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Abstract

We analyze the competition between auction houses to organize an

English auction in the independent private value model with partici-

pation costs when the seller is unable to commit not to participate in

the same way as any potential buyer through a shill bidding activity.

The seller may prefer to contract with auction houses with higher fees

since they make the shill bidding activity more costly and thus enlarge

the set of implementable participation cuto�s.
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1 Introduction

Auction houses' commission fees are usually very high compared to the
marginal cost of organizing an auction: eBay charges from 1.50% to 5.25% of
the winning price though the marginal cost of organizing such an electronic
auction is null. Christie's and Sotheby's have jointly dominated the �ne art
auction market for more than a century with fees above 10%. Attracting
new potential buyers and lowering their participation costs seem to be the
main �eld of the competition between auction houses. eBay activities consist
mainly in building a friendly auction site and developing electronic payment
facilities as PayPal whereas auctioneers are also playing an expertise role
in �ne art auctions. Those stylized facts are hardly explained by standard
auction theory models where a seller should prefer the auction house with
the lowest fee. Bertrand competition between auction houses should lead to
vanishingly low commission fees and zero pro�ts. On the contrary, Vogel [30]
reports that, in his negotiations with Christie's and Sotheby's, the CIO of a
japanese company planning to sell its about $20 million-worth art collection
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has ostensibly decided to make them play a game of chance to determine
which one would organize the sale and pocket the fees.

Two kinds of arguments could match with high commission fees. First
fees can be only a speci�c dimension of the competition between auction
houses that are also competing to attract the largest set of potential buyers.
In such a perspective, auction houses appear as the platform of a two-sided
market as in Caillaud and Jullien [6] and the demand that a seller faces is
supposed to depend not only on the auction she chooses, e.g. the announced
reserve price if any, but also on how the platform conquers the other side of
the market. We are not sure that such an argument would apply for top-
valued �ne art auctions where the set of potential buyers does not seem to
depend on the chosen auction house: potential buyers chose to go to the auc-
tion house after having observed the seller's decision. Though the �nal value
fee is often secretly negotiated at much lower rates for high-valued art com-
pared to the o�cial fees, the very signi�cant fees above 10% remain a puzzle
and we can wonder why sellers even do not choose to organize the auction
themselves or on eBay where fees are much lower.1 Furthermore, contrary to
Caillaud and Jullien's [6] predictions for exclusives services, eBay Inc seems
to be far away from zero pro�t with a 5-years-average net pro�t margin over
20%.2 In the present paper, we consider a second kind of argument: we
argue that commission fees may help the seller to comply with the auction
rules and may thus enlarge the set of implementable mechanisms. In other
words, ceteris paribus, the seller may surprisingly prefer to contract with an
auction house with larger fees.

We consider the English auction in the symmetric independent private
value model with two additional ingredients. First, following the literature
on auctions with participation costs, we consider that, after being informed
on their private valuations, potential buyers decide whether they participate
in the auction, in which case they incur a positive participation cost. These
costs can either correspond to the time consuming activity of submitting
a bid on eBay or to the �nancial preparation of the bid for an expensive
painting. Second, simultaneously to potential buyers' participation decisions,
the seller decides whether she enrolls a shill bidder, in which case she incurs
a positive shill bidding cost. Then the shill bidder is supposed to be able
to bid in the auction as any other participant. In equilibrium, only bidders
above a given cuto� that lies strictly above the reserve price will decide to
participate. It means that there is a gap between the announced reserve price
and the type of the lowest participant. As a corollary, if the cost to enroll a

1Ashenfelter [1] and Ashenfelter and Graddy [2] report that the total fee corresponds
to the sum of the buyer's premium with the seller's commission. Only this latter part of
the fee is negotiable.

2http://stocks.us.reuters.com/stocks/ratios.asp?rpc=66&symbol=EBAY.O (�gures
reported at november, 2007) The net pro�t margin has recently shrunk due to the
diversi�cation policy of eBay Inc outside its original marketplace activity, e.g. Skype.
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shill bidder is su�ciently low, the seller should �nd pro�table to bid at least
until the participation cuto�: it never changes the �nal allocation and raises
strictly the price in the event where only one buyer is participating.

In the �rst part of our analysis, we derive the whole set of buyer-symmetric
equilibria: potential buyers use cuto� strategies, i.e. bid their valuation if
it is greater than a cuto� point and do not participate otherwise, whereas
the seller either never enrolls a shill bidder or uses a mixed strategy where
she enrolls a shill bidder with some positive probability. The structure of
the equilibrium set varies with the shill bidding cost. For low shill bidding
costs, there is a unique mixed-strategy equilibrium. For a given reserve price,
the shill bidding activity reduces potential buyers' gains from participation
compared to the equilibrium where the seller could commit not to shill bid.
Thus it increases the aforementioned gap between the announced reserve
price and the lowest equilibrium bid which makes the shill bidding activity
even more pro�table. Due to this ampli�cation e�ect, equilibria may raise
very poor revenue: in the limit where the shill bidding cost goes to zero,
the expected revenue of the seller goes to zero. Surprisingly, participation
may be enhanced by higher reserve prices. The intuition is that the gap
between the lowest equilibrium bid and the announced reserve price shrinks
with the reserve price: limiting this initial incentive to shill bid reduces the
ampli�cation e�ect. For high shill bidding costs, only equilibria without
shill bidding exist. For intermediate shill bidding costs, multiple equilibria
may appear with one involving no shill bidding activity and which is Pareto-
dominant. We characterize the optimal reserve price and the corresponding
participation cuto� that the seller can implement. For small shill bidding
costs, the seller is unable to implement the optimal cuto� as under commit-
ment not to use shill bids. She can rather implement only cuto�s above a
given threshold which is decreasing in the shill bidding cost and increasing
in the participation cost and the number of potential buyers.

Those �rst theoretical results hardly �t with the success of electronic
auctions which drive the cost of shill bidding almost to zero which would
then cancel the bene�ts coming from the reduction of the participation costs.
Ockenfels et al [25] report that, in Germany, a commercial company provides
a service that automates the process of shill bidding. Moreover, empirical
analysis of eBay auctions (e.g. Bajari and Hortacsu [4]) show that lowering
the reserve price increases the entry into the auction.

The second part of our analysis considers the possibility of intermedia-
tion via competing auction houses. Auction houses appear endogenously as
an organizational device that prevents from the hold-up of the participation
costs by the seller, while we do not rely on any network externality hy-
pothesis. We consider an imperfect Bertrand competition framework where
auction houses compete on three parameters: (positive) insertion fees, �nal
value fees (possibly non-linear at some stage) and the number of participants
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through a given marketing technology. The seller decides whether to sell at
one of the auction houses or to organize herself the auction while we consider
that she disposes of the same marketing technology in this latter case. The
key di�erence is that auction houses allow the seller to `burn money' and thus
enrich the set of implementable participation cuto�s. Final value fees are
making the shill bidding activity more costly: in the case where the seller is
the winning bidder, she does not refund entirely the auction price. We show
that if the shill bidding cost is su�ciently low, then the seller's preferred
�nal value fee is strictly positive and thus positive fees arise in equilibrium.
The occurrence of ine�ciencies and `positive pro�t' in the equilibrium under
Bertrand competition is discussed.

1.1 Related Literature

Our model is related to three branches of literature. First shill bidding
introduces an hold-up problem: for a given announced reserve price and
after participation costs have been sunk, the seller wants to `renegotiate'
the reserve price and expropriate the rents that are needed to compensate
some potential buyers for the investment to participate in the auction. On
the contrary to Che and Sakovics's [10] dynamic treatment of investment
decisions, it corresponds to a standard static framework as in Tirole's [29]
seminal paper. The analog of the underinvestment result is how the set
of implementable participation cuto�s shrinks when the shill bidding cost
shrinks: in the limiting case where the shill bidding cost goes to zero, i.e.
without any friction in the way the seller can expropriate the rents of the
participants, then the hold-up problem unravels completely the market. In
the same vein as the incomplete contract literature proposes organizational
or contractual remedies for the holp-up problem (see Che and Sakovics [9]),
auction houses fees are making the shill bidding activity more costly and
thus mitigate the hold-up problem.

