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UNIFORM LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES
UNDER HEAVY TRAFFIC

JOSE BLANCHET AND HENRY LAM

ABSTRACT. We provide a complete large and moderate deviations asymptotic for
the steady-state waiting time of a class of subexponential M/G/1 queues under
heavy traffic. The asymptotic is uniform over the positive axis, and reduces to
heavy-traffic asymptotics and heavy-tail asymptotics on two ends, both of which
are known to be valid over restricted asymptotic regimes. The link between
these two well-known asymptotics is a transition term that is expressible as a
convolution-type integral. The class of service times that we consider includes
regularly varying and Weibull tails in particular.

It is our pleasure to contribute to this special issue dedicated to the Interna-
tional Year of Statistics. In response to the request of the editors of this special
issue we briefly overview the research topics that we have investigated recently.
Our research group has pursued several themes in recent years. All of them lie
under the scope of applied probability. Some of our projects deal with computa-
tional probability. In this context, our goal is to enable efficient computation in
stochastic systems using (and often developing) theory of probability to inform
the design of algorithm that are optimal and robust in certain sense (see Blanchet
and Glynn (2008)). Most of the computations that we study relate to stochastic
simulation (also known as Monte Carlo) methods (see Blanchet and Lam (2012)).
Other projects that we pursue relate to classical analysis in probability, such as
asymptotic approximations, large deviations, and heavy-traffic limits (Blanchet
and Glynn (2006) and Lam et al (2011)). All of our research efforts are moti-
vated by models and problems in areas such as: Finance, Insurance, Operations
Research, and Statistics.

Here we shall study a class of asymptotic results that lie at the intersection
of large deviations and heavy-traffic limit theory. We use a classical model in
queueing theory to illustrate these types of results, namely, the classical M/G/1
queue. Despite its apparent tractability, most of the asymptotics for the steady-
state waiting time of the M/G/1 queue that have been proposed in the literature
are only provably valid in restricted regimes. Among them are the well-known
heavy-traffic or Kingman asymptotic (see Kingman (1961)) and the heavy-tail
or Pakes-Veraberbeke asymptotic (see for example Embrechts and Veraverbeke
(1982)). More precisely, in heavy traffic (i.e. when the long-run proportion of time
the server is utilized, ρ, is close to 1) one approximates the distribution of the
steady-state waiting time in spatial scales of size 1/(1−ρ) by the steady-state dis-
tribution of reflected Brownian motion (which is exponential). On the other hand,
the heavy-tail asymptotic assumes fixed traffic intensity while the tail parameter
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increases. It states that for service time with so-called stationary excess distri-
bution (in the tradition of renewal theory) B0(x) lying in the class, S, of subex-
ponential distribution (see, for example, Embrechts et. al. (2003) and Asmussen
(2001, 2003)), the probability that the steady-state waiting time is larger than x
is asymptotically (ρ/(1−ρ))B̄0(x).

In this paper we provide a uniform large deviations asymptotic of the steady-
state waiting time distribution for heavy-tailed M/G/1 under heavy traffic. Our re-
sults can handle the case when heavy traffic is present but the tail parameter level
is moderate, which is covered by neither heavy-traffic or heavy-tail asymptotics.
Our results in this paper extend and unify previous work by Olvera-Cravioto et.
al. (2011) and Olvera-Cravioto and Glynn (2011). In these two papers, the authors
studied first the regularly varying M/G/1 queue and showed that heavy-traffic
and heavy-tail asymptotics remain valid on regimes that are respectively smaller
and larger than an explicitly identified transition point. Then, a separate argu-
ment is given in Olvera-Cravioto and Glynn (2011) in order to deal with Weibull
type distributions. Our framework here provides means to develop a unified the-
ory of transitions from heavy-traffic to heavy-tailed asymptotics that covers both
regularly varying and Weibullian tails at once. In addition, and in contrast to
Olvera-Cravioto et. al. (2011), for regularly varying distributions we provide an
explicit asymptote for the behavior of the tail of the steady-state waiting time in
the M/G/1 queue right at the transition point in complete generality.

We shall use the machinery developed by Rozovskii (1989, 1993) for large and
moderate deviations of random walks. Related papers that develop similar meth-
ods include Nagaev (1969) and Borokov and Borovkov (2001). A central argument
to obtaining these deviations results is finding a suitable truncation level depend-
ing on p. In Section 2 we outline this truncation argument and we provide the
details of the proofs in Section 3.

1. Statement of Result and Outline of Argument

Let (X i : i ≥ 1) be a sequence of non-negative i.i.d. r.v.’s (independent and identi-
cally distributed random variables) and define Sn = X1+·· ·+Xn, with S0 = 0. Let
M be a geometrically distributed random variable with parameter p > 0 and inde-
pendent of the X i ’s. In particular, P (M = k) = pqk for k = 0,1, ..., where q = 1− p.
The random variable SM is said to be a geometric sum. It turns out (see Asmussen
(2003)), that the steady-state waiting time of an M/G/1 queue can be represented
as geometric sum, is p = 1−ρ > 0.

Throughout the rest of the paper we use F(x) to denote the distribution of X i
and we write X to denote a generic copy of X i. We are interested in P(SM > x) as
p ↘ 0 and x = x(p)↗∞.

