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ABSTRACT 
It is important to rigorously and comprehensively evaluate 

the safety of Automated Vehicles (AVs) before their production 

and deployment. A popular AV evaluation approach is 

Naturalistic-Field Operational Test (N-FOT) which tests 

prototype vehicles directly on public roads. Due to the low 

exposure to safety-critical scenarios, N-FOTs is time-consuming 

and expensive to conduct. Computer simulations can be used as 

an alternative to N-FOTs, especially in terms of generating  

motions of the surrounding traffic. In this paper, we propose an 

accelerated evaluation approach for AVs. Human-controlled 

vehicles (HVs) were modeled as disturbance to AVs based on 

data extracted from the Safety Pilot Model Deployment 

Program. The cut-in scenarios are generated based on skewed 

statistics of collected human driver behavior, which amplifies 

riskier testing scenarios while reserves its statistical information 

so that the safety benefits of AV in non-accelerated cases can be 

accurately estimated. An AV model based on a production 

vehicle was tested. Results show that the proposed method can 

accelerate the evaluation process by at least 100 times. 

INTRODUCTION 
AV technologies are actively studied by many automotive 

companies because of their potential to save fuel, reduce crashes, 

ease traffic congestion, and provide better mobility to the 

population that could not operate a car [1]. Currently, almost all 

major automakers have research and development programs on 

AVs. In 2030, it is estimated that the sales of AV technologies 

may reach $87 billion [2]. 

AVs will penetrate the market gradually and will co-exist 

with non-AVs for decades. During this transition period, AVs 

will interact mostly with HVs. It is estimated that 70-90% of the 

motor vehicle crashes are due to human errors [3], [4]. To reduce 

crashes, AVs must deal with the imperfect maneuvers initiated 

by human drivers. A practical and effective evaluation approach 

that accounts for imperfect human driven traffic is essential for 

the development and evaluation of AVs. 

One approach to study the interactions between AVs and 

HVs is through Naturalistic Field Operational Tests (N-FOT) [5]. 

In an N-FOT, data is collected from a number of equipped 

vehicles driven under naturalistic conditions over an extended 

period of time [6]. Several N-FOT projects [7]–[15] have been 

conducted in the U.S. and Europe. Conducting an N-FOT to 

evaluate an AV function typically involves non-intrusive 

conditions, i.e., the test drivers were told to drive as they 

normally would on public roads. This test approach suffers 

several limitations. An obvious problem is the time needed. 

Under naturalistic conditions, the level of exposure to dangerous 

events is very low. In the U.S., there were 5,615,000 police-

reported motor vehicle crashes and 30,800 fatal crashes in 2012, 

while the vehicles traveled a total of 2,968 billion miles [16]. 

This translates to approx. 0.53 million miles for each police-

reported crash and 96 million miles for a fatal crash. Since the 

average annual mileage driven by licensed drivers is 14,012 

miles, one needs to drive on average 38 years to be involved in a 

police-reported crash and 6,877 years for a fatal crash. Because 

of this low exposure rate, the N-FOT projects need a large 

number of vehicles, long test duration, and a large budget. 
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According to [17], N-FOT projects “cannot be conducted with 

less than $10,000,000”. It should be noted that some researchers 

took advantage of big data from N-FOTs and applied N-FOT 

data in a simulation environment [18], [19]. Reusing the N-FOT 

data in simulations is a good approach to testing various designs 

to avoid the large budget for FOT. However, even for computer 

simulations, low exposure to safety critical scenarios is still an 

issue. 

