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1. Introduction. Broadly speaking, a risk measure attempts to assign a single numerical value to
the random loss of a portfolio of assets. Mathematically, let Ω be the set of all the possible states of
nature at the end of an observation period, and X be the set of financial losses, which are random
variables defined on Ω. Then a risk measure ρ is a mapping from X to the real line R. Obviously, it can
be problematic to use one number to summarize the whole statistical distribution of the potential loss.
Therefore, one should avoid doing this if it is at all possible. In many cases, however, there is no other
choice. Examples of such cases include margin requirements in financial trading, insurance premiums,
and regulatory capital requirements. Consequently, choosing a good risk measure becomes a problem of
great practical importance.

The Basel accord risk measures are used for setting capital requirements for the banking books and
trading books of financial institutions. Since the Basel accord risk measures lead to important regula-
tions, there are a lot of debates on what risk measures are good in the finance industry. In fact, one
can even question whether it is efficient to set up capital requirements using any risk measures. For
example, in an interesting paper Keppo, Kofman, and Meng [31] analyze the effect of the Basel accord
capital requirements on the behavior of a bank and show surprisingly that imposing trading book capital
requirements may in fact postpone recapitalization of the bank and hence increase its default probability.

One of the most widely used risk measures is Value-at-Risk (VaR), which is a quantile at some pre-
defined probability level. More precisely, let F (·) be the distribution function of the random loss X , then
for a given α ∈ (0, 1), VaR of X at level α is defined as VaRα(X) := inf{x | F (x) ≥ α} = F−1(α). In
practice, VaRα(X) is usually estimated from a sample of X , i.e., a data set x̃ = (x1, . . . , xn) ∈ Rn.

Gordy [18] provides a theoretical foundation for the Basel accord banking book risk measure by demon-
strating that under certain conditions the risk measure is asymptotically equivalent to the 99.9% VaR.
The Basel II and Basel III risk measures for trading books [5, 7] are both special cases of VaR with
scenario analysis, which is a class of risk measures involving calculation and comparison of VaR under
different scenarios; each scenario refers to a specific economic regime such as an economic boom and a
financial crisis. The loss distributions under different scenarios are substantially different and hence the
values of VaR calculated under different scenarios are distinct from each other; for example, the VaR
calculated under the scenario of the 2008 financial crisis is much higher than the VaR calculated under
a scenario corresponding to normal market conditions. The exact formulae of the Basel II and Basel III
risk measures are given in Section 4.

Although the Basel II and Basel III risk measures for trading books are of great regulatory importance,
there has been no axiomatic justification for their use. The main motivation of this paper is to investigate
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whether VaR, in combination with scenario analysis, is a good risk measure for external regulation. By
using the notion of comonotonic random variables studied in the actuarial literature such as Wang, Young,
and Panjer [48], we shall define a new class of risk measures that satisfy a new set of axioms. The new
class of risk measures include VaR with scenario analysis, and particularly the Basel II and Basel III risk
measures, as special cases. Thus, we provide a theoretical framework for understanding and extending the
Basel accords when needed. Indeed, the framework includes as special cases some proposals to address
the procyclicality problem in Basel II such as the counter-cyclical indexing risk measure suggested by
Gordy and Howells [19].

The objective of a risk measure is an important issue that has not been well addressed in the existing
literature. In terms of objectives, risk measures can be classified into two categories: internal risk
measures used for internal risk management at individual institutions, and external risk measures used
for external regulation and imposed for all the relevant institutions. The differences between internal
and external risk measures mirror the differences between internal standards (such as morality) and
external standards (such as law and regulation). Internal risk measures are applied in the interest of
an institution’s shareholders or managers, while external risk measures are used by regulatory agencies
to maintain safety and soundness of the financial system. A risk measure may be suitable for internal
management but not for external regulation, or vice versa.

In this paper, we shall focus on external risk measures from the viewpoint of regulatory agencies. In
particular, we emphasize that an external risk measure should be robust (see Section 5).

The main results of the paper are as follows: (i) We postulate a new set of axioms and define a new
class of risk measures called natural risk statistics; furthermore, we give two complete characterizations
of natural risk statistics (Section 3.2). (ii) We show that natural risk statistics include the Basel II
and Basel III risk measures as special cases and thus provide an axiomatic framework for understanding
and, if necessary, extending them (Section 4). (iii) We completely characterize data-based coherent risk
measures and show that no coherent risk measure is robust with respect to small changes in the data
(Section 3.3 and 5.6). (iv) We completely characterize data-based insurance risk measures and show that
no insurance risk measure is robust with respect to model misspecification (Section 3.4 and 5.6). (v)
We argue that an external risk measure should be robust, motivated by philosophy of law and issues in
external regulations (Section 5). (vi) We show that tail conditional median, a special case of natural risk
statistics, is more robust than tail conditional expectation suggested by coherent risk measures (Section
5.4). (vii) We show that natural risk statistics include a subclass of robust risk measures that are suitable
for external regulation (Section 5.5). (viii) We provide other critiques of the subadditivity axiom of
coherent risk measures from the viewpoints of diversification and bankruptcy protection (Section 6). (ix)
We derive the Euler capital allocation rule under a subclass of natural risk statistics including the Basel
II and III risk measure (Section 7).

2. Review of Existing Risk Measures.

2.1 Coherent and Convex Risk Measures. Artzner, Delbaen, Eber, and Heath [4] propose the
coherent risk measures that satisfy the following three axioms:

Axiom A1. Translation invariance and positive homogeneity: ρ(aX + b) = aρ(X) + b, ∀a ≥ 0, ∀b ∈
R, ∀X ∈ X .

Axiom A2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y .

Axiom A3. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X,Y ∈ X .

Axiom A1 states that the risk of a financial position is proportional to its size, and a sure loss of
amount b simply increases the risk by b. Axiom A1 is proposed from the accounting viewpoint. For
external risk measures such as those used for setting margin deposits and capital requirements, the
accounting-based axiom seems to be reasonable. Axiom A2 is a minimum requirement for a reasonable
risk measure. What is questionable lies in Axiom A3, which basically means that “a merger does not
create extra risk” (see Artzner et al. [4, p. 209]). We will discuss the controversies related to this axiom in
Section 6. Artzner et al. [4] and Delbaen [9] also present an equivalent approach for defining coherent risk
measures via acceptance sets. Föllmer and Schied [13] and Frittelli and Gianin [14] propose the convex
risk measures that relax Axiom A1 and Axiom A3 to a single convexity axiom: ρ(λX + (1 − λ)Y ) ≤
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λρ(X) + (1− λ)ρ(Y ), ∀X,Y ∈ X , ∀λ ∈ [0, 1].

A risk measure ρ is coherent if and only if there exists a family Q of probability measures such that
ρ(X) = supQ∈Q{E

Q[X ]}, ∀X ∈ X , where EQ[X ] is the expectation of X under the probability measure
Q (see Huber [24], Artzner et al. [4], and Delbane [9]). Each Q ∈ Q can be viewed as a prior probability,
so measuring risk by a coherent risk measure amounts to computing the maximal expectation under a set
of prior probabilities. Coherent and convex risk measures are closely connected to the good deal bounds
of asset prices in incomplete markets (see, e.g., Jaschke and Küchler [29], Staum [45]).

Artzner et al. [4] suggest using a specific coherent risk measure called tail conditional expectation
(TCE). For a random loss X with a continuous distribution, TCE of X at level α is defined as

TCEα(X) := E[X |X ≥ VaRα(X)]. (1)

For X with a general probability distribution, TCEα(X) is defined as a regularized version of E[X |X ≥
VaRα(X)] (Rockafellar and Uryasev [38]). Tail conditional expectation is also called expected shortfall
(Acerbi and Tasche [1]) or conditional value-at-risk (Rockafellar and Uryasev [38]).