We use the following notation. Given non-negative functions f1 (·), f2 (·), we
write f1 (x) ¿ f2 (x) if f1 (x) = o ( f2 (x)) as x → ∞ (i.e. “ f1 has smaller order than
f2”) and f1 (x) À f2 (x) if f2 (x) = o( f1(x)) (i.e. “ f1 has larger order than f2”). Also
we use “¹" and “º" to denote “having order smaller than or equal to” and “having
order larger than or equal to", respectively. For example, f1 (x) ¹ f2 (x) means
that f1 (x) ≤ c f2 (x) for some c > 0. Lastly, we use “∼" to denote “asymptotically
equivalent or the same order" (i.e. f1 (x) / f2 (x)→ 1).
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We shall consider X i in class S of subexponential distribution (i.e. P(X1+X2 >
x)/F̄(x)→ 2) together with the assumption

F̄(x) := P(X i > x)= e−g(x),

where g(·)≥ 0 is clearly non-decreasing, and g(x)→∞ as x →∞. We also assume
that g(·) is differentiable, and that g(x)/xδ → 0 and is eventually decreasing for
some 0< δ< 1. We further assume that EX = µ<∞, EX2 = 1 and EX2+ε <∞ for
some ε> 0 (we sometimes drop the subscript i in X i for convenience). We assume
that (2+ ε) log x ¹ g(x) ¿ x. In addition, we assume that h(x) = g(x+µ)−2log x is
eventually non-decreasing and goes to ∞, which is intuitive given that EX2+ε <
∞. We also assume that h′(x)/h(x)≤ (δ+η)/x for some η> 0 eventually. Finally, we
also assume that X i is strongly non-lattice, in the sense that

inf
|ω|>υ

|1−χ(ω)| > 0

for any υ> 0, where χ(ω)= EeiωX is the characteristic function of X .
Set Bp = 1/p and define for x > 0 and p ∈ (0,1)

(1.1) Γ (x, p)=
[

e−θ
∗x +

(
1
p

F̄(x)+
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)
)

I(x ≥ Bp)
]

,

where θ∗ is the solution to the equation E[eθX ; X ≤ Bp] = 1/q. Our main result is
the following:

THEOREM (1.2). Let Bp = 1/p. We have uniformly over x > 0 that

lim
p→0

sup
x>0

∣∣∣∣P (SM > x)
Γ (x, p)

−1
∣∣∣∣= 0.

Note that we can as well choose Bp to be any quantity having the same order
as 1/p. Blanchet and Glynn (2007) shows that θ∗ admits a Taylor series type
expansion θ∗ = p/µ+ c2 p2 + ·· · . The expansion is valid up to the order of the
moment of X i. Thus if EX2 < ∞ we can ensure that θ∗ can be expanded up to
the second order of p. Note that this gives e−θ

∗x ∼ e−px/µ for Bp ¹ x ¿ 1/p2, which
coincides with Kingman’s asymptotic. On the other hand, the second term in (1.1)
is the heavy-tail asymptotic. It can be shown that the first term is dominant for
small order of x (with respect to p) while the second term is dominant for large
order. The third term can be the dominant component in a neighborhood of the
transition between the first and the second. These observations are apparent
through the following example.

EXAMPLE (1.3) (Regularly Varying Tail). Suppose X i has density L(x)/x1+α, x >
0 where α > 2 and L(·) is a slowly varying function, so F̄(x) ∼ L(x)/xα. We are
interested in computing the third term of (1.1). First we have

1
p

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y= 1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x
eθ

∗xu 1
u1+α

L(ux)
L(x)

du

∼ 1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du.
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where the first equality follows by a substitution y = xu, and the equivalence rela-
tion follows from the property of slowly varying function that L(ux)/L(x) → 1 uni-
formly over compact set as x →∞. If θ∗x = O(1), which implies x ≤ C1/θ∗ ∼ C1µ/p
for some constant C1 > 0 (see the proof of Lemma (2.4) for the equivalence θ∗ ∼ p/µ),
then ∫ 1

Bp /x

eθ
∗xu

u1+α du ≤ eθ
∗x

∫ 1

Bp /x

1
u1+α du ≤ C2eθ

∗x

for some C2 > 0 and so

1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du ≤ C2

p
L(x)
xα

¿ e−θ
∗x.

On the other hand, if θ∗x ↗∞, then applying Laplace’s method yields

1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du ¹ 1
p

L(x)
xα

1
θ∗x

¿ 1
p

F̄(x).

Now by the same analysis, and noting that θ∗ ∼ p/µ, we obtain that

x
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y≤ C3
L(x)
xα−1 ¿ e−θ

∗x

and
1
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

yα
d y≤ C4

L(x)
xα−1 ¿ e−θ

∗x

for θ∗x =O(1), and

x
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y∼ 1
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

yα
d y∼ 1

p
L(x)
xα

for θ∗x ↗∞, which implies that∫ x

Bp

x− y
µ

e−θ
∗(x−y) L(y)

y1+α d y= o
(

1
p

L(x)
xα

)
.

Hence we have

P(SM > x)=
[

e−θ
∗x + 1

p
F̄(x)

]
(1+ o(1))

for any x > 0. This recovers a basic result in Olvera-Cravioto et. al. (2011) and
identifies the transition point located at −((α−2)/2)log(p)/p.

We now give a brief outline of our argument leading to Theorem (1.2). De-
tailed proofs will be provided in the next section. Our method is mainly inspired
by Rozovskii (1989, 1993) together with the use of uniform renewal theorem in
Blanchet and Glynn (2007). We first find an appropriate truncation for X i, so
that the geometric sum of the truncated part can be approximated by uniform
renewal theorem while the remaining part follows the big-jump asymptotic. Uni-
form renewal theory then yields Kingman’s asymptotic. On the other hand, the
heavy-tail component will boil down to calculating a convolution of negative bino-
mial sum with the increment distribution.

