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Abstract

In 1968, Erdos and Lovész conjectured that for every graph G and all integers
s,t > 2 such that s +¢ — 1 = x(G) > w(G), there exists a partition (S,T) of
the vertex set of G such that x(G|S) > s and x(G|T) > t. For general graphs,
the only settled cases of the conjecture are when s and ¢ are small. Recently, the
conjecture was proved for a few special classes of graphs: graphs with stability
number 2 [I], line graphs [9] and quasi-line graphs [I]. In this paper, we consider
the conjecture for claw-free graphs and present some progress on it.

1 Introduction

In 1968, Erdés and Lovéasz made the following conjecture:

Conjecture 1 (Erdos-Lovéasz Tihany). For every graph G with x(G) > w(G) and any
two integers s,t > 2 with s+t = x(G) + 1, there is a partition (S,T) of the vertex set
V(G) such that x(G|S) > s and x(G|T) > t.

Currently, the only settled cases of the conjecture are (s,t) € {(2,2),(2,3),(2,4),
(3,3),(3,4),(3,5)} [2, 10, 1T}, 12]. Recently, Balogh et. al. proved Conjecture [1] for
the class of graphs known as quasi-line graphs (a graph is a quasi-line graph if for
every vertex v, the set of neighbors of v can be expressed as the union of two cliques).
In this paper we consider a class of graphs that is a proper superset of the class of
quasi-line graphs: claw-free graphs. We prove a weakened version of Conjecture (1] for
this class of graphs. Before we state our main result we need to set up some notation
and definitions.

In this paper all graphs are finite and simple. Given a graph G, let V(G), E(G)
denote the set of vertices and edges of G, respectively. A k-coloring of G is a map
c¢: V(G) — {1,...,k} such that for every pair of adjacent vertices v,w € V(G),
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c(v) # c(w). We may also refer to a k-coloring simply as a coloring. The chromatic
number of G, denoted by x(G), is the smallest integer such that there is a x(G)-
coloring of G.

A clique in G is a set of vertices of G that are all pairwise adjacent. A stable set
in G is a set of vertices that are all pairwise non-adjacent. A set S C V(@) is an
anti-matching if every vertex in S is non-adjacent to at most one vertex of S. A brace
is a clique of size 2, a triangle is a clique of size 3 and a triad is a stable set of size 3.
The cliqgue number of G, denoted by w(G), is the size of a maximum clique in G, and
the stability number of G, denoted by a(G) is the size of the maximum stable set in
G.

Let G be a graph such that x(G) > w(G). We say that a brace {u,v} is Tihany if
X(G\{u,v}) > x(G) — 1. More generally, if K is a clique of size k in G, then we say
that K is Tihany if x(G\ K) > x(G) — k + 1.

Let K be a clique in G. We denote by C(K) the set of common neighbors of the
members of K, by A(K) the set of their common non-neighbors, and by M (K) the
set of vertices that are mixed on the clique K. Formally,

C(K)={z € V(G)\K :ux € E for all u € V(K)}
AK) ={x :uzx ¢ E for all x € K}
M(K) =V(G)\ (C(K) U A(K)).

We say that a clique K is dense if C(K) is a clique and we say that it is good if C'(K)
is an anti-matching.
The following theorem is the main result of this paper:

1.1. Let G be a claw-free graph with x(G) > w(G). Then there exists a clique K with
|K| <5 such that x(G\K) > x(G) — |K].

To prove we use a structure theorem for claw-free graphs (due to the first
author and Seymour) that appears in [6] and is described in the next section. Section
3 contains some lemmas that serve as "tools” for later proofs. The next 6 sections are
devoted to dealing with the different outcomes of the structure theorem, proving that
a (subgraph) minimal counterexample to does not fall into any of those classes.
Finally, in section [L0] all of these results are collected to prove [I.1

2 Structure Theorem

The goal of this section is to state and describe the structure theorem for claw-free
graphs appearing in [6] (or, more precisely, its corollary). We begin with some defini-
tions which are modified from [6].

Let X,Y be two subsets of V(G) with X NY = (. We say that X and Y are
complete to each other if every vertex of X is adjacent to every vertex of Y, and we
say that they are anticomplete to each other if no vertex of X is adjacent to a member
of Y. Similarly, if A C V(G) and v € V(G)\ A4, then v is complete to A if v is adjacent
to every vertex in A, and anticomplete to A if v has no neighbor in A.



Let ' C V(G)? be a set of unordered pairs of distinct vertices of G such that
every vertex appears in at most one pair. Then H is a thickening of (G, F') if for every
v € V(G) there is a nonempty subset X,, C V(H), all pairwise disjoint and with union
V(H) satisfying the following:

Here

for each v € V(G), X, is a clique of H

if u,v € V(G) are adjacent in G and {u,v} ¢ F, then X, is complete to X, in
H

if u,v € V(G) are nonadjacent in G and {u,v} ¢ F, then X,, is anticomplete to
Xyin H

if {u,v} € F then X, is neither complete nor anticomplete to X, in H.
are some classes of claw-free graphs that come up in the structure theorem.

Graphs from the icosahedron. The icosahedron is the unique planar graph
with twelve vertices all of degree five. Let it have vertices vg, vy, ...,v11, where
for 1 <14 <10, v; is adjacent to v;y1,v;2 (reading subscripts modulo 10), and
vo is adjacent to vi,vs,vs, vy, v9, and w11 is adjacent to wo, vy, vg, vs, v19. Let
this graph be Gy. Let G; be obtained from Gy by deleting v1; and let G5 be
obtained from G by deleting v1g. Furthermore, let F' = {{v1,v4}, {vs, v9}} and
let F C F'.

Let G € Ty if G is a thickening of (Gg, (), (G1,0), or (Ga, F) for some F.

Fuzzy long circular interval graphs. Let X be a circle, and let Fi, ..., Fj C
Y be homeomorphic to the interval [0, 1], such that no two of Fi,..., F) share
an endpoint, and no three of them have union . Now let V C X be finite,
and let H be a graph with vertex set V in which distinct u,v € V are adjacent
precisely if u,v € F; for some .

Let F' C V(H)? be the set of pairs {u,v} such that u,v are distinct endpoints
of F; for some i. Let F' C F’ such that every vertex of G appears in at most one
member of F'. Then G is a fuzzy long circular interval graph if for some such H
and F, G is a thickening of (H, F).

Let G € T3 if G is a fuzzy long circular interval graph.

Fuzzy antiprismatic graphs. A graph K is antiprismatic if for every X C
V(K) with |X| =4, X is not a claw and there are at least two pairs of vertices
in X that are adjacent. Let H be a graph and let ' C V(H)? be a set of pairs
{u,v} such that every vertex of H is in at most one member of F' and

— no triad of H contains u and no triad of H contains v, or

— there is a triad of H containing both u and v and no other triad of H
contains u or v.



Thus F is the set of “changeable edges” discussed in [4]. The pair (H,F) is
antiprismatic if for every F' C F, the graph obtained from H by changing the
adjacency of all the vertex pairs in F’ is antiprismatic. We say that a graph G is
a fuzzy antiprismatic graph if G is a thickening of (H, F') for some antiprismatic
pair (H, F).

Let G € T3 if G is a fuzzy antiprismatic graph.

Next, we define what it means for a claw-free graph to admit a “strip-structure”.

A hypergraph H consists of a finite set V(H), a finite set E(H), and an incidence
relation between V(H) and E(H) (that is, a subset of V(H) x E(H)). For the state-
ment of the structure theorem, we only need hypergraphs such that every member of
E(H) is incident with either one or two members of V(H) (thus, these hypergraphs
are graphs if we allow “graphs” to have loops and parallel edges). For F € E(H), F
denotes the set of all h € V(H) incident with F'.

Let G be a graph. A strip-structure (H,n) of G consists of a hypergraph H with
E(H) # 0, and a function n mapping each F' € E(H) to a subset n(F) of V(G), and
mapping each pair (F,h) with F € E(H) and h € F to a subset n(F,h) of n(F),
satisfying the following conditions.

(SD1) The sets n(F') (F € E(H)) are nonempty and pairwise disjoint and have union
V(Q).

(SD2) For each h € V(H), the union of the sets n(F, h) for all F € E(H) with h € F
is a clique of G.

(SD3) For all distinct Fy, Fy € E(H), if v1 € n(F1) and vy € n(Fy) are adjacent in
G, then there exists h € Fy N Fy such that vy € n(F1, h) and ve € n(Fy, h).

There is also a fourth condition, but it is technical and we will not need it in this
paper.

Let (H,n) be a strip-structure of a graph G, and let F € E(H), where F' =
{hi,...,ht}. Let vi,...,vx be new vertices, and let J be the graph obtained from
G|n(F) by adding vy, ..., v, where v; is complete to n(F,h;) and anticomplete to
all other vertices of J. Then (J,{vi,...,vx}) is called the strip of (H,n) at F. A
strip-structure (H,n) is nontrivial if |E(H)| > 2.

Appendix @] contains the descriptions of some strips (J, Z) that we will need for
the structure theorem.

We are now ready to state a structure theorem for claw-free graphs that is an easy
corollary of the main result of [6].

2.1. Let G be a connected claw-free graph. Then either
o (G is a member of TT UT2UT3, or

e V(G) is the union of three cliques, or



e G admits a nontrivial strip-structure such that for each strip (J,Z), 1 < |Z| < 2,
and if |Z| = 2, then either

— |V(J)| =3 and Z is complete to V(J)\ Z, or
— (J,Z) is a member of 21 U Z5U 23U Z4 U Z5.

3 Tools

In this section we present a few lemmas that will then be used extensively in the
following sections to prove results on the different graphs used in 2.1}

The following result is taken from [12]. Because it is fundamental to many of our
results, we include its proof here for completeness.