Second, our paper is related to the literature on the role of auction houses,
their pricing policy and on how competition works between them. In auctions
with an informed seller, Jullien and Mariotti [17] show that an auction house
may reduce the lemon problem. The crucial point is the time where the
commitment to the mechanism is made: after being informed if the seller
organizes herself the auction or before being informed if she uses the auction
house. The main bulk of the literature that endogenizes auction houses is
the growing literature on two-sided markets where the success of a platform
depends on its joint ability to attract both sellers and potential buyers.
Attracting one extra seller on a platform has a leverage e�ect: it makes
the platform more attractive to potential buyers and thus also to the other
sellers. Deltas and Jeitschko [12] show that it severely limits a monopolist's
ability to extract rents. Ellison et al [13] study the conditions under which an
equilibrium with several auction houses exist. Closely related is the literature
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on competition among sellers as in Peters and Severinov [26], Burguet and
Sakovics [5], Hernando-Veciana [15] and Damianov [11]. We emphasize that
our model completely abstract from those issues by considering a unique
seller.

Third, our analysis is related to the literature on shill bidding, also called
phantom bids or lift-lining. The �rst contributions analyze the English auc-
tion and perceive this activity as an additional �exibility that raises the
revenue, e.g. in Graham et al [14], Izmalkov [16], Lopomo [20]. On the
contrary, our analysis lies in the same perspective as Chakraborty and Kos-
mopoulou [8] and Lamy [18] where the shill bidding activity deteriorates the
seller's revenue and where she would prefer to commit not to use shill bids.
In an interdependent value framework, Lamy [18] shows that the seller can
not implement the optimal participation cuto� because she can not refrain
from submitting shill bids in equilibrium in order to make believe to the
potential buyers that the item worths more. In the present paper, similar
insights are derived in a model with participation costs. We go further by
considering that the shill bidding activity may be costly, by deriving related
comparative statics results and also mainly by analyzing the consequences
on the competition between auction houses.

This paper is organized as follows: Section 2 introduces the model and
some preliminary lemmata for our equilibrium analysis. Section 3 derives
the whole set of buyer-symmetric equilibria in the English auction when the
seller can use shill bids. In section 4, the optimal reserve price is character-
ized and comparative statics results are derived in a slightly more general
framework where the seller may have to pay a �nal value fee. Imperfect
Bertrand competition between auction houses is analyzed in section 5. Sec-
tion 6 concludes.

2 The Model

We consider a symmetric independent private value environment. There
are n ≥ 1 risk-neutral buyers and a risk-neutral seller who wants to sell an
indivisible object for which her valuation is zero. Potential buyers' valuations
are private and independently distributed with a common cdf F (.) that has
continuously di�erential density f(.) and full support on [0, 1]. The cdf F is
assumed to satisfy Myerson's regularity assumption.

Assumption A 1 Myerson's regularity: x → x − 1−F (x)
f(x) is a strictly in-

creasing function on [0, 1].

The timing of the auction game is as follows. First, the seller announces
a reserve price (or opening bid) r and potential buyers are privately informed
about their valuations. Second, the potential buyers and the seller decide
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simultaneously whether to register in the auction and incur the respective
costs cpart > 0 and cshill > 0 to participate in the auction and to enroll a shill
bidder. To guarantee that some participation could be possibly pro�table, we
further assume in the following that cpart < 1. Third, registered participants
are playing an English button auction. Our analysis is restricted to so-called
buyer-symmetric equilibria where potential buyers are using the same
strategy.

Our analysis covers the di�erent cases with regards to the disclosure rule
concerning the set of participants before the auction starts and the (irre-
vocable) exits and thus includes the second price auction as a special case.
Nevertheless we do not allow bidders to exit and re-enter the auction.3 We
emphasize that we consider that the decision to enroll a shill bidder is done
before observing the set of participants. The case where this decision is done
after participation decisions have been disclosed will be brie�y discussed in
remark 2.1. For expositional purposes, we also assume that the seller's in-
struction to the shill bidder is done before participation decisions have been
disclosed.4

Without shill bidding, Celik and Yilankaya [7] show that the seller's
expected revenue depends only on the participation cuto�s and on the allo-
cation rule.5 In the English auction that puts the object in the hand of the
participant with the highest valuation, the seller's expected revenue is thus
completely characterized by the participation cuto�s. For buyer-symmetric
participation cuto�s as previously analyzed in Samuelson [27], the derivative
of the expected revenue of the seller as a function of the participation cuto�
is given by 1−F (x)

f(x) + cpart

[F (x)]n−1 − x, which is strictly decreasing in x as guar-

anteed by assumption A1 and which changes sign in the range [0, 1]. The
optimal participation cuto� xcom

opt is then uniquely characterized by:

xcom
opt −

1− F (xcom
opt )

f(xcom
opt )

− cpart

[F (xcom
opt )]n−1

= 0 (1)

The optimal participation cuto� is strictly increasing in cpart and is thus
higher than the one arising in Myerson's optimal auction when participation
costs are null, which is denoted by xMyerson. Moreover, the seller's expected
revenue is a unimodal function of the participation cuto�s, which guarantees

3See Bikhchandani and Riley [3] for an exhaustive description of the di�erent possible
models for the English auction. Contrary to Lamy [18], no assumption on the anonymous
nature of the shill bidding activity is required.

4The new equilibria that would arise under an alternative timing are strategically
equivalent to the one we derive insofar as they would di�er only for `inconsequential'
actions, i.e. actions that do not modify the �nal payo�s.

5They also show that after having �xed the participation cuto�s, optimal mechanisms
are those that allocate the item e�ciently, e.g. the English auction. Lu [21] extends this
result to a model with private participation costs and ex ante symmetric buyers while
restricting to symmetric participation cuto�s.
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that for a given set of participation cuto�s [x, 1] where x > xcom
opt , then x is

the seller's most preferred cuto�. This is summed up in the following lemma.

Lemma 2.1 The seller's expected revenue as a function of the participation
cuto� is a unimodal function with mode xcom

opt > xMyerson.

The remaining part of this section is devoted to three preliminary lem-
mata. Buyer-symmetric equilibria are then characterized by two variables:
the cuto� type that is indi�erent between participating and not participat-
ing in the auction and the probability that the seller enrolls a shill bidder.
Finally, we derive the two equilibrium equations linking those unknowns.

We �rst establish that the seller can not enroll a shill bidder with prob-
ability one in equilibrium by raising a contradiction if she does so. Suppose
that the seller always enrolls a shill bidder. Denote by xS the lower bound
of the support of this shill bidding strategy. Equilibrium conditions require
then that no potential buyers with a valuation in the neighborhood of xS

would �nd pro�table to participate. If potential buyers participate with
some positive probability then the seller would never �nd it optimal to raise
a shill bid in the neighborhood of xS since she would pro�tably deviate with
a mildly higher shill bid that can only increase the seller's expected revenue.
Thus potential buyers never participate in equilibrium and consequently the
seller would pro�tably deviate by not enrolling a shill bidder since this ac-
tivity is strictly costly. Thus we have raised a contradiction and established
the following lemma.

Lemma 2.2 In any equilibrium, the seller chooses not to enroll a shill bidder
with a positive probability.

Contrary to Tan and Yilankaya [28] who restrict their attention to equi-
libria where potential buyers use cuto� strategies, we do not need such a
restriction after having restricted our attention to buyer-symmetric equilib-
ria.

Lemma 2.3 In a buyer-symmetric equilibrium, buyers' strategy pro�le cor-
responds to a cuto� point x∗ such that a potential buyer chooses to participate
and to bid his valuation if it is greater than x∗ and does not participate oth-
erwise.