From now on we will adopt the following notations. Recall that Bp = 1/p, and
δ satisfies g(x)/xδ → 0. This allows us to find δ′ = δ+η < 1 for some η > 0. For
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convenience of development, when g(x) ¹ log x, we take δ = 0 and δ′ be a small
number such that 0< δ′ < 1. We then let Kp = (1/p2δ)e(1−δ′)g(Bp), and

Cp,M =
{

Bp for M ≤ Kp
µ+p

M for M > Kp

Let us state the result on the split into truncated and remaining part:

PROPOSITION (1.4).

P(SM > x) =
[
P

(
SM > x, max

1≤i≤n
X i ≤ Cp,M

)

+P

(
SM > x,

n⋃
i=1

{
X i > Cp,M ,max

j 6=i
X j ≤ Cp,M

})]
(1+ o(1))(1.5)

uniformly over x > 0.

Note that we have used a truncation level that remains at Bp for small M but
grows in order

p
M for large M. Such level will ensure that the contribution of two

or more jumps i.e. X i > Cp,M , is negligible for both small and large M. Moreover,
as we shall see in Proposition (1.6) below, Kp is chosen such that the truncated
part is regular enough to invoke uniform renewal theorem.

Our argument is finished by recognizing the two components in the right hand
side of (1.5) as the terms in (1.1), via the following propositions:

PROPOSITION (1.6).

P
(
SM > x, max

1≤i≤n
X i ≤ Cp,M

)
= e−θ

∗x + o
(
e−θ

∗x + 1
p

F̄(x)I(x ≥ Bp)
)

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

PROPOSITION (1.7).

P

(
SM > x,

n⋃
i=1

{
X i > Cp,M ,max

j 6=i
X j ≤ Cp,M

})

=
{[

1
p F̄(x)+∫ x

Bp

(
1
p + x−y

µ

)
e−θ

∗(x−y)dF(y)
]

(1+ o(1)) uniformly over x ≥ Bp

¿ e−θ
∗x uniformly over x < Bp

2. Proofs

Note that Theorem (1.2) is uniform over x ≥ 0. The results that follow are
obtained uniformly over x ≥ z (p) as long as z (p) → ∞ as p → 0. Of course, for
x ≤ z (p)< Bp we have that Γ (x, p)= e−θ

∗x and therefore the limit

lim
p→0

sup
0≤xp≤z(p)p

∣∣∣∣P (pSM > px)
Γ (x, p)

−1
∣∣∣∣= lim

p→0
sup

0≤u≤z(p)p

∣∣∣∣ P (pSM > u)
exp(−(θ∗/p)u)

−1
∣∣∣∣= 0,

is easily established if z (p) p = o (1). Consequently, to obtain Theorem (1.2) it
suffices to indeed assume x ≥ z (p) as indicated.
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Proof of Proposition (1.4). First we write

P(SM > x) = P(SM > x, max X i ≤ Bp, M ≤ Kp)

+P(SM > x, max X i ≤µ+
p

M, M > Kp)

+P(SM > x, max X i > Bp, M ≤ Kp)

+P(SM > x, max X i >µ+
p

M, M > Kp)(2.1)

Note that the first two terms constitute the first term in the right hand side of
(1.5), and we shall focus on the last two terms. For the third term, we have

(2.2) P(SM > x, max X i > Bp, M ≤ Kp)

= P(SM > x, exactly one X i > Bp, M ≤ Kp)

+P(SM > x, more than one X i > Bp, M ≤ Kp).

We will show that the second term in (2.2) is negligible compared to the first term
in (2.1), by following the proof in Lemma 4 of Rozovskii (1993). Using the notation
there, we denote

Qn−k,k(x)= P(Sn > x, X1, X2, . . . , Xk > Bp, Xk+1, . . . , Xn ≤ Bp),

A = supy≥2Bp IBp (y)/F̄(y) where

IBp (y)=
∫ y−Bp

Bp

F̄(y−u)dF(u),

and ξBp = supy≥Bp F̄(y)/F̄(y+Bp). Now Lemma 4a in Rozovskii (1993), applying to
our case, states that for k ≥ 2, Qn−k,k(x) ≤ AQn−k+1,k−1(x)+ F̄(Bp)Qn−k+1,k−1(x−
Bp) (from equation (64) there), and Qn−k+1,k−1(x−Bp) ≤ ξBpQn−k+1,k−1(x) (from
equation (65) there).

Recognizing that X i is always non-negative, we have

Qn−k,k(x)≤ (F(Bp))−1Qn−k+1,k(x)

≤ (F(Bp))−1(AQn−k+1,k−1(x)+ F̄(Bp)Qn−k+1,k−1(x−Bp))

≤ (F(Bp))−1(A+ F̄(Bp)ξBp )Qn−k+1,k−1(x)

= HpQn−k+1,k−1(x)(2.3)

where Hp = (F(Bp))−1(A + F̄(Bp)ξBp ). Lemma 4c in Rozovskii (1993) yields that
(note the slight difference in the definition of g(x) between there and here. We
denote F̄(x) = e−g(x) while Rozovskii defines F̄(x) ∼ e−g(x)/x2 for the case of finite
variance. Thus the g(x)’s differs by a term of 2log x. We also note that in Rozovskii
(1993) Bn =p

n in the case of finite variance.)