A risk measure is called a law-invariant coherent risk measure (Kusuoka [33]) if it satisfies Axiom
A1-A3 and the following Axiom A4:

Axiom A4. Law invariance: ρ(X) = ρ(Y ), if X and Y have the same distribution.

Insisting on a coherent or convex risk measure rules out the use of VaR, for VaR does not universally
satisfy subadditivity or convexity. The exclusion of VaR gives rise to a serious inconsistency between
academic theories and governmental practices. By requiring subadditivity only for comonotonic random
variables, we will define a new class of risk measures that include VaR and, more importantly, VaR with
scenario analysis, thus eliminating the inconsistency (see Section 3).

2.2 Insurance Risk Measures. Wang, Young, and Panjer [48] propose the insurance risk measures
that satisfy the following axioms:

Axiom B1. Law invariance: the same as Axiom A4.

Axiom B2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y almost surely.

Axiom B3. Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ), if X and Y are comonotonic. (X and
Y are comonotonic if (X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 holds almost surely for ω1 and ω2 in Ω.)

Axiom B4. Continuity: limd→0 ρ((X − d)+) = ρ(X+), limd→−∞ ρ(max(X, d)) = ρ(X), and
limd→∞ ρ(min(X, d)) = ρ(X), ∀X , where x+ := max(x, 0), ∀x ∈ R.

Axiom B5. Scale normalization: ρ(1) = 1.

Comonotonic random variables are studied by Yaari [49], Schmeidler [40], Denneberg [10], and others.
If two random variables X and Y are comonotonic, X(ω) and Y (ω) always move in the same direction
however the state ω changes. For example, the payoffs of a call option and its underlying asset are
comonotonic.

Wang et al. [48] show that ρ is an insurance risk measure if and only if ρ has a Choquet integral
representation with respect to a distorted probability:

ρ(X) =

∫
Xd(g ◦ P ) =

∫ 0

−∞

(g(P (X > t))− 1)dt+

∫ ∞

0

g(P (X > t))dt, (2)

where g(·) is called the distortion function which is nondecreasing and satisfies g(0) = 0 and g(1) = 1.
g ◦ P is called the distorted probability and defined by g ◦ P (A) := g(P (A)) for any event A. In general,
an insurance risk measure does not satisfy subadditivity unless g(·) is concave (Denneberg [10]). Unlike
coherent risk measures, an insurance risk measure corresponds to a fixed distortion function g and a fixed
probability measure P , so it does not allow one to compare different distortion functions or different
priors.

VaR with scenario analysis, such as the Basel II and Basel III risk measures (see Section 4 for their
definition), are not insurance risk measures, although VaR itself is an insurance risk measure. The main
reason that insurance risk measures cannot incorporate scenario analysis or multiple priors is that they
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require comonotonic additivity. Wang et al. [48] impose comonotonic additivity based on the argument
that comonotonic random variables do not hedge against each other. However, comonotonic additivity
holds only if a single prior is considered. If multiple priors are considered, one can get strict subadditivity
rather than additivity for comonotonic random variables. Hence, Axiom B3 may be too restrictive. To
incorporate multiple priors, we shall relax the comonotonic additivity to comonotonic subadditivity (see
Section 3).

The mathematical concept of comonotonic subadditivity is also studied independently by Song and
Yan [42], who give a representation of the functionals satisfying comonotonic subadditivity or comonotonic
convexity from a mathematical perspective. Song and Yan [43] give a representation of risk measures
that respect stochastic orders and are comonotonically subadditive or convex. There are several major
differences between their work and this paper: (i) The new risk measures proposed in this paper are
different from those considered in Song and Yan [42, 43]. In particular, the new risk measures include VaR
with scenario analysis, such as the Basel II and Basel III risk measures, as special cases. However, VaR
with scenario analysis are not included in the class of risk measures considered by Song and Yan [42, 43].
(ii) The framework of Song and Yan [42, 43] is based on subjective probability models, but the framework
of the new risk measures is explicitly based on data and scenario analysis (Section 3.1). (iii) We provide
legal and economic reasons for postulating the comonotonic subadditivity axiom (Section 5 and 6). (iv)
We provide two complete characterizations of the new risk measures (Section 3.2). (v) We completely
characterize the data-based coherent and insurance risk measures so that we can compare them with the
new risk measures (Section 3.3 and 3.4).

3. Natural Risk Statistics.

3.1 Risk Statistics: Data-based Risk Measures. In external regulation, the behavior of the
random loss X under different scenarios is preferably represented by different sets of data observed or
generated under those scenarios because specifying accurate models for X (under different scenarios) is
usually very difficult. More precisely, suppose the behavior of X is represented by a collection of data
x̃ = (x̃1, x̃2, . . . , x̃m) ∈ Rn, where x̃i = (xi1, . . . , x

i
ni
) ∈ Rni is the data subset that corresponds to the

i-th scenario and ni is the sample size of x̃i; n1 + n2 + · · · + nm = n. For each i = 1, . . . ,m, x̃i can be
a data set based on historical observations, hypothetical samples simulated according to a model, or a
mixture of observations and simulated samples. X can be either discrete or continuous. For example,
the data used in the calculation of the Basel III risk measure comprise 120 data subsets corresponding
to 120 different scenarios (m = 120); see Section 4 for the details of the Basel III risk measures.

A risk statistic ρ̂ is simply a mapping from Rn to R. It is a data-based risk measure that maps
x̃, the data representation of the random loss X , to ρ̂(x̃), the risk measurement of X . In this paper,
we will define a new set of axioms for risk statistics instead of risk measures because (i) risk statistics
can directly measure risk from observations without specifying subjective models, which greatly reduces
model misspecification error; (ii) risk statistics can incorporate forward-looking views or prior knowledge
by including data subsets generated by models based on such views or knowledge; and (iii) risk statistics
can incorporate multiple prior probabilities on the set of scenarios which reflect multiple beliefs about
the probabilities of occurrence of different scenarios.

3.2 Axioms and a Representation of Natural Risk Statistics. First, we define the notion of
scenario-wise comonotonicity for two sets of data, which is the counterpart of the notion of comonotonicity
for two random variables. x̃ = (x̃1, x̃2, . . . , x̃m) ∈ Rn and ỹ = (ỹ1, ỹ2, . . . , ỹm) ∈ Rn are scenario-wise
comonotonic if for ∀i, ∀1 ≤ j, k ≤ ni, it holds that (xij − xik)(y

i
j − yik) ≥ 0. Let x̃ and ỹ represent the

observations of random losses X and Y respectively, then x̃ and ỹ are scenario-wise comonotonic means
that X and Y move in the same direction under each scenario i, i = 1, . . . ,m, which is consistent with
the notion that X and Y are comonotonic.

Next, we postulate the following axioms for a risk statistic ρ̂.

Axiom C1. Positive homogeneity and translation scaling: ρ̂(ax̃ + b1) = aρ̂(x̃) + sb, ∀x̃ ∈ Rn, ∀a ≥
0, ∀b ∈ R, where s > 0 is a scaling constant, 1 = (1, 1, ..., 1) ∈ Rn.

Axiom C2. Monotonicity: ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ, where x̃ ≤ ỹ means xij ≤ yij , j = 1, . . . , ni; i = 1, . . . ,m.

These two axioms (with s = 1 in Axiom C1) are the counterparts of Axiom A1 and A2 for coherent
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risk measures. Axiom C1 clearly yields ρ̂(0 · 1) = 0 and ρ̂(b1) = sb, for any b ∈ R, and Axioms C1 and
C2 imply that ρ̂ is continuous. Indeed, suppose ρ̂ satisfies Axiom C1 and C2. Then for any x̃ ∈ Rn,
ε > 0, and ỹ ∈ Rn satisfying x̃− ε1 < ỹ < x̃ + ε1, by Axiom C2 we have ρ̂(x̃ − ε1) ≤ ρ̂(ỹ) ≤ ρ̂(x̃ + ε1).
Applying Axiom C1, the inequality further becomes ρ̂(x̃)− sε ≤ ρ̂(ỹ) ≤ ρ̂(x̃) + sε, which establishes the
continuity of ρ̂.

