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Abstract

In 1968, Erdös and Lovász conjectured that for every graph G and all integers
s, t ≥ 2 such that s + t − 1 = χ(G) > ω(G), there exists a partition (S, T ) of
the vertex set of G such that χ(G|S) ≥ s and χ(G|T ) ≥ t. For general graphs,
the only settled cases of the conjecture are when s and t are small. Recently, the
conjecture was proved for a few special classes of graphs: graphs with stability
number 2 [1], line graphs [9] and quasi-line graphs [1]. In this paper, we consider
the conjecture for claw-free graphs and present some progress on it.

1 Introduction

In 1968, Erd®s and Lovász made the following conjecture:

Conjecture 1 (Erdös-Lovász Tihany). For every graph G with χ(G) > ω(G) and any

two integers s, t ≥ 2 with s+ t = χ(G) + 1, there is a partition (S, T ) of the vertex set

V (G) such that χ(G|S) ≥ s and χ(G|T ) ≥ t.

Currently, the only settled cases of the conjecture are (s, t) ∈ {(2, 2), (2, 3), (2, 4),
(3, 3), (3, 4), (3, 5)} [2, 10, 11, 12]. Recently, Balogh et. al. proved Conjecture 1 for
the class of graphs known as quasi-line graphs (a graph is a quasi-line graph if for
every vertex v, the set of neighbors of v can be expressed as the union of two cliques).
In this paper we consider a class of graphs that is a proper superset of the class of
quasi-line graphs: claw-free graphs. We prove a weakened version of Conjecture 1 for
this class of graphs. Before we state our main result we need to set up some notation
and de�nitions.

In this paper all graphs are �nite and simple. Given a graph G, let V (G), E(G)
denote the set of vertices and edges of G, respectively. A k-coloring of G is a map
c : V (G) → {1, . . . , k} such that for every pair of adjacent vertices v, w ∈ V (G),
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c(v) 6= c(w). We may also refer to a k-coloring simply as a coloring. The chromatic

number of G, denoted by χ(G), is the smallest integer such that there is a χ(G)-
coloring of G.

A clique in G is a set of vertices of G that are all pairwise adjacent. A stable set

in G is a set of vertices that are all pairwise non-adjacent. A set S ⊆ V (G) is an
anti-matching if every vertex in S is non-adjacent to at most one vertex of S. A brace

is a clique of size 2, a triangle is a clique of size 3 and a triad is a stable set of size 3.
The clique number of G, denoted by ω(G), is the size of a maximum clique in G, and
the stability number of G, denoted by α(G) is the size of the maximum stable set in
G.

Let G be a graph such that χ(G) > ω(G). We say that a brace {u, v} is Tihany if
χ(G\{u, v}) ≥ χ(G) − 1. More generally, if K is a clique of size k in G, then we say
that K is Tihany if χ(G \K) ≥ χ(G)− k + 1.

Let K be a clique in G. We denote by C(K) the set of common neighbors of the
members of K, by A(K) the set of their common non-neighbors, and by M(K) the
set of vertices that are mixed on the clique K. Formally,

C(K) ={x ∈ V (G)\K : ux ∈ E for all u ∈ V (K)}
A(K) ={x : ux /∈ E for all x ∈ K}
M(K) =V (G) \ (C(K) ∪A(K)).

We say that a clique K is dense if C(K) is a clique and we say that it is good if C(K)
is an anti-matching.

The following theorem is the main result of this paper:

1.1. Let G be a claw-free graph with χ(G) > ω(G). Then there exists a clique K with

|K| ≤ 5 such that χ(G\K) > χ(G)− |K|.

To prove 1.1 we use a structure theorem for claw-free graphs (due to the �rst
author and Seymour) that appears in [6] and is described in the next section. Section
3 contains some lemmas that serve as �tools� for later proofs. The next 6 sections are
devoted to dealing with the di�erent outcomes of the structure theorem, proving that
a (subgraph) minimal counterexample to 1.1 does not fall into any of those classes.
Finally, in section 10 all of these results are collected to prove 1.1.

2 Structure Theorem

The goal of this section is to state and describe the structure theorem for claw-free
graphs appearing in [6] (or, more precisely, its corollary). We begin with some de�ni-
tions which are modi�ed from [6].

Let X,Y be two subsets of V (G) with X ∩ Y = ∅. We say that X and Y are
complete to each other if every vertex of X is adjacent to every vertex of Y , and we
say that they are anticomplete to each other if no vertex of X is adjacent to a member
of Y . Similarly, if A ⊆ V (G) and v ∈ V (G)\A, then v is complete to A if v is adjacent
to every vertex in A, and anticomplete to A if v has no neighbor in A.
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Let F ⊆ V (G)2 be a set of unordered pairs of distinct vertices of G such that
every vertex appears in at most one pair. Then H is a thickening of (G,F ) if for every
v ∈ V (G) there is a nonempty subset Xv ⊆ V (H), all pairwise disjoint and with union
V (H) satisfying the following:

• for each v ∈ V (G), Xv is a clique of H

• if u, v ∈ V (G) are adjacent in G and {u, v} 6∈ F , then Xu is complete to Xv in
H

• if u, v ∈ V (G) are nonadjacent in G and {u, v} 6∈ F , then Xu is anticomplete to
Xv in H

• if {u, v} ∈ F then Xu is neither complete nor anticomplete to Xv in H.

Here are some classes of claw-free graphs that come up in the structure theorem.

• Graphs from the icosahedron. The icosahedron is the unique planar graph
with twelve vertices all of degree �ve. Let it have vertices v0, v1, . . . , v11, where
for 1 ≤ i ≤ 10, vi is adjacent to vi+1, vi+2 (reading subscripts modulo 10), and
v0 is adjacent to v1, v3, v5, v7, v9, and v11 is adjacent to v2, v4, v6, v8, v10. Let
this graph be G0. Let G1 be obtained from G0 by deleting v11 and let G2 be
obtained from G1 by deleting v10. Furthermore, let F ′ = {{v1, v4}, {v6, v9}} and
let F ⊆ F ′.
Let G ∈ T1 if G is a thickening of (G0, ∅), (G1, ∅), or (G2, F ) for some F .

• Fuzzy long circular interval graphs. Let Σ be a circle, and let F1, . . . , Fk ⊆
Σ be homeomorphic to the interval [0, 1], such that no two of F1, . . . , Fk share
an endpoint, and no three of them have union Σ. Now let V ⊆ Σ be �nite,
and let H be a graph with vertex set V in which distinct u, v ∈ V are adjacent
precisely if u, v ∈ Fi for some i.

Let F ′ ⊆ V (H)2 be the set of pairs {u, v} such that u, v are distinct endpoints
of Fi for some i. Let F ⊆ F ′ such that every vertex of G appears in at most one
member of F . Then G is a fuzzy long circular interval graph if for some such H
and F , G is a thickening of (H,F ).

Let G ∈ T2 if G is a fuzzy long circular interval graph.

• Fuzzy antiprismatic graphs. A graph K is antiprismatic if for every X ⊆
V (K) with |X| = 4, X is not a claw and there are at least two pairs of vertices
in X that are adjacent. Let H be a graph and let F ⊆ V (H)2 be a set of pairs
{u, v} such that every vertex of H is in at most one member of F and

� no triad of H contains u and no triad of H contains v, or

� there is a triad of H containing both u and v and no other triad of H
contains u or v.
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Thus F is the set of �changeable edges� discussed in [4]. The pair (H,F ) is
antiprismatic if for every F ′ ⊆ F , the graph obtained from H by changing the
adjacency of all the vertex pairs in F ′ is antiprismatic. We say that a graph G is
a fuzzy antiprismatic graph if G is a thickening of (H,F ) for some antiprismatic
pair (H,F ).

Let G ∈ T3 if G is a fuzzy antiprismatic graph.

Next, we de�ne what it means for a claw-free graph to admit a �strip-structure�.
A hypergraph H consists of a �nite set V (H), a �nite set E(H), and an incidence

relation between V (H) and E(H) (that is, a subset of V (H)×E(H)). For the state-
ment of the structure theorem, we only need hypergraphs such that every member of
E(H) is incident with either one or two members of V (H) (thus, these hypergraphs
are graphs if we allow �graphs� to have loops and parallel edges). For F ∈ E(H), F
denotes the set of all h ∈ V (H) incident with F .

Let G be a graph. A strip-structure (H, η) of G consists of a hypergraph H with
E(H) 6= ∅, and a function η mapping each F ∈ E(H) to a subset η(F ) of V (G), and
mapping each pair (F, h) with F ∈ E(H) and h ∈ F to a subset η(F, h) of η(F ),
satisfying the following conditions.

(SD1) The sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint and have union
V (G).

(SD2) For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F
is a clique of G.

(SD3) For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in
G, then there exists h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

There is also a fourth condition, but it is technical and we will not need it in this
paper.

Let (H, η) be a strip-structure of a graph G, and let F ∈ E(H), where F =
{h1, . . . , hk}. Let v1, . . . , vk be new vertices, and let J be the graph obtained from
G|η(F ) by adding v1, . . . , vk, where vi is complete to η(F, hi) and anticomplete to
all other vertices of J . Then (J, {v1, . . . , vk}) is called the strip of (H, η) at F . A
strip-structure (H, η) is nontrivial if |E(H)| ≥ 2.

Appendix D contains the descriptions of some strips (J, Z) that we will need for
the structure theorem.

We are now ready to state a structure theorem for claw-free graphs that is an easy
corollary of the main result of [6].

2.1. Let G be a connected claw-free graph. Then either

• G is a member of T1 ∪ T2 ∪ T3, or

• V (G) is the union of three cliques, or
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• G admits a nontrivial strip-structure such that for each strip (J, Z), 1 ≤ |Z| ≤ 2,
and if |Z| = 2, then either

� |V (J)| = 3 and Z is complete to V (J) \ Z, or
� (J, Z) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5.

3 Tools

In this section we present a few lemmas that will then be used extensively in the
following sections to prove results on the di�erent graphs used in 2.1.

The following result is taken from [12]. Because it is fundamental to many of our
results, we include its proof here for completeness.

3.1. Let G be a graph with chromatic number χ and let K be a clique of size k in G.
If K is not Tihany, then every color class of a (χ − k)-coloring of G \K contains a

vertex complete to K.

Proof. Suppose not. Since K is not Tihany, it follows that G \K is χ − k-colorable.
Let C be a color class of a (χ − k)-coloring of G \K with no vertex complete to K.
De�ne a coloring of K ∪ C by giving a distinct color to each vertex of K and giving
each vertex of C a color of one of its non-neighbors in K. This de�nes a k-coloring of
G|(K ∪ C). Note also that G \ (K ∪ C) is χ− k − 1-colorable. However, this implies
that G is (χ− 1)-colorable, a contradiction. This proves 3.1.