Proof 1 We �rst note that positive participation costs imply that all types
below the reserve price and also in the neighborhood of r should not �nd
pro�table to participate. Since valuation are drawn independently, we obtain
that, with positive probability, all potential competitors of a given buyer will
prefer not to participate. Combined with the previous lemma, we obtain that
the payo� derived from participation is a strictly increasing function of one's
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valuation for types above r: by mimicking a lower type's strategy, a given
type guarantees a strictly higher payo� than the equilibrium payo� of this
type since the probability of buying the item is not null. We conclude that
two events can occur: either the payo� from participation is always negative
and participation is null in equilibrium or there exists a cuto� x∗ such that
buyers with valuation x∗ are indi�erent between participating or not, whereas
buyers above (resp. below) do (resp. do not) participate. In the auction
stage, the only symmetric equilibrium is the one where buyers are bidding
their valuations as shown by Blume and Heidhues [4].

Finally, we show that the shill bidding strategy (if any) is strategically
equivalent to the following form: the seller instructs the shill bidder to bid
up to the maximum between x∗ and Myerson's optimal reservation price
xMyerson. After participation costs have been sunk, the seller faces an un-
known number of participants with a cdf Fx∗ that depends on the cuto�
x∗: Fx∗(u) = F (u)−F (x∗)

1−F (x∗) if u ≥ x∗ and Fx∗(u) = 0 otherwise. Remark that
1−Fx∗ (u)

fx∗ (u) = 1−F (u)
f(u) for u ≥ x∗. Then the `virtual valuations' for the cdf Fx∗

correspond exactly to the virtual valuations of the original cdf F for valua-
tions above x∗. The optimal reserve price against some bidders with cdf Fx∗

is thus equal to max {x∗, xMyerson} and we obtain the following lemma.

Lemma 2.4 In any equilibrium with some shill bidding activity, the instruc-
tion to the shill bidder is to bid until x∗shill = max {x∗, xMyerson}.

In equilibrium, the strategy of the shill bidder is pure on the contrary to
the equilibria in Lamy [18] where it is always mixed.

By gathering the previous lemmata, any possible equilibrium is fully
characterized by the participation cuto� x∗ and the probability denoted by
p that the seller does not enroll a shill bidder. If the equilibrium involves
some participation, i.e. x∗ < 1., the potential buyers' equilibrium equation
is given by:

p.(x∗ − r).[F (x∗)]n−1 = cpart (2)

If the equilibrium involves no participation from potential buyers the
equality should be replaced by the inequality p.(1 − r) ≤ cpart. For any
equilibrium where the seller strictly mix, i.e. if 0 < p < 1, the seller's
equilibrium equation is characterized by the indi�erence between enrolling
a shill bidder that bids until x∗shill and staying outside the auction with the
reserve price r. The expected bene�t from submitting the shill bid x∗shill

is equal to the corresponding increase of the expected auction price. It is
denoted by H(x∗, r) such that:

H(x∗, r) = n.(1− F (x∗shill)).(x
∗
shill − r).[F (x∗shill)]

n−1

−
∫ x∗shill
x∗ (u− r)n(n− 1)[F (u)]n−2(1− F (u))f(u)du.
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The cost of submitting a shill bid is resumed to cshill. The indi�erence
equation is thus given by:

H(x∗, r) = cshill (3)

For an equilibrium where the seller does not enroll a shill bidder, only
the following inequality needs to be satis�ed:

H(x∗, r) ≤ cshill (4)

Remark 2.1 If the choice to enroll a shill bidder were made after the dis-
closure of the participation decisions, then the unique equilibrium is full non-
participation if the shill bidding costs are smaller than the participation costs
for any announced reserve price. Buyers with a valuation below r + cpart

would never �nd pro�table to participate which means that the gap between
the reserve price and the lowest equilibrium bid is greater than cpart. The
seller would �nd pro�table to enroll a shill bidder if cshill < cpart. The
holdup problem is more severe since the seller can target more precisely the
situations where she makes the costly investment to enroll a shill bidder.

3 Equilibrium Set with Shill Bids

This section is devoted to the characterization of the equilibrium set
while we �x the number of potential buyers, the announced reserve price and
participation costs. Under a mild technical assumption, the equilibrium set
is fully characterized for any shill bidding cost in Proposition 3.1. Multiple
equilibria may arise. It results from the strategic complementarity between
potential buyers' participation decisions and the seller's shill bidding activity.
Equilibria with a low shill bidding activity and a low participation cuto� may
coexist with one with a high shill bidding activity and a high participation
cuto�.

Assumption A 2 The map x → n[F (x)]n−1(1 − F (x)(x − r) is a strictly
unimodal (or strictly quasi-concave) function on [r, 1] for any 0 ≤ r < 1.

When x∗ lies below xMyerson (and above r as it is required by equation
(2)), H(x∗, r) is strictly decreasing in x∗. When x∗ lies above xMyerson,
H(x∗, r) reduces to n.(1−F (x∗)).(x∗−r).[F (x∗)]n−1 which is a strictly quasi-
concave function as assumption A2 guarantees. On the whole, x∗ → H(x∗, r)
is thus strictly quasi-concave if assumption A2 is satis�ed. Denote by xmod

its mode.
Three kinds of equilibria can emerge: equilibria where potential buyers

never participate and the seller never enrolls a shill bidder, equilibria with
some participation and where the seller never enrolls a shill bidder (also
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called equilibria without shill bids) and �nally equilibria where the seller
uses a mixed strategy.

After remarking that the seller should not �nd pro�table to enroll a shill
bidder if buyers never participate, we conclude from equation (2) that the
�rst aforementioned equilibria emerge if and only if r ≥ 1 − cpart indepen-
dently of the shill bidding cost. Now we consider that the participation
costs are small enough such that equilibria with some participation occur,
i.e. we consider cpart < 1 − r and we denote by xlow the unique solution of
the implicit equation (x − r).[F (x)](n−1) = cpart as it is guaranteed by the
intermediate value theorem and the fact that the left-hand side is a strictly
increasing function as a function of x on [r, 1].6 Equilibria without shill
bids are characterized by the participation cuto� xlow and the equilibrium
inequality (4). Denote by c∗shill the lowest shill bidding cost such that an
equilibrium without shill bids exists, i.e. H(xlow, r) = c∗shill.

For any strictly mixed strategy equilibrium, p ∈ (0, 1) implies that the
participation cuto� x∗ should be in the interval (xlow, 1). In any mixed strat-
egy equilibrium, the seller's indi�erence condition gives H(x∗, r) = cshill. In
the quadrant (x∗, cshill), candidates to be a mixed equilibria belong thus to
the curve x → H(x, r) for x > xlow. Conversely, any point in such a location
is an equilibrium. Under assumption A2, there are at most two candidates
to be a mixed strategy equilibria for a given shill bidding cost: one for par-
ticipation cuto�s on each side of the mode. Typical equilibrium sets in the
quadrant (x∗, cshill) are depicted by the thick line in Figure 1 when the mode
xmod is either on the right of xlow (left panel) or on the left of xlow (right
panel). After noting that the map x → H(x, r) and thus xmod do not depend
on cpart, we de�ne cmod

part as the participation cost such xlow coincides with

xmod:

cmod
part = (xmod − r).[F (xmod)]n−1

For cpart < cmod
part (resp. cpart > cmod

part(r)), xlow is below (above) xmod. In

the case cpart ≥ cmod
part, the equilibrium is always unique. Note �rst that the

candidate on the left of xmod fail to satisfy the requirement x ≥ xlow and
is thus never an equilibrium. Then note that the candidate mixed strategy
equilibrium on the right of xmod is actually an equilibrium if and only if
cshill < c∗shill, i.e. exactly in the case where the equilibrium without shill
bidding fails to exist. In the case cpart < cmod

part, multiple equilibria may
occur for intermediate shill bidding costs in the interval [c∗shill, c

∗∗
shill] where

c∗∗shill = H(xmod, r).

Insert Figure [1]

The previous discussion is summarized in Figure 1 and in the following
proposition.

6To alleviate notation we drop the dependence of xlow in the parameters r, n and cpart.

10



Proposition 3.1 Consider the number of potential buyers and the reserve
price as �xed and under assumption A2.

• For cpart ≥ 1 − r, there is a unique equilibrium which involves no
participation from the potential buyers and the seller.