The test matrix approach has been the basis of many test 

standards, such as AEB (Autonomous Emergency Braking) test 

protocol [20] of the Euro NCAP (New Car Assessment 

Program). Much development work was done to advance this 

evaluation approach including CAMP [21], HASTE [22], AIDE 

[23], TRACE [24], APROSYS [25], ASSESS [26], etc. The test 

scenarios are frequently selected based on national crash 

databases [27], such as GES (General Estimates System) [28], 

NMVCCS (National Motor Vehicle Crash Causation Survey) 

[29] and EDR (Event Data Recorder databases) [30]. The main 

benefits of these test methods are that they are clearly defined, 

repeatable, reliable, and can be finished in a reasonable amount 

of time. However, it is not trivial to choose and reconstruct test 

scenarios to represent real-world conditions [6], [31], especially 

when human interaction is involved. Moreover, because all the 

test scenarios are fixed and predefined, control systems can be 

adjusted to achieve good performance on these tests, but their 

behaviors under broader conditions are not adequately assessed 

[32]. 

Another approach, the Worst-Case Scenario Evaluation 

(WCSE) methodology has been studied by Ma [33], Ungoren 

[34] and Kou [35] to identify the most challenging scenarios 

based on the analysis of vehicle dynamics and control. While the 

worst-case evaluation method can identify the weakness of a 

vehicle and vehicle control systems, it did not consider the 

probability of such worst-case scenarios. Therefore, the worst 

case evaluation results do not provide sufficient information 

about the risk in real world [36], [37], and may not be the fairest 

way to compare different designs. 

Zhao [38] proposed the concept of accelerated evaluation of 

AV and applied this approach to car-following scenarios. The 

dynamics of the lead vehicle was exemplified to generate a 

riskier conditions for the following AVs. The acceleration rate 

was estimated by comparing the crash rate under accelerated 

conditions and naturalistic conditions for human driven vehicles. 

The proposed approach is useful to compare between AV 

designs, but not yet able to rigorously estimate the crash rate of 

a new AV under naturalistic conditions and evaluate its safety 

benefit. 

In this paper, we propose a new approach of accelerated 

evaluation that can be used to estimate real world safety benefits 

by using the importance sampling techniques. First, HVs are 

modeled based on data extract from N-FOT database with 

stochastic variables to represent the human driving behaviors. 

Second, the HV models are modified using importance sampling, 

which makes the drivers act more aggressively and thus could 

generate safety critical scenarios at a higher frequency. The 

‘exemplified’ results are then corrected to produce estimations 

statistically equivalent to the original naturalistic driving 

conditions. A concept AV algorithm is modeled and evaluated 

using the proposed approach in lane change scenarios. 

MODEL OF THE LANE CHANGE SCENARIOS 
The lane change (cut-in) scenario is used as an example to 

show the benefits of the proposed accelerated evaluation 

approach. In the US, there are between 240,000 and 610,000 

reported lane-change crashes, resulting in 60,000 injuries 

annually [39]. Few protocols have been published regarding the 

evaluation of AVs (e.g., Autonomous emergency braking 

systems) under lane change scenarios. 

Human drivers’ lane change behaviors have been analyzed 

and modeled for more than half a century. Early studies based on 

controlled experiments usually have short test horizons and 

limited control settings [40]. More recently, researchers started 

to use large scale N-FOT databases to model the lane change 

behaviors. Lee [40] examined steering, turn signal and brake 

pedal usage, eye glance patterns, and safety envelope of 500 lane 

changes. The 100-Car Naturalistic Driving Study analyzed lane 

change events leading to rear-end crashes and near-crashes [39]. 

Zhao [41] analyzed the safety critical variables in mandatory and 

discretionary lane changes for heavy trucks [10].  Most of these 

studies are based on hundreds of lane changes.  We use the data 

collected in the Safety Pilot Model Deployment project, which 

contains hundreds of thousands of lane changes. 

Naturalistic lane change events 
In this research, we developed a lane change statistical 

model and demonstrated its use for accelerated evaluation of a 

frontal collision avoidance algorithm. The database used is the 

Safety Pilot Model Deployment (SPMD) database [42]. The 

SPMD program aims to demonstrate connected vehicle 

technologies in a real-world environment. It recorded naturalistic 

driving of 2,842 equipped vehicles in Ann Arbor, Michigan for 

more than two years. As of April 2015, 34.9 million miles were 

logged, making SPMD one of the largest public N-FOT 

databases ever. 