3.1. Let G be a graph with chromatic number x and let K be a clique of size k in G.
If K is not Tihany, then every color class of a (x — k)-coloring of G\ K contains a
vertex complete to K.

Proof. Suppose not. Since K is not Tihany, it follows that G \ K is x — k-colorable.
Let C be a color class of a (y — k)-coloring of G\ K with no vertex complete to K.
Define a coloring of K U C by giving a distinct color to each vertex of K and giving
each vertex of C a color of one of its non-neighbors in K. This defines a k-coloring of
G|(K U (). Note also that G\ (K UC) is x — k — 1-colorable. However, this implies
that G is (x — 1)-colorable, a contradiction. This proves O

The next lemma is one of our most important and basic tool.

3.2. Let G be a graph such that x(G) > w(G). Let K be a clique of G. If K is dense,
then it is Tihany.

Proof. Suppose that K is not Tihany. Let C be a x — k-coloring of G \ K. By
3.1 every color class of C contains a vertex complete to K. Hence, every color class
contains a member of C'(K) and so |C(K)UK| > x(G) > w(G), a contradiction. This

proves [3.2] O

Let (A, B) be disjoint subsets of V(G). The pair (A, B) is called a homogeneous
pair in G if A, B are cliques, and for every vertex v € V(G) \ (AU B), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. A W-join
(A, B) is a homogeneous pair in which A is neither complete nor anticomplete to
B. We say that a W-join (A, B) is reduced if we can partition A into two sets A;
and Ay and we can partition B into By, By such that A is complete to By, Ao is
anticomplete to B, and Bs is anticomplete to A. Note that since A is neither complete
nor anticomplete to B, it follows that both A; and Bj are non-empty and at least one
of Ag, By is non-empty. We call a W-join that is not reduced a non-reduced W-join.

Let H be a thickening of (G, F') and let {u,v} € F. Then we notice that (X, X,)
is a W-join in H. If for every {u,v} € F we have that (X, X,) is a reduced W-join
then we say that H is a reduced thickening of G.

The following result appears in [3].



3.3. Let G be a claw-free graph and suppose that G admits a non-reduced W -join.
Then there exists a subgraph H of G with the following properties:

1. H is a claw-free graph, |V(H)| = |V(G)| and |E(H)| < |E(G)].

2. x(H) = x(G).
The result of [3.3] implies the following:

3.4. Let G be a claw-free graph with x(G) > w(G) that is a minimal counterezample
to . Assume also that G is a thickening of (H, F) for some claw-free graph H and
F CV(H)2. Then G is a reduced thickening of (H, F).

For a clique K and F C V(G)?, we define Sp(K) = {x : 3k € K s.t. {z,k} €
F and x € C(K\k)}.

3.5. Let G be a reduced thickening of (H,F') for some claw-free graph H and F C
V(H)2. Let K be a clique in H such that for all z,y € O(K), {z,y} ¢ F. If
C(K)USFp(K) is a clique, then there exists a dense clique of size |K| in G.

Proof. Let K’ be a clique of size |K| in G such that K' N X, # 0 for all v € K. By
the definition of a thickening such a clique exists. Moreover since C(K)U Sp(K) is a
clique, it follows that K’ is dense. This proves [3.5 O

The following lemma is a direct corollary of [3.2] and

3.6. Let G be a reduced thickening of (H,F') for some claw-free graph H and F C
V(H)2. Let K be a dense clique in H such that for all z,y € C(K), {z,y} &€ F. If
C(K)USp(K) is a clique, then there exists a Tihany clique of size |K| in G.

The following result helps us handle the case when C(z) is an antimatching for
some vertex z € V(G).

3.7. Let G be a graph with x(G) > w(G). Let u,x,y € V(G) such that uz,uy € E(G)
and xy € E(G). Let E = {u,z} and E' = {u,y}. If C(E) = C(F') then E,E" are
Tihany.

Proof. Suppose that E is not Tihany. Let C be a (x(G) —2)-coloring of G\ {u,z}. Let
C' € C be the color class such that y € C. By Lemma [3.1] there is a vertex z € C such
that z is complete to E, and so z € C(E). But y is complete to C(FE), a contradiction.
Hence E is be Tihany and by symmetry, so is E'. O

In particular, if we have a vertex = such that C'(x) is an antimatching, we can find
a Tihany edge either by [B.2] or by 3.7

3.8. Let H be a graph, G a thickening of (G, F) for some valid F C G(V)? such that
X(G) > w(@Q). Let K be a cligue of H. Assume that for all {x,y} € F such that
x € K, y is complete to C(K)\{y}. Let u,v € C(K) such that u is not adjacent to v
and {u,v} is complete to C(K)\{u,v}. Moreover assume that if there exists E € F
with {u,v}NE # 0, then E = {u,v}. Then there exists a Tihany clique of size |K|+1
in G.



Proof. Assume not. Let K’ be a clique of size K in G such that K’ N X, # 0 for all
ye K. If{u,v} ¢ F,let a € X, A= X,, b€ X, and B = X,. If {u,v} € F,
let X} X2 X! and X2 be as in the definition of reduced W-join. By symmetry, we
may assume that X2 is not empty. If X2 is empty, let a € X2, A = X2 b€ X} and
B = X!: and if X2 is not empty, let a € X2, A= X,,, b € X? and B = X,.

Now let T, = K' U {a} and T, = K’ U {b}. We may assume that x(G\T,) =
x(G\Ty) = x(G) — |[K| — 1. By we may assume that every color class G\T,
contains a common neighbor of T,. Since no vertex of B is complete to 77, and since
B is a clique complete to C(T7)\A4, it follows that |A| > |B|. But similarly, |B| > |A],
a contradiction. This proves (3.8} O

We need an additional definition before proving the next lemma. Let K be a
clique; we denote by C'(K) the closed neighborhood of K, i.e. C(K) :=C(K)UK.

3.9. Let G be a graph such that x(G) > w(G). Let A and B be cliques such that
2 < |A|,|B| < 3 (i.e., each one is a brace or a triangle). If C(A) N C(B) = 0 and
C(A)U C(B) contains no triads then at least one of A, B is Tihany.

Proof. Assume not and let k = x(G) — |A|. By in every k-coloring of G\ A every
color class must have a vertex in C'(A). As there is no triad in C(A)UC(B), it follows
that every vertex of C(A) is in a color class with at most one vertex of C(B), thus
C(A) > C(B). By symmetry, it follows that C(A4) < C(B), a contradiction. This
proves 3.9 O

3.10. Let G be a claw-free graph such that x(G) > w(G). If G admits a clique cutset,
then there is a Tihany brace in G.

Proof. Let K be a clique cutset. Let A,B C V(G)\K such that AN B = () and
AUBUK =V(G). Let xa = x(G|(AUK)) and xp = x(G|(BU K)). By symmetry,
we may assume that x4 > xB.

(1) x(G) = xa
Let Sa4 = (A1, A42,...,Ay,) and Sp = (B1,B2,...,By,) be optimal coloring

» Axa
of G|(AUK) and G[(BU K). Let K = {ki,ks,...,K|g}. Up to renaming the
stable sets, we may assume that 4, N B; = {k;} for all ¢ = 1,2,...,|K|. Then
S=(A1UB1,A2UDBy,..., A, UBy,, Ay z41,. .., Ay, } is a xa-coloring of G. This

proves ({1)).

Now let z € B and y € K be such that zy € E(G). Then x(G\{z,y}) >
X(G[(AU K\{y}) > xa — 1 > x(G) — 1. Hence {z,y} is a Tihany brace. This

proves [3.10] O

4 The Icosahedron and Long Circular Interval Graphs

4.1. Let G € Ti. If x(G) > w(G), then there exists a Tihany brace in G.



Proof. Let vy, v1,...,v11 be as in the definition of the icosahedron. Let Gy, G1, Go,
and F be as in the definition of 77. Then G is a thickening of either (G, ), (G1,0),
or (Ga, F) for F' C {(v1,v4), (v6,v9)}. For 0 < i <11, let X,, be as in the definition
of thickening (where X,,, is empty when G is a thickening of (G1,0) or (Ga, F'), and
X, 18 empty when G is a thickening of (Go, F')). Let z; € X, and w; = |X,,].

First suppose that G is a thickening of (G1,0) or (Ge, F). Then C({z4,z6}) =
Xu, U X, UX,, is a clique. Therefore, {z4, 6} is a Tihany brace by .

So we may assume that G is a thickening of (G, ?). Suppose that no brace of G
is Tihany and let E = {z1,23}. Then G\E is (x — 2)-colorable. By every color
class contains at least one vertex from C(E) = (X1 U X9 U X3U Xo) \ {1, 23}. Since
a(G) = 3, it follows that every color class has at most two vertices from |J}L, X,,.
Hence we conclude that

wy + ws + we + Wy + wg + w9 + wig + Wit §2-(w1+w2+w3+w0—2)

A similar inequality exists for every brace {z;,x;}. Summing these inequalities over
all braces {x;,z;}, it follows that (3°;1,20w;) < (Z:io 20w;) — 120, a contradiction.
This proves 4.1} O

4.2. Let G € Ty. If x(G) > w(G), then there exists a Tihany brace in G.

Proof. Let H, F, Y, F, ..., Fi be as in the definition of 75 such that G is a thickening
of (H,F). Let F; be such that there exists no j with F; C Fj. Let {zy,...,2;} =

V(H)NF; and without loss of generality, we may assume that {zy, ..., z;} are in order
on X. Since C({z, x1}) = {Tky1,...,21-1}, it follows that {xy,x;} is dense. Hence
by there exists a Tihany brace in G. This proves (4.2 O

5 Non-2-substantial and Non-3-substantial Graphs

In this section we study graphs where a few vertices cover all the triads. An antipris-
matic graph G is k-substantial if for every S C V(G) with |S| < k there is a triad T
with SNT = (. The matching number of a graph G, denoted by pu(G), is the number
of edges in a maximum matching in G. Balogh et al. [I] proved the following theorem.