A =O

(
1

B2
p

max
y≥Bp

g(y)y2(1−δ)e−(1−δ)g(y)

)
, and ξBp =O

(
exp{δg(Bp)}

B2δ
p

)
.
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Now let g̃(x)= g(x)−2log x. Then we have

A ¹ p2 max
y≥Bp

( g̃(y)+2log y)e−(1−δ) g̃(y)

≤ p2 max
y≥Bp

Cg̃(y)e−(1−δ) g̃(y) for some constantC,

by our assumption that g(x)º (2+ε) log x

= Cp2 g̃(Bp)e−(1−δ) g̃(Bp) = Cp2δ(g(Bp)−2logBp)e−(1−δ)g(Bp)

when p is small enough, and ξBp =O(p2δeδg(Bp)). Hence we have

Kp ·Hp ≤ C(F(Bp))−1(g(Bp)+1)e−ηg(Bp) → 0

for some C > 0. So
bKpc∑
n=2

pqn
n∑

k=2

(
n
k

)
Qn−k,k(x)

≤
bKpc∑
n=2

pqn
n∑

k=2
nkHk−1

p P(Sn > x, X1 > Bp, max
2≤i≤n

X i ≤ Bp) (by iterating (2.3))

≤
bKpc∑
n=2

pqnn
n∑

k=2
Kk−1

p Hk−1
p P(Sn > x, X1 > Bp, max

2≤i≤n
X i ≤ Bp)

≤
bKpc∑
n=2

pqnn
KpHp

1−KpHp
P(Sn > x, X1 > Bp, max

2≤i≤n
X i ≤ Bp) (for p small enough)

¿
bKpc∑
n=2

pqnnP(Sn > x, X1 > Bp, max
2≤i≤n

X i ≤ Bp)

and hence

P(SM > x, more than one X i > Bp, M ≤ Kp)¿ P(SM > x, max X i ≤ Bp, M ≤ Kp)

uniformly over x > 0.
We are left to prove that the fourth term in (2.1) is equivalent in order to

P(SM > x, exactly one X i >µ+
p

M, M > Kp)

Using directly the result in Lemma 4 of Rozovskii (1993), and denoting X̃ i = X i−µ
and S̃n =∑n

i=1 X̃ i as the centered random variables, we get

P(SM > x, max X i >µ+
p

M, M > Kp)=

=
∞∑

n=bKpc+1
pqnP(Sn > x, max X i >µ+

p
n)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ, max X̃ i >

p
n)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ, exactly 1 X̃ i >

p
n)(1+ g(x,n))

where the last equality follows from (61) in Rozovskii (1993) and g(x,n) → 0 uni-
formly in x as n →∞.
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Since Kp →∞ as p → 0, for any ε, we have

∞∑
n=bKpc+1

pqnP(S̃nµ> x−nµ, exactly 1 X̃ i >
p

n)g(x,n)

≤ ε
∞∑

n=bKpc+1
pqnP(S̃nµ> x−nµ, exactly 1 X̃ i >

p
n)

when p becomes small enough. Therefore

P(SM > x, max X i >µ+
p

M, M > Kp)

≤ (1+ε)P(SM > x,exactly one X i >µ+
p

M, M > Kp)

for p small enough. Since ε is arbitrary, we conclude that

P(SM > x, max X i >µ+
p

M, M > Kp)

∼ P(SM > x,exactly one X i >µ+
p

M, M > Kp)

uniformly over x > 0.
The proof of Proposition (1.4) is complete.

Proof of Proposition (1.6). Note that

P(SM > x, max X i ≤ Cp,M)=
= P(SM > x, max X i ≤ Bp, M ≤ Kp)+P(SM > x, max X i ≤µ+

p
M, M > Kp)

= P(SM > x, max X i ≤ Bp)−P(SM > x, max X i ≤ Bp, M > Kp)

+P(SM > x, max X i ≤µ+
p

M, M > Kp)

The proof of the proposition will be finished by the following two lemmas:

LEMMA (2.4).

P(SM > x, max X i ≤ Bp)= e−θ
∗x(1+ o(1))

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

LEMMA (2.5).

P(SM > x, max X i ≤ Bp, M > Kp)

≤ P(SM > x,max X i ≤µ+
p

M, M > Kp)¿ e−θ
∗x + 1

p
F̄(x)

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

Proof of Lemma (2.4). Let X̄ be the truncated random variable at level Bp i.e.

P(X̄ ∈ B)= P(X ∈ B|X ≤ Bp)

for any measurable set B. We denote Pθ(·) as the exponential change of measure

Pθ(·)= E[eθX̄−ψ̄(θ); · ]

where ψ̄(·) = log φ̄(·) is the logarithmic moment generating function of X̄ and
φ̄(θ) = EeθX̄ is the moment generating function of X̄ . Also denote Eθ[·] as the
expectation under Pθ(·) and µ̄θ = Eθ X̄ .
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Consider the change of measure of X i with θ satisfying

φ̄(θ)= 1
qF(Bp)

which gives

(2.6) E[eθX ; X ≤ Bp]= 1
q

This equation is similar to (33) in Blanchet and Glynn (2007), but with a different
truncation level. Theirs is a truncation level x while here we use Bp regardless of
x.