 

Fig. 1.  Lane change scenarios that may cause frontal crashes 

As shown in Fig. 1, a lane change was detected and recorded 

by a SPMD vehicle when the Lane Change Vehicle (LCV) 

crosses the lane markers. In the SPMD program, 98 sedans are 
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equipped with Data Acquisition System with MobilEye® [43], 

which provides a) the relative position (range), and b) lane 

tracking measures pertaining to the lane delineation both from 

the painted boundary lines and road edge characteristics. The 

accuracy of MobilEye® for range and speed measurement was 

examined by comparing with a 77 GHz radar over 660 km (412 

miles) of driving on a variety of road types, weather, and ambient 

light conditions. It was found that the MobilEye® provides 

measures similar to the radar when the range is shorter than 75 

m. 

The following criteria were applied to ensure consistency of 

the used dataset: 

 𝑣(𝑡𝐿𝐶) ∈ (2 m/s, 40 m/s) 

 𝑣𝐿(𝑡𝐿𝐶) ∈ (2 m/s, 40 m/s) 

 𝑅𝐿(𝑡𝐿𝐶) ∈ (0.1 m, 75 m) 

where 𝑡𝐿𝐶 is the time when the center line of the LCV crosses the 

lane markers; 𝑣𝐿 and 𝑣 are the velocities of the LCV and SPMD 

vehicle; 𝑅𝐿 is the range, defined as the distance between the rear 

edge of the LCV and the front edge of the SPMD vehicle; 𝑇𝑇𝐶 

(Time To Collision) is defined as  

 𝑇𝑇𝐶 = −
𝑅𝐿

�̇�𝐿

 (1) 

where �̇�𝐿 is the derivative of 𝑅𝐿. 403,581 lane changes were 

detected. Fig. 2 shows the locations of the identified lane 

changes. 

 

Fig. 2.  Recorded lane change events queried from SPMD database 

Lane change models 
Generally, a lane change can be categorized into three 

phases: decision to initiate a lane change, gap (range) 

acceptance, and lane change execution [40]. In this research, we 

focused on the effects of gap acceptance, which is mainly 

captured by three variables: 𝑣𝐿(𝑡𝐿𝐶), 𝑅𝐿(𝑡𝐿𝐶) and 𝑇𝑇𝐶𝐿(𝑡𝐿𝐶). In 

the following contents, unless mentioned specifically, 𝑣𝐿,  𝑅𝐿 

and 𝑇𝑇𝐶𝐿 are the values at 𝑡𝐿𝐶. 

The distribution of 𝑣𝐿 is shown in Fig. 3. The division of 

highways and local roads is embodied by the bimodal shape of 

the histogram. 𝑣𝐿 is assumed to remain constant during the 

execution of lane change. Only the events with negative range 

rate is used to build the lane change model. Out of 403,581 lane 

change events, 173,692 are with negative range rate. 

 

Fig. 3.  Distributions of 𝑣𝐿(𝑡𝐿𝐶) of the lane change events used the our model 

To capture the influence of vehicle speed on the range and 

TTC, we divided lane change events into low, medium and high 

velocity conditions. Fig. 4 shows that 𝑣𝐿 has little influence on 

the distribution of  𝑅𝐿
−1. Fig. 5 illustrates the fitting of 𝑅𝐿

−1 with 

Pareto distribution 

 

𝑓𝑅𝐿
−1 (𝑥|𝑘𝑅𝐿

−1 , 𝜎𝑅𝐿
−1 , 𝜃𝑅𝐿

−1 ) 

=
1

𝜎
𝑅𝐿

−1
(1 + 𝑘𝑅𝐿

−1

𝑥−𝜃
𝑅𝐿

−1

𝜎
𝑅𝐿

−1
)

−1−1/𝑘
𝑅𝐿

−1

  

(2) 

where the shape parameter 𝑘𝑅𝐿
−1 , the scale parameter 𝜎𝑅𝐿

−1, and 

threshold parameter 𝜃𝑅𝐿
−1  are all positive. 