Axiom C3. Scenario-wise comonotonic subadditivity: ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), for any x̃ and ỹ that are
scenario-wise comonotonic.

Axiom C3 relaxes the subadditivity requirement, Axiom A3, in coherent risk measures so that sub-
additivity is only required for comonotonic random variables. It also relaxes the comonotonic additivity
requirement, Axiom B3, in insurance risk measures. In other words, if one believes either Axiom A3 or
Axiom B3, then one has to believe the new Axiom C3.

Axiom C4. Empirical law invariance:

ρ̂((x̃1, x̃2 . . . , x̃m)) = ρ̂((x1p1,1 , . . . , x
1
p1,n1

, x2p2,1 , . . . , x
2
p2,n2

, . . . , xmpm,1
, . . . , xmpm,nm

))

for any permutation (pi,1, . . . , pi,ni
) of (1, 2, . . . , ni), i = 1, . . . ,m.

This axiom is the counterpart of the law invariance Axiom A4. It means that if two data x̃ and ỹ have
the same empirical distributions under each scenario, i.e., the same order statistics under each scenario,
then x̃ and ỹ should give the same measurement of risk.

A risk statistic ρ̂ : Rn → R is called a natural risk statistic if it satisfies Axiom C1-C4. The following
theorem completely characterizes natural risk statistics.

Theorem 3.1 (i) For a given constant s > 0 and an arbitrarily given set of weights W = {w̃} ⊂ Rn with
each w̃ = (w1

1 , . . . , w
1
n1
, . . . , wm1 , . . . , w

m
nm

) ∈ W satisfying the following conditions

n1∑

j=1

w1
j +

n2∑

j=1

w2
j + · · ·+

nm∑

j=1

wmj = 1, (3)

wij ≥ 0, j = 1, . . . , ni; i = 1, . . . ,m, (4)

define a risk statistic ρ̂ : Rn → R as follows:

ρ̂(x̃) := s · sup
w̃∈W





n1∑

j=1

w1
jx

1
(j) +

n2∑

j=1

w2
jx

2
(j) + · · ·+

nm∑

j=1

wmj x
m
(j)



 , ∀x̃ = (x̃1, . . . , x̃m) ∈ Rn, (5)

where (xi(1), . . . , x
i
(ni)

) is the order statistics of x̃i = (xi1, . . . , x
i
ni
) with xi(ni)

being the largest, i = 1, . . . ,m.

Then the ρ̂ defined in (5) is a natural risk statistic.

(ii) If ρ̂ is a natural risk statistic, then there exists a set of weights W = {w̃} ⊂ Rn such that each
w̃ = (w1

1 , . . . , w
1
n1
, . . . , wm1 , . . . , w

m
nm

) ∈ W satisfies condition (3) and (4), and

ρ̂(x̃) = s · sup
w̃∈W





n1∑

j=1

w1
jx

1
(j) +

n2∑

j=1

w2
jx

2
(j) + · · ·+

nm∑

j=1

wmj x
m
(j)



 , ∀x̃ = (x̃1, . . . , x̃m) ∈ Rn. (6)

Proof. See Appendix A. �

The main difficulty in proving Theorem 3.1 lies in part (ii). Axiom C3 implies that ρ̂ satisfies subaddi-
tivity on scenario-wise comonotonic sets of Rn, such as the set B := {ỹ = (ỹ1, . . . , ỹm) ∈ Rn | y11 ≤ y12 ≤
· · · ≤ y1n1

; . . . ; ym1 ≤ ym2 ≤ · · · ≤ ymnm
}. However, unlike the case of coherent risk measures, the existence

of a set of weights W that satisfies (6) does not follow easily from the proof developed by Huber [24].
The main difference here is that the set B is not an open set in Rn. The boundary points do not have
as nice properties as the interior points do and treating them involves greater effort. In particular, one
should be very cautious when using the results of separating hyperplanes. For the case of m = 1 (one
scenario), Ahmed, Filipović, and Svindland [3] provide alternative shorter proofs for Theorem 3.1 and
Theorem 3.3 using convex duality theory after seeing the first version of this paper.

Natural risk statistics can also be characterized via acceptance sets, as in the case of coherent risk
measures. We show in Appendix B that for a natural risk statistic ρ̂, the risk measurement ρ̂(x̃) is equal
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to the minimum amount of cash that has to be added to the position corresponding to x̃ to make the
modified position acceptable.

3.3 Comparison with Coherent Risk Measures. To formally compare natural risk statistics
with coherent risk measures, we first define the coherent risk statistics, the data-based versions of coherent
risk measures. A risk statistic ρ̂ : Rn → R is called a coherent risk statistic if it satisfies Axiom C1, C2,
and the following Axiom E3.

Axiom E3. Subadditivity: ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), ∀x̃, ỹ ∈ Rn.

Theorem 3.2 A risk statistic ρ̂ is a coherent risk statistic if and only if there exists a set of weights
W = {w̃} ⊂ Rn such that each w̃ ∈ W satisfies (3) and (4), and

ρ̂(x̃) = s · sup
w̃∈W





n1∑

j=1

w1
jx

1
j +

n2∑

j=1

w2
jx

2
j + · · ·+

nm∑

j=1

wmj x
m
j



 , ∀x̃ = (x̃1, . . . , x̃m) ∈ Rn. (7)

Proof. The proof for the “if” part is trivial. To prove the “only if” part, suppose ρ̂ is a coherent
risk statistic. Let Θ = {θ1, . . . , θn} be a set with n elements and Z be the set of all real-valued functions
defined on Θ. Define the functional E∗(Z) := 1

s ρ̂(Z(θ1), Z(θ2), . . . , Z(θn)), ∀Z ∈ Z. By Axiom C1, C2,
and E3, E∗(·) satisfies the conditions in Proposition 10.1 on p. 252 of Huber and Ronchetti [25], so the
result follows by applying that proposition. �

Natural risk statistics satisfy empirical law invariance, which coherent risk statistics do not. To better
compare natural risk statistics and coherent risk measures, we define empirical-law-invariant coherent risk
statistics, which are the counterparts of law-invariant coherent risk measures. A risk statistic ρ̂ : Rn → R
is called an empirical-law-invariant coherent risk statistic if it satisfies Axiom C1, C2, E3, and C4. The
following theorem completely characterizes empirical-law-invariant coherent risk statistics.

Theorem 3.3 (i) For a given constant s > 0 and an arbitrarily given set of weights W = {w̃} ⊂ Rn with
each w̃ = (w1

1 , . . . , w
1
n1
, . . . , wm1 , . . . , w

m
nm

) ∈ W satisfying the following conditions

n1∑

j=1

w1
j +

n2∑

j=1

w2
j + · · ·+

nm∑

j=1

wmj = 1, (8)

wij ≥ 0, j = 1, . . . , ni; i = 1, . . . ,m, (9)

wi1 ≤ wi2 ≤ · · · ≤ wini
, i = 1, . . . ,m, (10)

define a risk statistic

ρ̂(x̃) := s · sup
w̃∈W





n1∑

j=1

w1
jx

1
(j) +

n2∑

j=1

w2
jx

2
(j) + · · ·+

nm∑

j=1

wmj x
m
(j)



 , ∀x̃ = (x̃1, . . . , x̃m) ∈ Rn, (11)

where (xi(1), . . . , x
i
(ni)

) is the order statistics of x̃i = (xi1, . . . , x
i
ni
) with xi(ni)

being the largest, i = 1, . . . ,m.

