore we can simply choose ∆ = H−1(1/κ1/2) and simply
select θ and κ . In other words, we shall apply importance sampling
using themixture family if and only if our current position s is such
that G(n − s) < 1.

In order to proceed with the verification of inequality (41) we
henceforth assume that G(n − s) < 1. In this case inequality (41)
takes the form

J1 + J2 ≤ 1, (42)

where

J1 =
E[G(n − s − X); X > a(n − s)]P(X > a(n − s))

κH2(n − s)p(n − s)
,

J2 =
E[G(n − s − X); X ≤ a(n − s)]P(X ≤ a(n − s))

κH2(n − s)[1 − p(n − s)]
.

We first bound the term J1. Observe, noting that G(·) ≤ 1, and
using the form of p(n − s), we obtain that

J1 ≤
P(X > a(n − s))
θκH(n − s)

=
p(n − s)
θ2κ

.

Then we analyze the term J2. Note that

J2 ≤
E[H2(n − s − X); X ≤ a(n − s)]

H2(n − s)[1 − p(n − s)]
.

Using the following Taylor development with remainder, which
comes from the elementary formula using t = x + yu

H2 (x + y)− H2 (x) =

∫ x+y

x
2H(t)Ḣ (t) dt

= 2E[yH(x + yU)Ḣ(x + yU)],

where U is uniformly distributed in [0,1]. Therefore, we have,
letting x = (n − s) and y = −X ,

E[H2(n − s − X)I(X ≤ a(n − s))]
H2(n − s)

= P(X ≤ a(n − s))− 2

×
E[XḢ(n − s − XU)H(n − s − XU); X ≤ a(n − s)]

H2(n − s)
,

where X and U are independent. Now,

−
E[XḢ(n − s − XU)H(n − s − XU); X ≤ a(n − s)]

H2(n − s)

=
E[XF(n − s − XU)H(n − s − XU); X ≤ a(n − s)]

H2(n − s)
.

We are assuming that G(n − s) < 1, or equivalently, that n − s >
H−1(1/κ1/2) = ∆. On the other hand, we have that

X
F(n − s − XU)H(n − s − XU)I(X ≤ a(n − s))

H2(n − s)
∼ X

α − 1
(n − s)

almost surely as n − s ↗ ∞ and also we have, because of regular
variation and Karamata’s theorem that there exists a constant K ∈

(0,∞) such that

|X |
F(n − s − XU)H(n − s − XU)I(X ≤ a(n − s))

H2(n − s)

≤ |X |
F((n − s)(1 − a))H((n − s) (1 − a))

H2(n − s)
≤

K |X |

n − s
.

Consequently, if κ (or equivalently ∆ = H−1(1/κ1/2)) is
chosen sufficiently large, we conclude, applied the dominated
convergence theorem that for each ε > 0

J2 ≤ 1 + 2EX
(α − 1)
n − s

(1 − ε)
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as long as G(n − s) < 1. Combining our estimates for J1 and J2 and
choosing κ sufficiently large so that

p(n − s) ≤ θa−α (α − 1)(1 + ε)

n − s
,

1
1 − p(n − s)

≥ 1 + θa−α (α − 1)(1 − ε)

n − s
,

we arrive at

J1 + J2 ≤
(α − 1)(1 + ε)

θκ(n − s)
a−α

+


1 − 2µ

(α − 1)
n − s

(1 − ε)


×


1 + θa−α (α − 1)(1 − ε)

n − s


≤ a−α (α − 1)(1 + ε)

θκ(n − s)
+


1 − 2µ

(α − 1)
n − s

(1 − ε)

+ θa−α (α − 1)(1 − ε)

n − s


.

In order to enforce (42) we then need to ensure that

a−α 1 + ε

θκ
− 2µ(1 − ε)+ a−αθ(1 − ε) < 0,

which clearly feasible given that µ > 0. Note that it is crucial
that −µ = EX < 0, otherwise it would be impossible to select
the parameters appropriately. This makes sense given that when
EX ≥ 0, αn(y) = 1 and it would be therefore impossible to bound
the second moment of the estimator by a function that decreases
to zero as n → ∞, as we are proposing.

Note that since ε > 0 is arbitrarily small, κ can be selected
arbitrarily large and a can be chosen arbitrarily close to one, note
that the feasible region for parameter selection for θ becomes

θ < 2µ.

It turns out that by selecting θ = µ we can make the relative
error arbitrarily small. Selecting θ ≈ 0 implies a low frequency
of the jumps and therefore an increase in the termination time of
the algorithm. In fact, if θ is chosen too low, one can obtain (just
as we saw in (39)) an infinite expected termination time. One can
opt, however, to increase θ , as long as θ < 2µ in order to increase
the frequency of the big jumps and thereforemake the termination
time of the algorithm shorter. Considering for instance an extreme
case,we saw that ifα ∈ (1, 2) then the optimal change-of-measure
(in the sense of variance minimization) has infinite expected ter-
mination time (that is, whenever α ∈ (1, 2), E(τn|τn < ∞) = ∞).
By choosing θ ≈ 2µ, one can show that the termination time of
the importance sampling estimator constructed by means of the
previous Lyapunov procedure, which maintains strong efficiency,
is finite as long as α ∈ (3/2, 2). These optimality results are dis-
cussed in [111].

5.5. Notes on importance sampling with heavy tails

Detailed expositions on large deviations asymptotics for heavy-
tailed random variables can be found in [96,97] and Chapter IX of
[40]. General discussion on importance samplers with heavy tails
is covered in Chapter VI of [23,50].

As mentioned earlier this section, the various challenges of
rare-event simulation with heavy tails are pointed out in [4,110].
The former focuses on the singularity of conditional measure
with respect to the original measure and the difficulty of finding
suitable importance sampler, while suggesting provably efficient
conditional Monte Carlo scheme. The latter suggests the non-
existence of state-independent importance samplers for some first
passage problems. Conditional Monte Carlo is also studied in [98]
in the context of insurance, and further improved in [99]. It is also
used in [114] for sums of dependent random variables. The hazard
rate twisting method that we discussed in Section 5.1 appears
in [115,101,116], aswell as [117] in the context of finance and [118]
in single-server queues. Another version of this method is studied
in [119] using cross-entropy, while [120] suggests a closely related
transform method that essentially equates hazard rate twisting.
Finally, [121] considers a different type of twisting, by scaling
the variance of the underlying variables, for sums of correlated
lognormals.

Regarding state-dependent importance samplers, as we have
discussed, [113] suggests the weak convergence approach for
regularly varying sums and the use of a two-mixture sampler
for each increment distribution. Two mixtures are no longer
enough for other heavy tails, such as Weibull. The appropriate
family of mixtures in such settings is developed in [111]. The
Lyapunov approach is proposed and applied in a variety of contexts
by [11] in single-server queues, [10,122] in regularly varying
randomwalks, [9] in randomwalk maximum and [123] in random
sum. The last two papers in particular aim to construct samplers
under the assumptions of general subexponential distributions.
The paper [124] further extends the method to the case of Markov
modulation. Mixture-type algorithm is also used in [125] for
computing quantile and other risk measures that involve regularly
varying tails. Recently, [126] proposes sequential importance
sampling technique with resampling that appears to exhibit
good empirical performance in terms of variance reduction.
Moreover, [127] considers an adaptive mechanism based on cross-
entropy methods to guide the selection of provably efficient
importance sampling estimators for heavy-tailed sums.
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