5.1. Let G be a graph such that o(G) = 2 and x(G) > w(G). For any two integers
s,t > 2 such that s +t = x(G) + 1 there exists a partition (S,T) of V(G) such that
X(G|S) > s and x(G|T) > t.

The following theorem is a result of Gallai and Edmonds on matchings and it will
be used in the study of non-2-substantial and non-3-substantial graphs.

5.2 (Gallai-Edmonds Structure Theorem [7], [8]). Let G = (V,E) be a graph. Let
D denote the set of nodes which are not covered by at least one mazximum matching
of G. Let A be the set of nodes in V\D adjacent to at least one node in D. Let
C =V\(AUD). Then:

i) The number of covered nodes by a mazimum matching in G equals to |V|+|A| —
c(D), where ¢(D) denotes the number of components of the graph spanned by D.



i) If M is a mazimum matching of G, then for every component F' of D, E(D)NM
covers all but one of the nodes of F, E(C) N M is a perfect matching and M
matches all the nodes of A with nodes in distinct components of D.

5.3. Let G be an antiprismatic graph. Let K be a clique and u,v € V(G)\C(K) be
non-adjacent. If a(G|(C(K)U {u,v})) =2 and o(G|K U{u,v}) = 3, then G|C(K) is

cobipartite.

Proof. Since there is no triad in C(K) U {u,v}, we deduce that there is no vertex
in C(K) anticomplete to {u,v}. Since G is claw-free and o(G|K U {u,v}) = 3, it
follows that there is no vertex in C(K) complete to {u,v}. Let Cy,,C, C C(K) be
such that C,, UC, = C(K) and for all z € C(K), z is adjacent to v and non-adjacent
to v if x € Cy, and x is adjacent to v and non-adjacent to u if x € C,. Since
a(G|(Cy U {u})) = 2, we deduce that C, is a clique and by symmetry C,, is a clique.
Hence C'(K) is the union of two cliques. This proves O

5.4. Let G be a claw-free graph such that x(G) > w(G). Let K be a clique such that
a(G\K) < 2. Then there exists a Tihany clique of size at most |[K|+ 1 in G.

Proof. Assume not. Let n = |[V(G)|, w € C(K) and K’ = K U {w} (such a vertex w
exists since K is not Tihany).

(1) x(G) =n — u(G).

Since K’ is not Tihany, it follows that x (G\K') = x(G)—|K’|. Since a(G\K') < 2,
we deduce that x(G\K') > %K,', and thus x(G) > %K,' Hence in every optimal
coloring of G the color classes have an average size strictly smaller than 2, and since
G is claw-free, we deduce that there is an optimal coloring of G where all color classes
have size 1 or 2. It follows that x(G) < n — u(G¢). But clearly x(G) > n — u(G°),
thus x(G) = n — p(G*). This proves ().

(2) Let T be a clique of size |K|+ 1 in G, then x(G\T) =n — |T| — u(G°\T).

. . . . K’
Since T is not Tihany, it follows that x(G\T) = x(G) — |T| > % —|T| =
n—z\Tl — IV((;\T)I_

Hence in every optimal coloring of G\T, the color classes have
an average size smaller than 2, and since G is claw-free, we deduce that there is
an optimal coloring of G\T where all color classes have size 1 or 2. It follows that
X(G\T) < |V(G\T|— u(G\T). Hence x(G\T) = n—|T'| — u(G\T'). This proves (Z2).

Let A, D,C be as in Since x(G) > %K,' and x(G) = n — u(G°), we deduce
that u(G°¢) < % By i), we deduce that u(G°) = M. Thus, it follows
that ¢(D) > |K'|. Let Dy, Da, ..., D¢(py be the anticomponents of D. Let d; € D; for
i=1,...,¢(D).

(3) |Di| =1 for all 1.



Assume not and by symmetry assume that |Dy| > 1. Since G is claw-free, we
deduce that «(G|D;1) = 2. Thus there exist x,y € D; such that z is adjacent to y.
Now T = {z,y,d>,...,dg|} is a clique of size |K|+ 1 and by ii), it follows that
W(G\T) < p(G°). By (1) and (2), it follows that x(G\T) + |T] = n — u(G\T) >

— u(G°) = x(G), a contradiction. This proves (3).

Let T'={d1,...,d|g|+1}. By , it follows that C(T') N D is a clique. By we
deduce that C(T) N A # (. LetxeC’( )N A. Now S = {dy,... d|K,x} is a clique
of size |K| + 1 and by [.2]ii), it follows that u(G°\S) < wu(G°). By (1) and (2), it
follows that x(G\S) + S| = n — u(G°\S) > n — u(G°) = x(G), a contradlctlon This
concludes the proof of [5.4] O

5.5. Let H be a claw-free graph such that there exists x € V(H) with a(H\z) = 2.
Let G be a reduced thickening of H such that x(G) > w(G) and | Xg| > 1. Then for
all {u,v} € Xy, x(G\{u,v}) > x(G) — 1.

Proof. Let u,v € X,;. We may assume that {u, v} is not Tihany. Let k = x(G\{u,v})
and § = (51,52, ..., 5;) be a k-coloring of G\{u,v}. By[3.1] S; N C({u,v}) # 0. Let
L ={i:|Si|=1} and let O =C({u,v}) NUier,ur, Si and P = C({u,v}) NU;er, Si
Since a(H\z) = 2, it follows that S; N X, # 0 for all ¢ € I3. Hence, P is a
clique complete to O and thus w(G|O U P) = w(G|O) + |I3]. Since x(G) > w(G),
we deduce that w(G|O) < |I; U Iz|. By E 5.3| and since O C C(X,), we deduce that
G|O is cobipartite. Hence x(G|0) = w(G|O) < |I1 U Iz|. Thus the coloring & does
not induce an optimal coloring of G|O. It follows that there exists an augmenting
antipath P =p; —pa — ... —po in O. Now let T; = {pg;i—1,p2i} for i =1,...,1. Let s
be such that p; € S5 and e be such that pg; € S.. They are the color classes where the
augmenting antipath starts and ends. If |Ss| = 2, let Tj11 = ({u} U Ss\p1), otherwise
let Ty = {u}. If |Se| = 2, let Tiio = ({v} U Se\pa), otherwise let Tjro = {v}.
Let J = {i|S;NV(P) # 0}. Clearly |J| =1+ 1. Now (T1,Ts,...,Ti42) is a (14+2)-
coloring of | J;c; Si U {u, v}, which together with the color classes S; for i ¢ J create
a k + 1-coloring of GG, a contradiction. This proves [5.5] O

The next lemma is a direct corollary of 5.4 and

5.6. Let H be a non-2-substantial claw-free graph. Let G be a reduced thickening of
an augmentation of H such that x(G) > w(G). Then there exists a Tihany brace in
G.

Now we look at non-3-substantial graphs.

5.7. Let H be a non-3-substantial antiprismatic graph. Let u,v € H be such that
a(H\{u,v}) = 2. Let G be a reduced thickening of H such that x(G) > w(G). If u is

not adjacent to v, then there exists a Tihany brace or triangle in G.

Proof. Assume not. Let N, = C(u)\C({u,v} and N, = C(u)\C'({u,v}). Since H is
antiprismatic, it follows that N, and N, are antimatchings.
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By[.6] we deduce that N, and N, are not cliques. Let x,, v, € N, be not adjacent,
and x,,y, € N, be not adjacent. Since a(H\{u,v}) =2 and H is antiprismatic, we
may assume by symmetry that x,z,,y,y, are edges, and x,Yy, Yy T, are non-edges.
Since a(h\{u,v}) = 2 and H is antiprismatic, it follows that every vertex in C'({u,v})
is either strongly complete to x,z, and strongly anticomplete to y,y,, or strongly
complete to y,y, and strongly anticomplete to z,x,. Let (N, N,) be the partition of
C({u,v}) such that all € N, are complete to z,z, and and all y € N, are complete
to YuYyu-

Assume first that N, # 0 and N, # (. Let n, € N, and n, € N, and let
Ty = {u, yu,ny} and T, = {v, zy,n, }. Clearly T}, and T, are triangles.

(1) a(G|(C(T,) UT(T,)) = 2 and C(T,) N T(T,) = 0.

Assume not. Since C(T,) € N, U N, U {u} and C(T,) € N, U N, U {v}, we
deduce that C(T,) N C(T,) = 0. Let T € C(T,,) U C(T,) be a triad. By symmetry,
we may assume that u € T'. Clearly, T\u € N,,. But since H is antiprismatic, we de-
duce that T\u C C(ny), hence T\u ¢ C(T,)UC(T,), a contradiction. This proves .

Now let Sy, Sy € G be triangles such that |S, N X,| =[S, N Xy, | =[SuNXp,| =1
and |S, N Xy| = |Sy N Xz, | =[Sy N Xy, | = 1. By (1)) and [3.9)and since G is a reduced
thickening of H, we deduce that there is a Tihany triangle in G.

Now assume that at least one of N, N, is empty. By symmetry, we may assume
that N, is empty. Since C({u,z,}) is an antimatching, by there exists a Tihany
triangle in G. This concludes the proof of [5.7] O

5.8. Let H be a non-3-substantial antiprismatic graph. Let uw,v € H be such that
a(G\{u,v}) = 2. Let G be a reduced thickening of (H,F) for some valid F C V(G)?
such that x(G) > w(G). If u is adjacent to v, then there exists a Tihany clique K in
G with |[K| < 4.

Proof. Assume not. By we may assume that | X, U X,| > 2. By we may
assume that |X,| > 0 or |X,| > 0. If |X,| = 1, then G\ X, is a reduced thickening
of a non-2-substantial antiprismatic graph. By , there exists a brace {z,y} in X,
such that x(G\({z,y} U X,)) > x(G\Xy) — 1. But x(G\Xy) —1 > x(G) — 2, hence
{z,y} U X, is a Tihany triangle, a contradiction. Thus |X,| > 1, and by symmetry
| Xy > 1.