The next lemma is one of our most important and basic tool.

3.2. Let G be a graph such that χ(G) > ω(G). Let K be a clique of G. If K is dense,

then it is Tihany.

Proof. Suppose that K is not Tihany. Let C be a χ − k-coloring of G \ K. By
3.1, every color class of C contains a vertex complete to K. Hence, every color class
contains a member of C(K) and so |C(K)∪K| ≥ χ(G) > ω(G), a contradiction. This
proves 3.2.

Let (A,B) be disjoint subsets of V (G). The pair (A,B) is called a homogeneous

pair in G if A,B are cliques, and for every vertex v ∈ V (G) \ (A ∪ B), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. A W -join
(A,B) is a homogeneous pair in which A is neither complete nor anticomplete to
B. We say that a W -join (A,B) is reduced if we can partition A into two sets A1

and A2 and we can partition B into B1, B2 such that A1 is complete to B1, A2 is
anticomplete to B, and B2 is anticomplete to A. Note that since A is neither complete
nor anticomplete to B, it follows that both A1 and B1 are non-empty and at least one
of A2, B2 is non-empty. We call a W -join that is not reduced a non-reduced W -join.

Let H be a thickening of (G,F ) and let {u, v} ∈ F . Then we notice that (Xu, Xv)
is a W -join in H. If for every {u, v} ∈ F we have that (Xu, Xv) is a reduced W -join
then we say that H is a reduced thickening of G.

The following result appears in [3].
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3.3. Let G be a claw-free graph and suppose that G admits a non-reduced W -join.

Then there exists a subgraph H of G with the following properties:

1. H is a claw-free graph, |V (H)| = |V (G)| and |E(H)| < |E(G)|.

2. χ(H) = χ(G).

The result of 3.3 implies the following:

3.4. Let G be a claw-free graph with χ(G) > ω(G) that is a minimal counterexample

to 1.1. Assume also that G is a thickening of (H,F ) for some claw-free graph H and

F ⊆ V (H)2. Then G is a reduced thickening of (H,F ).

For a clique K and F ⊆ V (G)2, we de�ne SF (K) = {x : ∃k ∈ K s.t. {x, k} ∈
F and x ∈ C(K\k)}.

3.5. Let G be a reduced thickening of (H,F ) for some claw-free graph H and F ⊆
V (H)2. Let K be a clique in H such that for all x, y ∈ C(K), {x, y} 6∈ F . If

C(K) ∪ SF (K) is a clique, then there exists a dense clique of size |K| in G.

Proof. Let K ′ be a clique of size |K| in G such that K ′ ∩Xv 6= ∅ for all v ∈ K. By
the de�nition of a thickening such a clique exists. Moreover since C(K) ∪ SF (K) is a
clique, it follows that K ′ is dense. This proves 3.5.

The following lemma is a direct corollary of 3.2 and 3.5.

3.6. Let G be a reduced thickening of (H,F ) for some claw-free graph H and F ⊆
V (H)2. Let K be a dense clique in H such that for all x, y ∈ C(K), {x, y} 6∈ F . If

C(K) ∪ SF (K) is a clique, then there exists a Tihany clique of size |K| in G.

The following result helps us handle the case when C(x) is an antimatching for
some vertex x ∈ V (G).

3.7. Let G be a graph with χ(G) > ω(G). Let u, x, y ∈ V (G) such that ux, uy ∈ E(G)
and xy 6∈ E(G). Let E = {u, x} and E′ = {u, y}. If C(E) = C(E′) then E,E′ are
Tihany.

Proof. Suppose that E is not Tihany. Let C be a (χ(G)−2)-coloring of G\{u, x}. Let
C ∈ C be the color class such that y ∈ C. By Lemma 3.1, there is a vertex z ∈ C such
that z is complete to E, and so z ∈ C(E). But y is complete to C(E), a contradiction.
Hence E is be Tihany and by symmetry, so is E′.

In particular, if we have a vertex x such that C(x) is an antimatching, we can �nd
a Tihany edge either by 3.2 or by 3.7.

3.8. Let H be a graph, G a thickening of (G,F ) for some valid F ⊆ G(V )2 such that

χ(G) > ω(G). Let K be a clique of H. Assume that for all {x, y} ∈ F such that

x ∈ K, y is complete to C(K)\{y}. Let u, v ∈ C(K) such that u is not adjacent to v
and {u, v} is complete to C(K)\{u, v}. Moreover assume that if there exists E ∈ F
with {u, v}∩E 6= ∅, then E = {u, v}. Then there exists a Tihany clique of size |K|+1
in G.
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Proof. Assume not. Let K ′ be a clique of size K in G such that K ′ ∩Xy 6= ∅ for all
y ∈ K. If {u, v} /∈ F , let a ∈ Xu, A = Xu, b ∈ Xv and B = Xv. If {u, v} ∈ F ,
let X1

u, X
2
u, X

1
v and X2

v be as in the de�nition of reduced W-join. By symmetry, we
may assume that X2

u is not empty. If X2
v is empty, let a ∈ X2

u, A = X2
u, b ∈ X1

v and
B = X1

v ; and if X2
v is not empty, let a ∈ X2

u, A = Xu, b ∈ X2
v and B = Xv.

Now let Ta = K ′ ∪ {a} and Tb = K ′ ∪ {b}. We may assume that χ(G\Ta) =
χ(G\Tb) = χ(G) − |K| − 1. By 3.1, we may assume that every color class G\Ta
contains a common neighbor of Ta. Since no vertex of B is complete to T1, and since
B is a clique complete to C(T1)\A, it follows that |A| > |B|. But similarly, |B| > |A|,
a contradiction. This proves 3.8.

We need an additional de�nition before proving the next lemma. Let K be a
clique; we denote by C(K) the closed neighborhood of K, i.e. C(K) := C(K) ∪K.

3.9. Let G be a graph such that χ(G) > ω(G). Let A and B be cliques such that

2 ≤ |A|, |B| ≤ 3 (i.e., each one is a brace or a triangle). If C(A) ∩ C(B) = ∅ and

C(A) ∪ C(B) contains no triads then at least one of A,B is Tihany.

Proof. Assume not and let k = χ(G)− |A|. By 3.1, in every k-coloring of G\A every
color class must have a vertex in C(A). As there is no triad in C(A)∪C(B), it follows
that every vertex of C(A) is in a color class with at most one vertex of C(B), thus
C(A) > C(B). By symmetry, it follows that C(A) < C(B), a contradiction. This
proves 3.9.

3.10. Let G be a claw-free graph such that χ(G) > ω(G). If G admits a clique cutset,

then there is a Tihany brace in G.

Proof. Let K be a clique cutset. Let A,B ⊂ V (G)\K such that A ∩ B = ∅ and
A∪B ∪K = V (G). Let χA = χ(G|(A∪K)) and χB = χ(G|(B ∪K)). By symmetry,
we may assume that χA ≥ χB.

(1) χ(G) = χA

Let SA = (A1, A2, . . . , AχA) and SB = (B1, B2, . . . , BχB ) be optimal coloring
of G|(A ∪ K) and G|(B ∪ K). Let K = {k1, k2, . . . ,K|K|}. Up to renaming the
stable sets, we may assume that Ai ∩ Bi = {ki} for all i = 1, 2, . . . , |K|. Then
S = (A1 ∪ B1, A2 ∪ B2, . . . , AχB ∪ BχB , AχB+1, . . . , AχA} is a χA-coloring of G. This
proves (1).

Now let x ∈ B and y ∈ K be such that xy ∈ E(G). Then χ(G\{x, y}) ≥
χ(G|(A ∪ K\{y}) ≥ χA − 1 ≥ χ(G) − 1. Hence {x, y} is a Tihany brace. This
proves 3.10.

4 The Icosahedron and Long Circular Interval Graphs

4.1. Let G ∈ T1. If χ(G) > ω(G), then there exists a Tihany brace in G.
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Proof. Let v0, v1, . . . , v11 be as in the de�nition of the icosahedron. Let G0, G1, G2,
and F be as in the de�nition of T1. Then G is a thickening of either (G0, ∅), (G1, ∅),
or (G2, F ) for F ⊆ {(v1, v4), (v6, v9)}. For 0 ≤ i ≤ 11, let Xvi be as in the de�nition
of thickening (where Xv11 is empty when G is a thickening of (G1, ∅) or (G2, F ), and
Xv10 is empty when G is a thickening of (G2, F )). Let xi ∈ Xvi and wi = |Xvi |.

First suppose that G is a thickening of (G1, ∅) or (G2, F ). Then C({x4, x6}) =
Xv4 ∪Xv5 ∪Xv6 is a clique. Therefore, {x4, x6} is a Tihany brace by 3.2.

So we may assume that G is a thickening of (G0, ∅). Suppose that no brace of G
is Tihany and let E = {x1, x3}. Then G\E is (χ − 2)-colorable. By 3.1, every color
class contains at least one vertex from C(E) = (X1 ∪X2 ∪X3 ∪X0) \ {x1, x3}. Since
α(G) = 3, it follows that every color class has at most two vertices from

⋃11
i=4Xvi .

Hence we conclude that

w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 ≤ 2 · (w1 + w2 + w3 + w0 − 2)

A similar inequality exists for every brace {xi, xj}. Summing these inequalities over
all braces {xi, xj}, it follows that (

∑11
i=0 20wi) ≤ (

∑11
i=0 20wi)− 120, a contradiction.

This proves 4.1.

4.2. Let G ∈ T2. If χ(G) > ω(G), then there exists a Tihany brace in G.

Proof. Let H,F,Σ, F1, . . . , Fk be as in the de�nition of T2 such that G is a thickening
of (H,F ). Let Fi be such that there exists no j with Fi ⊂ Fj . Let {xk, . . . , xl} =
V (H)∩Fi and without loss of generality, we may assume that {xk, . . . , xl} are in order
on Σ. Since C({xk, xl}) = {xk+1, . . . , xl−1}, it follows that {xk, xl} is dense. Hence
by 3.6 there exists a Tihany brace in G. This proves 4.2.

5 Non-2-substantial and Non-3-substantial Graphs

In this section we study graphs where a few vertices cover all the triads. An antipris-
matic graph G is k-substantial if for every S ⊆ V (G) with |S| < k there is a triad T
with S ∩T = ∅. The matching number of a graph G, denoted by µ(G), is the number
of edges in a maximum matching in G. Balogh et al. [1] proved the following theorem.

5.1. Let G be a graph such that α(G) = 2 and χ(G) > ω(G). For any two integers

s, t ≥ 2 such that s + t = χ(G) + 1 there exists a partition (S, T ) of V (G) such that

χ(G|S) ≥ s and χ(G|T ) ≥ t.