• For cmod
part ≤ cpart < 1 − r, there is a unique equilibrium that involves

no shill bidding if the shill bidding costs are high enough, cshill ≥ c∗shill,
and that is mixed otherwise.

• For cpart < cmod
part, there is a unique equilibrium that involves no shill

bidding if the shill bidding costs are high enough, cshill > c∗∗shill, and
a unique equilibrium that is mixed if the shill bidding costs are small
enough, cshill < c∗shill. For intermediate shill bidding costs in the in-
terval (c∗shill, c

∗∗
shill), there are three equilibria: one without shill bidding

and two in mixed strategy.7

Remark 3.1 In the limit case where the shill bidding cost is null, a similar
equilibrium analysis shows that any equilibrium involves no trade, the seller
enrolls a shill bidder with a probability greater than 1− cpart

(1−r) and the payo�
of the seller is null. Thus the equilibrium set presents no discontinuity when
the shill bidding cost goes to zero.

Remark 3.2 In the general case beyond assumption A2, the structure of
the mixed strategy equilibria is more complex. More than one mixed strategy
equilibria may exist in the case with low shill bidding cost cshill < c∗shill. More
than two mixed strategy equilibria may exist in the case with intermediate
shill bidding costs in the interval (c∗shill, c

∗∗
shill). Nevertheless the set of the

equilibria without shill bidding has the same structure: such equilibria exist
if and only if the shill bidding cost is bigger than c∗shill.

The equilibrium set is continuous in the quadrant (x∗, cshill) and following
the equilibrium curve from an equilibrium without shill bidding on the left
to the point (1, 0) on the right, the probability to enroll a shill bidder rises
continuously from 0 to 1 − cpart

(1−r) < 1. Nevertheless, it is worthwhile to
note that, when the shill bidding cost varies, the equilibrium can switch
discontinuously from a mixed strategy equilibrium to an equilibrium without
shill bidding.

Next proposition establishes the preferences of the agents on the so-called
equilibrium set curve: the set of all equilibria when the shill bidding cost
varies on (0,∞]. Surprisingly, the seller and the potential buyers' preferences
are varying in the same direction.

7For the degenerate cases, cshill = c∗shill or cshill = c∗∗shill, there are two equilibria: one
without shill bidding and one in mixed strategy.
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Proposition 3.2 In the equilibrium set curve, both the seller and each kind
of potential buyers prefer the equilibria with the lowest participation cuto�s
or equivalently with the lowest shill bidding activity.

Proof 2 Consider two equilibria 1 and 2 on the equilibrium set curve char-
acterized by the participation cuto�s x1 and x2, where x1 > x2 > r. Denote
by p1 and p2 the respective probabilities not to enroll a shill bidder in equi-
librium.

From lemma 2.2, the seller's expected payo� is equal to her expected rev-
enue in the case where she does not enroll a shill bidder. In that case, it is
equal to the expected revenue of an English auction with reserve price r and
the given participation cuto�. It is straightforward that the expected payo�
is ceteris paribus strictly decreasing in the participation cuto�: for a �xed
reserve price, the expected payment in greater if there are more participants.
Thus we have proved the proposition for the seller.

Consider a potential buyer with type x < x1, then he clearly prefers
equilibrium 2 to equilibrium 1 where he prefers not to participate and thus
obtains a null payo�. Consider a potential buyer with type x > x1. Two
events may occur: either he is the bidder with the highest type or not. In this
latter case, his payo� is null independently of the equilibrium. Two events
may occur: either x > xMyerson or x ≤ xMyerson.

First we consider the case x > xMyerson such that the highest bidder
with type x always win the auction. It is su�cient to show that his expected
payment is smaller in equilibrium 2 conditionally on the fact that he has
the highest type. First note that the equilibrium payment is the same in
both equilibria if the second highest potential buyer has a valuation above x1.
Thus it is su�cient to compare the expected payment of the winning bidder
conditionally on the event where the second highest bidder has a valuation
below x1. In equilibrium 1, the conditional expected payment is equal to:

p1.r + (1− p1).max {x1, xMyerson}.

He pays the announced reserve price with probability p1 and the shill bid
otherwise. In equilibrium 2, the conditional expected payment is equal to:

p2.r.
[F (x2)]n−1

[F (x1)]n−1
+(1−p2).max {x2, xMyerson}.

[F (max {x2, xMyerson})]n−1

[F (x1)]n−1
+...

+p2.

∫ x1

x2

u
d[F (u)]n−1

[F (x1)]n−1
+ (1− p2).

∫ x1

max {x2,xMyerson}
u

d[F (u)]n−1

[F (x1)]n−1
.

The �rst term corresponds to the case where the buyer pays the reserve
price. The second term to the one where he pays the shill bid. The fourth and
third terms are corresponding to the cases where the price is �xed by another
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potential buyer and when the seller respectively does and does not enroll a shill
bidder. Both expectations are corresponding to a weighted average of values
between r and max {x1, xMyerson}. We show that the cdf of the weights in
the equilibrium 1 dominates the one in equilibrium 2 according to �rst-order

stochastic dominance. For this we note that p1 < p2.
[F (x2)]n−1

[F (x1)]n−1 by combining

the equilibrium equations (2) in the equilibria 1 and 2 with the fact that
x1 > x2.

Second, we consider the case x ≤ xMyerson. We compute the expected
payo� of a potential buyer with valuation x in the auction. In equilibrium i
and for x ∈ [x1, xMyerson) , the conditional expected payo� is equal to:

[F (x)]n−1.pi.(x− r.
[F (xi)]n−1

[F (x)]n−1
)−

∫ x

xi

u.
d[F (u)]n−1

[F (x1)]n−1
.

For x = x1, buyer expected payo� is bigger in equilibrium 2 than in equi-
librium 1: in equilibrium 1, he just refunds his participation costs, whereas
his expected payo� is strictly higher in equilibrium 2 where a buyer with type
x2 refunds his participation costs. The derivative of the expected payo� with
respect to x is equal to pi. Since p2 > p1, the expected payo� of a buyer with
a type x ∈ [x1, xMyerson) is thus bigger in equilibrium 2 than in equilibrium
1.

Equilibria with the same participation cuto�s on the equilibrium set curve
are equilibria without shill bidding which are all equivalent from buyers' per-
spective. Thus we have proved the proposition for the buyers.

As a corollary, we obtain that equilibria without shill bidding are Pareto-
dominant, which gives support to our `weak' implementation perspective
where we consider that the seller is able to select that the equilibrium without
shill bidding is to be played in the case of multiple equilibria.

Corollary 3.3 Equilibria without shill bidding are Pareto-dominant in the
equilibrium set curve.

Contrary to Myerson's [24] optimal auction where there is a trade-o�
between welfare and revenue, the seller and the buyer's preferences appear
as more congruent in our framework with shill bidding as it will be further
developed in next section with respect to the choice of the reserve price.
It is reminiscent of Lamy [18] where the seller's most preferred equilibrium
with shill bidding corresponds to the one that implements the lowest imple-
mentable participation cuto�.

4 The optimal reserve price

We now consider the strategic choice of the announced reserve price by
the seller: we characterize the participation cuto�s that the seller can im-
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plement and the corresponding optimal reserve price that maximizes her
expected revenue.

From now on we consider the more general framework where the seller
may have to pay a �nal value fee α.R, where R is the revenue of the auction.
The �nal value fee does not modify potential buyers' equilibrium condition
(2). On the contrary, the seller's indi�erence equation (3) is modi�ed and
becomes now:

(1− α).H(x∗, r) = cshill + α.[r.[F (x∗)]n +
∫ x∗shill

x∗
ud[F (u)]n], (5)

where xα
Myerson corresponds to the optimal reserve price under commit-

ment not to shill bid when the seller receives only 1−α of the auction revenue,
i.e. xα

Myerson is the solution of the equation x = (1 − α).1−F (x)
f(x) , and x∗shill,

the seller's optimal shill bid, is equal to max {x∗, xα
Myerson}. In an equilib-

rium without shill bidding, the seller's equilibrium condition is equation (5)
where the equality has been replaced by the inequality ≤.