Let z1,y1 € Xy and x9,y2 € Xy, thus C = {x1,x2,y1,y2} is a clique of size 4.

Let k = x(G\C) and S = (541, S2,...,Sk) be a k-coloring of G\C. By .1} S;n
N(C) #0. For Il =1,2,3 let I; = {i : |Si| = I} and let O = N(C) N U;¢y,uy, Si and
P=N(C)N U’ielg Si

Since a(H\{u,v}) = 2, it follows that S; N (X, U X,) # 0 for all ¢ € I3. Hence,
w(G|OUP) = w(G|O) + |I3]. Since x(G) > w(G), we deduce that w(G|O) < |1} U Io|.
By we deduce that G|O is cobipartite. Hence x(G|0) = w(G|O) < |L| + |I2].
Thus the coloring S does not induce an optimal coloring of G|O. It follows that there
exists an augmenting antipath P = p; —ps — ... — pg; in O. Now let T; = {pa2i—1,p2i}
for ¢ = 1,...,l. Let s be such that p; € Ss and e be such that py; € Se. They
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are the color classes where the augmenting antipath starts and ends. Since S;\p;
is not complete to {z1,y1}, we deduce that there exists § € {1,2} such that z; is
antiadjacent to Ss\p1. Let Tj11 = {z:} U Ss\p1 and Tjyo = {z1,x2}\ws. Since Sc\py
is not complete to {z2,y2}, we deduce that there exists é € {1,2} such that x; is
antiadjacent to Se\par. Let T3 = {we} U Se\py and Ti1q = {y1,y2}\7e.

Let J = {i|S; N V(P) # 0}. Clearly |J| =+ 1. Now (T3, T, . .., Tivo, Tirs, Tiva)
is a (14+4)-coloring of | J;c; Si U {x1,72,y1,y2}, which together with the color classes
S;, for i ¢ J, create a k + 3-coloring of G, a contradiction. This proves [5.8 O

The following lemma is a direct corollary of [5.7] and

5.9. Let H be a non-3-substantial antiprismatic graph. Let G be a reduced thickening
of H such that x(G) > w(G). Then there exists a Tihany cliqgue K C V(G) with
|K| < 4.

6 Complements of orientable prismatic graphs

In this section we study the complements of orientable prismatic graphs. A graph is
prismatic if its complement is antiprismatic. Let G be a graph. The core of G is the
union of all the triangles in G. If {a, b, ¢} is a triangle in G and both b, ¢ only belong
to one triangle in G, then b and c are said to be weak. The strong core of G is the
subset of the core such that no vertex in the strong core is weak. As proved in [4], if
H is a thickening of (G, F) for some valid F C V(G)? and {z,y} € F, then x and y
are not in the strong core.

A three-cliqued claw-free graph (G, A, B,C) consists of a claw-free graph G and
three cliques A, B, C of G, pairwise disjoint and with union V(G). The complement
of a tree-cliqued graph is a 8-coloured graph. Let n > 0, and for 1 < i < n, let
(Gi, Ai, B;, C;) be a three-cliqued graph, where V(G1),...,V(G,) are all nonempty
and pairwise vertex-disjoint. Let A = Ay U---UA,, B=BiU---UB,, and C =
CyU---UCy, and let G be the graph with vertex set V(G1) U ---UV(Gy,) and with
adjacency as follows:

o for 1 <i<n, G|V(G;) = Gy;

o for 1 <i < j <mn, A;is complete to V(G;) \ Bj; B; is complete to V(G;) \ Cj;
and Cj is complete to V(G;) \ A;; and

o for 1 <i < j<n,ifuec A; and v € B; are adjacent then u,v are both in no
triads; and the same applies if u € B; and v € C}, and if uw € C; and v € A;.

In particular, A, B,C are cliques, and so (G, A, B,C) is a three-cliqued graph and
(G¢ A, B,C) is a 3-coloured graph; we call the sequence (G;, 4;, B;,C;) (i =1,...,n)
a worn hez-chain for (G, A, B,C'). When n = 2 we say that (G, A, B, C) is a worn hez-
join of (Gl, Al, Bl, Cl) and (Gg, Ag, BQ, 02) Similarly, the sequence (Glc, AZ’, Bi, Cl) (Z ==
1,...,n)is a worn hez-chain for (G¢, A, B,C), and when n = 2, (G¢, A, B, C) is a worn
hex-join of (G, A1, B1,C1) and (GS, Az, B2, Cy). Note also that every triad of G is
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a triad of one of G1,...,G,. If each G is claw-free then so is G and if each GY is
prismatic then so is G°.

If (G, A, B, C) is a three-cliqued graph, and {4’, B',C"} = {A, B,C}, then (G, A’, B',C")
is also a three-cliqued graph, that we say is a permutation of (G, A, B,C).

A list of the definitions needed for the study of the prismatic graphs can be found
in appendix . The structure of prismatic graph has been extensively studied in [4]
and [5]; the resulting two main theorems are the following.

6.1. Every orientable prismatic graph that is not 3-colourable is either not 3-substantial,
or a cycle of triangles graph, or a ring of five graph, or a mantled L(Ks3).

6.2. Every 3-coloured prismatic graph admits a worn chain decomposition with all
terms in Qo U Q1 U Qs.

In the remainder of the section, we use these two results to prove our main theorem
for complements of orientable prismatic graphs. We begins with some results that deal
with the various outcomes of

6.3. Let H be a prismatic cycle of triangles and G be a reduced thickening of (H, F')
for some valid F € V(G)? such that x(G) > w(G). Then there exists a Tihany brace
or triangle in G.

Proof. Let the set X; be as in the definition of a cycle of trlangles Up to renaming
the sets, we may assume |X2n| ]X4] =1. Let u € Xo; and v € X4, hence uv is an
edge. We have
Cu({u,v}) = U X;URy U Ls.
j=1 mod 3,j>4

If |Xy| > 1, then |Ry| = |Ls| = 0 and so Cy({u,v}) is a clique. Therefore by.
there is a Tlhany brace in G. If | X5| = 1, the only non-edges in G|C ({u,v}) are a
perfect anti-matching between R; and Ls. Hence by [3.8] there is a Tihany triangle in
G. This proves O

6.4. Let H be a ring of five graph. Let G be a reduced thickening of (H, F) for some
valid F € V(G)? such that x(G) > w(G). Then there is a Tihany triangle in G.

Proof. Let ag, bs,as be as in the definition of a ring of five. C({az, b3, a4}) = Vo UV}
and thus {ag, b3, a4} is a dense triangle. By the definitions of H and F, it follows that
{ag,bs,as} N E = for all E € F. Hence by there exists a Tihany triangle in G.
This proves [6.4] O

6.5. Let H be a mantled L(K33) and G be a reduced thickening of (H,F) for some
valid F € V(G)?. If x(G) > w(Q), then there exists a Tihany brace in G.

Proof. Let I/V,aJ,V’ Vi be as in the definition of mantled L(K33). Let X; be the

clique corresponding to a’ 5 in the thickening and W (resp. Vi, V') be the set of vertices
corresponding to W (resp. V;, V*) in the thickening. Let xf € Xl-j7 V= U3 VUV
and k = x(G).
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For a brace E in G, let My (E) := M(E)NW, My (E) := M(E)NV, Aw(E) =
A(E)NW and Ay (E) := A(E)NV. Let E = {x, xg,/} and let S be a color class in a
(k-2)-colouring of G\ E.

(1) If SN Ay (E) # 0, then |S| < 2.

Assume not. Let S = {z,y, z} and without loss of generality we may assume that
E = {x},2}} and x € Ay(E) = V!. Since z is complete to V1 UV, U V3 and X7, for
i=1,2,3j = 2,3, we deduce that y, 2 ¢ Vi UVo UV and y, 2 ¢ X7, fori =1,2,3 j =
2,3. Since there is no triad in V1 UV2U V3, it follows that [{y, z} n(VIUVZUV?)| < 1.
Since X UX3U X1 is a clique, we deduce that |[{y, 2}N(X{UXJIUX1)| < 1. Hence, we
may assume by symmetry that y € X{ UX3UX3 and z € V2UV3. But X{ UXiuXxi
is complete to V2 U V3, a contradiction. This proves .

(2) If SN My (E) # 0, then |S| < 2.

Assume not. Let S = {z,y, z} and without loss of generality we may assume that
E = {z},2}} and € V;. Since z is complete to YV} UV? U V3 and XJ U X3, for
j =1,2,3, we deduce that y,z ¢ V'UV2UV3 and y, 2 ¢ X%UXj, for j = 1,2,3. Since
there is no triad in Vo U V3, it follows that [{y,2} N Vo U V3| < 1. As X{ U X2 U X}
is a clique, we deduce that |{y,2} N (X{ U X? U X3)| < 1. Hence we may assume
by symmetry that y € VU V3 and 2z € X{ U X? U X3. But V, U V3 is complete to
X1 U X2U X}, a contradiction. This proves .

By every color class of a (k — 2)-coloring of G\ E' must have a vertex in C(E).
By and (2, it follows that color classes with vertices in Ay (E) U My (E) have
size 2. Hence we deduce that Ay (E) + My (E) + $Aw(E) + 1 Mw (E) < C(E) — 2.

Summing this inequality on all baces E = {mf, a:g:} i,7 =1,2,3, it follows that

i in, 4 i1, S j i j
32 (VY6 Y _(Vil+V D45 DX 145 DX <9 J(Vil+VI)+6 > 1X7],
% % ©,] %,J % %,J

which is a contradiction. This proves [6.5] O

6.6. Let (H, Hy, Ho, H3)¢ be a path of triangle and (I, 11, I2, I3) an antiprismatic three-
cliqued graph. Let G be a worn hex-join of (H, Hy1, Hy, Hs) and (I,11,13,13), and G’
be a reduced thickening of (G, F) for some valid F € V(G)? such that x(G') > w(G").
Then there exists a Tihany clique K in G', with |K| < 4.