The following theorem is a result of Gallai and Edmonds on matchings and it will
be used in the study of non-2-substantial and non-3-substantial graphs.

5.2 (Gallai-Edmonds Structure Theorem [7], [8]). Let G = (V,E) be a graph. Let

D denote the set of nodes which are not covered by at least one maximum matching

of G. Let A be the set of nodes in V \D adjacent to at least one node in D. Let

C = V \(A ∪D). Then:

i) The number of covered nodes by a maximum matching in G equals to |V |+ |A|−
c(D), where c(D) denotes the number of components of the graph spanned by D.
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ii) If M is a maximum matching of G, then for every component F of D, E(D)∩M
covers all but one of the nodes of F , E(C) ∩M is a perfect matching and M

matches all the nodes of A with nodes in distinct components of D.

5.3. Let G be an antiprismatic graph. Let K be a clique and u, v ∈ V (G)\C(K) be

non-adjacent. If α(G|(C(K)∪ {u, v})) = 2 and α(G|K ∪ {u, v}) = 3, then G|C(K) is

cobipartite.

Proof. Since there is no triad in C(K) ∪ {u, v}, we deduce that there is no vertex
in C(K) anticomplete to {u, v}. Since G is claw-free and α(G|K ∪ {u, v}) = 3, it
follows that there is no vertex in C(K) complete to {u, v}. Let Cu, Cv ⊆ C(K) be
such that Cu ∪Cv = C(K) and for all x ∈ C(K), x is adjacent to u and non-adjacent
to v if x ∈ Cu, and x is adjacent to v and non-adjacent to u if x ∈ Cv. Since
α(G|(Cv ∪ {u})) = 2, we deduce that Cv is a clique and by symmetry Cu is a clique.
Hence C(K) is the union of two cliques. This proves 5.3.

5.4. Let G be a claw-free graph such that χ(G) > ω(G). Let K be a clique such that

α(G\K) ≤ 2. Then there exists a Tihany clique of size at most |K|+ 1 in G.

Proof. Assume not. Let n = |V (G)|, w ∈ C(K) and K ′ = K ∪ {w} (such a vertex w
exists since K is not Tihany).

(1) χ(G) = n− µ(Gc).

SinceK ′ is not Tihany, it follows that χ(G\K ′) = χ(G)−|K ′|. Since α(G\K ′) ≤ 2,

we deduce that χ(G\K ′) ≥ n−|K′|
2 , and thus χ(G) ≥ n+|K′|

2 . Hence in every optimal
coloring of G the color classes have an average size strictly smaller than 2, and since
G is claw-free, we deduce that there is an optimal coloring of G where all color classes
have size 1 or 2. It follows that χ(G) ≤ n − µ(Gc). But clearly χ(G) ≥ n − µ(Gc),
thus χ(G) = n− µ(Gc). This proves (1).

(2) Let T be a clique of size |K|+ 1 in G, then χ(G\T ) = n− |T | − µ(Gc\T ).

Since T is not Tihany, it follows that χ(G\T ) = χ(G) − |T | ≥ n+|K′|
2 − |T | =

n−|T |
2 = |V (G\T )|

2 . Hence in every optimal coloring of G\T , the color classes have
an average size smaller than 2, and since G is claw-free, we deduce that there is
an optimal coloring of G\T where all color classes have size 1 or 2. It follows that
χ(G\T ) ≤ |V (G\T |−µ(Gc\T ). Hence χ(G\T ) = n−|T |−µ(Gc\T ). This proves (2).

Let A,D,C be as in 5.2. Since χ(G) ≥ n+|K′|
2 and χ(G) = n− µ(Gc), we deduce

that µ(Gc) ≤ n−|K′|
2 . By 5.2 i), we deduce that µ(Gc) = n+|A|−c(D)

2 . Thus, it follows
that c(D) ≥ |K ′|. Let D1, D2, . . . , Dc(D) be the anticomponents of D. Let di ∈ Di for
i = 1, . . . , c(D).

(3) |Di| = 1 for all i.
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Assume not and by symmetry assume that |D1| > 1. Since G is claw-free, we
deduce that α(G|D1) = 2. Thus there exist x, y ∈ D1 such that x is adjacent to y.
Now T = {x, y, d2, . . . , d|K|} is a clique of size |K| + 1 and by 5.2 ii), it follows that
µ(Gc\T ) < µ(Gc). By (1) and (2), it follows that χ(G\T ) + |T | = n − µ(Gc\T ) >
n− µ(Gc) = χ(G), a contradiction. This proves (3).

Let T = {d1, . . . , d|K|+1}. By (3), it follows that C(T ) ∩D is a clique. By 3.2, we
deduce that C(T ) ∩ A 6= ∅. Let x ∈ C(T ) ∩ A. Now S = {d1, . . . , d|K|, x} is a clique
of size |K| + 1 and by 5.2 ii), it follows that µ(Gc\S) < µ(Gc). By (1) and (2), it
follows that χ(G\S) + |S| = n− µ(Gc\S) > n− µ(Gc) = χ(G), a contradiction. This
concludes the proof of 5.4.

5.5. Let H be a claw-free graph such that there exists x ∈ V (H) with α(H\x) = 2.
Let G be a reduced thickening of H such that χ(G) > ω(G) and |Xx| > 1. Then for

all {u, v} ∈ Xx, χ(G\{u, v}) ≥ χ(G)− 1.

Proof. Let u, v ∈ Xx. We may assume that {u, v} is not Tihany. Let k = χ(G\{u, v})
and S = (S1, S2, . . . , Sk) be a k-coloring of G\{u, v}. By 3.1, Si ∩ C({u, v}) 6= ∅. Let
Il = {i : |Si| = l} and let O = C({u, v}) ∩

⋃
i∈I1∪I2 Si and P = C({u, v}) ∩

⋃
i∈I3 Si.

Since α(H\x) = 2, it follows that Si ∩ Xx 6= ∅ for all i ∈ I3. Hence, P is a
clique complete to O and thus ω(G|O ∪ P ) = ω(G|O) + |I3|. Since χ(G) > ω(G),
we deduce that ω(G|O) < |I1 ∪ I2|. By 5.3 and since O ⊆ C(Xx), we deduce that
G|O is cobipartite. Hence χ(G|O) = ω(G|O) < |I1 ∪ I2|. Thus the coloring S does
not induce an optimal coloring of G|O. It follows that there exists an augmenting
antipath P = p1 − p2 − . . .− p2l in O. Now let Ti = {p2i−1, p2i} for i = 1, . . . , l. Let s
be such that p1 ∈ Ss and e be such that p2l ∈ Se. They are the color classes where the
augmenting antipath starts and ends. If |Ss| = 2, let Tl+1 = ({u} ∪ Ss\p1), otherwise
let Tl+1 = {u}. If |Se| = 2, let Tl+2 = ({v} ∪ Se\p2l), otherwise let Tl+2 = {v}.
Let J = {i|Si ∩ V (P ) 6= ∅}. Clearly |J | = l + 1. Now (T1, T2, . . . , Tl+2) is a (l+2)-
coloring of

⋃
i∈J Si ∪ {u, v}, which together with the color classes Si for i /∈ J create

a k + 1-coloring of G, a contradiction. This proves 5.5.

The next lemma is a direct corollary of 5.4 and 5.5.

5.6. Let H be a non-2-substantial claw-free graph. Let G be a reduced thickening of

an augmentation of H such that χ(G) > ω(G). Then there exists a Tihany brace in

G.

Now we look at non-3-substantial graphs.

5.7. Let H be a non-3-substantial antiprismatic graph. Let u, v ∈ H be such that

α(H\{u, v}) = 2. Let G be a reduced thickening of H such that χ(G) > ω(G). If u is

not adjacent to v, then there exists a Tihany brace or triangle in G.

Proof. Assume not. Let Nu = C(u)\C({u, v} and Nv = C(u)\C({u, v}). Since H is
antiprismatic, it follows that Nu and Nv are antimatchings.
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By 5.6, we deduce thatNu andNv are not cliques. Let xu, yu ∈ Nu be not adjacent,
and xv, yv ∈ Nv be not adjacent. Since α(H\{u, v}) = 2 and H is antiprismatic, we
may assume by symmetry that xuxv, yuyv are edges, and xuyv, yuxv are non-edges.
Since α(h\{u, v}) = 2 and H is antiprismatic, it follows that every vertex in C({u, v})
is either strongly complete to xuxv and strongly anticomplete to yuyv, or strongly
complete to yuyv and strongly anticomplete to xuxv. Let (Nx, Ny) be the partition of
C({u, v}) such that all x ∈ Nx are complete to xuxv and and all y ∈ Ny are complete
to yuyv.

Assume �rst that Nx 6= ∅ and Ny 6= ∅. Let nx ∈ Nx and ny ∈ Ny and let
Tu = {u, yu, ny} and Tv = {v, xv, nx}. Clearly Tu and Tv are triangles.

(1) α(G|(C(Tu) ∪ C(Tv)) = 2 and C(Tu) ∩ C(Tv) = ∅.

Assume not. Since C(Tu) ⊆ Ny ∪ Nu ∪ {u} and C(Tv) ⊆ Nx ∪ Nv ∪ {v}, we
deduce that C(Tu) ∩ C(Tv) = ∅. Let T ∈ C(Tu) ∪ C(Tv) be a triad. By symmetry,
we may assume that u ∈ T . Clearly, T\u ∈ Nv. But since H is antiprismatic, we de-
duce that T\u ⊆ C(nx), hence T\u /∈ C(Tu)∪C(Tv), a contradiction. This proves (1).

Now let Su, Sv ∈ G be triangles such that |Su∩Xu| = |Su∩Xyu | = |Su∩Xny | = 1
and |Sv ∩Xv| = |Sv ∩Xxv | = |Sv ∩Xnx | = 1. By (1) and 3.9 and since G is a reduced
thickening of H, we deduce that there is a Tihany triangle in G.

Now assume that at least one of Nx, Ny is empty. By symmetry, we may assume
that Nx is empty. Since C({u, xu}) is an antimatching, by 3.8 there exists a Tihany
triangle in G. This concludes the proof of 5.7.

5.8. Let H be a non-3-substantial antiprismatic graph. Let u, v ∈ H be such that

α(G\{u, v}) = 2. Let G be a reduced thickening of (H,F ) for some valid F ⊆ V (G)2

such that χ(G) > ω(G). If u is adjacent to v, then there exists a Tihany clique K in

G with |K| ≤ 4.

