
It’s all about power and control … and scale and
accountability.

Configuration Management

TGIF: January 30, 2009

What is configuration
management?

•  Revision control – cvs, rcs, subversion

•  Build automation – jumpstart, kickstart

•  File management and installation – cpp, rdist, radmind, tripwire
•  Package management and installation – pkgadd, rpm, yum,
up2date, opium

•  Metrics - cricket

•  Bug/problem tracking – nagios, symon

CM Tools:
  Wikipedia has 13 open source options

  http://en.wikipedia.org/wiki/
Comparison_of_open_source_configuration_management_software

 Most are linux, solaris, and aix compatible

  Differences
  Scope/scale
 Client – server model
  State/service based
  Language
 Monitoring capability

CUIT and CFengine
  Existing tools insufficient: cpp, opium

  Manual processes
  Lack of scale - /opt and certain files only
  Lack of consistency (e.g. perms on /etc/httpd on mainwebservers/

sundial)
  Many root accounts
  Minimal oversight of changes - rcs

  AcIS Linux Project (sandbox)
  Erik Dykema – 2004
  No process for CM determination

  June 2006 (production)
  Cyrus – rapid deployment of 30+ servers
  Erik’s departure

  ATG: radmind

What is Cfengine?

  Cfengine is a policy-based configuration management system written by Mark
Burgess at Oslo University College. Its primary function is to provide
automated configuration and maintenance of computers, from a policy
specification.

  One of the main innovations of cfengine is the idea that changes in computer
configuration should be carried out in a convergent manner. This means that each
change operation made by the agent should have the character of a fixed point.
Rather than describing the steps needed to make a change, cfengine
describes the final state in which one wants to end up. The agent then
ensures that the necessary steps are taken to end up in this "policy compliant state".
Thus, cfengine can be run again and again, whatever the initial state of a system, and
it will end up with a predictable result.

  Cfengine is used in both large and small companies, as well as in many universities
and governmental institutions. Sites as large as 30,000 machines are reported, while
sites of several thousand hosts running under cfengine are common.

http://en.wikipedia.org/wiki/Cfengine

Client – Server Model
  Masters

 Master repository cfmaster:/etc/cfengine
 Copy of /src/systemfiles/cfengine

  Clients
 Connect to masters on schedule
 Copy from master repository to local:/var/cfengine/inputs
  Execute configs

Configuration Files
  *.conf for internal cfengine processes (main.conf, groups.conf)

  import
  schedules
  trust relations

  *.cf for changes to be made on hosts
  main.conf controls imports and order of actions

  Most actionsequences are in main.conf for efficiency

  Classes - # cfagent -pv
  internally defined “hard” classes : solaris, linux, architecture
  clusters from hostdata.pl are generated into groups.conf

  Make sure that both cluster and cf_cluster exist

  defined within run
  Defined if designated package installed or file/directory exists

actionsequences
$ grep actionseq main.conf
 actionsequence = (disable directories processes copy

shellcommands links editfiles files tidy packages)
  disable – removes/renames/deletes files
  directories – create directory with perms/owners
  processes – check for processes, possibly kill/restart
  copy – copy files usually from local repo to prod location
  shellcommands – quoted commands
  links – creates symlinks
  editfiles – edit production files
  files – checks and resets perms/ownership of files/directories
  tidy – clean up
  packages – install RH or Solaris packages – not homegrown

Building and maintaining a host
1.  Register new host with mac address/configure solaris jumpstart
2.  Using console, initiate kickstart (rhel) or jumpstart (solaris)

  Installs OS
  Installs base set of applications
  Copies some default config files
  Patches (solaris)

3.  Log in and run cfagent
  Cluster specific configuration
  Package installation (Solaris and RH)

4.  Configure kerberos and ssh keys
5.  Run opium (Solaris only)
6.  Install cpp files
Machine installed – configuration complete
  Run cfagent according to schedule (twice hourly)
  Cfagent talks to RedHat and gets updates most weekdays
  Opium run on Thursdays

Policy issues:
  What is a good strategy for editing CFEngine managed files?

  It seems risky to edit files in the source tree, and have them get pushed
immediately out to hosts. If you save a file in some invalid state, there's a
chance it can get pushed out to some hosts.

  How to accomplish testing of CFEngine managed files?
  Suppose you need to update config files for some application. How do

you go about performaing a test before checking the updated files into the
source tree where CFEngine will distribute them. Or is that not the best
way...

  Tidying (deleting non-cfengine managed files)
  Suggested strategy for this? Seems cleaner to have non-managed files get

deleted, but I typically don't bother with that (and sometimes rely on
having the ability to leave copies of files around).

More CFEngine resources

  https://www1.columbia.edu/sec/acis/sy/systems-manual/
cfengine/cfengine_basics.html

  http://www.cfengine.org/
  Cfengine 2 reference: http://www.cfengine.org/docs/

cfengine-Reference.html
  Cfwiki:

http://www.cfwiki.org/cfwiki/index.php/Main_Page
  Sage Booklet: http://www.sage.org/pubs/16_cfengine/
  Watson-Wilson Cookbook: http://watson-wilson.ca/blog/

cfcookbook.html

Future Projects
•  Move cfengine configs to subversion or something like it
•  Prevent unexpected changes from propagating
•  Limit approval control to more knowledgeable admins
•  Create additional level of bureaucracy
•  Slow down change implementation

•  Requirements:
•  Unix sys admin time
•  Increased sys admin knowledge

Configuration Management
(re)Evaluation

  Existing tools
 Hostmonger
  cpp
 Opium
 Cfengine 2

  Other options:
•  Cfengine3
•  Puppet
•  Bcfg2
•  Radmind
•  ??

•  Trends
•  Scale
•  Fewer root accounts
•  Fewer people with access
•  Tighter management

•  Challenges
•  cultural – people want

root
•  sysadmin
•  lack of time
•  limited experience

Questions? Comments?

No complaints, please.