Proof. Assume not. Let the set X; of H be as in the definition of a path of triangle
and we may assume that H; = Uj—; mod 3X;.

Assume first that |X22| > 1 for some i. Let u € Xo;_9 and v € Xg;12, S0 uv is an
edge in G. Moreover {u,v} is in the strong core. Thus

Ca({u,v}) = U X; U U X;UI
j=2i+2 mod 3, j=2i—2 mod 3,
7 >2142 1< 21—-2
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for k = 2i +1 mod 3. Hence Ce;({u,v}) is a clique and so by [3.6] there is a Tihany
brace in G’, a contradiction. Hence we may assume that | Xy = 1 Vi.

Assume that n > 3 and let u € Xg,v € Xﬁ Then wv is an edge in G. Moreover
{u,v} is in the strong core. Thus

Cal{u,v}) = U X;UXoUR3U L5 U Ha.
7=0 mod 3,5>6

Hence C¢({u, v}) is an antimatching, and by [3.8] there exists a Tihany triangle in
G’, a contradiction. It follows that n < 2.

Assume now that n = 2. Let u € Xy,v € Ls. Then wv is an edge in G and
Ca({u,v}) = XoUR3ULsUHs. Thus G|C({u,v}) is a perfect anti-matching between
R3 and Ls. Hence by there is a Tihany triangle in G, a contradiction.

Thus we deduce that n = 1. Assume that |Ri| = |L3] = 1. Let u € X5 and
v € Ry U L3 be a neighbor of v. Without loss of generality, we may assume that
v € Ls. Since Cg({u,v}) € XoU L3 U Hj is a clique, it follows by that there
is a Tihany brace in G’, a contradiction. Hence we deduce that |Ri| = |Ls| > 1.
Now, let u € Ry and v € L3 be adjacent. By [5.6] we may assume that G is not a
2-non-substantial graph. If follows that there exists « € Iy such that z is in a triad.
Thus Cg({u,v,z}) is an antimatching, and by there exists a Tihany clique K in
G’ with |K| < 4, a contradiction. This proves O

6.7. Let (G, A, B,C) be an antiprismatic graph that admit a worn chain decomposition
(Gi, A;, Bi, C;). Suppose that there exists k such that (Gy, Ak, Bk, Cy) is the line graph
of Ksz3. Let G' be a reduced thickening of (G,F) for some valid F € V(G)?. If
X(G') > w(G"), then there is a Tihany brace in G'.

Proof. Assume not. Let {a} }ij=1,2,3 be the vertices of G}, using the standard notation.
Let in» = Xa;; be the clique corresponding to aé»
xi € Xz-j, wf = |XZ]| and k£ = x(G).

Since all of the vertices in the thickening of Gy are in triads, Gy is linked to the
rest of the graph by a hex-join.

Note that G\{x%,m%} is k-2 colourable. By it follows that every color class
containing a vertex in X?U X3 must have a Vertex in X3 UX3 Hence we deduce that
w? + w} < wl +wl — 1 and by symmetry w? + w3 < wi + wl — 1. Summing these
two inequalities, it follows that

in the thickening. Moreover, let

w? + wi +wi +wi < wy + wi + 2ws.

A similar inequality can be obtained for all edges :cg xz, Summing them all, we deduce
that 43, w] <2 > i w] + 2 > Wi, a contradiction. This proves O

6.8. Let H be a 3-coloured prismatic graph. Let G be a reduced thickening of (H, F)
for some valid F € V(G)? such that x(G) > w(G). Then there exists a Tihany brace
or triangle in G.
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Proof. By H admits a worn chain decomposition with all terms in Qg U Q1 U Q.
If one term of the decomposition is in Qo then by it follows that there is a Tihany
clique K with |K| <4 G. If one term of the decomposition is in Qy, then by [6.7] it
follows that there is a Tihany brace in G. Hence we may assume that all terms are
in Qp. Therefore there are no triads in G and thus by [5.1] it follows that there is a
Tihany brace in G. This proves [6.8| O

We can now prove the main result of this section.

6.9. Let H be an orientable prismatic graph. Let G be a reduced thickening of (H, F')
for some wvalid F C V(G)? such that x(G) > w(G). Then there exists a Tihany clique
K in G with |[K| < 4.

Proof. If H admits a worn chain decomposition with all terms in Qg U Q1 U Qo, then
by [6.8, G admits a Tihany brace or triangle. Otherwise, by [6.1, H is either not
3-substantial, a cycle of triangles, a ring of five graph, or a mantled L(K33).

If H is not 3-substantial, then by [5.7] there is a clique K in G with |K| < 4. If
H is a cycle of triangles, then by [6.3] there is a Tihany brace or triangle in G. If H
is a ring of five graph, then by there is a Tihany triangle in G. Finally, if H is a
mantled L(K33), then by , there is a Tihany brace in G. This proves . O

7 Non-orientable Prismatic Graphs

The definitions needed to understand this section can be found in appendix [Bl The
following is a result from [5].

7.1. Let G be prismatic. Then G is orientable if and only if no induced subgraph of
G is a twister or rotator.

In the following two lemmas, we study complements of orientable prismatic graphs.
We split our analysis based on whether the graph contains a twister or a rotator as
an induced subgraph.

7.2. Let H be an non-orientable prismatic graph. Assume that there exists D C V(H)
such that G|D is a rotator. Let G be a reduced thickening of (H, F) such that x(G) >
w(@G) for some wvalid F C V(G)?. Then there evists a Tihany cligue K in G with
|K| < 5.

Proof. Assume not. Let D = {v1,...,v9} be as in the definition of a rotator. For
i=1,2,3, let A; be the set of vertices of V/(H)\D that are adjacent to v;. Since H is
prismatic and {vy,ve,v3} is a triangle, it follows that A; U As U A3 = V(H)\D.

Let I; = {{5,6},{5,9},{6,8},{8,9}}, Ir = {{4,6},{4,9},{6,7},{7,9}} and I3 =
{{4,5},{4,8},{5,7},{7,8}}. For i = 1,2,3 and {k, I} € I;, let A¥ be the set of ver-
tices of V(H)\ D that are complete to {v;, vg, v;}. Since {v1,v2,v3} and {v;, viys, vite}
are triangles for ¢ = 1,2,3 and H is prismatic, we deduce that A; = U{k,l}eli Af’l for
i=1,2,3. For i =1,2,3 and {k,l} € I; and since {v1, v4, v7}, {va,vs5,vs8}, {v3, V6, v9}

16



are triangles and H is prismatic, it follows that Af’l is anticomplete to v, for all
m € {4,5,6,7,8,9}\{¢, k,(}.

Assume that A3 and A3® are not empty. Since H is prismatic, we deduce that A3°
is anticomplete to A3® in H. Let x € A3 and y € A3%. Then Cz({v1,vs,v6, 7, y} is a
clique and {v1,vs,ve, x,y} is in the strong core. Hence by there exists a Tihany
clique of size 5 in G.

Assume now that A3° is not empty, but A% is empty. Let 2 € A3°. Then
Cxr({v1,vs,v6,2}) is a clique and {vy,vs, v, 2} is in the core. Moreover {vy,vs, x} is
in the strong core. Since {vq,vs,vg} is a triad and vy is in the strong core, it follows
that if there exists £ € F with vs € E, then E = {vs,vs}. But vg is not adjacent to
ve in H. Hence by , there exists a Tihany clique K of size 4 in G.

We may now assume that A3° = A%S = (). Since H is prismatic, it follows that
Cx({v1,vs,v6}) is an anti-matching. Moreover {v,vs,v6} is in the core and v is in
the strong core. For i = 2,3, since {v;, vj+3,vi+6} 18 a triad and v; is in the strong
core, it follows that if there exists F € F with v;y3 € E, then E = {v;13,v;46}. But
vg is not adjacent to vg and vg is not adjacent to vs. Hence by [3.6] there exists a
Tihany triangle in G. This concludes the proof of O

7.3. Let H be a non-orientable prismatic graph. Assume that there exists W C V(H)
such that H|W 1is a twister. Further, assume that there is no induced rotator in H. If
G is a reduced thickening of (H, F) such that x(G) > w(G), then there evists a Tihany
cliqgue K in G with |K| < 4.

Proof. Assume not. Let W = {v1, v, ..., vs,u1,us} be as in the definition of a twister.
Throughout the proof, all addition is modulo 8. For ¢ = 1,...,8, let A;;41 be the
set of vertices in V\W that are adjacent to v; and v;y; and let B; ;12 be the set of
vertices in V\W that are adjacent to v; and v;1o. Moreover, let C' C V\W be the
set of vertices that are anticomplete to W. Since H is prismatic, we deduce that
U§:1(Ai,i+1 UB;iy2)UC = VA\W. Moreover A; ;41 is complete to {v;, Vit1,Vi+3, Vite }
and anticomplete to W\{v;, vi11,vit3, vi+6}. Since H is prismatic, it follows also that
B; 2 is complete t0 u; moq 2} and anticomplete to W\{v;, vi42,%; mod 2}. Moreover,
C' is anticomplete to {vi,ve, ..., vg}.

(1) There exists i € {1,...,8}, such that A; ;11 and Ait3,j+4 are either both empty or
both non-empty.

Assume not. By symmetry we may assume that A; o is not empty and Ays is
empty. Since A2 is not empty, we deduce that Ag 7 is empty. Since Ay 5 and Ag 7 are
empty, it follows that A7g and A3 4 are not empty. Let v € A7 g and y € A34. Then
G|{vs, u1,v4, x,v6,v3,v7,v2,y} is a rotator, a contradiction. This proves ({]).