Then the ρ̂ defined in (11) is an empirical-law-invariant coherent risk statistic.

(ii) If ρ̂ is an empirical-law-invariant coherent risk statistic, then there exists a set of weights W =
{w̃} ⊂ Rn such that each w̃ ∈ W satisfies (8), (9), and (10), and

ρ̂(x̃) = s · sup
w̃∈W





n1∑

j=1

w1
jx

1
(j) +

n2∑

j=1

w2
jx

2
(j) + · · ·+

nm∑

j=1

wmj x
m
(j)



 , ∀x̃ = (x̃1, . . . , x̃m) ∈ Rn. (12)

Proof. See Appendix C. �

Theorem 3.1 and 3.3 set out the main differences between natural risk statistics and coherent risk mea-
sures: (i) Any empirical-law-invariant coherent risk statistic assigns larger weights to larger observations
because both xi(j) and w

i
j increase when j increases; by contrast, natural risk statistics are more general

and can assign any weights to the observations. (ii) VaR and VaR with scenario analysis, such as the
Basel II and Basel III risk measures (see their definition in Section 4), are not empirical-law-invariant
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coherent risk statistics because VaR does not assign larger weights to larger observations when it is es-
timated from data. However, VaR and VaR with scenario analysis are natural risk statistics, as will be
shown in Section 4. (iii) Empirical-law-invariant coherent risk statistics are a subclass of natural risk
statistics.

3.4 Comparison with Insurance Risk Measures. Insurance risk statistics, the data-based ver-
sions of insurance risk measures, can be defined similarly. A risk statistic ρ̂ : Rn → R is called an
insurance risk statistic if it satisfies the following Axiom F1-F4.

Axiom F1. Empirical law invariance: the same as Axiom C4.

Axiom F2. Monotonicity: ρ̂(x̃) ≤ ρ̂(ỹ) if x̃ ≤ ỹ.

Axiom F3. Scenario-wise comonotonic additivity: ρ̂(x̃ + ỹ) = ρ̂(x̃) + ρ̂(ỹ), if x̃ and ỹ are scenario-wise
comonotonic.

Axiom F4. Scale normalization: ρ̂(1) = s, where s > 0 is a constant.

Theorem 3.4 ρ̂ is an insurance risk statistic if and only if there exists a single weight w̃ =
(w1

1 , . . . , w
1
n1
, . . . , wm1 , . . . , w

m
nm

) ∈ Rn with wij ≥ 0 for j = 1, . . . , ni; i = 1, . . . ,m and
∑m

i=1

∑ni

j=1 w
i
j = 1,

such that

ρ̂(x̃) = s



n1∑

j=1

w1
jx

1
(j) +

n2∑

j=1

w2
jx

2
(j) + · · ·+

nm∑

j=1

wmj x
m
(j)


 , ∀x̃ = (x̃1, x̃2, . . . , x̃m) ∈ Rn, (13)

where (xi(1), . . . , x
i
(ni)

) is the order statistics of x̃i = (xi1, . . . , x
i
ni
), i = 1, . . . ,m.

Proof. See Appendix D. �

Comparing Theorem 3.1 and 3.4 highlights the major differences between natural risk statistics and
insurance risk measures: (i) An insurance risk statistic corresponds to a single weight vector w̃, but a
natural risk statistic can incorporate multiple weights. (ii) VaR with scenario analysis, such as the Basel
II and III risk measures, are not special cases of insurance risk statistics but special cases of natural risk
statistics. (iii) Insurance risk statistics are a subclass of natural risk statistics.

Example 3.1 Although natural risk statistics include both empirical-law-invariant coherent risk statistics
and insurance risk statistics, not all risk statistics are natural risk statistics. For example, the shortfall
risk statistic with order p > 1, which is the data-based version of the shortfall risk measure ρ(X) :=
E[|X |p|X > VaRα(X)] (see, e.g., Tasche [46]), is not a natural risk statistic. Indeed, in the one-scenario
case, for a set of observations x̃ = (x1, . . . , xn), the shortfall risk statistic with order p > 1 is defined by

ρ̂(x̃) :=
1

n− ⌈nα⌉

n∑

k=⌈nα⌉+1

|x(k)|
p.

Suppose that x̃ and ỹ = (y1, . . . , yn) are comonotonic, and x(k) > 0 and y(k) > 0 for all k > ⌈nα⌉, then

ρ̂(x̃+ ỹ) =
1

n− ⌈nα⌉

n∑

k=⌈nα⌉+1

(x(k) + y(k))
p >

1

n− ⌈nα⌉

n∑

k=⌈nα⌉+1

(xp(k) + yp(k)) = ρ̂(x̃) + ρ̂(ỹ).

4. Axiomatization of the Basel II and Basel III Risk Measures. The Basel II Accord [5]
specifies that the capital charge for the trading book on any particular day t for banks using the internal
models approach should be calculated by the formula

ct = max

{
VaRt−1, k ·

1

60

60∑

i=1

VaRt−i

}
, (14)

where k is a constant that is no less than 3; VaRt−i is the 10-day VaR at 99% confidence level calculated
on day t− i, i = 1, . . . , 60. VaRt−i is usually estimated from a data set x̃i = (xi1, x

i
2, . . . , x

i
ni
) ∈ Rni which

is generated by historical simulation or Monte Carlo simulation (Jorion [30]).
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Adrian and Brunnermeier [2] point out that risk measures based on contemporaneous observations,
such as the Basel II risk measure (14), are procyclical, i.e., risk measurement obtained by such risk
measures tend to be low in booms and high in crises, which impedes effective regulation. Gordy and
Howells [19] examine the procyclicality of Basel II from the perspective of market discipline. They show
that the marginal impact of introducing Basel II depends strongly on the extent to which market discipline
leads banks to vary lending standards procyclically in the absence of binding regulation. They also
evaluate policy options not only in terms of their efficacy in dampening cyclicality in capital requirements,
but also in terms of how well the information value of Basel II market disclosures is preserved.

Scenario analysis can help to reduce procyclicality by using not only contemporaneous observations
but also data under distressed scenarios that capture rare tail events which could cause severe losses.
Indeed, to respond to the financial crisis that started in late 2007, the Basel committee recently proposed
the Basel III risk measure for setting capital requirements for trading books [7], which is defined by

ct = max

{
VaRt−1, k ·

1

60

60∑

i=1

VaRt−i

}
+max

{
sVaRt−1, ℓ ·

1

60

60∑

i=1

sVaRt−i

}
, (15)

where VaRt−i is the same as in (14); k and ℓ are constants no less than 3; sVaRt−i is called the stressed
VaR on day t − i, which is calculated under the scenario that the financial market is under significant
stress as happened during the period from 2007 to 2008. The additional capital requirements based on
stressed VaR help reduce the procyclicality of the original risk measure (14).

In addition to the capital charge specified in (15), the Basel III Accord requires banks to hold additional
incremental risk capital charge (IRC) against potential losses resulting from default risk, credit migration
risk, credit spread risk, etc. in the trading book which are incremental to the risks captured by the
formula (15) [6, 7]. The IRC capital charge on the t-th day is defined as

IRCt = max

{
VaRirt−1,

1

60

60∑

i=1

VaRirt−i

}
, (16)

where VaRirt−i is defined as the 99.9% VaR of the trading book loss due to the aforementioned risks

over a one-year horizon calculated on day t− i. The VaRirt−i should be calculated under the assumption
that the portfolio is rebalanced to maintain a target level of risk and that less liquid assets have long
liquidity horizons (see [6]). Glasserman [17] analyzes the features of the IRC risk measure, with particular
emphasis on the impact of the liquidity horizons nested within the long risk horizon of one year on the
portfolio’s loss distribution.