Proof. Assume not. By 5.4, we may assume that |Xu ∪ Xv| > 2. By 5.6, we may
assume that |Xu| > 0 or |Xv| > 0. If |Xu| = 1, then G\Xu is a reduced thickening
of a non-2-substantial antiprismatic graph. By 5.5, there exists a brace {x, y} in Xv

such that χ(G\({x, y} ∪Xu)) ≥ χ(G\Xu) − 1. But χ(G\Xu) − 1 ≥ χ(G) − 2, hence
{x, y} ∪ Xu is a Tihany triangle, a contradiction. Thus |Xu| > 1, and by symmetry
|Xv| > 1.

Let x1, y1 ∈ Xu and x2, y2 ∈ Xv, thus C = {x1, x2, y1, y2} is a clique of size 4.
Let k = χ(G\C) and S = (S1, S2, . . . , Sk) be a k-coloring of G\C. By 3.1, Si ∩

N(C) 6= ∅. For l = 1, 2, 3 let Il = {i : |Si| = l} and let O = N(C) ∩
⋃
i∈I1∪I2 Si and

P = N(C) ∩
⋃
i∈I3 Si.

Since α(H\{u, v}) = 2, it follows that Si ∩ (Xu ∪Xv) 6= ∅ for all i ∈ I3. Hence,
ω(G|O ∪P ) = ω(G|O) + |I3|. Since χ(G) > ω(G), we deduce that ω(G|O) < |I1 ∪ I2|.
By 5.3, we deduce that G|O is cobipartite. Hence χ(G|O) = ω(G|O) < |I1| + |I2|.
Thus the coloring S does not induce an optimal coloring of G|O. It follows that there
exists an augmenting antipath P = p1 − p2 − . . .− p2l in O. Now let Ti = {p2i−1, p2i}
for i = 1, . . . , l. Let s be such that p1 ∈ Ss and e be such that p2l ∈ Se. They
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are the color classes where the augmenting antipath starts and ends. Since Ss\p1
is not complete to {x1, y1}, we deduce that there exists ŝ ∈ {1, 2} such that xŝ is
antiadjacent to Ss\p1. Let Tl+1 = {xŝ} ∪ Ss\p1 and Tl+2 = {x1, x2}\xŝ. Since Se\p2l
is not complete to {x2, y2}, we deduce that there exists ê ∈ {1, 2} such that xê is
antiadjacent to Se\p2l. Let Tl+3 = {xê} ∪ Se\p2l and Tl+4 = {y1, y2}\xê.

Let J = {i|Si ∩ V (P ) 6= ∅}. Clearly |J | = l + 1. Now (T1, T2, . . . , Tl+2, Tl+3, Tl+4)
is a (l+4)-coloring of

⋃
i∈J Si ∪ {x1, x2, y1, y2}, which together with the color classes

Si, for i /∈ J , create a k + 3-coloring of G, a contradiction. This proves 5.8.

The following lemma is a direct corollary of 5.7 and 5.8.

5.9. Let H be a non-3-substantial antiprismatic graph. Let G be a reduced thickening

of H such that χ(G) > ω(G). Then there exists a Tihany clique K ⊂ V (G) with

|K| ≤ 4.

6 Complements of orientable prismatic graphs

In this section we study the complements of orientable prismatic graphs. A graph is
prismatic if its complement is antiprismatic. Let G be a graph. The core of G is the
union of all the triangles in G. If {a, b, c} is a triangle in G and both b, c only belong
to one triangle in G, then b and c are said to be weak. The strong core of G is the
subset of the core such that no vertex in the strong core is weak. As proved in [4], if
H is a thickening of (G,F ) for some valid F ⊆ V (G)2 and {x, y} ∈ F , then x and y
are not in the strong core.

A three-cliqued claw-free graph (G,A,B,C) consists of a claw-free graph G and
three cliques A,B,C of G, pairwise disjoint and with union V (G). The complement
of a tree-cliqued graph is a 3-coloured graph. Let n ≥ 0, and for 1 ≤ i ≤ n, let
(Gi, Ai, Bi, Ci) be a three-cliqued graph, where V (G1), . . . , V (Gn) are all nonempty
and pairwise vertex-disjoint. Let A = A1 ∪ · · · ∪ An, B = B1 ∪ · · · ∪ Bn, and C =
C1 ∪ · · · ∪ Cn, and let G be the graph with vertex set V (G1) ∪ · · · ∪ V (Gn) and with
adjacency as follows:

• for 1 ≤ i ≤ n, G|V (Gi) = Gi;

• for 1 ≤ i < j ≤ n, Ai is complete to V (Gj) \ Bj ; Bi is complete to V (Gj) \ Cj ;
and Ci is complete to V (Gj) \Aj ; and

• for 1 ≤ i < j ≤ n, if u ∈ Ai and v ∈ Bj are adjacent then u, v are both in no
triads; and the same applies if u ∈ Bi and v ∈ Cj , and if u ∈ Ci and v ∈ Aj .

In particular, A,B,C are cliques, and so (G,A,B,C) is a three-cliqued graph and
(Gc, A,B,C) is a 3-coloured graph; we call the sequence (Gi, Ai, Bi, Ci) (i = 1, . . . , n)
a worn hex-chain for (G,A,B,C). When n = 2 we say that (G,A,B,C) is a worn hex-

join of (G1, A1, B1, C1) and (G2, A2, B2, C2). Similarly, the sequence (Gci , Ai, Bi, Ci) (i =
1, . . . , n) is a worn hex-chain for (Gc, A,B,C), and when n = 2, (Gc, A,B,C) is a worn
hex-join of (Gc1, A1, B1, C1) and (Gc2, A2, B2, C2). Note also that every triad of G is
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a triad of one of G1, . . . , Gn. If each Gi is claw-free then so is G and if each Gci is
prismatic then so is Gc.

If (G,A,B,C) is a three-cliqued graph, and {A′, B′, C ′} = {A,B,C}, then (G,A′, B′, C ′)
is also a three-cliqued graph, that we say is a permutation of (G,A,B,C).

A list of the de�nitions needed for the study of the prismatic graphs can be found
in appendix A. The structure of prismatic graph has been extensively studied in [4]
and [5]; the resulting two main theorems are the following.

6.1. Every orientable prismatic graph that is not 3-colourable is either not 3-substantial,

or a cycle of triangles graph, or a ring of �ve graph, or a mantled L(K3,3).

6.2. Every 3-coloured prismatic graph admits a worn chain decomposition with all

terms in Q0 ∪Q1 ∪Q2.

In the remainder of the section, we use these two results to prove our main theorem
for complements of orientable prismatic graphs. We begins with some results that deal
with the various outcomes of 6.1.

6.3. Let H be a prismatic cycle of triangles and G be a reduced thickening of (H,F )
for some valid F ∈ V (G)2 such that χ(G) > ω(G). Then there exists a Tihany brace

or triangle in G.

Proof. Let the set Xi be as in the de�nition of a cycle of triangles. Up to renaming
the sets, we may assume |X̂2n| = |X̂4| = 1. Let u ∈ X̂2i and v ∈ X̂4; hence uv is an
edge. We have

CH({u, v}) =
⋃

j=1 mod 3,j≥4
Xj ∪R1 ∪ L3.

If |X̂2| > 1, then |R1| = |L3| = ∅ and so CH({u, v}) is a clique. Therefore by 3.6,
there is a Tihany brace in G. If |X̂2| = 1, the only non-edges in G|CH({u, v}) are a
perfect anti-matching between R1 and L3. Hence by 3.8, there is a Tihany triangle in
G. This proves 6.3

6.4. Let H be a ring of �ve graph. Let G be a reduced thickening of (H,F ) for some

valid F ∈ V (G)2 such that χ(G) > ω(G). Then there is a Tihany triangle in G.

Proof. Let a2, b3, a4 be as in the de�nition of a ring of �ve. C({a2, b3, a4}) = V2 ∪ V4
and thus {a2, b3, a4} is a dense triangle. By the de�nitions of H and F , it follows that
{a2, b3, a4} ∩ E = ∅ for all E ∈ F . Hence by 3.6, there exists a Tihany triangle in G.
This proves 6.4.

6.5. Let H be a mantled L(K3,3) and G be a reduced thickening of (H,F ) for some

valid F ∈ V (G)2. If χ(G) > ω(G), then there exists a Tihany brace in G.

Proof. Let W,aij , V
i, Vi be as in the de�nition of mantled L(K3,3). Let Xi

j be the

clique corresponding to aij in the thickening andW (resp. Vi, V i) be the set of vertices
corresponding to W (resp. Vi, V

i) in the thickening. Let xji ∈ X
j
i , V = ∪3i=1Vi ∪ V i

and k = χ(G).
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For a brace E in G, let MW (E) := M(E) ∩W, MV (E) := M(E) ∩ V, AW (E) :=

A(E) ∩W and AV (E) := A(E) ∩ V. Let E = {xji , x
j′

i′ } and let S be a color class in a
(k-2)-colouring of G\E.

(1) If S ∩AV (E) 6= ∅, then |S| ≤ 2.

Assume not. Let S = {x, y, z} and without loss of generality we may assume that
E = {x11, x12} and x ∈ AV (E) = V1. Since x is complete to V1 ∪ V2 ∪ V3 and Xj

i , for

i = 1, 2, 3 j = 2, 3, we deduce that y, z /∈ V1∪V2∪V3 and y, z /∈ Xj
i , for i = 1, 2, 3 j =

2, 3. Since there is no triad in V1∪V2∪V3, it follows that |{y, z}∩(V1∪V2∪V3)| ≤ 1.
Since X1

1∪X1
2∪X1

3 is a clique, we deduce that |{y, z}∩(X1
1∪X1

2∪X1
3 )| ≤ 1. Hence, we

may assume by symmetry that y ∈ X1
1 ∪X1

2 ∪X1
3 and z ∈ V2∪V3. But X1

1 ∪X1
2 ∪X1

3

is complete to V2 ∪ V3, a contradiction. This proves (1).

(2) If S ∩MV (E) 6= ∅, then |S| ≤ 2.

Assume not. Let S = {x, y, z} and without loss of generality we may assume that
E = {x11, x12} and x ∈ V1. Since x is complete to V1 ∪ V2 ∪ V3 and Xj

2 ∪ X
j
3 , for

j = 1, 2, 3, we deduce that y, z /∈ V1∪V2∪V3 and y, z /∈ Xj
2 ∪X

j
3 , for j = 1, 2, 3. Since

there is no triad in V2 ∪ V3, it follows that |{y, z} ∩ V2 ∪ V3| ≤ 1. As X1
1 ∪X2

1 ∪X3
1

is a clique, we deduce that |{y, z} ∩ (X1
1 ∪ X2

1 ∪ X3
1 )| ≤ 1. Hence we may assume

by symmetry that y ∈ V2 ∪ V3 and z ∈ X1
1 ∪ X2

1 ∪ X3
1 . But V2 ∪ V3 is complete to

X1
1 ∪X2

1 ∪X3
1 , a contradiction. This proves (2).