(2) If Aiiv1 and Aiy3iva are both non-empty for some i € {1,...,8}, then there exists
a Tihany clique of size 5 in G.

Assume that As3 and Asg are not empty and let € A3 and y € As6. The
anti-neighborhood of {v,v7,us, x,y} in H is a stable set. Moreover, {vy,v7,ug,z,y}
is in the strong core and hence by there is a Tihany clique of size 5 in G. This

proves ([2)).
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(3) If Aiit1 and Aiysi1a are both empty for some i € {1,...,8}, then there exists a
Tihany clique of size 4 in G.

Assume that As3 and Ase are both empty. Then the anti-neighborhood of
{v1,v7,u2} in H is Ago U Az 4 U Ag U Agg which is a matching. Moreover ug is
in the strong core and {v;,v7} is in the core. Possibly {v1,vs} and {vs,v7} are in F,
but Az g U A4 U Ag U Agg U {vs,v7} is also an anti-matching. Hence by , there
is a Tihany clique of size 4 in G. This proves (3).

Now by , there exists 7 such that A; ;41 and A;;3 ;44 are either both empty or
both non-empty. If A;;11 and A;;3,+4 are both non-empty, then by there is a
Tihany clique of size 5 in G. If A; ;41 and A;13 ;44 are both empty, then by there
is a Tihany clique of size 4 in G. This concludes the proof of O

7.4. Let H be a non-orientable prismatic graph. Let G be a reduced thickening of
(H,F) for some valid F C V(G)? such that x(G) > w(G); then there exists a Tihany
clique K in G with K <5.

Proof. By it follows that there is an induced twister or an induced rotator in H.
If there is an induced rotator in H, then by [7.2] it follows that there is a Tihany clique
of size 5 in G. If there is an induced twister and no induced rotator in H, then by
it follows that there is a Tihany clique of size 4 in G. This proves[7.4] O

8 Three-cliqued Graphs

In this section we prove Theorem for those claw-free graphs G for which V(G)
can be partitioned into three cliques. The definition of three-cliqued graphs has been
given at the start of Section[6] A list of three-cliqued claw-free graphs that are needed
for the statement of the structure theorem can be found in appendix [C| We begin
with a structure theorem from [6].

8.1. FEwvery three-cliqued claw-free graph admits a worn hex-chain into terms each of
which is a reduced thickening of a permutation of a member of one of TCy,...,TCs.

Let (G, A, B,C) be a three-cliqued graph and K be a clique of G. We say that K
is strongly Tihany if for all three-cliqued graphs (H, A’, B',C"), K is Tihany in every
worn hex-join (I,AUA', BUB',CUC") of (G, A, B,C) and (H, A, B',C") such that
x(I) > w(I).

A clique K is said to be bi-cliqued if exactly two of K N A, K N B, K N C are
not empty and every v € K is in a triad. A clique K is said to be tri-cliqued if
KnNA, KN B,KNC are all not empty and every v € K is in a triad.

8.2. Let K be a dense clique in (G, Ay, A, A3). If both K and C(K) are bi-cliqued,
then K 1is strongly Tihany.

Proof. Let (G', A', B',C") be a three-cliqued claw-free graph and let (H, D, E, F) be
a worn hex-join of (G, A, B,C) and (G', A, B’,C"). Then in H, C(K)NV(G) is a
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clique that is complete to C(K) NV(G). Hence, by .2 K is Tihany in H and hence
H is strongly Tihany. O

8.3. Let K be a dense clique of a three-cliqued graph (G, A, B,C). If K is tri-cliqued,
then K is strongly Tihany.

Proof. Let (G', A, B',C") be a three-cliqued claw-free graph and let (H, D, E, F) be
a hex-join of (G, A, B,C) and (G', A', B',C"). Then in H, Cyg(K)NV(G") = and
thus Cy(K) is a clique in H. Hence, by [3.2] K is strongly Tihany. O

8.4. Let (G, A, B,C) be an element of TC1 and G’ be a reduced thickening of (G, F)
for some valid F C V(G)2. Then there is either a strongly Tihany brace or a strongly
Tihany triangle in G'.

Proof. Let H,v1,vy,v3 be as in the definition of 7Cy; so L(H) = G. Let Vi2 be the
set of vertices of H that are adjacent to v; and vy but not to vy and let Vi3, Vasg be
defined similarly. Let Vo3 be the set of vertices complete to {v1, ve,vs}.

Suppose that Vj; # 0 for some ¢, j. Then let v;; € V;;, and let z; be the vertex in
G corresponding to the edge v;;v; in H and x; be the vertex in G corresponding to
the edge v;jv; in H. Then Cg({zi, z;}) = 0, and thus by and , there exists a
strongly Tihany brace in G.

So we may assume that Vj; = @ for all 4, j. Then from the definition of 7Cy, it
follows that Viog is not empty. Let v € Viog and let x1, x9, x3 be the vertices in G
corresponding to the edges vvi, vvg, vvs of H, respectively. Then Cq({x1,z2,z3}) =
() and hence by and [8.3] there exists a strongly Tihany triangle in G’. This

proves [8.4] O

8.5. Let (G, A, B,C) be an element of TCy and let (G', A, B',C") be a reduced thick-
ening of (G, F) for some valid F C V(G)2. Then there is either a strongly Tihany
brace or a strongly Tihany triangle in G'.

Proof. Let X, Fy,...,Fy, L1, Lo, Lg be as in the definition of 7Cy. Without loss of
generality, we may assume that A is not anticomplete to B. It follows from the
definition of G that there exists F; such that F; N A and F; N B are both not empty.
Let {x,...,x;} = V(H) N F; and without loss of generality, we may assume that
{zk,...,2;} are in order on X.

Let F; be such that there exists no j with F; C F;. Let {z,...,x;} = V(H) N F;
and without loss of generality, we may assume that {zy,...,2;} are in order on X.
Since C({zk, z1}) = {Tk+1, ..., 211}, it follows that {x,x;} is dense. If z, x; are the
endpoints of Fj, it follows by [3.I]and [3.5] that there is a Tihany brace in G. Otherwise,
by there exists a Tihany brace in G. This proves [4.2 0

8.6. Let (G, A, B,C) be an element of TCs and let (G', A', B',C") be a reduced thick-
ening of (G, F) for some valid F € V(G)2. Then there is either a strongly Tihany
brace or a strongly Tihany triangle in G'.
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Proof. Let H, A = {ap,a1,...,an},B = {bg,b1,...,by}, C = {c1,...,cn}, and X be
as in the definition of near-antiprismatic graphs. Suppose that for some i, a;,b; €
V(G). Then since |C'\ X| > 2, it follows that there exists j # i such that ¢; € V(G).
Now T' = {a;, b;,c;} is dense and tri-cliqued in G, and so by and there is a
strongly Tihany triangle in G’.

So we may assume that for all 4, if a; € V(G), then b; € V(G). Since by definition
of TC3 every vertex is in a triad, it follows that ¢; € V(G) whenever a; € V(G). Now
suppose that a;,a; € V(G) for some i # j. Then ({ai,a;},{ci,c;}) is a non-reduced
homogeneous pair in G. Hence we may assume that for all ¢ # j at most one of a;, a;
is in V(G). Let a; € V(G),; then for some j # i we have ¢; € V(G). Now E = {a;,¢;}
is dense and bi-cliqued. Moreover C(E) is bi-cliqued, hence by and [8.2] it follows
that F is a strongly Tihany brace in G’. This proves [8.6] O

8.7. Let G be an element of TCs and G’ be a reduced thickening of (G, F) for some
valid F C V(G)2. Then there exists either a brace E € V(G') that is strongly Tihany
or a triangle T € V(G') that is strongly Tihany in G'.

Proof. First suppose that G € TC:. Let H,{v1,...,vs} be as in the definition of 7C}.
If vy € V(G) then {vz,v4} is dense and bi-cliqued. Moreover C({va,v4}) is bi-cliqued
and thus by [3.5]and [8.2] there is a strongly Tihany brace in G’. If v3 € G, then {vs, v5}
is dense and bi-cliqued. Moreover C({vs, v5}) is bi-cliqued and so by and there
is a strongly Tihany brace in G’. So we may assume that vg, vs € V(G). But then the
triangle T' = {v1,v6,v7} is dense and tri-cliqued and thus by and there exists
a strongly Tihany triangle in G’.

We may assume now that G € TCz. If v3 € G then {vo,v3} is dense, bi-cliqued
and C({vg,v3}) is bi-cliqued. Otherwise, {vq,v4} is dense, bi-cliqued and C({v, v4})
is bi-cliqued. In both cases, it follows from and that there exists a strongly
Tihany brace in G'. This proves [8.7] O

We are now ready to prove the main result of this section.

8.8. Let G be a three-cliqued claw-free graph such that x(G) > w(G). Then G contains
either a Tihany brace or a Tihany triangle in G.

Proof. By there exist (G;, 4;, B;, C;), for i = 1,...,n, such that the sequence
(Gi, Ai, B;,C;) (i = 1,...,n) is a worn hex-chain for (G, A, B,C) and such that
(Gi, A;, B, C;) is areduced thickening of a permutation of a member of one of 7Cy, ..., TCs.
If there exists i € {1,...,n} such that (G;, A;, B;, C;) is a reduced thickening of a per-
mutation of a member of TCy, TCa, TCs, or TCs, then by 8.4, [B.5 [8.6 or
(respectively), there is a strongly Tihany brace or a strongly Tihany triangle in G;,
and thus there is a Tihany brace or a Tihany triangle in G. Thus it follows that
(Gi, A;, B, C;) is a reduced thickening of a member of 7Cy4 for all i = 1,...,n. Hence
G is a reduced thickening of a three-cliqued antiprismatic graph. By there exists
a Tihany brace or triangle in G. This proves [8.8 O
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9 Non-trivial Strip Structures

In this section we prove for graphs GG that admit non-trivial strip structures and
appear in [6].