We want to characterize the solution of (2.6), which, as we will see, will give
the θ∗ in Theorem (1.2). Suppose 0 ≤ θ ≤ Cp for some C > 0 and p small enough.
Write

E[eθX ; X ≤ Bp]=
∫ Bp

0
eθydF(y)

=
∫ Bp

0

(
1+θy+ θ2 y2

2
eνθy

)
dF(y)

for some 0 ≤ ν = ν(θy) ≤ 1. The equation is valid by our moment assumptions on
X . We then get

(2.7) E[eθX ; X ≤ Bp]= F(Bp)+θm(Bp)+R(θ)

where
F(Bp)= 1− F̄(Bp)= 1− e−g(Bp)

m(Bp)=
∫ Bp

0
ydF(y)=µ(1+ o(1))≤µ

as p → 0 and

R(θ)=
∫ Bp

0

θ2 y2

2
eνθydF(y)≤ θ2

2
eCD(Bp)≤ θ2

2
eC

where D(Bp) = ∫ Bp
0 y2dF(y). Equating (2.7) with 1/q = 1+ p+ p2 +·· · , and noting

that e−g(Bp) ¿ p2, we get θ∗ ∼ p/µ, which also verifies that there is a unique θ∗
that indeed lies in [0,Cp]. Henceforth we will identify this as our θ∗.

Next we have, letting T be exponentially distributed with rate θ∗ in the fourth
equality below,

P(SM > x,max X i ≤ Bp) =
∞∑

n=1
pqnP(Sn > x,max X i ≤ Bp)

=
∞∑

n=1
p(qF(Bp))nP(S̄n > x)=

∞∑
n=1

pEθ∗ [e−θ
∗S̄n ; S̄n > x]

= p
∞∑

n=1
Eθ∗ [x < S̄n < T]= pEθ∗

[ ∞∑
n=1

I(x < S̄n < T))

]

= p
∫ ∞

x
θ∗e−θ

∗ y(Ūθ∗ (y)−Ūθ∗ (x))d y

= pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y(Ūθ∗ (y+ x)−Ūθ∗ (x))d y,
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where Ūθ∗ (·) = ∑∞
n=1 Pθ∗ (S̄n ≤ ·) is the renewal measure of X̄ i under the measure

Pθ∗ (·).
We shall now find Ūθ∗ (·). More specifically, we will show that uniform renewal

theorem, as depicted in Theorem 1, part 2 of Blanchet and Glynn (2007), is valid
for X̄ i under the exponential family Pθ∗ (·) for all small enough p. Denote χ̄θ∗ (ω)=
Eθ∗ eiωX̄ = qF(Bp)Ee(iω+θ∗)X̄ as the characteristic function of X̄ under Pθ∗ (·). The
theorem requires that such family is uniformly strongly non-lattice i.e.

inf
0≤p≤κ

inf
|ω|>υ

|1−χθ∗ (ω)| > 0

for small enough κ > 0 and any υ > 0, and that sup0≤p≤κEθ∗ X̄2+ε < ∞. If these
conditions hold then we have (as a weaker conclusion than the stated theorem in
Blanchet and Glynn (2007))

(2.8) sup
0≤p≤κ

µ̄4
θ∗

∣∣∣∣∣Ūθ∗ (t)− t
µθ∗

− Eθ∗ X̄2

2µ̄2
θ∗

∣∣∣∣∣= o(1)

as t →∞.
We now check the above conditions. First note that

χ̄θ∗ (ω)= qF(Bp)Eei(ω+θ∗)X̄ = qE[e(iω+θ∗)X ; X ≤ Bp]

= q(E[eiωX ; X ≤ Bp]+θ∗r(θ∗,ω))= q(χ(ω)−E[eiωX ; X > Bp]+θ∗r(θ∗,ω))

where |r(θ∗,ω)| ≤ E[X eνθ
∗X ; X ≤ Bp] for some 0 ≤ ν = ν(θ∗X ) ≤ 1 a.s. and the

second equality is valid by our moment assumptions on X . Note that

|E[eiωX ; X > Bp]| ≤ F̄(Bp), and E[X e(νθ∗)X ; X ≤ Bp]≤ eCµ,

for some C > 0. Since X is non-lattice, given any υ > 0, we have |1−χ(ω)| > 1− ζ
for some 0< ζ= ζ(υ)< 1 for all |ω| > υ. So for |ω| > υ, we have

|1− χ̄θ∗ (ω)| = |1− (1− p)(χ(ω)−E
[
eiωX ; X > Bp

]
+θ∗r(θ∗,ω)|

≥ |1−χ(ω)|− |E[eiωX ; X > Bp]|−θ∗|r(θ∗,ω)|
− p(|χ(ω)|+ |E[eiωX ; X > Bp]|+θ∗|r(θ∗,ω)|)> 1−ζ′

for some 0< ζ′ < 1 and small enough p. This shows that X̄ under the exponential
family Pθ∗ (·) is uniformly strongly non-lattice. Moreover, we have

Eθ∗ X̄2+ε ≤ qE[X2+εeθ
∗X ; X ≤ Bp]≤ eCEX2+ε

for some C > 0. Together with our moment assumption on X , this shows that
sup0≤p≤κEθ∗ X̄2+ε <∞.