By 3.1, every color class of a (k− 2)-coloring of G\E must have a vertex in C(E).
By (1) and (2), it follows that color classes with vertices in AV (E) ∪MV (E) have
size 2. Hence we deduce that AV (E) + MV (E) + 1

2AW (E) + 1
2MW (E) ≤ C(E) − 2.

Summing this inequality on all baces E = {xji , x
j′

i′ } i, j = 1, 2, 3, it follows that

3
∑
i

(|Vi|+|V i|)+6
∑
i

(|Vi|+|V i|)+
4

2

∑
i,j

|Xj
i |+

8

2

∑
i,j

|Xj
i | < 9

∑
i

(|Vi|+|V i|)+6
∑
i,j

|Xj
i |,

which is a contradiction. This proves 6.5.

6.6. Let (H,H1, H2, H3)
c be a path of triangle and (I, I1, I2, I3) an antiprismatic three-

cliqued graph. Let G be a worn hex-join of (H,H1, H2, H3) and (I, I1, I2, I3), and G
′

be a reduced thickening of (G,F ) for some valid F ∈ V (G)2 such that χ(G′) > ω(G′).
Then there exists a Tihany clique K in G′, with |K| ≤ 4.

Proof. Assume not. Let the set Xj of H be as in the de�nition of a path of triangle
and we may assume that Hi = ∪j=i mod 3Xj .

Assume �rst that |X̂2i| > 1 for some i. Let u ∈ X2i−2 and v ∈ X2i+2, so uv is an
edge in G. Moreover {u, v} is in the strong core. Thus

CG({u, v}) =
⋃

j = 2i+ 2 mod 3,
j ≥ 2i+ 2

Xj ∪
⋃

j = 2i− 2 mod 3,
j ≤ 2i− 2

Xj ∪ Ik
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for k = 2i + 1 mod 3. Hence CG({u, v}) is a clique and so by 3.6, there is a Tihany
brace in G′, a contradiction. Hence we may assume that |X̂2i| = 1 ∀i.

Assume that n ≥ 3 and let u ∈ X̂2, v ∈ X̂6. Then uv is an edge in G. Moreover
{u, v} is in the strong core. Thus

CG({u, v}) =
⋃

j=0 mod 3,j≥6
Xj ∪X2 ∪R3 ∪ L5 ∪H3.

Hence CG({u, v}) is an antimatching, and by 3.8, there exists a Tihany triangle in
G′, a contradiction. It follows that n ≤ 2.

Assume now that n = 2. Let u ∈ X̂2, v ∈ L5. Then uv is an edge in G and
CG({u, v}) = X2∪R3∪L5∪H3. Thus G|C({u, v}) is a perfect anti-matching between
R3 and L5. Hence by 3.8, there is a Tihany triangle in G′, a contradiction.

Thus we deduce that n = 1. Assume that |R1| = |L3| = 1. Let u ∈ X2 and
v ∈ R1 ∪ L3 be a neighbor of v. Without loss of generality, we may assume that
v ∈ L3. Since CG({u, v}) ⊆ X2 ∪ L3 ∪ H3 is a clique, it follows by 3.6 that there
is a Tihany brace in G′, a contradiction. Hence we deduce that |R1| = |L3| > 1.
Now, let u ∈ R1 and v ∈ L3 be adjacent. By 5.6, we may assume that G is not a
2-non-substantial graph. If follows that there exists x ∈ I2 such that x is in a triad.
Thus CG({u, v, x}) is an antimatching, and by 3.8, there exists a Tihany clique K in
G′ with |K| ≤ 4, a contradiction. This proves 6.6.

6.7. Let (G,A,B,C) be an antiprismatic graph that admit a worn chain decomposition

(Gi, Ai, Bi, Ci). Suppose that there exists k such that (Gk, Ak, Bk, Ck) is the line graph
of K3,3. Let G′ be a reduced thickening of (G,F ) for some valid F ∈ V (G)2. If

χ(G′) > ω(G′), then there is a Tihany brace in G′.

Proof. Assume not. Let {aij}i,j=1,2,3 be the vertices of Gk using the standard notation.

Let Xi
j = Xaij

be the clique corresponding to aij in the thickening. Moreover, let

xji ∈ X
j
i , w

j
i = |Xj

i | and k = χ(G).
Since all of the vertices in the thickening of Gk are in triads, Gk is linked to the

rest of the graph by a hex-join.
Note that G\{x11, x12} is k-2 colourable. By 3.1, it follows that every color class

containing a vertex in X2
1 ∪X3

1 must have a vertex in X1
2 ∪X1

3 . Hence we deduce that
w2
1 + w3

1 ≤ w1
2 + w1

3 − 1 and by symmetry w2
2 + w3

2 ≤ w1
1 + w1

3 − 1. Summing these
two inequalities, it follows that

w2
1 + w3

1 + w2
2 + w3

2 < w1
2 + w1

1 + 2w1
3.

A similar inequality can be obtained for all edges xjix
j
i′ . Summing them all, we deduce

that 4
∑

ij w
j
i < 2

∑
ij w

j
i + 2

∑
ij w

j
i , a contradiction. This proves 6.7

6.8. Let H be a 3-coloured prismatic graph. Let G be a reduced thickening of (H,F )
for some valid F ∈ V (G)2 such that χ(G) > ω(G). Then there exists a Tihany brace

or triangle in G.
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Proof. By 6.2, H admits a worn chain decomposition with all terms in Q0 ∪Q1 ∪Q2.
If one term of the decomposition is in Q2 then by 6.6, it follows that there is a Tihany
clique K with |K| ≤ 4 G. If one term of the decomposition is in Q1, then by 6.7, it
follows that there is a Tihany brace in G. Hence we may assume that all terms are
in Q0. Therefore there are no triads in G and thus by 5.1, it follows that there is a
Tihany brace in G. This proves 6.8.

We can now prove the main result of this section.

6.9. Let H be an orientable prismatic graph. Let G be a reduced thickening of (H,F )
for some valid F ⊆ V (G)2 such that χ(G) > ω(G). Then there exists a Tihany clique

K in G with |K| ≤ 4.

Proof. If H admits a worn chain decomposition with all terms in Q0 ∪Q1 ∪Q2, then
by 6.8, G admits a Tihany brace or triangle. Otherwise, by 6.1, H is either not
3-substantial, a cycle of triangles, a ring of �ve graph, or a mantled L(K3,3).

If H is not 3-substantial, then by 5.7, there is a clique K in G with |K| ≤ 4. If
H is a cycle of triangles, then by 6.3, there is a Tihany brace or triangle in G. If H
is a ring of �ve graph, then by 6.4, there is a Tihany triangle in G. Finally, if H is a
mantled L(K3,3), then by 6.5, there is a Tihany brace in G. This proves 6.9.

7 Non-orientable Prismatic Graphs

The de�nitions needed to understand this section can be found in appendix B. The
following is a result from [5].

7.1. Let G be prismatic. Then G is orientable if and only if no induced subgraph of

G is a twister or rotator.

In the following two lemmas, we study complements of orientable prismatic graphs.
We split our analysis based on whether the graph contains a twister or a rotator as
an induced subgraph.

7.2. Let H be an non-orientable prismatic graph. Assume that there exists D ⊆ V (H)
such that G|D is a rotator. Let G be a reduced thickening of (H,F ) such that χ(G) >
ω(G) for some valid F ⊆ V (G)2. Then there exists a Tihany clique K in G with

|K| ≤ 5.

Proof. Assume not. Let D = {v1, . . . , v9} be as in the de�nition of a rotator. For
i = 1, 2, 3, let Ai be the set of vertices of V (H)\D that are adjacent to vi. Since H is
prismatic and {v1, v2, v3} is a triangle, it follows that A1 ∪A2 ∪A3 = V (H)\D.

Let I1 = {{5, 6}, {5, 9}, {6, 8}, {8, 9}}, I2 = {{4, 6}, {4, 9}, {6, 7}, {7, 9}} and I3 =

{{4, 5}, {4, 8}, {5, 7}, {7, 8}}. For i = 1, 2, 3 and {k, l} ∈ Ii, let Ak,li be the set of ver-
tices of V (H)\D that are complete to {vi, vk, vl}. Since {v1, v2, v3} and {vi, vi+3, vi+6}
are triangles for i = 1, 2, 3 and H is prismatic, we deduce that Ai =

⋃
{k,l}∈Ii A

k,l
i for

i = 1, 2, 3. For i = 1, 2, 3 and {k, l} ∈ Ii and since {v1, v4, v7}, {v2, v5, v8}, {v3, v6, v9}
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are triangles and H is prismatic, it follows that Ak,li is anticomplete to vm for all
m ∈ {4, 5, 6, 7, 8, 9}\{i, k, l}.

Assume that A49
2 and A48

3 are not empty. Since H is prismatic, we deduce that A49
2

is anticomplete to A48
3 in H. Let x ∈ A49

2 and y ∈ A48
3 . Then CH({v1, v5, v6, x, y} is a

clique and {v1, v5, v6, x, y} is in the strong core. Hence by 3.6, there exists a Tihany
clique of size 5 in G.

Assume now that A49
2 is not empty, but A48

3 is empty. Let x ∈ A49
2 . Then

CH({v1, v5, v6, x}) is a clique and {v1, v5, v6, x} is in the core. Moreover {v1, v6, x} is
in the strong core. Since {v2, v5, v8} is a triad and v2 is in the strong core, it follows
that if there exists E ∈ F with v5 ∈ E, then E = {v5, v8}. But v8 is not adjacent to
v6 in H. Hence by 3.6, there exists a Tihany clique K of size 4 in G.

We may now assume that A49
2 = A48

3 = ∅. Since H is prismatic, it follows that
CH({v1, v5, v6}) is an anti-matching. Moreover {v1, v5, v6} is in the core and v1 is in
the strong core. For i = 2, 3, since {vi, vi+3, vi+6} is a triad and vi is in the strong
core, it follows that if there exists E ∈ F with vi+3 ∈ E, then E = {vi+3, vi+6}. But
v8 is not adjacent to v6 and v9 is not adjacent to v5. Hence by 3.6, there exists a
Tihany triangle in G. This concludes the proof of 7.2.

7.3. Let H be a non-orientable prismatic graph. Assume that there exists W ⊆ V (H)
such that H|W is a twister. Further, assume that there is no induced rotator in H. If

G is a reduced thickening of (H,F ) such that χ(G) > ω(G), then there exists a Tihany

clique K in G with |K| ≤ 4.