 

Fig. 4.  Distributions of 𝑅𝐿
−1(𝑡𝐿𝐶) at different vehicle forward speeds 
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Fig. 5. Fitting results of 𝑅𝐿
−1(𝑡𝐿𝐶) using the Pareto distribution 

The histograms of 𝑇𝑇𝐶𝐿
−1 for different velocity intervals are 

shown in Fig. 6. As the vehicle speed increases, the mean of 

𝑇𝑇𝐶𝐿
−1 decreases. 𝑇𝑇𝐶𝐿

−1 can be approximated by an exponential 

distributions 

 𝑓𝑇𝑇𝐶𝐿
−1 (𝑥|𝜆𝑇𝑇𝐶𝐿

−1) =
1

𝜆𝑇𝑇𝐶𝐿
−1

𝑒
−𝑥/𝜆

𝑇𝑇𝐶𝐿
−1

 (3) 

where the scaling factor 𝜆𝑇𝑇𝐶𝐿
−1varies with the speed of the LCV.  

 

Fig. 6.  Distribution of 𝑇𝑇𝐶𝐿
−1(𝑡𝐿𝐶) at different lane change vehicle speeds 

The dependence of 𝜆 𝑇𝑇𝐶𝐿
−1 on vehicle speed is shown in Fig. 

7. As vehicle speed increases, 𝜆 𝑇𝑇𝐶𝐿
−1 decreases. The blue circles 

represent  𝜆 𝑇𝑇𝐶𝐿
−1 at the center points of 𝑣𝐿 intervals. We use 

linear interpolation and extrapolation to create smooth  𝜆 𝑇𝑇𝐶𝐿
−1 

for all vehicle speeds. 

The effect of range on TTC is shown in Fig. 8. It can be seen 

that the influence of range on TTC is very limited. This indicates 

that 𝑅𝐿 and 𝑇𝑇𝐶𝐿 can be modeled independently given the 

same 𝑣𝐿. �̇�𝐿 can then be calculated from 

 �̇�𝐿 = −
𝑇𝑇𝐶𝐿

−1

𝑅𝐿
−1   (4) 

Finally, velocity of the host vehicle 𝑣 at 𝑡𝐿𝐶 can be calculated 

from 

 

 𝑣(𝑡𝐿𝐶) = 𝑣𝐿(𝑡𝐿𝐶) − �̇�𝐿(𝑡𝐿𝐶) (5) 

 

Fig. 7.  Model parameters for 𝑇𝑇𝐶𝐿(𝑡𝐿𝐶)  

 

Fig. 8.  Distribution of 𝑇𝑇𝐶𝐿(𝑡𝐿𝐶) with variant 𝑅𝐿(𝑡𝐿𝐶) intervals 

In summary, the lane change events are generated in the 

following order: a) generate 𝑣𝐿 based on the empirical 

distributions shown in Fig. 3; b) generate 𝑅𝐿
−1 using Fig. 5; c) 

generate 𝑇𝑇𝐶𝐿
−1 using the Exponential distribution with 

parameters shown in Fig. 7; d) calculate 𝑣(𝑡𝐿𝐶) using Eqs.(4) and 

(5). 

ACCELERATED EVALUATION 
Monte Carlo techniques can be used to simulate the driving 

conditions using the generated stochastic model, but a naïve 

implementation will take a long time to execute. The concept of 

accelerated evaluation is proposed to shorten the simulation 

time. In this section, we introduce the Importance Sampling (IS) 

concept and show how to apply IS to accelerate the evaluation 

process. 