Ceteris paribus, high fees are making the shill bidding activity less prof-
itable: �rst by reducing the gains in the auction as re�ected by the multi-
plication by (1 − α) of the left-hand term and second by making the shill
bidding activity more costly since the shill bidder may buy the item and the
seller does not refund entirely the auction price due to the �nal value fee as
re�ected by the new term added to the right-hand of (5).

The expected payo� of the seller is fully characterized by the participation
cuto� and the probability to enroll a shill bidder. The following lemma show
that there is no loss of generality to restrict the analysis to equilibria without
shill bids when we are looking for an optimal reserve price.

Lemma 4.1 If there is a reserve price r such that the participation cuto� x∗

and the shill bidding probability p < 1 is an equilibrium pro�le, then there is
a reserve price r′ > r such that the same participation cuto� x∗ and no shill
bidding activity is an equilibrium pro�le. Furthermore, this latter equilibrium
raises a strictly higher revenue.

Proof 3 Consider the reserve price r′ characterized by (x∗−r′).[F (x∗)]n−1 =
cpart which guarantees that buyers' equilibrium condition is satis�ed. From
equation (2) and since p < 1, we have r′ > r. Since the bene�t from sub-
mitting a shill bid is decreasing in the reserve price -∂H/∂r ≤ 0- and the
marginal cost α.[F (x∗)]n is positive, the expected payo� di�erence between
raising or not a shill bid is decreasing in the announced reserve price for a
given participation cuto�. We conclude that the seller prefers not to enroll a
shill bidder.

The revenue enhancing e�ect of the equilibrium without shill bids under
the reserve price r′ comes from the more general result that for a given par-
ticipation cuto�, the seller's expected payo� is increasing in the probability
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not to enroll a shill bidder. Consider two equilibria 1 and 2 characterized by
the probabilities p1 and p2, where p1 > p2 and the same participation cuto�
x∗ < 1. Then the corresponding reserve prices are such that r1 > r2. The
seller's expected payo� is equal to her expected revenue in the case where she
does not enroll a shill bidder. In that case, it is equal to the expected revenue
of an English auction with reserve price ri and the given participation cut-
o�. It is straightforward that the expected payo� is strictly increasing in the
reserve price provided that it is smaller than the participation cuto�. The
expected revenue is thus bigger in environment 1.

As a starting point of our analysis of the optimal announced reserve price,
Proposition 4.2 gives some insights on the participation cuto�s that may arise
in some equilibria. Such participation cuto�s are called `implementable'.

De�nition 1 A participation cuto� is implementable if there exists a reserve
price and an equilibrium supporting this participation cuto�.

Denote by S the set:

S = {x ∈ [0, 1]|(1−α).[1−F (u)] ≤ cshill

n.cpart
+

α

n
.[
u[F (u)]n−1

cpart
−1].F (u),∀u ≥ x}.

(6)
From our assumption cpart < 1, we obtain that S is nonempty. Then

denote by x∗low the in�mum of the set S. By continuity, if x∗low > 0, we have
thus:

(1− α).[1− F (x∗low)] =
cshill

n.cpart
+

α

n
.[
x∗low[F (x∗low)]n−1

cpart
− 1].F (x∗low). (7)

Proposition 4.2 Consider the �nal value fee, the number of potential buy-
ers and the participation and shill bidding cost as given.

• If x∗low ≥ xcom
opt , then the set of implementable participation cuto�s is

the interval [x∗low, 1].

• If x∗low < xcom
opt , then the set of implementable participation cuto�s

contains the interval [xcom
opt , 1].8

Proof 4 We �rst consider the case x∗low ≥ xcom
opt , which guarantees that

x∗low ≥ xα
Myerson. We �rst show that all participation cuto�s in the in-

terval [x∗low, 1] are implementable. Pick x ∈ [x∗low, 1] and consider the re-
serve price r such that (x − r).[F (x)]n−1 = cpart. Then we obtain (1 −

8For x∗low < xcom
opt , the set of implementable participation cuto� is not necessary an

interval because the map x → H(x, x − cpart

[F (x)]n−1 ) is not guaranteed to be decreasing in

the range [0, xcom
opt ].
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α).H(x, r) = (1− α).n.(1− F (x)).cpart which is smaller than (1− α).n.(1−
F (x∗low)).cpart. Since x∗low ∈ S, we obtain that (1−α).H(x, r) is smaller than
cshill + α.[x∗low[F (x∗low)]n−1 − cpart].F (x∗low), which is smaller than cshill +
α.[x[F (x)]n−1− cpart].F (x) since x → [x[F (x)]n−1− cpart].F (x) is increasing
in x in the interval [xcom

opt , 1].9 For a participation cuto� x ≥ xα
Myerson, the

seller's optimal shill bids is x. On the whole, we have shown that shill bid-
ding is not pro�table. Now consider x < x∗low. As a corollary to lemma 4.1,
to show that x is not implementable there is not loss of generality to restrict
ourselves to equilibria without shill bids. Equation (2) requires that the re-
serve price is such that (x− r).[F (x)]n−1 = cpart and thus (1−α).H(x, r) >
(1− α).n.(1− F (x∗low)).cpart = cshill + α.[x∗low[F (x∗low)]n−1 − cpart].F (x∗low).
This latter term is bigger than cshill + α.[x[F (x)]n−1 − cpart].F (x) (since
x < x∗low and [x∗low[F (x∗low)]n−1 − cpart] ≥ 0) and thus to cshill + α.r[F (x)]n

(using again equation (2)). On the whole, we have shown that the seller
would �nd strictly pro�table to enroll a shill bidder that bids until x.

Second we consider the case x∗low < xcom
opt . Pick x ∈ [xcom

opt , 1] and con-

sider the reserve price r such that (x − r).[F (x)](n−1) = cpart. Then we
obtain (1 − α).H(x, r) = (1 − α).n.(1 − F (x))cpart which is smaller than
n.(1 − F (xcom

opt ))cpart and thus smaller than cshill + α.[xcom
opt [F (xcom

opt )]n−1 −
cpart].F (xcom

opt ) since xcom
opt ∈ S. Following the same arguments as above, we

conclude that shill bidding is not pro�table.

Insert Figure [2]

Proposition 4.2 stands in sharp contrast with the picture when shill bid-
ding does not occur. Without shill bidding, the seller can select any cuto�
in the interval [xo, 1], where xo[F (xo)]n−1 = cpart, by choosing appropriately
the reserve price. Since xo < xcom

opt , the seller is not constrained to implement
the optimal cuto�. When the participation cost vanishes, it means that the
seller can roughly chose any cuto�. Moreover the relation between equilib-
rium cuto�s and reserve prices is monotonically increasing. On the contrary,
this relation is not monotonic with shill bidding as it is illustrated in Figure
2 (where α = 0) which corresponds to the �rst case of Proposition 4.2 where
the seller can not implement the optimal participation cuto� but only the
ones in the interval [x∗low, 1] with x∗low > xcom

opt . The equilibrium sets for three
possible reserve prices r1 < r2 < r3 are depicted. For r1 and r2, a single
strictly mixed strategies equilibrium exists, whereas two equilibria exist for
r3, one without shill bidding and the smallest implementable participation
cuto� x∗low and one with a strictly mixed shill bidding strategy. For those
reserve prices, the equilibrium participation cuto�s are decreasing in the re-
serve price. Nevertheless, for reserve prices above r3 and if we restrict our

9The derivative with respect to x is equal to [F (x)]n + [F (x)]n−1.f(x).[nx− cpart

[F (x)]n−1 ]

which is bigger than [F (x)]n−1.f(x).[x− cpart

[F (x)]n−1 ], which is positive for x ≥ xcom
opt
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attention to the equilibrium without shill bidding which always exists, then
participation cuto�s are increasing in the reserve price.