Proof. Assume not. LetW = {v1, v2, . . . , v8, u1, u2} be as in the de�nition of a twister.
Throughout the proof, all addition is modulo 8. For i = 1, . . . , 8, let Ai,i+1 be the
set of vertices in V \W that are adjacent to vi and vi+1 and let Bi,i+2 be the set of
vertices in V \W that are adjacent to vi and vi+2. Moreover, let C ⊆ V \W be the
set of vertices that are anticomplete to W . Since H is prismatic, we deduce that⋃8
i=1(Ai,i+1∪Bi,i+2)∪C = V \W . Moreover Ai,i+1 is complete to {vi, vi+1, vi+3, vi+6}

and anticomplete to W\{vi, vi+1, vi+3, vi+6}. Since H is prismatic, it follows also that
Bi,i+2 is complete to ui mod 2} and anticomplete to W\{vi, vi+2, ui mod 2}. Moreover,
C is anticomplete to {v1, v2, . . . , v8}.

(1) There exists i ∈ {1, . . . , 8}, such that Ai,i+1 and Ai+3,j+4 are either both empty or

both non-empty.

Assume not. By symmetry we may assume that A1,2 is not empty and A4,5 is
empty. Since A1,2 is not empty, we deduce that A6,7 is empty. Since A4,5 and A6,7 are
empty, it follows that A7,8 and A3,4 are not empty. Let x ∈ A7,8 and y ∈ A3,4. Then
G|{v8, u1, v4, x, v6, v3, v7, v2, y} is a rotator, a contradiction. This proves (1).

(2) If Ai,i+1 and Ai+3,i+4 are both non-empty for some i ∈ {1, . . . , 8}, then there exists

a Tihany clique of size 5 in G.

Assume that A2,3 and A5,6 are not empty and let x ∈ A2,3 and y ∈ A5,6. The
anti-neighborhood of {v1, v7, u2, x, y} in H is a stable set. Moreover, {v1, v7, u2, x, y}
is in the strong core and hence by 3.6 there is a Tihany clique of size 5 in G. This
proves (2).
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(3) If Ai,i+1 and Ai+3,i+4 are both empty for some i ∈ {1, . . . , 8}, then there exists a

Tihany clique of size 4 in G.

Assume that A2,3 and A5,6 are both empty. Then the anti-neighborhood of
{v1, v7, u2} in H is A8,2 ∪ A2,4 ∪ A4,6 ∪ A6,8 which is a matching. Moreover u2 is
in the strong core and {v1, v7} is in the core. Possibly {v1, v5} and {v3, v7} are in F ,
but A2,8 ∪ A2,4 ∪ A4,6 ∪ A6,8 ∪ {v3, v7} is also an anti-matching. Hence by 3.8, there
is a Tihany clique of size 4 in G. This proves (3).

Now by (1), there exists i such that Ai,i+1 and Ai+3,i+4 are either both empty or
both non-empty. If Ai,i+1 and Ai+3,i+4 are both non-empty, then by (2) there is a
Tihany clique of size 5 in G. If Ai,i+1 and Ai+3,i+4 are both empty, then by (3) there
is a Tihany clique of size 4 in G. This concludes the proof of 7.3.

7.4. Let H be a non-orientable prismatic graph. Let G be a reduced thickening of

(H,F ) for some valid F ⊆ V (G)2 such that χ(G) > ω(G); then there exists a Tihany

clique K in G with K ≤ 5.

Proof. By 7.1, it follows that there is an induced twister or an induced rotator in H.
If there is an induced rotator in H, then by 7.2, it follows that there is a Tihany clique
of size 5 in G. If there is an induced twister and no induced rotator in H, then by 7.3,
it follows that there is a Tihany clique of size 4 in G. This proves 7.4.

8 Three-cliqued Graphs

In this section we prove Theorem 1.1 for those claw-free graphs G for which V (G)
can be partitioned into three cliques. The de�nition of three-cliqued graphs has been
given at the start of Section 6. A list of three-cliqued claw-free graphs that are needed
for the statement of the structure theorem can be found in appendix C. We begin
with a structure theorem from [6].

8.1. Every three-cliqued claw-free graph admits a worn hex-chain into terms each of

which is a reduced thickening of a permutation of a member of one of T C1, . . . , T C5.

Let (G,A,B,C) be a three-cliqued graph and K be a clique of G. We say that K
is strongly Tihany if for all three-cliqued graphs (H,A′, B′, C ′), K is Tihany in every
worn hex-join (I, A ∪A′, B ∪B′, C ∪C ′) of (G,A,B,C) and (H,A′, B′, C ′) such that
χ(I) > ω(I).

A clique K is said to be bi-cliqued if exactly two of K ∩ A,K ∩ B,K ∩ C are
not empty and every v ∈ K is in a triad. A clique K is said to be tri-cliqued if
K ∩A,K ∩B,K ∩ C are all not empty and every v ∈ K is in a triad.

8.2. Let K be a dense clique in (G,A1, A2, A3). If both K and C(K) are bi-cliqued,

then K is strongly Tihany.

Proof. Let (G′, A′, B′, C ′) be a three-cliqued claw-free graph and let (H,D,E, F ) be
a worn hex-join of (G,A,B,C) and (G′, A′, B′, C ′). Then in H, C(K) ∩ V (G′) is a
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clique that is complete to C(K) ∩ V (G). Hence, by 3.2, K is Tihany in H and hence
H is strongly Tihany.

8.3. Let K be a dense clique of a three-cliqued graph (G,A,B,C). If K is tri-cliqued,

then K is strongly Tihany.

Proof. Let (G′, A′, B′, C ′) be a three-cliqued claw-free graph and let (H,D,E, F ) be
a hex-join of (G,A,B,C) and (G′, A′, B′, C ′). Then in H, CH(K) ∩ V (G′) = ∅ and
thus CH(K) is a clique in H. Hence, by 3.2, K is strongly Tihany.

8.4. Let (G,A,B,C) be an element of T C1 and G′ be a reduced thickening of (G,F )
for some valid F ⊆ V (G)2. Then there is either a strongly Tihany brace or a strongly

Tihany triangle in G′.

Proof. Let H, v1, v2, v3 be as in the de�nition of T C1; so L(H) = G. Let V12 be the
set of vertices of H that are adjacent to v1 and v2 but not to v3 and let V13, V23 be
de�ned similarly. Let V123 be the set of vertices complete to {v1, v2, v3}.

Suppose that Vij 6= ∅ for some i, j. Then let vij ∈ Vij , and let xi be the vertex in
G corresponding to the edge vijvi in H and xj be the vertex in G corresponding to
the edge vijvj in H. Then CG({xi, xj}) = ∅, and thus by 3.5 and 8.2, there exists a
strongly Tihany brace in G′.

So we may assume that Vij = ∅ for all i, j. Then from the de�nition of T C1, it
follows that V123 is not empty. Let v ∈ V123 and let x1, x2, x3 be the vertices in G
corresponding to the edges vv1, vv2, vv3 of H, respectively. Then CG({x1, x2, x3}) =
∅ and hence by 3.5 and 8.3, there exists a strongly Tihany triangle in G′. This
proves 8.4.

8.5. Let (G,A,B,C) be an element of T C2 and let (G′, A′, B′, C ′) be a reduced thick-

ening of (G,F ) for some valid F ⊆ V (G)2. Then there is either a strongly Tihany

brace or a strongly Tihany triangle in G′.

Proof. Let Σ, F1, . . . , Fk, L1, L2, L3 be as in the de�nition of T C2. Without loss of
generality, we may assume that A is not anticomplete to B. It follows from the
de�nition of G that there exists Fi such that Fi ∩ A and Fi ∩ B are both not empty.
Let {xk, . . . , xl} = V (H) ∩ Fi and without loss of generality, we may assume that
{xk, . . . , xl} are in order on Σ.

Let Fi be such that there exists no j with Fi ⊂ Fj . Let {xk, . . . , xl} = V (H) ∩ Fi
and without loss of generality, we may assume that {xk, . . . , xl} are in order on Σ.
Since C({xk, xl}) = {xk+1, . . . , xl−1}, it follows that {xk, xl} is dense. If xk, xl are the
endpoints of Fi, it follows by 3.1 and 3.5 that there is a Tihany brace in G. Otherwise,
by 3.6 there exists a Tihany brace in G. This proves 4.2.

8.6. Let (G,A,B,C) be an element of T C3 and let (G′, A′, B′, C ′) be a reduced thick-

ening of (G,F ) for some valid F ∈ V (G)2. Then there is either a strongly Tihany

brace or a strongly Tihany triangle in G′.
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Proof. Let H,A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn}, C = {c1, . . . , cn}, and X be
as in the de�nition of near-antiprismatic graphs. Suppose that for some i, ai, bi ∈
V (G). Then since |C \X| ≥ 2, it follows that there exists j 6= i such that cj ∈ V (G).
Now T = {ai, bi, cj} is dense and tri-cliqued in G, and so by 3.5 and 8.3 there is a
strongly Tihany triangle in G′.

So we may assume that for all i, if ai ∈ V (G), then bi 6∈ V (G). Since by de�nition
of T C3 every vertex is in a triad, it follows that ci ∈ V (G) whenever ai ∈ V (G). Now
suppose that ai, aj ∈ V (G) for some i 6= j. Then ({ai, aj}, {ci, cj}) is a non-reduced
homogeneous pair in G. Hence we may assume that for all i 6= j at most one of ai, aj
is in V (G). Let ai ∈ V (G),; then for some j 6= i we have cj ∈ V (G). Now E = {ai, cj}
is dense and bi-cliqued. Moreover C(E) is bi-cliqued, hence by 3.5 and 8.2, it follows
that E is a strongly Tihany brace in G′. This proves 8.6.

8.7. Let G be an element of T C5 and G′ be a reduced thickening of (G,F ) for some

valid F ⊆ V (G)2. Then there exists either a brace E ∈ V (G′) that is strongly Tihany

or a triangle T ∈ V (G′) that is strongly Tihany in G′.

Proof. First suppose that G ∈ T C15. Let H, {v1, . . . , v8} be as in the de�nition of T C15.
If v4 ∈ V (G) then {v2, v4} is dense and bi-cliqued. Moreover C({v2, v4}) is bi-cliqued
and thus by 3.5 and 8.2, there is a strongly Tihany brace in G′. If v3 ∈ G, then {v3, v5}
is dense and bi-cliqued. Moreover C({v3, v5}) is bi-cliqued and so by 3.5 and 8.2, there
is a strongly Tihany brace in G′. So we may assume that v4, v3 6∈ V (G). But then the
triangle T = {v1, v6, v7} is dense and tri-cliqued and thus by 3.5 and 8.3, there exists
a strongly Tihany triangle in G′.

We may assume now that G ∈ T C25. If v3 ∈ G then {v2, v3} is dense, bi-cliqued
and C({v2, v3}) is bi-cliqued. Otherwise, {v2, v4} is dense, bi-cliqued and C({v2, v4})
is bi-cliqued. In both cases, it follows from 3.5 and 8.2 that there exists a strongly
Tihany brace in G′. This proves 8.7.