The Basel II and Basel III risk measures do not belong to any existing theoretical framework of risk
measures proposed in the literature, but they are special cases of natural risk statistics, as is shown by
the following theorems.

Theorem 4.1 The Basel II risk measure defined in (14) and the Basel III risk measure defined in (15)
are both special cases of natural risk statistics.

Proof. See Appendix E. �

Theorem 4.2 The Basel III risk measure for incremental risk defined in (16) is a special case of natural
risk statistics.

Proof. See Appendix E. �

Natural risk statistics thus provide an axiomatic framework for understanding and, if necessary, ex-
tending the Basel accords. Having such a general framework then facilitates searching for other external
risk measures suitable for banking regulation.

Example 4.1 The regulators may have different objectives in choosing external risk measures. For ex-
ample, as we shall explain in the next section, it is desirable to make them robust. Another objective is to
choose less pro-cyclical risk measures. Gordy and Howells [19] propose to mitigate the procyclicality of ct,
the Basel II capital requirement, by a method called counter-cyclical indexing. This applies a time-varying
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multiplier αt to ct and generates a smoothed capital requirement αtct, where αt increases during booms
and decreases during recessions to dampen the procyclicality of ct. In the static setting the multiplier
αt corresponds to the scaling constant s in Axiom C1; thus, natural risk statistics provide an axiomatic
foundation in the static setting for the method of counter-cyclical indexing. Although the current paper
focuses on static risk measures, it would be of interest to study axioms for dynamic risk measures which
also depend on business cycles.

5. Robustness of External Risk Measures.

5.1 The Meaning of Robustness. A risk measure is said to be robust if (i) it can accommodate
model misspecification (possibly by incorporating multiple scenarios and models); and (ii) it is insensitive
to small changes in the data, i.e., small changes in all, or large changes in a few of the samples (possibly
by using robust statistics).

The first part of the meaning of robustness is related to ambiguity and model uncertainty in decision
theory. To address these issues, multiple priors or multiple alternative models represented by a set of
probability measures may be used; see, e.g., Gilboa and Schmeidler [16], Maccheroni, Marinacci, and
Rustichini [35], and Hansen and Sargent [20]. The second part of the meaning of robustness comes from
the study of robust statistics, which is mainly concerned with the statistical distribution robustness; see,
e.g., Huber and Ronchetti [25]. Appendix F presents a detailed mathematical discussion of robustness.

5.2 Legal Background. Legal realism, one of the basic concepts of law, motivates us to argue that
external risk measures should be robust because robustness is essential for law enforcement. Legal realism
is the viewpoint that the legal decisions of a court are determined by the actual practices of the judges
rather than the law set forth in statutes and precedents. All the legal rules contained in statutes and
precedents are uncertain due to the uncertainty in human language and the fact that human beings are
unable to anticipate all possible future circumstances (Hart [21, p. 128]). Hence, a law is only a guideline
for judges and enforcement officers (Hart [21, pp. 204–205]), i.e., it is only intended to be the average of
what judges and officers will decide. This concerns the robustness of law, i.e., a law should be established
in such a way that different judges will reach similar conclusions when they implement it. In particular,
consistent enforcement of an external risk measure in banking regulation requires that it should be robust
with respect to underlying models and data.

An illuminating example manifesting the concept of legal realism is how to set up speed limits on
roads, which is a crucial issue involving life and death decisions. Currently, American Association of
State Highway and Transportation Officials recommends setting speed limits near the 85th percentile of
the free flowing traffic speed observed on the road with an adjustment taking into consideration that
people tend to drive 5 to 10 miles above the posted speed limit (Transportation Research Board of the
National Academies [47, p. 51]). This recommendation is adopted by all states and most local agencies.
The 85th percentile rule appears to be a simple method, but studies have shown that crash rates are
lowest at around the 85th percentile. The 85th percentile rule is robust in the sense that it is based on
data rather than on some subjective model and it can be implemented consistently.

5.3 Robustness Is Indispensable for External Risk Measures. In determining capital require-
ments, regulators impose a risk measure and allow institutions to use their own internal risk models and
private data in the calculation. For example, the internal model approach in Basel II and III allows
institutions to use their own internal models to calculate their capital requirements for trading books
due to various legal, commercial, and proprietary trading considerations. However, there are two issues
arising from the use of internal models and private data in external regulation: (i) the data can be noisy,
flawed, or unreliable; and (ii) there can be several statistically indistinguishable models for the same asset
or portfolio due to limited availability of data. For example, the heaviness of tail distributions cannot
be identified in many cases. Heyde and Kou [22] show that it is very difficult to distinguish between
exponential-type and power-type tails with 5,000 observations (about 20 years of daily observations)
because the quantiles of exponential-type distributions and power-type distributions may overlap. For
example, surprisingly, a Laplace distribution has a larger 99.9% quantile than the corresponding T distri-
bution with degree of freedom (d.f.) 6 or 7. Hence, regardless of the sample size, the Laplace distribution
may appear to be more heavily tailed than the T distribution up to the 99.9% quantile. If the quantiles
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have to be estimated from data, the situation is even worse. In fact, with a sample size of 5,000 it is
difficult to distinguish between the Laplace distribution and the T distributions with d.f. 3, 4, 5, 6, and 7
because the asymptotic 95% confidence interval of the 99.9% quantile of the Laplace distribution overlaps
with those of the T distributions. Therefore, the tail behavior may be a subjective issue depending on
people’s modeling preferences.

To address the aforementioned two issues, external risk measures should demonstrate robustness with
respect to model misspecification and small changes in the data. From a regulator’s viewpoint, an external
risk measure must be unambiguous, stable, and capable of being implemented consistently across all the
relevant institutions, no matter what internal beliefs or internal models each may rely on. When the
correct model cannot be identified, two institutions that have exactly the same portfolio can use different
internal models, both of which can obtain the approval of the regulator; however, the two institutions
should be required to hold the same or at least almost the same amount of regulatory capital because
they have the same portfolio. Therefore, the external risk measure should be robust; otherwise, different
institutions can be required to hold very different regulatory capital for the same risk exposure, which
makes the risk measure unacceptable to both the institutions and the regulators. In addition, if the
external risk measure is not robust, institutions can take regulatory arbitrage by choosing a model that
significantly reduces the capital requirements or by manipulating the input data.

5.4 Tail Conditional Median: a Robust Risk Measure. We propose a robust risk measure,
tail conditional median (TCM), which is a special case of natural risk statistics. TCM of the random loss
X at level α is defined as

TCMα(X) := median[X |X ≥ VaRα(X)].

For X with a continuous distribution, it holds that

TCMα(X) = median[X |X ≥ VaRα(X)] = VaR 1+α
2
(X). (17)

For X with a general distribution having discontinuities, VaR 1+α
2
(X) may be slightly different from

TCMα(X) if either VaR 1+α
2
(X) or TCMα(X) happens to be equal to a discontinuity.

Eq. (17) shows that VaR at a higher level can incorporate tail information, which contradicts the
claims in some of the existing literature. For example, if one wants to measure the size of loss beyond the
99% level, one can use VaR at 99.5%, or equivalently TCM at 99%, which gives the median of the size of
loss beyond 99%. It is also interesting to point out that TCMα(X + Y ) ≤ TCMα(X) + TCMα(Y ) may
hold for those X and Y that cause VaRα(X + Y ) > VaRα(X) +VaRα(Y ); in other words, subadditivity
may not be violated if one replaces VaRα by TCMα. Here are two such examples: (i) The example on
page 216 of Artzner et al. [4] shows that 99% VaR does not satisfy subadditivity for the two positions
of writing an option A and writing an option B. However, 99% TCM (or equivalently 99.5% VaR) does
satisfy subadditivity. Indeed, the 99% TCM of the three positions of writing an option A, writing an
option B, and writing options A+B are equal to 1000− u, 1000− l, and 1000− u− l, respectively. (ii)
The example on page 217 of Artzner et al. [4] shows that the 90% VaR does not satisfy subadditivity for
X1 and X2. However, the 90% TCM (or equivalently 95% VaR) does satisfy subadditivity. Actually, the
90% TCM of X1 and X2 are both equal to 1. By simple calculation, P (X1 +X2 ≤ −2) = 0.005 < 0.05,
which implies that the 90% TCM of X1 +X2 is strictly less than 2.