Importance Sampling 
IS is based on the concept of variance reduction, which is 

effective in handling rare events. IS has been successfully 

applied to evaluate critical events in reliability [44], finance [45], 

insurance [46], and telecommunication networks [47]. General 

overviews can be found in [48]–[50]. 
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To explain the concept of IS, let ℰ be the rare events of 

interest, and in this paper, frontal crashes with a vehicle cutting 

in. The indicator function of the event ℰ is defined as 

 𝐼ℰ(𝒙) = {
1, 𝑖𝑓 𝒙 ∈ ℰ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (6) 

The random vector 𝒙 represents the motions of the lane change 

vehicle. Our task is to estimate the probability of  ℰ happening, 

i.e. 

 γ ≔ P(ℰ) = E(𝐼ℰ(𝒙)) (7) 

Denote 𝑓(𝒙) as the joint density function of 𝒙. The core idea 

of IS is to replace 𝑓(𝒙) with a new IS density 𝑓∗(𝒙) that has a 

higher likelihood of the rare events. Obviously, using a different 

distribution like 𝑓∗(𝒙) leads to biased samples, and the key of IS 

is to provide a mechanism to compensate for this bias and 

computes correct crash rate at the end. 

We describe this mechanism as follows. First, we define the 

so-called likelihood ratio L (Radon-Nikodym derivative [51]) as 

 𝐿(𝑥) =
𝑓(𝒙)

𝑓∗(𝒙) 
 (8) 

where 𝑓(𝒙) is the original probability distribution. 

The probability of ℰ satisfies 

 

P(ℰ) = E𝑓(𝐼ℰ(𝒙)) 

= ∫ 𝐼ℰ(𝒙)𝑓(𝒙)𝑑𝒙 

= ∫[𝐼ℰ(𝒙)𝐿(𝒙)]𝑓∗(𝒙)d𝒙 

= E𝑓∗(𝐼ℰ(𝒙)𝐿(𝒙)) 

(9) 

One required condition for (9) to hold is that 𝑓∗(𝒙) must be 

absolutely continuous with respect to 𝑓(𝒙) within ℰ, i.e. 

 ∀𝑥 ∈ ℰ: 𝑓∗(𝒙) = 0    ⇒    𝑓(𝒙) = 0 (10) 

which guarantees the existence of L in (8). The IS sample is 

𝐼ℰ(𝒙𝑖)𝐿(𝒙𝑖) where 𝒙𝑖 is generated under 𝑓∗(𝒙), which is an 

unbiased estimator for 𝛾. The overall IS estimator for test 

number 𝑛 is then 

 𝛾𝑛 =
1

𝑛
∑ 𝐼ℰ(𝒙𝑖)𝐿(𝒙𝑖) 

𝑛

𝑖=0

 (11) 

The accuracy of the estimation is represented by the relative 

half-width. With the Confidence level at 100(1 − 𝛼) %, the 

relative half-width of 𝛾𝑛 is defined as  

 𝑙𝑟 =
𝑙𝛼

𝛾
 (12) 

where 𝑙𝛼 is the half-width given by 

 𝑙𝛼 = 𝑧𝛼𝜎(𝛾𝑛) (13) 

and 𝑧𝛼 is defined as 

 𝑧𝛼 = Φ−1(1 − 𝛼/2) (14) 

where Φ−1 is the inverse cumulative distribution function 

of 𝒩(0,1). Given that the requirement for estimation accuracy 

is to make 𝑙𝑟  smaller than a constant 𝛽, under accelerated 

evaluation, it can be derived that 

 

𝑙𝑟 =
𝑙𝛼

𝛾
=

𝑧𝛼𝜎(𝛾𝑛)

𝛾
=

𝑧𝛼√𝐸𝑓∗( 𝛾𝑛
2) − 𝐸𝑓∗

2 ( 𝛾𝑛)

𝛾√𝑛
 

=
𝑧𝛼√𝐸𝑓∗ ( 𝐼ℰ

2(𝒙) 𝐿2 (𝒙)) − 𝛾2

𝛾√𝑛
 

=
𝑧𝛼

√𝑛
√

𝐸𝑓∗ ( 𝐼ℰ
2(𝒙) 𝐿2 (𝒙))

𝛾2
− 1 ≤ 𝛽  

(15) 

The required minimum test number is then  

 𝑛 ≥
𝑧𝛼

2

𝛽2
(

𝐸𝑓∗ ( 𝐼𝐸
2(𝒙) 𝐿2 (𝒙))

𝛾2
− 1) (16) 

When 𝑓∗(𝑥) is properly chosen, 𝐸𝑓∗ ( 𝐼ℰ
2(𝒙) 𝐿2 (𝒙)) can be 

close to 𝛾2, resulting in a smaller number of tests (i.e., the test is 

accelerated). 