We are now ready to prove the main result of this section.

8.8. Let G be a three-cliqued claw-free graph such that χ(G) > ω(G). Then G contains

either a Tihany brace or a Tihany triangle in G.

Proof. By 8.1, there exist (Gi, Ai, Bi, Ci), for i = 1, . . . , n, such that the sequence
(Gi, Ai, Bi, Ci) (i = 1, . . . , n) is a worn hex-chain for (G,A,B,C) and such that
(Gi, Ai, Bi, Ci) is a reduced thickening of a permutation of a member of one of T C1, . . . , T C5.
If there exists i ∈ {1, . . . , n} such that (Gi, Ai, Bi, Ci) is a reduced thickening of a per-
mutation of a member of T C1, T C2, T C3, or T C5, then by 8.4, 8.5, 8.6, or 8.7
(respectively), there is a strongly Tihany brace or a strongly Tihany triangle in Gi,
and thus there is a Tihany brace or a Tihany triangle in G. Thus it follows that
(Gi, Ai, Bi, Ci) is a reduced thickening of a member of T C4 for all i = 1, . . . , n. Hence
G is a reduced thickening of a three-cliqued antiprismatic graph. By 6.8, there exists
a Tihany brace or triangle in G. This proves 8.8
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9 Non-trivial Strip Structures

In this section we prove 1.1 for graphs G that admit non-trivial strip structures and
appear in [6].

Let (J, Z) be a strip. We say that (J, Z) is a line graph strip if |V (J)| = 3, |Z| = 2
and Z is complete to V (J) \ Z.

The following two lemmas appear in [3].

9.1. Suppose that G admits a nontrivial strip-structure such that |Z| = 1 for some

strip (J, Z) of (H, η). Then either G is a clique or G admits a clique cutset.

9.2. Let G be a graph that admits a nontrivial strip-structure (H, η) such that for

every F ∈ E(H), the strip of (H, η) at F is a line graph strip. Then G is a line graph.

We now use these lemmas to prove the main result of this section.

9.3. Let G be a claw-free graph with χ(G) > ω(G) that is a minimal counterexample

to 1.1. Then G does not admit a nontrivial strip-structure (H, η) such that for each

strip (J, Z) of (H, η), 1 ≤ |Z| ≤ 2, and if |Z| = 2 then either |V (J)| = 3 and Z is

complete to V (J) \ Z, or (J, Z) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5.

Proof. Suppose that G admits a nontrivial strip-structure (H, η) such that for each
strip (J, Z) of (H, η), 1 ≤ |Z| ≤ 2. Further suppose that |Z| = 1 for some strip (J, Z).
Then by 9.1 either G is a clique or G admits a clique cutset; in the former case G does
not satisfy χ(G) > ω(G), and in the latter case 9.3 follows from 3.10. Hence we may
assume that |Z| = 2 for all strips (J, Z).

If all the strips of (H, η) are line graph strips, then by 9.2, G is a line graph and the
result follows from [1]. So we may assume that some strip (J1, Z1) is not a line graph
strip. Let Z1 = {a1, b1}. Let A1 = NJ1(a1), B1 = NJ1(b1), A2 = NG(A1)\V (J1), and
B2 = NG(B1)\V (J1). Let C1 = V (J1)\(A1∪B1) and C2 = V (G)\(V (J1)∪A2∪B2).
Then V (G) = A1 ∪B1 ∪ C1 ∪A2 ∪B2 ∪ C2.

(1) If C2 = ∅ and A2 = B2, then there is a Tihany clique K in G with |K| ≤ 5.

Note that V (G) = A1 ∪ B1 ∪ C1 ∪ A2. Since |Z1| = 2 and (J1, Z1) is not a line
graph strip, it follows that (J1, Z1) is a member of Z1∪Z2∪Z3∪Z4∪Z5. We consider
the cases separately:

1. If (J1, Z1) is a member of Z1, then J1 is a fuzzy linear interval graph and so G
is a fuzzy long circular interval graph and Theorem 9.3 follows from [1].

2. If (J1, Z1) is a member of Z2,Z3, or Z4. In all of these cases, A1, B1, and C1 are
all cliques and so V (G) is the union of three cliques, namely A1 ∪ A2, B1, and
C1. Hence, by 8.8, there exists a Tihany clique K with |K| ≤ 5.

3. If (J1, Z1) is a member of Z5. Let v1, . . . , v12, X,H,H
′, F be as in the de�nition

of Z5 and for 1 ≤ i ≤ 12 let Xvi be as in the de�nition of a thickening. Then
A2 is complete to Xv1 ∪Xv2 ∪Xv4 ∪Xv5 . Let H ′′ be the graph obtained from
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H ′ by adding a new vertex a2, adjacent to v1, v2, v4 and v5. Then H ′′ is an
antiprismatic graph. Moreover, no triad of H ′′ contains v9 or v10. Thus the pair
(H ′, F ) is antiprismatic, and G is a thickening of (H ′, F ), so 9.3 follows from 6.9
and 7.4.

This proves (1).

By (1), we may assume that either C2 6= ∅, or A2 6= B2. Suppose that A2 = B2.
Then since C2 6= ∅ it follows that A2 is a clique cutset of G and the result follows
from 3.10. Hence, we may assume that A2 6= B2 and without loss of generality we
may assume that A2 \B2 6= ∅. Let v ∈ A2 \B2 and let w ∈ A1 \B1. Then E = {v, w}
is dense and 9.3 follows from 3.2.

10 Proof of the Main Theorem

We can now prove the main theorem.

Proof of 1.1. Let G be a claw-free graph with χ(G) > ω(G)and suppose that there
does not exist a clique K in G with |K| ≤ 5 such that χ(G\K) > χ(G)− |K|. By 9.3
and 2.1, it follows that either G is a member of T1 ∪ T2 ∪ T3 or V (G) is the union
of three cliques. By 4.1, it follows that G is not a member of T1. By 4.2, it follows
that G is not a member of T2. By 6.9 and 7.4, we deduce that G is not a member T3.
Hence, it follows that V (G) is the union of three cliques. But by 8.8, it follows that
there is a Tihany brace or triangle in G, a contradiction. This proves 1.1.
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A Orientable prismatic graphs

• Q0 is the class of all 3-coloured graphs (G,A,B,C) such that G has no triangle.

• Q1 is the class of all 3-coloured graphs (G,A,B,C) where G is isomorphic to
the line graph of K3,3.

• Q2 is the class of all canonically-coloured path of triangles graphs.

• Path of triangles. A graph G is a path of triangles graph if for some integer
n ≥ 1 there are pairwise disjoint stable subsets X1, . . . , X2n+1 of V (G) with
union V (G), satisfying the following conditions (P1)-(P7).

(P1) For 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i; |X̂2| = |X̂2n| = 1,
and for 0 < i < n, at least one of X̂2i, X̂2i+2 has cardinality 1.

(P2) For 1 ≤ i < j ≤ 2n+ 1

(1) if j − i = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj , nonadjacent,
then either i, j are odd and j = i+ 2, or i, j are even and u /∈ X̂i and
v /∈ X̂j ;

(2) if j− i 6= 2 modulo 3 then either j = i+ 1 or Xi is anticomplete to Xj .

(P3) For 1 ≤ i ≤ n + 1, X2i−1 is the union of three pairwise disjoint sets
L2i−1,M2i− 1, R2i− 1, where L1 = M1 = M2n+1 = R2n+1 = ∅.

(P4) If R1 = ∅ then n ≥ 2 and |X̂4| > 1, and if L2n+1 = ∅ then n ≥ 2 and
|X̂2n−2| > 1.

(P5) For 1 ≤ i ≤ n, X2i is anticomplete to L2i−1∪R2i+1; X2i\X̂2i is anticomplete
to M2i−1 ∪M2i+1; and every vertex in X2i\X̂2i is adjacent to exactly one
end of every edge between R2i−1 and L2i+1.

(P6) For 1 ≤ i ≤ n, if |X̂2i| = 1, then

(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪R2i−1 and
L2i+1 ∪M2i+1 is between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪M2i−1 ∪ L2i+1 ∪M2i+1;

(3) L2i−1 is complete to X2i+1 and X2i−1 is complete to R2i+1

(4) if i > 1 thenM2i−1, X̂2i−2 are matched, and if i < n thenM2i+1, X̂2i+2

are matched.

(P7) For 1 < i < n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;
(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if

they have the same neighbour in X̂2i.

Let Ak =
⋃

(Xi : 1 ≤ i ≤ 2n + 1 and i = k mod 3) (k = 0, 1, 2). Then
(G,A1, A2, A3) is a canonically-coloured path of triangles graphs.
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• Cycle of triangles. A graph G is a cycle of triangles graph if for some integer
n ≥ 5 with n = 2 modulo 3, there are pairwise disjoint stable subsetsX1, . . . , X2n

of V (G) with union V (G), satisfying the following conditions (C1)-(C6) (reading
subscripts modulo 2n):

(C1) For 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i, and at least one of
X̂2i, X̂2i+2 has cardinality 1.

(C2) For i ∈ {1, . . . , 2n} and all k with 2 ≤ k ≤ 2n− 2, let j ∈ {1, . . . , 2n} with
j = i+ k modulo 2n:

(1) if k = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj , nonadjacent,
then either i, j are odd and k ∈ {2, 2n−2}, or i, j are even and u /∈ X̂i

and v /∈ X̂j ;

(2) if k 6= 2 modulo 3 then Xi is anticomplete to Xj .

(Note that k = 2 modulo 3 if and only if 2n − k = 2 modulo 3, so these
statements are symmetric between i and j.)

(C3) For 1 ≤ i ≤ n + 1, X2i−1 is the union of three pairwise disjoint sets
L2i−1,M2i−1, R2i−1.

(C4) For 1 ≤ i ≤ n, X2i is anticomplete to L2i−1∪R2i+1; X2i\X̂2i is anticomplete
to M2i−1 ∪M2i+1; and every vertex in X2i\X̂2i is adjacent to exactly one
end of every edge between R2i−1 and L2i+1.

(C5) For 1 ≤ i ≤ n, if |X̂2i| = 1, then

(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪R2i−1 and
L2i+1 ∪M2i+1 is between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪M2i−1 ∪ L2i+1 ∪M2i+1;

(3) L2i−1 is complete to X2i+1 and X2i−1 is complete to R2i+1

(4) M2i−1, X̂2i−2 are matched and M2i+1, X̂2i+2 are matched.

(C6) For 1 ≤ i ≤ n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;
(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if

they have the same neighbour in X̂2i.