With shill bidding, the set of implementable participation cuto�s does
not depend solely on cpart but also on cshill, n and α. Moreover, it is not the
absolute value of the shill bidding costs that plays a role but its relative value
compared to the participation costs cpart. It means that our holdup problem
can arise in seemingly very di�erent environments, i.e. with very di�erent
participation and shill bidding costs. To illustrate our ideas, consider the
case where α = 0 such that the cost from enrolling a shill bidder comes
only from cshill. Then x∗low is characterized by (1 − F (x∗low)) = cshill

n.cpart
. In

particular, vanishingly participation costs are still constraining the set of
implementable cuto�s if shill bidding costs are concomitantly vanishing at
the same rate.

Insert Figure [3]

Though we did not fully characterize the set of implementable partici-
pation cuto�s, Proposition 4.2 is su�cient to characterize the optimal im-
plementable participation cuto� x∗opt and the corresponding optimal reserve
price ropt. Denote by ccom

shill the threshold such that x∗low coincides with xcom
opt .

This case is depicted in Figure 3 where r2 is the corresponding optimal re-
serve price. We moved from Figure 2 to Figure 3 just by raising the shill
bidding cost which decreases x∗low and thus enlarges the set of implementable
cuto�s. If the shill bidding cost is bigger than ccom

shill, we obtain from lemma
2.1 that the seller is constrained and that her most preferred equilibrium
corresponds exactly to the potential buyer's most preferred equilibrium in
the set of implementable mechanisms. This is another contrasting point with
respect to the case without shill bids where the seller choses to implement
the participation cuto� xcom

opt that is too high with respect to potential buy-
ers' preferences who are preferring a null reserve price and the corresponding
cuto� xo. In a nutshell, the surprising coincidence of the seller and the po-
tential buyers' objectives does not hold solely in the equilibrium set for a
given reserve price as established in proposition 3.2 but also in the choice of
the reserve price.

Next proposition establishes the comparative statics of the optimal auc-
tion mechanism chosen by the seller.

Proposition 4.3 The seller's optimal reserve price and the corresponding
optimal implementable participation cuto�s are:

• increasing in the participation costs

• decreasing in the number of potential buyers, the shill bidding costs and
the �nal value fee.
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xcom
opt xopt, ropt Seller's Seller & Auctioneer's Potential Buyers' Total

Expected Payo� Expected Payo� Expected Payo� Welfare

cpart + + - - - -

n - - ? ? - ?

cshill 0 - + + + +

α 0 - ? + + +

Table 1: Comparative Statics with respect to cshill, cpart, n and α.

Proof 5 We �rst show that those comparative statics hold for the threshold
x∗low which comes immediately from equation (7). From proposition 4.2, the
optimal cuto� xcom

opt is implementable if x∗low ≤ xcom
opt with the reserve price

ropt = x∗low −
cpart

[F (x∗low)]n−1 . Combining the �rst case of proposition 4.2 with

lemma 2.1, we obtain that the optimal implementable cuto� is x∗low if x∗low ≥
xcom

opt . On the whole, we conclude by noting the optimal implementable cuto�
and the corresponding reserve price are increasing with respect to x∗low for
which the comparative statics hold.

Proposition 4.3 is silent whether those comparative statics are strict or
not. Indeed the comparative statics with respect to cshill is strictly decreasing
until ccom

shill and then for cshill ≥ ccom
shill, shill bidding is no more a constraint

in the implementation of the seller's preferred equilibrium. Note that ccom
shill

depends on α and is strictly positive if α is small enough. The same remark
holds for the parameter α, which appears as a substitute of cshill. On the
other hand the comparative statics with respect to cpart and n are always
strict because independently of the fact that the seller is constrained, the
optimal participation cuto� under commitment is strictly increasing in cpart

and decreasing in n, as it is easily derived respectively from equation (1).

To end this section, we now turn to the comparative statics of the ex-
pected payo� of the di�erent agents with respect to the key parameters of
our model. All the results are summarized in Table 1.

From proposition 4.3, a decrease in the shill bidding costs or equivalently
an increase in α has ceteris paribus a unilateral negative impact on the
auction revenue and on potential buyers' expected payo�s. The comparative
statics are immediately translated in term of seller's expected payo�, seller
and auctioneer's expected payo� or total welfare except in the case of α and
the seller's revenue due to the multiplication by the term (1 − α). Thus
except in some limiting cases as considered in next section, the comparative
statics of the seller's expected payo� with respect to α is undetermined. The
comparative statics with respect to the �nal fee does not stand in line with
the intuition that fees are preventing from some pro�table trade between
the seller and the potential buyers as it would be the case if the seller's
reservation value were positive. We emphasize that by setting the seller's
reservation value to zero, this e�ect is absent in our analysis.
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An increase in the participation costs has two impacts. First the optimal
participation cuto� increases which makes potential buyers worse-o�, but
we can not immediately conclude on the �nal impact of the auction revenue
since the relation between the participation cuto� and the reserve price is
also altered. For a given participation cuto�, an increase in the participation
costs corresponds to an increase in the gap between the announced reserve
price and the participation cuto� and thus this second e�ect is also negative
for the auction revenue.

Finally to complete the picture, we report the comparative statics with
respect to n which are mostly undetermined, in particular for the auction
revenue as previously noted by Samuelson [27].

5 Bertrand competition between auction houses

In this section, we consider the role of auction houses with three pricing
instruments. In a �rst step, we consider only two pricing instruments: f ≥ 0
a positive insertion fee that the seller has to pay for auctioning the item and
α ∈ [0, 1] the �nal value fee, which corresponds to the share of the auction
price which accrues to the auction house. The constraint f ≥ 0 re�ects the
fact that subsidizing the seller's entry can not be pro�table if the auctioneer
is unable to screen �ctitious sellers that would enter the auction with dummy
goods only with the purpose to capture the subsidy. In a second step, we
enrich the analysis by adding a third instrument and thus endogenize the
number of potential participants: we no longer consider that the number of
potential buyers is �xed exogenously but we rather consider the availability of
a convex marketing technology cmarkt(.) > 0 such that cmarkt(n) represents
the cost to obtain n potential buyers. Finally we consider competition with
non-linear fees. We denote by R(α, n) the expected revenue of the optimal
auction.

To abstract from the usual bene�t of using a platform, we consider that
the seller disposes also of this marketing technology if she decides to organize
herself the auction. The only di�erence is that f and α are constrained to
be equal to zero if she auctions herself the item. In other words, she can
not `burn money'. Competition between auction houses is modeled as a si-
multaneous Bertrand game on the pricing instruments. The seller chooses
an auction house that maximizes her expected payo�, i.e. one that maxi-
mizes (1− α)R(α, n)− f . Auction houses are restricted to make pro�t, i.e.
αR(α, n) + f − cmarkt(n) ≥ 0.

5.1 Competition on the commission fees

The equilibrium under Bertrand competition is the solution of the fol-
lowing maximization program:
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max
(f,α)

(1− α)R(α, n)− f

subject to the positive pro�t constraint

αR(α, n) + f ≥ 0.

From proposition 4.3, the seller is not constrained if shill bidding costs
are high enough (it is also true if participation costs are null), then R(α, n)
does not depend on α. Finally, the solution of this program without the
constraint is: f = 0 and α = 0. On the contrary, if the participation costs
are positive and shill bidding costs are su�ciently low, then the seller is not
only constrained in the implementation of the optimal cuto� if α is small
enough: she also prefers strictly positive α to a null �nal value fee. It comes
from the fact that x∗low goes to 1 and thus the seller's expected payo� to zero
when the shill bidding costs vanish under a null �nal value fee. Thus the
solution of the program above without the constraint is: f = 0 and α > 0.
On the whole, the pro�t constraint is not binding at the optimum in both
cases, which means that it is the equilibrium solution. Those results are
summarized in proposition 5.1 and illustrated in Table 2 where numerical
simulations for the uniform distribution give some support for fees in the
range 1-6% for eBay auction. The simulations suggest that the shill bidding
issue could be very important if there were no �nal value fee but easily
tackled with small fees. For example, when the shill bidding cost is half of
the participation costs and for �ve bidders, the revenue rises from 0.37 to
0.64 for cpart = 10−3 (from 0.35 to 0.45 for cpart = 5.10−2) when we go from
the null fee to the equilibrium or seller-optimal fee which is equal to 2.2%
(resp. 9.9%).