Let (J, Z) be a strip. We say that (J, Z) is a line graph strip if [V (J)| =3, |Z| =2
and Z is complete to V(J) \ Z.

The following two lemmas appear in [3].

9.1. Suppose that G admits a nontrivial strip-structure such that |Z| = 1 for some
strip (J,Z) of (H,n). Then either G is a clique or G admits a clique cutset.

9.2. Let G be a graph that admits a nontrivial strip-structure (H,n) such that for
every F' € E(H), the strip of (H,n) at F is a line graph strip. Then G is a line graph.

We now use these lemmas to prove the main result of this section.

9.3. Let G be a claw-free graph with x(G) > w(G) that is a minimal counterezample
to[1.1 Then G does not admit a nontrivial strip-structure (H,n) such that for each
strip (J,Z) of (H,n), 1 < |Z| <2, and if |Z| = 2 then either |V(J)| = 3 and Z is
complete to V(J)\ Z, or (J,Z) is a member of 21U Z5U Z3U Z4 U Zs.

Proof. Suppose that G admits a nontrivial strip-structure (H,n) such that for each
strip (J, Z) of (H,7n), 1 < |Z| < 2. Further suppose that |Z| = 1 for some strip (J, Z).
Then by either G is a clique or G admits a clique cutset; in the former case G does
not satisfy x(G) > w(G), and in the latter case [0.3] follows from [3.10] Hence we may
assume that |Z| = 2 for all strips (J, Z).

If all the strips of (H,7) are line graph strips, then by[0.2] G is a line graph and the
result follows from [I]. So we may assume that some strip (J1, Z1) is not a line graph
StI‘ip. Let Z1 = {al,bl}. Let Al = NJl (al), Bl = NJl(bl)a A2 = Ng(Al)\V(Jl), and
By = Ng(Bl)\V(Jl). Let C1 = V(Jl)\(Al UBl) and Cy = V(G)\(V(Jl)UAQ UBQ).
Then V(G) =AUBIUCTUAyUByU Oy,

(1) If C2 = 0 and Ay = Bs, then there is a Tihany clique K in G with |K| < 5.

Note that V(G) = A; U B; U C1 U Ay. Since |Z1] = 2 and (J1, Z1) is not a line
graph strip, it follows that (J1, Z1) is a member of 21U Z,U 23U 2Z,U Z5. We consider
the cases separately:

1. If (J1, Z1) is a member of Z, then Jj is a fuzzy linear interval graph and so G
is a fuzzy long circular interval graph and Theorem [9.3| follows from [IJ.

2. If (J1, Z1) is a member of 2, Z3, or Z4. In all of these cases, A1, By, and C; are
all cliques and so V(@) is the union of three cliques, namely A; U Ag, By, and
Ci. Hence, by [8.8] there exists a Tihany clique K with |K| < 5.

3. If (J1, Z1) is a member of Z5. Let vq,...,v12, X, H, H', F be as in the definition
of Z5 and for 1 <7 < 12 let X,,, be as in the definition of a thickening. Then
Ay is complete to X, U Xy, U X, U X,,. Let H” be the graph obtained from
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H' by adding a new vertex as, adjacent to vy,vs,vs and vs. Then H” is an
antiprismatic graph. Moreover, no triad of H” contains vg or v1g. Thus the pair
(H',F) is antiprismatic, and G is a thickening of (H', F), so[9.3|follows from
and

This proves (|1f).

By , we may assume that either Co # (), or Ay # Bs. Suppose that Ay = Bs.
Then since Cy # () it follows that Ay is a clique cutset of G and the result follows
from Hence, we may assume that Ay # B and without loss of generality we
may assume that Ay \ By # (). Let v € A\ By and let w € A1\ By. Then F = {v,w}
is dense and [3.3] follows from [3.21 O

10 Proof of the Main Theorem

We can now prove the main theorem.

Proof of 1.1l Let G be a claw-free graph with x(G) > w(G)and suppose that there
does not exist a clique K in G with |K| < 5 such that x(G\K) > x(G) — |K|. By [0.3]
and it follows that either G is a member of 71 U 7o U T3 or V(G) is the union
of three cliques. By [A.1} it follows that G is not a member of 7. By [d.2] it follows
that G is not a member of T5. By and [7.4], we deduce that G is not a member Ts.
Hence, it follows that V' (G) is the union of three cliques. But by [8.8] it follows that
there is a Tihany brace or triangle in G, a contradiction. This proves [L.1] O
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A Orientable prismatic graphs

Qo is the class of all 3-coloured graphs (G, A, B, C) such that G has no triangle.

Q1 is the class of all 3-coloured graphs (G, A, B,C) where G is isomorphic to
the line graph of K3 3.

Qs is the class of all canonically-coloured path of triangles graphs.

Path of triangles. A graph G is a path of triangles graph if for some integer
n > 1 there are pairwise disjoint stable subsets X7,..., Xo,41 of V(G) with
union V(G), satisfying the following conditions (P1)-(P7).

(P1) For 1 < i < n, there is a nonempty subset Xo; C Xoi; \Xg\ = |X2n\ =1,
and for 0 < i < n, at least one of Xy;, X9;12 has cardinality 1.

(P2)

For
(1)

(2)
For

1<i<ji<2n+1

if 7 —4 = 2 modulo 3 and there exist u € X; and v € X, nonadjacent,
then either 4, j are odd and j =i + 2, or 4, j are even and u ¢ X; and
v ¢ Xj;

if 7 —4 # 2 modulo 3 then either j = ¢+ 1 or X is anticomplete to X.
1 <7< n+1, Xo_1 is the union of three pairwise disjoint sets
1,M2i — 1,R21 — 1, where L1 = M1 = M2n+1 = R2n+1 = (Z)

If Ry = (0 then n > 2 and \Xlﬂ > 1, and if Lo,yr1 = 0 then n > 2 and
| Xon_o| > 1.

For 1 <i <n, Xy, is anticomplete to Lg; 1 U_RAQZ'+1; XQi\XQi is anticomplete
to Ma;—1 U Ma;y1; and every vertex in Xy;\ Xo; is adjacent to exactly one
end of every edge between Ro; 1 and Loj4 .

For
(1)

(2

1 <i<n,if |Xy| =1, then
Ro; 1, La;4+1 are matched, and every edge between Ms; 1 U Rg;—1 and
Loj11 U Ma;1q is between Rg;—1 and Lojy1;

) the vertex in XQZ‘ is complete to Ro;—1 U Ma;—1 U Lojr1 U Mojy1;

Lo; 1 is complete to Xo; 11 and Xo;—1 is complete to Roj41

if ¢ > 1 then Ms;_1, XQZ‘_Q are matched, and if ¢ < n then My, X2i+2
are matched.

1 <i<mn,if X > 1 then

Ryi—1 = Lait1 = 0;

if u € Xo;—1 and v € X941, then u,v are nonadjacent if and only if
they have the same neighbour in Xo;.

Let A4y = UX; : 1 <i<2n+1landi =k mod3) (k = 0,1,2). Then
(G, A1, Ag, A3) is a canonically-coloured path of triangles graphs.
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e Cycle of triangles. A graph G is a cycle of triangles graph if for some integer
n > 5 with n = 2 modulo 3, there are pairwise disjoint stable subsets X1, ..., Xo,
of V(G) with union V(G), satisfying the following conditions (C1)-(C6) (reading
subscripts modulo 2n):

or 1 <1 < n, there is a nonempty subset A2i C Xo;, and at least one o
Cl) For 1 <i here i bset X X datl f
Xo9;, Xo;12 has cardinality 1.
(C2) Forie{l,...,2n} and all k with 2 <k <2n—2 let j € {1,...,2n} with
J =1+ k modulo 2n:
(1) if k¥ = 2 modulo 3 and there exist u € X; and v € X , nonadjacent,
then either 4, j are odd and k € {2,2n— 2}, or 4, j are even and u ¢ X;
and v ¢ Xj ;
(2) if k # 2 modulo 3 then X; is anticomplete to X;.

(Note that £ = 2 modulo 3 if and only if 2n — k = 2 modulo 3, so these
statements are symmetric between 4 and j.)

(C3) For 1 < i < n+ 1, Xgj—1 is the union of three pairwise disjoint sets
Loi—1, M1, Ro; 1.
C4) For 1 < i < n, Xo;is anticomplete to Lo;_1UR9;11; Xo; XQi is anticomplete
) p +1, p
to Ma;—1 U Ma;y1; and every vertex in Xy;\ Xo; is adjacent to exactly one
end of every edge between Ro; 1 and Loj4 .
(C5) For 1 <i <mn, if | Xy| =1, then
(1) Rgi—1, Loj+1 are matched, and every edge between My;—1 U Rg;—1 and
Loj11 U Ma;1q is between Rg;—1 and Lojy1;
(2) the vertex in Xo; is complete to Ro;—1 U My;_1 U Lojy1 U Ma;iqq;
(3) Loj—1 is complete to Xo;41 and Xo;_1 is complete to Roji1
(4) M1, XQZ‘_Q are matched and Mo; 41, XQH_Q are matched.
(C6) For 1 < i< mn,if | Xo;| > 1 then
(1) Rgi—1 = Laiy1 = 0;
(2) if u € X9;—1 and v € X9;41, then u,v are nonadjacent if and only if
they have the same neighbour in Xo;.

e Ring of five. Let G be a graph with V(G) the union of the disjoint sets
W = {ai,...,as,b1,...,b5} and Vp,V1,..., V5. Let adjacency be as follows
(reading subscripts modulo 5). For 1 < i <5, {a;,a;11;bi+3} is a triangle, and q;
is adjacent to b;; Vp is complete to {b1,...,bs} and anticomplete to {ay,...,as};
Vo, Vi,..., V5 are all stable; for ¢ = 1,...,5, V; is complete to {a;—1,bi,a;y+1}
and anticomplete to the remainder of W; Vj is anticomplete to V4 U --- U V;
for 1 < ¢ <5V is anticomplete to V;i9; and the adjacency between V;, V41 is
arbitrary. We call such a graph a ring of five.

e Mantled L(K33). Let G be a graph with V(G) the union of seven sets

W = {ag 01 < 7’7.7 S 3}7V17V27V37V17‘/27‘/37
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with adjacency as follows. For 1 < 4,3,7,7 < 3, ag and a{,/ are adjacent if
and only if ¢ # i and j' # j. For i = 1,2,3,V% V; are stable; V' is complete
to {a},a?, a3}, and anticomplete to the remainder of W; and V; is complete to
{ail, aé, aé} and anticomplete to the remainder of W. Moreover, VIUVZ2UV?3 is
anticomplete to V1 U Vo U V3, and there is no triangle included in viuviuvs

or in V3 U Vo U V3. We call such a graph G a mantled L(Ks33).