Hence we can invoke the uniform renewal theorem in Blanchet and Glynn
(2007). Since Pθ∗ (X̄ > s) = qE[eθ

∗X ; s < X ≤ Bp] ≤ qeC F̄(s) for s < Bp and is 0
otherwise, we note that HF

1 (t), HF
2 (t) and HF

1 ∗ HF
1 (t) in Theorem 1, part 2 of

Blanchet and Glynn (2007) all go to 0 uniformly in our exponential family as
t → ∞. Note also that µ̄θ∗ = qE[X eθ

∗X ; X ≤ Bp]. Since X eθ
∗X I(X ≤ Bp) ≤ X eC

which is integrable, by dominated convergence theorem and that θ∗ ∼ p/µ we
have E[X eθ

∗X ; X ≤ Bp]→µ. Hence µ̄θ∗ =µ+ o(1). This concludes, from (2.8), that

Ūθ∗ (y+ x)−Ūθ∗ (x)= y
µ̄θ∗

+R(y, x,θ∗)
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where sup0≤p≤κ,y>0 |R(y, x,θ∗)|→ 0 as x →∞. So

pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y(Ūθ∗ (y+ x)−Ūθ∗ (x))dy

= pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y
(

y
µ̄θ∗

+R(y, x,θ∗)
)

dy

= pe−θ
∗x

µ̄θ∗

(
1
θ∗

+ o(1)
)
∼ e−θ

∗x

uniformly over x > z(p) for any z(p) such that z(p) →∞ as p → 0. Lemma (2.4) is
proved.

Proof of Lemma (2.5). The first inequality holds obviously when p is small enough.
Thus we will focus on the order relation. As in the proof of Proposition (1.5), we
let X̃ i = X i −µ and S̃n =∑n

i=1 X̃ i be the centered random variables and their sum.
Let P(X̃ > x)= e−g(x+µ) and recall that h(x)= g(x+µ)−2log x satisfies h(x)/xδ

′ → 0
and is eventually decreasing, and

(2.9)
h′(x)
h(x)

≤ δ′

x
for large enough x. Note also that ε log x ¹ h(x)¿ x by construction.

By (70) and (71) in Rozovskii (1993) (note that the g(x) defined there differs
from ours by a term of 2log x and hence h(x) here will play the role of g(x) in
Rozovskii’s paper) we have

(2.10) P(S̃n > x−nµ,max X̃ i ≤
p

n)≤ e−β(x−nµ)h(
p

n)/
p

n

for x ≥ nµ+Λn, where Λn = αh(
p

n)
p

n and β<α/2, for large enough n and some
constant α> 0. This will be important for our development.

We now define the following functions that will prove useful for our argument.
Let l(n)= nµ+Λn. We extend the domain of the function l to the positive real axis
and define l−1(y) = inf{x : l(x) ≥ y}, so l−1(x) = x/µ− (α/µ)h(

√
l−1(x))

√
l−1(x). Also

let r(x) = h(x)/x, so 1/x ¿ r(x) ¿ 1/x1−δ′ as x ↗∞. Define r−1(y) = inf{x : r(x) ≤ y}.
We then have

(2.11) 1/y1/(1−δ′) ¿ r−1(y)¿ 1/y

as y↘ 0.
We shall also prove a monotone property concerning the function (whose use

will become clear in the argument that follows)

f (n) :=−β(x−nµ)
h(
p

n)p
n

+n log q

We have

f ′(n)=−β(x−nµ)
(

h′(
p

n)
2n

− 1
2

h(
p

n)
n3/2

)
+βµh(

p
n)p

n
+ log q

=−β
2

( x
n
−µ

)(
h′(

p
n)− h(

p
n)p

n

)
+βµh(

p
n)p

n
+ log q

By (2.9), we have f ′(n) ≥ βµh(
p

n)/
p

n+ log q ≥ 0, or f (n) is increasing, when n ≤
(r−1(−(log q)/(βµ)))2.
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Let Rp = r−1(−(log q)/(βµ)). We write

P(SM > x, max X i ≤µ+
p

M, M > Kp)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)

=
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqnP(S̃n > x−nµ,max X̃ i ≤
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

+
bl−1(x)c∑

n=bR2
pc∨bKpc+1

pqnP(S̃n > x−nµ,max X̃ i ≤
p

n)I(bl−1(x)c > bR2
pc∨bKpc)

+
∞∑

n=bKpc∨bl−1(x)c+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)(2.12)

We will now analyze the terms one by one. Note that n ≤ l−1(x) implies x ≥ l(n).
Hence by (2.10) and our monotone property of f (·) we have

bR2
pc∧bl−1(x)c∑

n=bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)I(bR2

pc∧bl−1(x)c > bKpc)

≤
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqne−β(x−nµ)r(
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

≤


∑bl−1(x)c
n=bKpc+1 pql−1(x) exp

{
−β(x− l−1(x)µ)r(

√
l−1(x))

}
for bl−1(x)c ≤ bR2

pc∑bR2
pc

n=bKpc+1 pqR2
p exp

{
−β(x−R2

pµ)
(
− log q

βµ

)}
for bl−1(x)c > bR2

pc

(2.13) ≤
{

l−1(x)pql−1(x)e−βαh2(
p

l−1(x)) for bl−1(x)c ≤ bR2
pc

R2
p pe(x/µ) log q for bl−1(x)c > bR2

pc

and for bl−1(x)c > bKpc. The first part of the last inequality follows by substituting
x = l(l−1(x))= l−1(x)+αh(

√
l−1(x))

√
l−1(x). We shall prove that in both cases they

are of smaller order than e−θ
∗x + (1/p)F̄(x)I(x ≥ Bp).

Consider the first case, and suppose Kp ≤ x ¹ Rp. Dividing the first part of
(2.13) by e−θ

∗x gives

(2.14) exp
{

pα
µ

h(
√

l−1(x))
√

l−1(x)(1+ o(1))−βαh2(
√

l−1(x))+ log(l−1(x)p)
}

by substituting l−1(x)= x/µ−(α/µ)h(
√

l−1(x))
√

l−1(x) and using log q =−p(1+o(1)).
Note that x ¹ Rp implies that r(x)º−(log q)/(βµ)≥ p/(βµ). Since r(

√
l−1(x))º r(x),

we have h(
√

l−1(x))À (p/(βµ))
√

l−1(x). This gives

βαh2(
√

l−1(x))À (pα/µ)h(
√

l−1(x))
√

l−1(x)(1+ o(1)).