TCM can be shown to be more robust than TCE by at least four tools in robust statistics: (i) influence
functions, (ii) asymptotic breakdown points, (iii) continuity of statistical functional, and (iv) finite sample
breakdown points. See Appendix F.

TCE is also highly model-dependent, and particularly sensitive to modeling assumptions on the ex-
treme tails of loss distributions, because the computation of TCE relies on these extreme tails, as is
shown by (66) in Appendix F. Figure 1 illustrates the sensitivity of TCE to modeling assumptions. TCM
is clearly less sensitive to tail behavior than TCE, since the changes in TCM have narrower ranges than
those in TCE.

5.5 Robust Natural Risk Statistics. Natural risk statistics include a subclass of risk statistics
that are robust in two respects: (i) they are insensitive to model misspecification because they incorporate
multiple scenarios, multiple prior probability measures on the set of scenarios, and multiple subsidiary
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Figure 1: Comparing the robustness of tail conditional expectation (TCE) and tail conditional median
(TCM) with respect to model misspecification. TCEα and TCMα are calculated for Laplace and T
distributions with degree of freedom 3, 5, 12, which are normalized to have mean 0 and variance 1. The
horizontal axis is log(1 − α) for α ∈ [0.95, 0.999]. For α = 99.6%, the variation of TCEα with respect to
the change in the underlying models is 1.44, but the variation of TCMα is only 0.75.

risk statistics for each scenario; and (ii) they are insensitive to small changes in the data because they
use robust statistics for each scenario.

Let ρ̂ be a natural risk statistic defined as in (5) that corresponds to the set of weights W . Define
the map φ : W → Rm × Rn such that w̃ 7→ φ(w̃) := (p̃, q̃), where p̃ := (p1, . . . , pm), pi :=

∑ni

j=1 w
i
j ,

i = 1, . . . ,m; q̃ := (q11 , . . . , q
1
n1
, . . . , qm1 , . . . , q

m
nm

), qij := 1{pi>0}w
i
j/pi. Since p

i ≥ 0 and
∑m

i=1 p
i = 1, p̃ can

be viewed as a prior probability distribution on the set of scenarios. Then ρ̂ can be rewritten as

ρ̂(x̃) = s · sup
(p̃,q̃)∈φ(W)

{
m∑

i=1

piρ̂i,q̃(x̃i)

}
, where ρ̂i,q̃(x̃i) :=

ni∑

j=1

qijx
i
(j). (18)

Each weight w̃ ∈ W then corresponds to φ(w̃) = (p̃, q̃) ∈ φ(W), which specifies: (i) the prior probability
measure p̃ on the set of scenarios; and (ii) the subsidiary risk statistic ρ̂i,q̃ for each scenario i, i = 1, . . . ,m.
Hence, ρ̂ can be robust with respect to model misspecification by incorporating multiple prior probabilities
p̃ and multiple risk statistics ρ̂i,q̃ for each scenario. In addition, ρ̂ can be robust with respect to small
changes in the data if each subsidiary risk statistic ρ̂i,q̃ is a robust L-statistic.

Example 5.1 Examples of robust L-statistics (see Huber and Ronchetti [25, Chap. 3]) include TCM (or
equivalently VaR at a higher confidence level) and the following risk statistic:

ρ̂i,q̃(x̃i) :=
1

⌊βni⌋ − ⌈αni⌉

⌊βni⌋∑

j=⌈αni⌉+1

xi(j), (19)

where 0 < α < β < 1. The above defined statistic is an estimate of the “Truncated TCE” ρ(X) :=
E[X |VaRα(X) < X ≤ VaRβ(X)] using samples observed under the i-th scenario.

Example 5.2 The Basel II risk measure (14) is robust to a certain extent because (i) each subsidiary
risk statistic is a VaR, which is robust; and (ii) the risk measure incorporates two priors of probability
distributions on the set of scenarios. More precisely, one prior assigns probability 1

k to the scenario of
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day t− 1 and 1− 1
k to an imaginary scenario under which losses are identically 0; the other prior assigns

probability 1
60 to each of the scenarios corresponding to day t− i, i = 1, . . . , 60.

Example 5.3 The Basel III risk measure (15) is more robust than the Basel II risk measure (14) because
it incorporates 60 more scenarios and it essentially incorporates two more priors of probability measures
on the set of scenarios.

Example 5.4 Similar to the Basel II risk measure (14), the Basel III IRC risk measure (16) is robust

in the sense that each subsidiary risk statistic VaRirt−i is robust, and the risk measure incorporates two
priors of probability distributions on the set of scenarios.

5.6 Neither Coherent Risk Measures Nor Insurance Risk Measures Are Robust. No
coherent risk measure is robust with respect to small changes in the data because coherent risk measures
exclude the use of robust statistics. Indeed, by Theorem 3.3, an empirical-law-invariant coherent risk
statistic ρ̂ can be represented by (12), where for each weight w̃, wij is a nondecreasing function of j.
Hence, any empirical-law-invariant coherent risk statistic assigns larger weights to larger observations,
but assigning larger weights to larger observations is clearly sensitive to small changes in the data. An
extreme case is the maximum loss max{xi(ni)

: i = 1, . . . ,m}, which is not robust at all. In general, the

finite sample breakdown point (see Huber and Ronchetti [25, Chap. 11] for definition) of any empirical-
law-invariant coherent risk statistic is equal to 1/(1 + n), which implies that one single contamination
sample can cause unbounded bias. In particular, TCE is sensitive to modeling assumptions of heaviness
of tail distributions and to outliers in the data, as is shown in Section 5.4.

No insurance risk measure is robust to model misspecification. An insurance risk measure can incor-
porate neither multiple priors of probability distributions on the set of scenarios nor multiple subsidiary
risk statistics for each scenario because it is defined by a single weight vector w̃, as is shown in Theorem
3.4.

5.7 Conservative and Robust Risk Measures. One risk measure is said to be more conservative
than another if it generates higher risk measurement than the other for the same risk exposure. The
use of more conservative risk measures in external regulation is desirable from a regulator’s viewpoint,
since it generally increases the safety of the financial system. Of course, risk measures which are too
conservative may retard economic growth.

There is no contradiction between the robustness and the conservativeness of external risk measures.
Robustness addresses the issue of whether a risk measure can be implemented consistently, so it is a
requisite property of a good external risk measure. Conservativeness addresses the issue of how stringently
an external risk measure should be implemented, given that it can be implemented consistently. In other
words, an external risk measure should be robust in the first place before one can consider the issue of
how to implement it in a conservative way. In addition, it is not true that TCE is more conservative than
TCM because the median can be bigger than the mean for some distributions. Eling and Tibiletti [12]
compare TCE and TCM for a set of capital market data, including the returns of S&P 500 stocks, 1347
mutual funds, and 205 hedge funds. They find that although TCE is on average about 10% higher than
TCM at standard confidence levels, TCM is higher than TCE in about 10% of the cases. So TCE is not
necessarily more conservative than TCM.

A natural risk statistic can be constructed by (5) in the following way so that it is both conservative
and robust: (i) more data subsets that correspond to stressed scenarios can be included in (5); and (ii)
a larger constant s in (5) can be used. For example, adding 60 stressed scenarios makes (15) much more
conservative than (14), and a larger k or ℓ in (15) can be used by regulators to increase the capital
requirements.