Proposition 5.1 Equilibrium under Bertrand competition on the

commission fees

If the participation costs are null or if shill bidding costs are high enough,
equilibrium fees and auctions houses pro�ts are stuck to zero.

If the participation costs are strictly positive and shill bidding costs are
su�ciently low, equilibrium fees and auctions houses pro�ts are strictly pos-
itive.

The surprising `positive pro�t result' comes from auction houses' impos-
sibility to redistribute their pro�t resulting from how they solve the hold-up
problem. With a marketing activity, auction houses may be able to `burn
their pro�t' to attract extra potential buyers, but not necessarily completely
and, furthermore, the choice of the intensity of the marketing activity does
not coincide with what the seller would do if she were responsible of the
marketing activity.
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n n = 5 n = 2
cshill
cpart

0 1/2 1 ∞ 0 1/2 >1

cpart = 10−3

α∗ 0.027 0.022 0.016 0 0.007 0.004 0

x∗low 0.638 0.629 0.619 0.508 0.512 0.509 0.501

Revenue with α∗ 0.640 0.645 0.651 0.669 0.413 0.414 0.417

Revenue with α = 0 0 0.371 0.556 0.669 0 0.333 0.416

cpart = 10−2

α∗ 0.083 0.062 0.038 0 0.046 0.023 0

x∗low 0.740 0.726 0.710 0.553 0.574 0.556 0.510

Revenue with α∗ 0.552 0.572 0.597 0.648 0.383 0.395 0.407

Revenue with α = 0 0 0.366 0.547 0.648 0 0.328 0.407

cpart = 2 ∗ 10−2

α∗ 0.111 0.079 0.040 0 0.072 0.035 0

x∗low 0.775 0.760 0.740 0.585 0.611 0.586 0.519

Revenue with α∗ 0.500 0.530 0.565242 0.627 0.359 0.378 0.397

Revenue with α = 0 0 0.361 0.537 0.627 0 0.323 0.397

cpart = 5 ∗ 10−2

α∗ 0.159 0.099 0.023 0 0.119 0.048 0

x∗low 0.825 0.807 0.783 0.645 0.674 0.639 0.546

Revenue with α∗ 0.403 0.451 0.511 0.570 0.305 0.340 0.369

Revenue with α = 0 0 0.346 0.507 0.570 0 0.308 0.369

Table 2: Numerical example with the uniform distribution on [0, 1]

21



5.2 Competition on the commission fees and the number of

potential buyers

The equilibrium under Bertrand competition is the solution of the fol-
lowing maximization program:

max
(f,α,n)

(1− α)R(α, n)− f

subject to the positive pro�t constraint

αR(α, n) + f − cmarkt(n) ≥ 0.

The corresponding program if the seller is responsible of the marketing
activity (and independently of whether she choses the fee α or whether it
results from Bertrand competition) is

max
(α,n)

(1− α)R(α, n)− cmarkt(n)

The solution is given by αsel and nsel with the corresponding �rst order
equations:

(1− αsel)
∂R

∂n
(αsel, nsel) =

∂cmarkt

∂n
,
∂R

∂α
(αsel, nsel) =

R(αsel, nsel)
(1− α)

.

Such a solution is labeled as seller-e�cient.
The properties of the solution αeq, neq of the Bertrand competition de-

pend on whether the pro�t condition is binding or not. The basic intuition
would be that auction houses are burning entirely their pro�t in the market-
ing activity but it may be wrong if the intensity of the marketing activity
reaches a counterproductive point where additional buyers are lowering the
auction revenue. In such a case, auction houses can not spend entirely the
pro�t coming from the holdup resolution. Both cases should then be con-
sidered. Anyway, in each circumstances, there is no loss of generality to set
f = 0 since the insertion fee can always be substituted by a higher �nal value
fee since the auction revenue is increasing in α from proposition 4.3.

If the constraint is binding, the �rst order equations are given by:

∂R

∂n
(αeq, neq) =

∂cmarkt

∂n
,
∂R

∂α
(αeq, neq) = 0

If the pro�t constraint is not binding, the �rst order equations are given
by:

∂R

∂n
(αeq, neq) = 0,

∂R

∂α
(αeq, neq) =

R

(1− α)
(αeq, neq).
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Furthermore, if shill bidding does not matter, e.g. if participation costs
are null, then there is no pro�t from the holdup problem and the pro�t
constraint is always binding: fees are used only to reimburse the marketing
costs.

Those results are summarized in next proposition.

Proposition 5.2 Equilibrium under Bertrand competition on the

commission fees and the number of potential buyers

If the participation costs are null or if shill bidding costs are high enough,
auction houses pro�ts are stuck to zero. The number of potential buyers and
participation cuto�s are seller-e�cient.

If the participation costs are strictly positive and shill bidding costs are
su�ciently low, auctions houses pro�ts may be strictly positive and only in
such a case will the commission fee be seller-e�cient. In any case the number
of potential buyers is higher than the seller-e�cient solution.

Alternative e�ciency criteria deserve some consideration: the one that
considers the joint surplus of the seller and the auction house and also the
total welfare that covers also potential buyers' surplus. The outcome of
Bertrand competition is closely related to the former. When the pro�t con-
straint is binding, i.e. auction houses burn entirely their pro�t, then the
outcome is e�cient according to this criteria.10 The welfare perspective adds
potential buyers' surplus Π(α, n) which is increasing in α. The comparative
statics of Π(α, n) with respect to n is undetermined. Nevertheless, if there
is some monotonicity, it is necessarily decreasing in n. The intuition is that
bidders impose a negative externality between themselves through the pric-
ing policy and through the choice of the optimal participation cuto� which
increasing in n. At the end, this externality will overwhelm the bene�t from
a highest valuation for the winning bidder. The following discussion assumes
that Π(α, n) is decreasing in n. The outcome of Bertrand competition in-
volves then too much marketing activity with respect to both the welfare or
the seller's perspectives: �rst, the seller alone would not internalize the pos-
itive impact of the choice of an extra potential buyer on the auction house's
revenue; second, Bertrand competition omits potential buyers' surplus and
thus the negative impact of an extra potential buyer. The over-marketing is
especially acute when the pro�t constraint is not binding such that Bertrand
competition does not take into account the marketing costs. In term of �nal
value fees, the related comparison depends on whether the pro�t constraint
is binding or not. If it is binding, then the fee is such that the seller is not
constrained to implement the optimal participation cuto� which maximizes
the auction revenue and also the welfare. It is then higher than what the

10The pro�t constraint would always bind if auction houses could redistribute entirely
their pro�ts by means of the insertion fee's subsidy.
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seller would chose. If it is not binding, it corresponds to the seller-e�cient
solution as it was also the case in proposition 5.1.

5.3 The declining fee anomaly?

In the previous analysis, we exclude the use of a system of non-linear fees
as it is indeed often the case, e.g. on eBay where the �nal value percentage
fee goes from 5.25% to 1.50% when the �nal price rises. This decreasing
pattern is the usual pattern that holds also for art or real-estate auctions
where sellers of high value items are negotiating rebates with the auctioneer.
It has received no attention in the literature though it can not be based on
the marginal cost of organizing such an auction. In next proposition we give
some properties of the equilibrium fees when auction houses are allowed to
any system of non-linear fees. In the following such a system is denoted by
the function α : R+ → R+. We impose the constraint α(x) ≤ x and thus
we exclude the possibility that the seller can redistribute some of its pro�ts
by paying more that the �nal price to the seller in some price range. As
the restriction of positive insertion fees, this assumption can be justi�ed by
a shill bidding perspective -otherwise the seller could make pro�t by selling
dummy goods and �x the right price through a shill bidding activity- and it
is necessary to obtain the `positive pro�t' result under Bertrand competition.