Since h(x) À ε log x, we also have βαh2(
√

l−1(x)) À log l−1(x) º log(l−1(x)p). Thus
(2.14) is equal to exp{−βαh2(

√
l−1(x))(1+ o(1))} ¹ exp{−βαh2(

√
Kp)(1+ o(1))} =

o(1).
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Now suppose x À Rp and bl−1(x)c ≤ bR2
pc. Note that for any x À Rp, one can

always find a = a(p)↗∞ arbitrarily slowly as p ↘ 0, such that x À aRp. Dividing
the first part of (2.13) by (1/p)F̄(x) gives

(2.15) exp{l−1(x) log q−βαh2(
√

l−1(x))+ log(l−1(x)p)+h(x−µ)+2log x+ log p}.

Note that x À aRp implies r(x)¿ r(x/a)¹ p/(βµ) and hence pl−1(x)À h(x−µ), by
using l−1(x) = x/µ− (α/µ)h(

√
l−1(x))

√
l−1(x). By substituting y = Rp in (2.11) we

have paRp º 1/pδ
′/(1−δ′) À− log p which implies px/µÀ log x for x À aRp. Hence

(2.15) is equal to exp{−pl−1(x)(1+ o(1))}¹ exp{−pl−1(aRp)(1+ o(1))}= o(1).
We now proceed to the second part of (2.13). But l−1(x) º R2

p implies x À Rp,

since h2(
√

l−1(x))/l−1(x) → 0. Hence by the same argument px/µ À h(x) and
px/µÀ log x º logRp. Hence dividing the expression by (1/p)F̄(x) gives

exp
{

x
µ

log q+2logRp + log p+h(x−µ)+2log x+ log p
}

= exp
{
− px
µ

(1+ o(1))
}
¹ exp

{
−

pR2
p

µ
(1+ o(1))

}
= o(1)

We now analyze the second term of (2.12). We have, for bl−1(x)c > bR2
pc∨bKpc,

bl−1(x)c∑
n=bR2

pc∨bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)

≤
bl−1(x)c∑

n=bR2
pc+1

pqne−β(x−nµ)r(
p

n) ≤
bl−1(x)c∑

n=bR2
pc+1

p(qeβµr(
p

n))ne−βxr(
p

n)

≤
bl−1(x)c∑

n=bR2
pc+1

p(qeβµ
− log q
βµ )ne−βxr(

p
l−1(x)) ≤

bl−1(x)c∑
n=bR2

pc+1
pe−βxr(

p
l−1(x))

≤ l−1(x)pe−βxr(
p

l−1(x))(2.16)

where the third inequality holds because Rp = r−1(− log q/(βµ)) and r(x) is eventu-
ally decreasing. Note that xr(

√
l−1(x)) ∼ µ

√
l−1(x)h(

√
l−1(x)) À h(

√
l−1(x)). Also,

since ε log x ¿ h(x) ¿ x, we have xr
√

l−1(x) º
√

l−1(x)h(
√

l−1(x)) À log x. Hence
dividing (2.16) by (1/p)F̄(x) gives

exp{−βxr(
√

l−1(x))+ log(l−1(x)p)+h(x−µ)+2log x+ log p}

= exp{−βxr(
√

l−1(x))(1+ o(1))}¹ exp{−βR2
pr(

√
l−1(R2

p))(1+ o(1))}= o(1)

We now analyze the final term of (2.12). We have
∞∑

n=bKpc∨bl−1(x)c+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)≤ ql−1(x)∨Kp+1

≤
{

qKp /a′+1 for l−1(x)¿ Kp/a′

ql−1(x)+1 for l−1(x)º Kp/a′ ≤
{

e−pKp /a′
for l−1(x)¿ Kp/a′

e−pl−1(x) for l−1(x)º Kp/a′(2.17)

where a′ = a′(p)↗ 0 as p ↘ 0 at a rate that will be chosen later on.
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For the first part, dividing by e−θ
∗x yields

exp
{
−p

Kp

a′ +θ∗x
}
= exp

{
−p

Kp

a′ (1+ o(1))
}
= o(1)

For the second part observe that

r
(Kp

a′

)
= h((1/a′2δ)e(1−δ′)g(Bp))

(1/a′2δ)e(1−δ′)g(Bp)
≤ Ca′1−δ′ p2δ(1−δ′)

e(1−δ′2 g(Bp)
¿ p

for some constant C > 0, for a suitably chosen a′, since h(x) ≤ xδ eventually. We
then get Kp/a′−1(p) which implies r(x)¹ r(Kp/a′)¿ p for l−1(x)º Kp/a′. This gives
pl−1(x)À h(x). Note that pKp/a′ = (1/a′1−2δe(1−δ′)g(Bp) À−2δ log p+(1−δ′)g(Bp)=
logKp, so pl−1(x) À log x for x º Kp/a′. Hence dividing the second part of (2.17)
by (1/p)F̄(x) gives

exp{−pl−1(x)+h(x−µ)+2log x+ log p}=exp{−pl−1(x)(1+ o(1))}

¹ exp
{
−pl−1

(Kp

a′

)
(1+ o(1))

}
= o(1)

This concludes our proof of Lemma (2.5).