6. Other Reasons to Relax Subadditivity.

6.1 Diversification and Tail Subadditivity of VaR. The subadditivity axiom is related to the
idea that diversification does not increase risk; the convexity axiom for convex risk measures also comes
from the idea of diversification. There are two main justifications for diversification. One is based on
the simple observation that σ(X + Y ) ≤ σ(X) + σ(Y ), for any two random variables X and Y with
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finite second moments, where σ(·) denotes standard deviation. The other is based on expected utility
theory. Samuelson [39] shows that any investor with a strictly concave utility function will uniformly
diversify among independently and identically distributed (i.i.d.) risks with finite second moments; see,
e.g., McMinn [36], Hong and Herk [23], and Kijima [32] for the discussion on whether diversification is
beneficial when the asset returns are dependent. Both justifications require that the risks have finite
second moments.

Is diversification still preferable for risks with infinite second moments? The answer can be no. I-
bragimov [26, 27] and Ibragimov and Walden [28] show that diversification is not preferable for risks
with extremely heavy tailed distributions (with tail index less than 1) in the sense that: (i) the loss of
the diversified portfolio stochastically dominates that of the undiversified portfolio at the first order and
second order; (ii) the expected utility of the (truncated) payoff of the diversified portfolio is smaller than
that of the undiversified portfolio. They also show that investors with certain S-shaped utility functions
would prefer non-diversification, even for bounded risks.

In addition, the conclusion that VaR prohibits diversification, drawn from simple examples in the
literature, may not be solid. For instance, Artzner et al. [4] show that VaR prohibits diversification by
a simple example (see pp. 217–218) in which 95% VaR of the diversified portfolio is higher than that of
the undiversified portfolio. However, in the same example 99% VaR encourages diversification because
the 99% VaR of the diversified portfolio is equal to 20,800, which is much lower than 1,000,000, the 99%
VaR of the undiversified portfolio.

Ibragimov [26, 27] and Ibragimov and Walden [28] also show that although VaR does not satisfy
subadditivity for risks with extremely heavy tailed distributions (with tail index less than 1), VaR satisfies
subadditivity for wide classes of independent and dependent risks with tail indices greater than 1. In
addition, Dańıelsson, Jorgensen, Samorodnitsky, Sarma, and de Vries [8] show that VaR is subadditive in
the tail region provided that the tail index of the joint distribution is larger than 1. Asset returns with
tail indices less than 1 have extremely heavy tails; they are hard to find but easy to identify. Dańıelsson
et al. [8] argue that they can be treated as special cases in financial modeling. Even if one encounters
an extremely fat tail and insists on tail subadditivity, Garcia, Renault, and Tsafack [15] show that when
tail thickness causes violation of subadditivity, a decentralized risk management team may restore the
subadditivity for VaR by using proper conditional information. The simulations carried out in Dańıelsson
et al. [8] also show that VaRα is indeed subadditive for most practical applications when α ∈ [95%, 99%].

To summarize, there seems to be no conflict between the use of VaR and diversification. When the
risks do not have extremely heavy tails, diversification seems to be preferred and VaR seems to satisfy
subadditivity; when the risks have extremely heavy tails, diversification may not be preferable and VaR
may fail to satisfy subadditivity.

6.2 Does A Merger Always Reduce Risk? Subadditivity basically means that “a merger does
not create extra risk” (see Artzner et al. [4, p. 209]). However, Dhaene, Goovaerts, and Kaas [11] point
out that a merger may increase risk, particularly when there is bankruptcy protection for institutions.
For example, an institution can split a risky trading business into a separate subsidiary so that it has the
option to let the subsidiary go bankrupt when the subsidiary suffers enormous losses, confining losses to
that subsidiary. Therefore, creating subsidiaries may incur less risk and a merger may increase risk. Had
Barings Bank set up a separate institution for its Singapore unit, the bankruptcy of that unit would not
have sunk the entire bank in 1995.

In addition, there is little empirical evidence supporting the argument that “a merger does not create
extra risk.” In practice, credit rating agencies do not upgrade an institution’s credit rating because of a
merger; on the contrary, the credit rating of the joint institution may be lowered shortly after the merger.
The merger of Bank of America and Merrill Lynch in 2008 is an example.

7. Capital Allocation under the Natural Risk Statistics. In this section, we derive the capital
allocation rule for a subclass of natural risk statistics which include the Basel II and Basel III risk
measures. The purpose of capital allocation for the whole portfolio is to decompose the overall capital
into a sum of risk contributions for such purposes as identification of concentration, risk-sensitive pricing,
and portfolio optimization (see, e.g., Litterman [34]).

First, as an illustration, we compute the Euler capital allocation under the Basel III risk measure.
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The Euler rule is one of the most widely used methodologies for capital allocation under positive ho-
mogeneous risk measures (see, e.g., Tasche [46]; McNeil, Frey, and Embrechts [37]). Consider a port-
folio comprised of ui units of asset i, i = 1, . . . , d, and denote u = (u1, u2, . . . , ud). Suppose that
there are m scenarios. Let x̃(i) = (x̃(i)1, x̃(i)2, . . . , x̃(i)m) be the observed loss of the i-th asset, where
x̃(i)s = (x(i)s1, x(i)

s
2, . . . , x(i)

s
ns
) ∈ Rns are the observations under the s-th scenario, s = 1, . . . ,m. Then

the observations of the portfolio loss are given by l̃(u) =
∑d

i=1 uix̃(i) = (l̃(u)1, l̃(u)2, . . . , l̃(u)m), where

l̃(u)s = (l(u)s1, l(u)
s
2, . . . , l(u)

s
ns
) ∈ Rns and l(u)sk :=

∑d
i=1 uix(i)

s
k. The required capital measured by a

natural risk statistic ρ̂ is denoted by Cρ̂(u) := ρ̂(l̃(u)). Let m = 120 and α = 99%, then the required
capital calculated by the Basel III risk measure is

Cρ̂(u) := max

{
l(u)1(⌈αn1⌉)

,
k

60

60∑

s=1

l(u)s(⌈αns⌉)

}
+max

{
l(u)61(⌈αn61⌉)

,
ℓ

60

120∑

s=61

l(u)s(⌈αns⌉)

}
.

We have the following proposition on the Euler capital allocation under the Basel III risk statistic:

Proposition 7.1 Suppose x̃ is a sample of the random vector (X(1), X(2), . . . , X(d)), where X(i) =
(X(i)1, X(i)2, . . . , X(i)m) and X(i)s = (X(i)s1, X(i)s2, . . . , X(i)sns

) ∈ Rns . Suppose that the joint distri-
bution of (X(1), X(2), . . . , X(d)) has a probability density on Rdn. Then for any given u 6= 0, it holds
with probability 1 that

Cρ̂(u) =

d∑

i=1

ui
∂Cρ̂(u)

∂ui
, (20)

and the capital allocation for the i-th asset under the Euler’s rule is ui
∂Cρ̂(u)
∂ui

.