Accelerated evaluation in lane change scenarios 
When a slower lane changing vehicle cut-in in front of the 

AV, the events of interest are defined as 

 ℰ = {min(𝑅𝐿(𝑡)|𝑡𝐿𝐶 ≤ 𝑡 ≤ 𝑡𝐿𝐶 + 𝑇𝐿𝐶) ≤ Rℰ} (17) 

where 𝑇𝐿𝐶  represents duration of the lane change event; Rℰ is the 

critical range. Eq. (17) means that if the minimum range is 

smaller than Rℰ anytime during the lane change event, it is 

declared as a event of interest. 

The random vector 𝒙 consists of three variables 

[𝑣𝐿 , 𝑇𝑇𝐶𝐿
−1,  𝑅𝐿

−1]. 𝑣𝐿 is generated using empirical distributions 

shown in Fig. 3 directly. The IS approach considers the modified 

probability density functions of 𝑇𝑇𝐶𝐿
−1 and  𝑅𝐿

−1 denoted by 

𝑓
𝑇𝑇𝐶𝐿

−1
∗ (𝒙) and 𝑓

 𝑅𝐿
−1

∗ (𝒙). The likelihood ratio is then 

𝐿( 𝑅𝐿
−1 = 𝑥,  𝑇𝑇𝐶𝐿

−1 = 𝑦) =
𝑓 𝑅𝐿

−1(𝑥)𝑓 𝑇𝑇𝐶𝐿
−1(𝑦)

𝑓
 𝑅𝐿

−1
∗ (𝑥)𝑓

 𝑇𝑇𝐶𝐿
−1

∗ (𝑦)
 (18) 

From (9), the probability of ℰ can be estimated as  

 P(ℰ) = E𝑓(𝐼ℰ(𝒙)) = E𝑓∗(𝐼ℰ(𝒙)𝐿(𝒙)) (19) 

There are many possible choices for the family of altered 

probability density function.  Here we use a class of family 

named the Exponential Change of Measure (ECM) for 𝑇𝑇𝐶𝐿
−1. 

Recall that 𝑇𝑇𝐶𝐿
−1~exp (𝜆 𝑇𝑇𝐶𝐿

−1(𝑣𝐿)), i.e. 
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  𝑓 𝑇𝑇𝐶𝐿
−1(𝑥) = 𝜆 𝑇𝑇𝐶𝐿

−1exp (−𝜆 𝑇𝑇𝐶𝐿
−1 ⋅ 𝑥) (20) 

ECM considers the family 

𝑓
 𝑇𝑇𝐶𝐿

−1
∗ (𝑥) 

= exp (𝜗 𝑇𝑇𝐶𝐿
−1𝑥 − 𝛹 (𝜗 𝑇𝑇𝐶𝐿

−1)) 𝑓 𝑇𝑇𝐶𝐿
−1(𝑥) 

(21) 

parametrized by 𝜗 𝑇𝑇𝐶𝐿
−1, where 𝛹 (𝜗 𝑇𝑇𝐶𝐿

−1) is the logarithmic 

moment generation function of  𝑇𝑇𝐶𝐿
−1, i.e., 

 𝛹 (𝜗 𝑇𝑇𝐶𝐿
−1) = log E (exp (𝜗 𝑇𝑇𝐶𝐿

−1 𝑇𝑇𝐶𝐿
−1)) (22) 

It can be further shown that 

𝑓
 𝑇𝑇𝐶𝐿

−1
∗ (𝑥) 

= (𝜆 𝑇𝑇𝐶𝐿
−1 − 𝜗 𝑇𝑇𝐶𝐿

−1) exp (− (𝜆 𝑇𝑇𝐶𝐿
−1 − 𝜗 𝑇𝑇𝐶𝐿

−1) 𝑥) 
(23) 

Nominally 𝑅𝐿
−1 follows a Pareto distribution, i.e. 