We denote by J(x, x∗, r, α) the di�erence of the seller's expected payo�
between enrolling a shill bidder that bids x and not enrolling a shill bidder.
Generalizing equation (5), we obtain:

J(x, x∗, r, α) = n.(1− F (x).[F (x)]n−1[(x∗ − α(x∗))− (r − α(r))]
−

∫ max {x∗,x}
x∗ [(u− α(u))− (r − α(r))]n.(n− 1)(1− F (u)[F (u)]n−2f(u)du

−cshill − α(r)[F (x)]n +
∫ max {x∗,x}
x∗ α(u)[dF (u)]n.

(8)

Proposition 5.3 Bertrand competition under a system of non-linear

fees

The equilibrium is uniquely11 characterized by a participation threshold
xeq and a fee α(req) at the equilibrium reserve price. We have the following
properties:

• The equilibrium involves no shill bidding activity and the equilibrium
reserve price req is thus characterized by req = xeq − cpart

[F (xeq)]n−1 .

11By uniqueness, we refer to fees that arise with positive probability in equilibrium.
The proposition is silent on how the system of fee α should be speci�ed outside [xeq, 1]
and for values di�erent than req, i.e. for those fees that are never used in equilibrium.
Any values that guarantee than the shill bidding activity is not pro�table will work,
i.e. J(x, x∗, r, α) ≤ 0 for x ∈ [r, xeq]. For example, these constraints are satis�ed if
α(x) ≥ x− r + α(r).
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• The fee at xeq is given by:

α(xeq) = max {0,
n.(1− F (xeq)).cpart − cshill

n.(1− F (xeq)).[F (xeq)]n−1
+ α(req)[1−

F (xeq)
n.(1− F (xeq))

]}

(9)

• α is continuous on [xeq, 1] and characterized by the di�erential equation
on [xeq, 1]:

∂α
∂x = −req.

f(x)
1−F (x) if α(x) > 0

∂α
∂x = 0 if α(x) = 0

(10)

If the shill bidding costs are small enough, auctions houses pro�ts are
strictly positive.

Proof 6 Equations (9) and (10) guarantee that J(x, xeq, req, α) = 0 (respec-
tively ≤ 0) for x ∈ [xeq, 1] and such that α(x) > 0 (resp. α(x) = 0). Thus
after announcing the reserve price req, it is an equilibrium not to enroll a
shill bidder. We then have to prove that there are no other equilibrium can-
didates. In the same vein as lemma 4.1, we show that there is no loss of

generality to restrict the analysis to a system of fee that induces no shill bid-
ding activity in the subsequent equilibrium of the auction. Consider a system
of fee α and an equilibrium given by xeq and peq < 1. The corresponding
equilibrium reserve price, which is characterized by equation (2), is denoted
by req. From lemma 2.2, the seller should at least maximize her payo� by not
enrolling a shill bidder. We thus have J(x, x∗, r, α) ≥ 0, which holds as an
equality if the candidate x = xshill belongs to the support of the shill bidding
activity. Consider the reserve price r′ = xeq − cpart

[F (xeq)]n−1 > req and the sys-

tem of fee α′ such that r′−α′(r′) = req−α(req)− ε with ε > 0, α′(x) = α(x)
for x ≥ xeq and α′(x) = x otherwise. We show that, if the seller announces
the reserve price r′, then no shill bidding activity and the participation cuto�
xeq is an equilibrium that raises a higher revenue for the seller. If ε is small
enough, then the inequalities J(x, x∗, r, α) ≥ 0 still hold. Combined with the
way r′ has been de�ned, the equilibrium property is proved. Moreover, since
α(r′) > α(r) whereas the participation cuto� is the same and all fees above
it remain equal, the seller raises a strictly higher revenue.

Consider a system of non-linear fees β(x) in the equilibrium with β(req) =
α(req). To simplify the proof we consider that β is continuous and has a left
and a right derivative. It is left to the reader to extend the proofs beyond
this case. We show that β(u) = α(u) on the range [xeq, 1] in several steps.
We �rst show that β(u) ≥ α(u) on [xeq, 1]. Suppose on the contrary that
β(u) < α(u) for some u ∈ [xeq, 1] and denote by xinf the in�mum of such u.
Two events may happen. Either β(u) = α(u) on [xeq, xinf ] or β(u) ≥ α(u)
on [xeq, xinf ] and the inequality is strict on a positive measure of [xeq, xinf ].
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Consider the �rst case. Then x → J(x, xeq, r, α) is null on [xeq, xinf ] and
then strictly positive on the right neighborhood of xeq. The seller can not �nd
it optimal not to enroll a shill bidder which contradicts lemma 2.2. Consider
the second case, we show that the payo� from shill bidding xinf is strictly
higher than from the one without shill bids. We subtract the equation (9)
which holds between req and xinf for α in the corresponding inequality that
holds for β and obtain then:∫ xinf

xeq

(α(u)− β(u))[n(n− 1)[F (u)]n−2(1− F (u))f(u)du− n[F (u)]n−1f(u)du] ≥ 0.

After a rewriting, we obtain:∫ xinf

xeq

(α(u)− β(u))nd[F (u)n−1 − F (u)n] ≥ 0,

which can not hold and thus we have raised a contradiction. On the whole
we have obtained that β(u) ≥ α(u) on [xeq, 1]. Suppose that β 6= α on [xeq, 1],
then by proposing α instead of β, an auction house catch the whole auction
market.

The remaining positive pro�t result follows the same argument as in
proposition 5.1.

As an immediate corollary of proposition 5.3, we obtain the decreasing
pattern of the �nal value percentage fee.

Corollary 5.4 The �nal value percentage fee α(x)
x is decreasing on [xeq, 1].

Remark that we do not obtain the decreasing pattern on the complete
range of the �nal prices. In particular, if the equilibrium participation cuto�

xeq is such that
F (xeq)

n.(1−F (xeq)) < 1, then we have α(req) = 0.12 Moreover, our

equilibrium prediction leads to the surprising feature that the total fee and
not only the corresponding percentage should be decreasing in the �nal price
since ∂α

∂x < 0. To the best of our knowledge, such a system of fee has never
been implemented. Nevertheless, our analysis is lead for a given good and
not for heterogeneous items as in real-life auctions where a unique system of
fee is used for items with di�erent distribution of valuations. Thus we believe
that our result gives some rationale for the current decreasing pattern.

6 Conclusion

As emphasized previously, we give some rationale for some intriguing
evidence about auction houses: high fees with a decreasing pattern and

12It comes from equation (9) which guarantees that α(xeq) is an increasing function of
α(req) in such a case. If α(req) > 0, an auction house can pro�tably catch the whole
market by a slight price-cut on α(req) while keeping equations (9) and (10) and thus
without losing the incentives not to shill bid.
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positive pro�ts. In our model, fees are limiting the incentives to shill bid
that are coming from the possibility to hold-up the participation costs. This
general insight remains true for other models where the shill bidding activity
deteriorates the seller's revenue as in Lamy [18].

Our model also explains the gap between auction theory's results on
the desirability of entry fees versus reserve price and their quasi-absence in
real-life auctions. In most auction design frameworks as Myerson [24], appro-
priate entry fees do as well as reserve prices: the same participation cuto�s
can be implemented with both instruments and the Revenue Equivalence
Theorem can be invoked. Moreover, once we introduce some variations, the
former indi�erence is broken in favour of entry fees as in Milgrom and Weber
[23], Levin and Smith [19] or Damianov [11].13 Since an entry fee corresponds
exactly to participation costs, the shill bidding commitment issue will grow
with the entry fee.

Our model is limited insofar as we restrict our analysis to a restricted
class of mechanism for the competition between auction houses. The analy-
sis is con�ned to the English or second price auctions, whereas the �rst price
auction would be immune to shill bidding in the same way as emphasized in
Lamy [18]. However, if the seller is unable to commit not to solicit another
round of o�ers in the �rst price auction, the equilibrium may closely corre-
spond to the English auction with an endogenous and costly pace as shown
by McAdams and Schwarz [22]. Enlarging the set of trading mechanism is
left for future research. In this perspective, shill bidding may shed some light
on the recent success of buy-it-now options in online auctions which makes
the market closer to posted prices where the incentives to shill bid are null.
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