Non-orientable prismatic graphs

A rotator. Let G have nine vertices vy, va, ..., v9, where {v1,v9,v3} is a trian-
gle, {v4,v5,v6} is complete to {v7,vs,v9}, and for i = 1,2,3, v; is adjacent to
Vi+3, Vit+6, and there are no other edges. We call G a rotator.

A twister. Let G have ten vertices uy,us,v1,...,0s , where u1, ug are adjacent,
for i = 1,...,8 v; is adjacent to v;_1, vi+1, Vi+4 (reading subscripts modulo 8),
and for ¢ = 1,2, u; is adjacent to v;, vi+2, Vit4, Vit+6, and there are no other edges.
We call G a twister and uq, uo is the azis of the twister.

Three-cliqued graphs

A type of line trigraph. Let v1,vs,v3 be distinct nonadjacent vertices of a
graph H, such that every edge of H is incident with one of vy, vs, v3. Let v, ve, v3
all have degree at least three, and let all other vertices of H have degree at least
one. Moreover, for all distinct 7,5 € {1,2,3}, let there be at most one vertex
different from w1, v, v3 that is adjacent to v; and not to v; in H. Let A, B,C
be the sets of edges of H incident with v, ve,vs respectively, and let G be a
line trigraph of H. Then (G, A, B,C) is a three-cliqued claw-free trigraph; let
TC1 be the class of all such three-cliqued trigraphs such that every vertex is in
a triad.

Long circular interval trigraphs. Let G be a long circular interval trigraph,
and let ¥ be a circle with V(G) C ¥, and Fi,...,F; € X, as in the definition
of long circular interval trigraph. By a line we mean either a subset X C V(G)
with | X| <1, or a subset of some F; homeomorphic to the closed unit interval,
with both end-points in V(G). Let L1, Lo, L3 be pairwise disjoint lines with
V(G) € Ly U Ly U Lg; then (G,V(G) N L1, V(G) N Ly, V(G) N Ls) is a three-
cliqued claw-free trigraph. We denote by TCs the class of such three-cliqued
trigraphs with the additional property that every vertex is in a triad.

Near-antiprismatic trigraphs. Let H be a near-antiprismatic trigraph, and
let A, B,C, X be as in the deffnition of near-antiprismatic trigraph. Let A’ =
A\X and define B’, C’ similarly; then (H, A’, B',C") is a three-cliqued claw-free
trigraph. We denote by TCs the class of all three-cliqued trigraphs with the
additional property that every vertex is in a triad.
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e Antiprismatic trigraphs. Let G be an antiprismatic trigraph and let A, B, C

be a partition of V(@) into three strong cliques; then (G, A, B,C) is a three-
cliqued claw-free trigraph. We denote the class of all such three-cliqued trigraphs
by 7C4. (In [4] Chudnovsky and Seymour described explicitly all three-cliqued
antiprismatic graphs, and their "changeable" edges; and this therefore provides
a description of the three-cliqued antiprismatic trigraphs.) Note that in this case
there may be vertices that are in no triads.

e Sporadic exceptions.

Zli

— Let H be the trigraph with vertex set {vi,...,vs} and adjacency as fol-
lows: wv;,v; are strongly adjacent for 1 < 7 < j7 < 6 with j — i < 2;
the pairs vivs and wvavg are strongly antiadjacent; vi,vg, vy are pairwise
strongly adjacent, and vy is strongly antiadjacent to v, vs, vy, vs; v7,vs
are strongly adjacent, and wvg is strongly antiadjacent to wvi,...,vg; the
pairs vivy and v3vg are semiadjacent, and vo is antiadjacent to wvs. Let
A = {v1,v9,v3}, B = {vg,v5,v6} and C = {v7,vg}. Let X C {vs,v4};
then (H\X, A\X, B\X, C) is a three-cliqued claw-free trigraph, and all its

vertices are in triads.

— Let H be the trigraph with vertex set {v1,...,v9}, and adjacency as fol-
lows: the sets A = {vi,v2}, B = {v3,v4,v5,06,v9} and C = {v7,vs} are
strong cliques; vg is strongly adjacent to v, vs and strongly antiadjacent
to w9, v7; vy is strongly antiadjacent to wy,vs,vg,v7, semiadjacent to vs
and strongly adjacent to vg; vs is strongly antiadjacent to vs, vg, v7, vg and
strongly adjacent to ws; v3,vs are strongly antiadjacent to wvr,vg; vy is
strongly antiadjacent to vg; vg is semiadjacent to vg and strongly adjacent
to vy; and the adjacency between the pairs vovy and wvsvy is arbitrary. Let
X C {vs,v4,vs5,v6}, such that

% v is not strongly anticomplete to {v3, vg }\X
% v7 is not strongly anticomplete to {vs, vg}\X
x if vy, v5 € X then vy is adjacent to vg and vs is adjacent to vr.

Then (H\X, A, B\X,C) is a three-cliqued claw-free trigraph.

We denote by TCs the class of such three-cliqued trigraphs (given by one of
these two constructions) with the additional property that every vertex is in a
triad.

Strips

Let H be a graph with vertex set {v1,...,v,}, such that for 1 <i < j <
k < n, if v;, v are adjacent then v; is adjacent to both v;,vy. Let n > 2,
let v1, v, be nonadjacent, and let there be no vertex adjacent to both v
and v,. Let I’ C V(H)? be the set of pairs {v;,v;} such that i < j,
v; # v1 and vj # vy, v; is nonadjacent to v;y1, and v; is nonadjacent to
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Z9:

Z5Z

v;_1. Furthermore, let F C F’ such that every vertex of H appears in
at most one member of F'. Then G is a fuzzy linear interval graph if for
some H and F, G is a thickening of (H, F') with |X,,| = |X,,| = 1. Let
Xy, = {ur}, Xo, = {un}, and Z = {ug,u,}. Z; is the set of all pairs
(G, 2).

Let n > 2. Construct a graph H as follows. Its vertex set is the disjoint
union of three sets A, B, C, where |A| = |B| =n+1and |C| =n, say A =
{ag,a1,...,an}, B = {bg,b1,...,b,}, and C = {c1,...,c,}. Adjacency is
as follows. A, B,C are cliques. For 0 < ¢,5 < n with (4,5) # (0,0), let
a;, bj be adjacent if and only if i = j, and for 1 <47 <nand 0 < j < n,
let ¢; be adjacent to aj,b; if and only if ¢ # j # 0. All other pairs not
specified so far are nonadjacent. Now let X C AU BUC \ {ap, b} with
|C'\ X| > 2. Let H = H\ X and let G be a thickening of (H', F) with
| Xuo| = | Xpy] =1 and F C V(H')? (we will not specify the possibilities
for the set F' because they are technical and we will not need them in our
proof). Let X,, = {ay}, Xp, = {b(}, and Z = {af, b }. Z2 is the set of all
pairs (G, Z).

: Let H be a graph, and let hi-ho-h3-hg-hs be the vertices of a path of H

in order, such that hj, hs both have degree one in H, and every edge
of H is incident with one of ho,hs, hy. Let H' be obtained from the
line graph of H by making the edges hohs and hghy of H (vertices of
H') nonadjacent. Let F C {{hahs, hshs}} and let G be a thickening of
(H,,F) with |Xh1h2| = |Xh4h5’ = 1. Let Xp,p, = {u}, Xhyhs = {U}, and
Z = {u,v}. 23 is the set of all pairs (G, Z).

: Let H be the graph with vertex set {ag, a1, a2, bg, b1, b2, b3, c1,co} and ad-

jacency as follows: {ag,a1,as}, {bo,b1,b2,b3},{az,c1,c2}, and {a1,b1,ca}
are cliques; bo, c; are adjacent; and all other pairs are nonadjacent. Let
F = {{bg,ca},{b3,c1}} and let G be a thickening of (H, F) with |X,,| =
| Xp,| = 1. Let Xo, = {a(}, Xp, = {bp}, and Z = {af, b,}. Z4 is the set of
all pairs (G, Z).

Let H be the graph with vertex set {v1,...,v12}, and with adjacency as
follows. wvp----- vg-v1 is an induced cycle in G of length 6. Next, v7 is
adjacent to vy, ve; vg is adjacent to vg,vs; vg is adjacent to vg, vy, va, v3;
v10 is adjacent to vz, v4,vs, vg, vg; v11 is adjacent to vs,vy4, vg, v1, Vg, V10;
and v1o is adjacent to wve,ws, vs, Vg, Vg, v19. INo other pairs are adjacent.
Let H' be a graph isomorphic to H \ X for some X C {v11,v12} and let
F C {{vg,v10}}. Let G be a thickening of (H', F) with |X,,| = | X4p,| = 1.
Let X, = {v}}, Xy = {v}}, and Z = {v,vi}. Zs5 is the set of all pairs
(G, 2).
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