 𝑓𝑅𝐿
−1(𝑥) = 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥|𝑘𝑅𝐿

−1 , 𝜎𝑅𝐿
−1 , 𝜃𝑅𝐿

−1  ) (24) 

The ECM cannot be directly applied to a Pareto distribution 

directly. We first construct an exponential distribution 

�̃�
 𝑅𝐿

−1(𝑥) = 𝜆 𝑅𝐿
−1 exp(−𝜆 𝑅𝐿

−1𝑥) (25) 

with 𝜆 𝑅𝐿
−1 , which was optimized to make (25) to have the 

smallest least square error to (24). Then we apply ECM to (25) 

𝑓
 𝑅𝐿

−1
∗ (𝑥) = (𝜆 𝑅𝐿

−1 − 𝜗 𝑅𝐿
−1) exp (− (𝜆 𝑅𝐿

−1 − 𝜗 𝑅𝐿
−1) 𝑥) (26) 

𝜗 𝑅𝐿
−1  and 𝜗 𝑇𝑇𝐶𝐿

−1 were chosen to make 𝑃(ℰ) converge fast. 

Different parameters were applied in low, medium and high 

velocity conditions. The parameters we used were shown in 

Table I. 
TABLE I 

𝜗 𝑅𝐿
−1  AND 𝜗 𝑇𝑇𝐶𝐿

−1  VALUES 

𝑣𝐿 5 − 15 [𝑚/𝑠] 15 − 25 [𝑚/𝑠] 25 − 35 [𝑚/𝑠] 
𝜗 𝑅𝐿

−1 -0.1 -0.1 -0.1 

𝜗 𝑇𝑇𝐶𝐿
−1 -0.5 -1 -1.5 

Now the probability of ℰ can be estimated by using (11) with 𝐿 

in (18) and modified distributions in (23) and (25). 

SIMULATION ANALYSIS 
The AV is assumed to be equipped with both Adaptive 

Cruise Control (ACC) and Autonomous Emergency Braking 

(AEB). When the driving is perceived to be safe (𝑇𝑇𝐶 ≥
𝑇𝑇𝐶𝐴𝐸𝐵), it is controlled by ACC. The ACC is approximated by 

a PI controller to achieve a desired time headway 𝑇𝐻𝑊𝑑 
𝐴𝐶𝐶  

𝑡𝐻𝑊
𝐸𝑟𝑟=𝑡𝐻𝑊  − 𝑇𝐻𝑊𝑑 

𝐴𝐶𝐶  (27) 

𝑎𝑑(𝑡 + 𝜏) = 𝐾𝑝
𝐴𝐶𝐶𝑡𝐻𝑊

𝐸𝑟𝑟(𝑡) + 𝐾𝑖
𝐴𝐶𝐶 ∫ 𝑡𝐻𝑊

𝐸𝑟𝑟(𝜏)
𝑡

0

𝑑𝜏 
(28) 

where 𝑡𝐻𝑊 is the time headway, defined as 

 𝑡𝐻𝑊 = 𝑅𝐿/𝑣 (29) 

𝑎𝑑 is the acceleration command; gains 𝐾𝑝
𝐴𝐶𝐶  and 𝐾𝑖

𝐴𝐶𝐶  are 

calculated using the Matlab Control Toolbox using the following 

requirements: a) Loop bandwidth = 10 rad/s, and b) Phase 

margin = 60 degree. The ACC control is saturated at |𝑎𝑑| <
𝑎𝐴𝐶𝐶

𝑀𝑎𝑥 . 