• Ring of �ve. Let G be a graph with V (G) the union of the disjoint sets
W = {a1, . . . , a5, b1, . . . , b5} and V0, V1, . . . , V5. Let adjacency be as follows
(reading subscripts modulo 5). For 1 ≤ i ≤ 5, {ai, ai+1; bi+3} is a triangle, and ai
is adjacent to bi; V0 is complete to {b1, . . . , b5} and anticomplete to {a1, . . . , a5};
V0, V1, . . . , V5 are all stable; for i = 1, . . . , 5, Vi is complete to {ai−1, bi, ai+1}
and anticomplete to the remainder of W ; V0 is anticomplete to V1 ∪ · · · ∪ V5;
for 1 ≤ i ≤ 5 Vi is anticomplete to Vi+2; and the adjacency between Vi, Vi+1 is
arbitrary. We call such a graph a ring of �ve.

• Mantled L(K3,3). Let G be a graph with V (G) the union of seven sets

W = {aji : 1 ≤ i, j ≤ 3}, V 1, V 2, V 3, V1, V2, V3,
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with adjacency as follows. For 1 ≤ i, j, i′, j′ ≤ 3, aji and aj
′

i′ are adjacent if
and only if i′ 6= i and j′ 6= j. For i = 1, 2, 3, V i, Vi are stable; V i is complete
to {a1i , a2i , a3i }, and anticomplete to the remainder of W ; and Vi is complete to
{ai1, ai2, ai3} and anticomplete to the remainder of W . Moreover, V 1∪V 2∪V 3 is
anticomplete to V1 ∪ V2 ∪ V3, and there is no triangle included in V 1 ∪ V 2 ∪ V 3

or in V1 ∪ V2 ∪ V3. We call such a graph G a mantled L(K3,3).

B Non-orientable prismatic graphs

• A rotator. Let G have nine vertices v1, v2, . . . , v9, where {v1, v2, v3} is a trian-
gle, {v4, v5, v6} is complete to {v7, v8, v9}, and for i = 1, 2, 3, vi is adjacent to
vi+3, vi+6, and there are no other edges. We call G a rotator.

• A twister. Let G have ten vertices u1, u2, v1, . . . , v8 , where u1, u2 are adjacent,
for i = 1, . . . , 8 vi is adjacent to vi−1, vi+1, vi+4 (reading subscripts modulo 8),
and for i = 1, 2, ui is adjacent to vi, vi+2, vi+4, vi+6, and there are no other edges.
We call G a twister and u1, u2 is the axis of the twister.

C Three-cliqued graphs

• A type of line trigraph. Let v1, v2, v3 be distinct nonadjacent vertices of a
graphH, such that every edge ofH is incident with one of v1, v2, v3. Let v1, v2, v3
all have degree at least three, and let all other vertices of H have degree at least
one. Moreover, for all distinct i, j ∈ {1, 2, 3}, let there be at most one vertex
di�erent from v1, v2, v3 that is adjacent to vi and not to vj in H. Let A,B,C
be the sets of edges of H incident with v1, v2, v3 respectively, and let G be a
line trigraph of H. Then (G,A,B,C) is a three-cliqued claw-free trigraph; let
T C1 be the class of all such three-cliqued trigraphs such that every vertex is in
a triad.

• Long circular interval trigraphs. Let G be a long circular interval trigraph,
and let Σ be a circle with V (G) ⊆ Σ, and F1, . . . , Fk ⊆ Σ, as in the de�nition
of long circular interval trigraph. By a line we mean either a subset X ⊆ V (G)
with |X| ≤ 1, or a subset of some Fi homeomorphic to the closed unit interval,
with both end-points in V (G). Let L1, L2, L3 be pairwise disjoint lines with
V (G) ⊆ L1 ∪ L2 ∪ L3; then (G,V (G) ∩ L1, V (G) ∩ L2, V (G) ∩ L3) is a three-
cliqued claw-free trigraph. We denote by T C2 the class of such three-cliqued
trigraphs with the additional property that every vertex is in a triad.

• Near-antiprismatic trigraphs. Let H be a near-antiprismatic trigraph, and
let A,B,C,X be as in the de�nition of near-antiprismatic trigraph. Let A′ =
A\X and de�ne B′, C ′ similarly; then (H,A′, B′, C ′) is a three-cliqued claw-free
trigraph. We denote by T C3 the class of all three-cliqued trigraphs with the
additional property that every vertex is in a triad.
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• Antiprismatic trigraphs. Let G be an antiprismatic trigraph and let A,B,C
be a partition of V (G) into three strong cliques; then (G,A,B,C) is a three-
cliqued claw-free trigraph. We denote the class of all such three-cliqued trigraphs
by T C4. (In [4] Chudnovsky and Seymour described explicitly all three-cliqued
antiprismatic graphs, and their "changeable" edges; and this therefore provides
a description of the three-cliqued antiprismatic trigraphs.) Note that in this case
there may be vertices that are in no triads.

• Sporadic exceptions.

� Let H be the trigraph with vertex set {v1, . . . , v8} and adjacency as fol-
lows: vi, vj are strongly adjacent for 1 ≤ i < j ≤ 6 with j − i ≤ 2;
the pairs v1v5 and v2v6 are strongly antiadjacent; v1, v6, v7 are pairwise
strongly adjacent, and v7 is strongly antiadjacent to v2, v3, v4, v5; v7, v8
are strongly adjacent, and v8 is strongly antiadjacent to v1, . . . , v6; the
pairs v1v4 and v3v6 are semiadjacent, and v2 is antiadjacent to v5. Let
A = {v1, v2, v3}, B = {v4, v5, v6} and C = {v7, v8}. Let X ⊆ {v3, v4};
then (H\X,A\X,B\X,C) is a three-cliqued claw-free trigraph, and all its
vertices are in triads.

� Let H be the trigraph with vertex set {v1, . . . , v9}, and adjacency as fol-
lows: the sets A = {v1, v2}, B = {v3, v4, v5, v6, v9} and C = {v7, v8} are
strong cliques; v9 is strongly adjacent to v1, v8 and strongly antiadjacent
to v2, v7; v1 is strongly antiadjacent to v4, v5, v6, v7, semiadjacent to v3
and strongly adjacent to v8; v2 is strongly antiadjacent to v5, v6, v7, v8 and
strongly adjacent to v3; v3, v4 are strongly antiadjacent to v7, v8; v5 is
strongly antiadjacent to v8; v6 is semiadjacent to v8 and strongly adjacent
to v7; and the adjacency between the pairs v2v4 and v5v7 is arbitrary. Let
X ⊆ {v3, v4, v5, v6}, such that

∗ v2 is not strongly anticomplete to {v3, v4}\X
∗ v7 is not strongly anticomplete to {v5, v6}\X
∗ if v4, v5 /∈ X then v2 is adjacent to v4 and v5 is adjacent to v7.

Then (H\X,A,B\X,C) is a three-cliqued claw-free trigraph.

We denote by T C5 the class of such three-cliqued trigraphs (given by one of
these two constructions) with the additional property that every vertex is in a
triad.

D Strips

Z1: Let H be a graph with vertex set {v1, . . . , vn}, such that for 1 ≤ i < j <
k ≤ n, if vi, vk are adjacent then vj is adjacent to both vi, vk. Let n ≥ 2,
let v1, vn be nonadjacent, and let there be no vertex adjacent to both v1
and vn. Let F ′ ⊆ V (H)2 be the set of pairs {vi, vj} such that i < j,
vi 6= v1 and vj 6= vn, vi is nonadjacent to vj+1, and vj is nonadjacent to
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vi−1. Furthermore, let F ⊆ F ′ such that every vertex of H appears in
at most one member of F . Then G is a fuzzy linear interval graph if for
some H and F , G is a thickening of (H,F ) with |Xv1 | = |Xvn | = 1. Let
Xv1 = {u1}, Xvn = {un}, and Z = {u1, un}. Z1 is the set of all pairs
(G,Z).

Z2: Let n ≥ 2. Construct a graph H as follows. Its vertex set is the disjoint
union of three sets A,B,C, where |A| = |B| = n+ 1 and |C| = n, say A =
{a0, a1, . . . , an}, B = {b0, b1, . . . , bn}, and C = {c1, . . . , cn}. Adjacency is
as follows. A,B,C are cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let
ai, bj be adjacent if and only if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n,
let ci be adjacent to aj , bj if and only if i 6= j 6= 0. All other pairs not
speci�ed so far are nonadjacent. Now let X ⊆ A ∪ B ∪ C \ {a0, b0} with
|C \X| ≥ 2. Let H ′ = H \X and let G be a thickening of (H ′, F ) with
|Xa0 | = |Xb0 | = 1 and F ⊆ V (H ′)2 (we will not specify the possibilities
for the set F because they are technical and we will not need them in our
proof). Let Xa0 = {a′0}, Xb0 = {b′0}, and Z = {a′0, b′0}. Z2 is the set of all
pairs (G,Z).

Z3: Let H be a graph, and let h1-h2-h3-h4-h5 be the vertices of a path of H
in order, such that h1, h5 both have degree one in H, and every edge
of H is incident with one of h2, h3, h4. Let H ′ be obtained from the
line graph of H by making the edges h2h3 and h3h4 of H (vertices of
H ′) nonadjacent. Let F ⊆ {{h2h3, h3h4}} and let G be a thickening of
(H ′, F ) with |Xh1h2 | = |Xh4h5 | = 1. Let Xh1h2 = {u}, Xh4h5 = {v}, and
Z = {u, v}. Z3 is the set of all pairs (G,Z).

Z4: Let H be the graph with vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} and ad-
jacency as follows: {a0, a1, a2}, {b0, b1, b2, b3}, {a2, c1, c2}, and {a1, b1, c2}
are cliques; b2, c1 are adjacent; and all other pairs are nonadjacent. Let
F = {{b2, c2}, {b3, c1}} and let G be a thickening of (H,F ) with |Xa0 | =
|Xb0 | = 1. Let Xa0 = {a′0}, Xb0 = {b′0}, and Z = {a′0, b′0}. Z4 is the set of
all pairs (G,Z).

Z5: Let H be the graph with vertex set {v1, . . . , v12}, and with adjacency as
follows. v1- · · · -v6-v1 is an induced cycle in G of length 6. Next, v7 is
adjacent to v1, v2; v8 is adjacent to v4, v5; v9 is adjacent to v6, v1, v2, v3;
v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10;
and v12 is adjacent to v2, v3, v5, v6, v9, v10. No other pairs are adjacent.
Let H ′ be a graph isomorphic to H \ X for some X ⊆ {v11, v12} and let
F ⊆ {{v9, v10}}. Let G be a thickening of (H ′, F ) with |Xa0 | = |Xb0 | = 1.
Let Xv7 = {v′7}, Xv8 = {v′8}, and Z = {v′7, v′8}. Z5 is the set of all pairs
(G,Z).
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