Proof of Proposition (1.7). The case for x < Bp is obvious, since we have P(Sn >
x, exactly one X i > Cp,n)≤ nF̄(Bp) and hence

P(SM > x, exactly one X i > Cp,M)≤
∞∑

n=1
pqnnF̄(Bp)= q

p
F̄(Bp)= o(1)¿ e−θ

∗x,

uniformly over x < Bp. Thus we shall focus on x ≥ Bp. Note that

P(SM > x, exactly one X i > Cp,M)

≤
bKpc∑
n=1

pqnn
(
F̄(x)(F(Bp))n−1 +

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)
)

+
∞∑

n=bKpc+1
pqnn

(
F̄(x)(F(µ+p

n))n−1

+
∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n)
)

≤ q
p

F̄(x)+
bKpc∑
n=2

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

+
∞∑

n=bKpc+1
pqnn

∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n)

= q
p

F̄(x)+
∞∑

n=2
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

−
∞∑

n=bKpc+1
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

+
∞∑

n=bKpc+1
pqnn

∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n).

We will finish the proof by invoking the following lemmas:
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LEMMA (2.18).
∞∑

n=2
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

=
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)(1+ o(1))

uniformly over x ≥ Bp.

LEMMA (2.19). We have µ+p
K p ≥ Bp for p small enough, and

∞∑
n=bKpc+1

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

≤
∞∑

n=bKpc+1
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤µ+
p

n)dF(y)

¿
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)+ 1
p

F̄(x)

uniformly over x ≥ Bp.

Proof of Lemma (2.18). We write
∞∑

n=2
pqnnP(Sn−1 > x,max X i ≤ Bp) = q

p

∞∑
n=1

p2qn(n+1)P(Sn > x,max X i ≤ Bp)

= q
p

P(SN > x,max X i ≤ Bp)

where N is a negative binomial variable with parameter 2 and p. Let {X ′
i}i=1,2,...,

M′ and S′
M be independent and identical copies of {X i}i=1,2,..., M and SM , and let

FM(x) = P(SM ≤ x,max X i ≤ Bp) and F̄M(x) be its complement defined by P(SM >
x,max X i ≤ Bp). Note that by Lemma (2.4) we have P(SM > x,max X i ≤ Bp) =
e−θ

∗x(1+u(x, p)) where supx>Bp |u(x, p)|→ 0. We have

P(SN > x,max X i ≤ Bp)

= P(SM +S′
M > x, max

1≤i≤M
X i ≤ Bp, max

1≤ j≤M′ X
′
j ≤ Bp)

=
∫ x

0
F̄M(x− y)dFM(y)+ F̄M(x)F̄M(0)

=
∫ x

0
e−θ

∗(x−y)(1+u(x− y, p))dFM(y)+ F̄M(x)F̄M(0)

∼
∫ x

0
e−θ

∗(x−y)dFM(y)+ F̄M(x)F̄M(0)

= e−θ
∗xF̄M(0)− F̄M(x)+

∫ x

0
F̄M(y)θ∗e−θ

∗(x−y)dy+ F̄M(x)F̄M(0)

= e−θ
∗xF̄M(0)+

∫ x

0
θ∗e−θ

∗x(1+u(y, p))d y− F̄M(x)(1− F̄M(0))∼ e−θ
∗x +θ∗xe−θ

∗x

uniformly over x > Bp. The fourth equality is obtained using integration by parts,
and the last equality follows from the observation that F̄M(0) = P(max1≤i≤M X ′

i ≤
Bp) = ∑∞

n=0 pqnF(Bp)n → 1 as p → 0. Noting that θ∗ ∼ p/µ, the conclusion of the
lemma is then an easy consequence.
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Proof of Lemma (2.19). The inequality is obvious. We will thus focus on the order
relation. We first prove that

∞∑
n=bKpc+1

pqnnP(Sn−1 > x,max X i ≤µ+
p

n)¿ e−θ
∗x + 1

p
F̄(x)

uniformly over x ≥ Bp. The proof is very similar to that of Lemma (2.5). Adopting
the notation there, we can write

∞∑
n=bKpc+1

pqnnP(Sn−1 > x,max X i ≤µ+
p

n)

=
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

+
bl−1(x)c∑

n=bR2
pc+1

pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤
p

n)I(bl−1(x)c > bR2
pc > bKpc)

+
∞∑

n=bKpc∨bl−1(x)c+1
pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤

p
n)

Using the same analysis, the first term will be less than or equal to l−1(x)(l−1(x)+1)
2 pql−1(x)e−βαh2(

p
l−1(x)) for bl−1(x)c ≤ bR2

pc
R2

p(R2
p+1)

2 pe(x/µ) log q for bl−1(x)c > bR2
pc

the second term will be less than or equal to

l−1(x)(l−1(x)+1)
2

pe−βxr(
p

l−1(x))

and the third term will be less than or equal to
(
Kp − 1

p +1
)

e−pKp /a′
for l−1(x)¿ Kp/a′(

l−1(x)− 1
p +1

)
e−pl−1(x) for l−1(x)º Kp/a′

For the first two terms the same analysis carries over while for the last one we
only have to observe again that px À log x for x º Kp/a′, which will show our
claim.

Hence we have

∞∑
n=bKpc+1

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤µ+
p

n)dF(y)

¿
∫ x

Bp

(
e−θ

∗(x−y) + 1
p

F̄(x− y)
)

dF(y)¹
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)+ 1
p

F̄(x)

where the last order relation is obtained by using property of class S that
∫ x

0 F̄(x−
y)/F̄(x)dF(y)→ 2 as x →∞. We conclude our proof of Lemma (2.19).
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