The AEB model was extracted from a 2011 Volvo V60, 

based on a test conducted by ADAC (Allgemeiner Deutscher 

Automobil-Club e.V.) [52] and its analysis from [53] using test 

track data, data found in owner’s manuals, European New Car 

Assessment Program (Euro NCAP) information, and videos 

during vehicle operation. The AEB algorithm becomes active 

when 𝑇𝑇𝐶 < 𝑇𝑇𝐶𝐴𝐸𝐵, where TTCAEB depends on vehicle speed 

as shown in Fig. 9. Once triggered, AEB aims to achieve 

acceleration aAEB. In [53] aAEB was assumed to be -10 m/s2 

on high friction roads. The build-up of deceleration is subject to 

a rate limit rAEB = -16 m/s3 as shown in Fig. 10. It should be 

noted that the AEB modeled here is an approximation but not 

necessarily a good representation of the actual system on 

production vehicles. 

 

Fig. 9.  𝑇𝑇𝐶𝐴𝐸𝐵 as a function of vehicle speed 

 

Fig. 10. The modeled AEB algorithm 

To accurately model the dynamics of AV, many subsystems 

need to be considered, such as the engine, transmission, braking, 

aerodynamics, ABS (Anti-lock Braking System), etc. For 

simplicity, a first order lag with a time constant 𝜏𝐴𝑉 is used to 

model the transfer function from the commanded acceleration to 

the actual acceleration. The accelerated evaluation process can 
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be applied on other vehicle models such as  CarSim if more 

accurate simulations are desired.  

The crash event ℰ𝑐 is occurred as 𝑅𝐿 becomes negative 

within 𝑇𝐿𝐶  time after 𝑡𝐿𝐶, from (17),  

 ℰ𝑐 = {ℰ|Rℰ = 0} (30) 

To estimate 𝑃(ℰ𝑐), both accelerated and naturalistic 

simulations were conducted. Simulation parameters are shown 

in Table II. 
TABLE II 

PARAMETERS FOR THE LANE CHANGE SIMULATIONS 

Variable 𝑇𝐻𝑊𝑑 
𝐴𝐶𝐶  𝑎𝐴𝐶𝐶

𝑀𝑎𝑥
 𝜏𝐴𝑉 𝑎𝐿(𝑡𝐿𝐶) 𝑎(𝑡𝐿𝐶) 𝑇𝐿𝐶 

Road 
friction 

Unit s m/s2 s m/s2 m/s2 s - 

Value 2 5 0.0796 0 0 8 1 

The crash rate is calculated after each simulation and the 

results are shown in Fig. 11. The naturalistic tests and accelerated 

tests were plotted on different scales. It can be seen that the 

accelerated evaluation successfully estimates the crash rate of 

the naturalistic conditions. 

 

Fig. 11.  Convergence of the estimation of lane change crash rate 

 

Fig. 12.  Relative half width of crash events 

 

Relative half-width is used as the criteria for convergence. 

The evaluation stops when the relative half-width of the 

estimation is below 𝛽 = 0.25. Fig. 12 shows that the accelerated 

evaluation achieves this threshold level after 24,101 simulations, 

145 times faster than the naturalistic simulations. 

CONCLUSION 
This paper proposes an approach to evaluate the 

performance of AVs in an accelerated fashion. By modifying the 

stochastic behaviors of the primary other vehicle (POV), in this 

case a lane changing vehicle driving at a slower speed than the 

host vehicle (the AV), higher-risk driving behaviors are sampled 

more frequently. This method is based on the importance 

sampling theories and have been developed to ensure unbiased 

and accurate evaluation under accelerated conditions. Simulation 

results show that the proposed method accelerates the evaluation 

procedure by about 145 times.  Possible future work includes 

achieve high acceleration ratio, extending the methodology to 

dynamic driving conditions, and a more systematic way to select 

the modified probability density function for unbiased results. 
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