Proof. For any given u 6= 0, let Xu be the set of samples (x̃(1), x̃(2), . . . , x̃(d)) ∈ Rdn that satisfy
the following conditions: (i) l(u)1(⌈αn1⌉)

6= k
60

∑60
s=1 l(u)

s
(⌈αns⌉)

; (ii) l(u)61(⌈αn61⌉)
6= ℓ

60

∑120
s=61 l(u)

s
(⌈αns⌉)

;

(iii) l(u)si 6= l(u)sj for any s and i 6= j. Then it follows from the condition of the proposition that
P ((X(1), X(2), . . . , X(d)) ∈ Xu) = 1. Fix any (x̃(1), x̃(2), . . . , x̃(d)) ∈ Xu. By the definition of Xu, there
exists δ > 0, such that Cρ̂(·) is a linear function on the open set V := {v ∈ Rd : ‖v − u‖ < δ}. Hence,
Cρ̂(·) is differentiable at u and Eq. (20) holds. �

Let Xu be defined in the above proof and x̃ ∈ Xu. To compute ui
∂Cρ̂(u)
∂ui

, one only needs to compute
∂l(u)s(⌈αns⌉)

∂ui
. Let (p1, . . . , pns

) be the permutation of (1, 2, . . . , ns) such that l(u)sp1 < l(u)sp2 < · · · <

l(u)spns
. Then there exists a neighborhood V := {v ∈ Rd : ‖v − u‖ < δ} of u such that l(v)sp1 <

l(v)sp2 < · · · < l(v)spns
for ∀v ∈ V . Hence, for ∀v ∈ V , l(v)s(⌈αns⌉)

= l(v)sp⌈αns⌉
=
∑d

i=1 vix(i)
s
p⌈αns⌉

, and
∂l(u)s(⌈αns⌉)

∂ui
= x(i)sp⌈αns⌉

.

In general, let Υ1 be the set of natural risk statistic ρ̂ that can be represented in Eq. (6) by a finite

set W . Let Υ2 be the set of natural risk statistic ρ̂ that can be written as ρ̂ =
∑K

k=1 akρ̂k, where ak ≥ 0
and ρ̂k ∈ Υ1, k = 1, . . . ,K. Both the Basel II risk measure and Basel III risk measure belong to the set
Υ2. For any ρ̂ ∈ Υ2, it can be shown in the same way as in Proposition 7.1 that Cρ̂(u) is a piece-wise
linear function of u and the Euler capital allocation rule can be computed similarly.

8. Conclusion. We propose a class of data-based risk measures called natural risk statistics that are
characterized by a new set of axioms. The new axioms only require subadditivity for comonotonic random
variables, thus relaxing the subadditivity for all random variables required by coherent risk measures,
and relaxing the comonotonic additivity required by insurance risk measures.

Natural risk statistics include VaR with scenario analysis, and particularly the Basel II and Basel
III risk measures, as special cases. Thus, natural risk statistics provide a theoretical framework for
understanding and, if necessary, extending the Basel accords. Indeed, the framework is general enough
to include the counter-cyclical indexing risk measure suggested by Gordy and Howells [19] to address the
procyclicality problem in Basel II.

We emphasize that an external risk measure should be robust to model misspecification and small
changes in the data in order for its consistent implementation across different institutions. We show that
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coherent risk measures are generally not robust with respect to small changes in the data and insurance
risk measures are generally not robust with respect to model misspecification.

Natural risk statistics include a subclass of robust risk measures that are suitable for external regula-
tion. In particular, natural risk statistics include tail conditional median (with scenario analysis), which
is more robust than tail conditional expectation suggested by the theory of coherent risk measures. The
Euler capital allocation can also be easily calculated under the natural risk statistics.

Appendix A. Proof of Theorem 3.1. A simple observation is that ρ̂ is a natural risk statistic
corresponding to a constant s in Axiom C1 if and only if 1

s ρ̂ is a natural risk statistic corresponding to the
constant s = 1 in Axiom C1. Therefore, in this section, we assume without loss of generality that s = 1
in Axiom C1. The proof relies on the following two lemmas, which depend heavily on the properties of
the interior points of the set

B := {ỹ = (ỹ1, . . . , ỹm) ∈ Rn | y11 ≤ y12 ≤ · · · ≤ y1n1
; . . . ; ym1 ≤ ym2 ≤ · · · ≤ ymnm

}. (21)

The results for boundary points will be obtained by approximating the boundary points by the interior
points, and by employing continuity and uniform convergence.

Lemma A.1 Let B be defined in (21) and Bo be the interior of B. For any fixed z̃ ∈ Bo and any ρ̂
satisfying Axiom C1-C4 and ρ̂(z̃) = 1, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn such that the linear
functional λ(x̃) :=

∑n1

j=1 w
1
jx

1
j +

∑n2

j=1 w
2
jx

2
j + · · ·+

∑nm

j=1 w
m
j x

m
j satisfies

λ(z̃) = 1, (22)

λ(x̃) < 1 for any x̃ such that x̃ ∈ B and ρ̂(x̃) < 1. (23)

Proof. Let U = {x̃ = (x̃1, . . . , x̃m) | ρ̂(x̃) < 1} ∩ B. For any x̃ = (x̃1, . . . , x̃m) ∈ B and ỹ =
(ỹ1, . . . , ỹm) ∈ B, x̃ and ỹ are scenario-wise comonotonic. Then Axiom C1 and C3 imply that U is convex,
and, hence, the closure Ū of U is also convex. For any ε > 0, since ρ̂(z̃ − ε1) = ρ̂(z̃) − ε = 1 − ε < 1, it
follows that z̃−ε1 ∈ U . Since z̃−ε1 tends to z̃ as ε ↓ 0, we know that z̃ is a boundary point of U because
ρ̂(z̃) = 1. Therefore, there exists a supporting hyperplane for Ū at z̃, i.e., there exists a nonzero vector
w̃ = (w̃1, . . . , w̃m) = (w1

1 , . . . , w
1
n1
, . . . , wm1 , . . . , w

m
nm

) ∈ Rn such that λ(x̃) :=
∑n1

j=1 w
1
jx

1
j +

∑n2

j=1 w
2
jx

2
j +

· · ·+
∑nm

j=1 w
m
j x

m
j satisfies λ(x̃) ≤ λ(z̃) for any x̃ ∈ Ū . In particular, we have

λ(x̃) ≤ λ(z̃), ∀x̃ ∈ U. (24)

We shall show that the strict inequality holds in (24). Suppose, by contradiction, that there exists
r̃ ∈ U such that λ(r̃) = λ(z̃). For any α ∈ (0, 1), we have

λ(αz̃ + (1− α)r̃) = αλ(z̃) + (1 − α)λ(r̃) = λ(z̃). (25)

In addition, since z̃ and r̃ are scenario-wise comonotonic, we have

ρ̂(αz̃ + (1− α)r̃) ≤ αρ̂(z̃) + (1− α)ρ̂(r̃) < α+ (1 − α) = 1, ∀α ∈ (0, 1). (26)

Since z̃ ∈ Bo, it follows that there exists α0 ∈ (0, 1) such that α0z̃+(1−α0)r̃ ∈ Bo. Hence, for any small
enough ε > 0,

α0z̃ + (1 − α0)r̃ + εw̃ ∈ B. (27)

With wmax := max{w1
1, w

1
2 , . . . , w

1
n1
;w2

1 , w
2
2 , . . . , w

2
n2
; . . . ;wm1 , w

m
2 , . . . , w

m
nm

}, we have α0z̃ + (1 − α0)r̃ +
εw̃ ≤ α0z̃ + (1− α0)r̃ + εwmax1. Thus, the monotonicity in Axiom C2 and translation scaling in Axiom
C1 yield

ρ̂(α0z̃ + (1− α0)r̃ + εw̃) ≤ ρ̂(α0z̃ + (1− α0)r̃ + εwmax1) = ρ̂(α0z̃ + (1− α0)r̃) + εwmax. (28)

Since ρ̂(α0z̃ + (1 − α0)r̃) < 1 via (26), we have by (28) and (27) that for any small enough ε > 0,
ρ̂(α0z̃+(1−α0)r̃+εw̃) < 1, α0z̃+(1−α0)r̃+εw̃ ∈ U . Hence, (24) implies λ(α0z̃+(1−α0)r̃+εw̃) ≤ λ(z̃).
However, we have, by (25), an opposite inequality λ(α0z̃+(1−α0)r̃+εw̃) = λ(α0z̃+(1−α0)r̃)+ε|w̃|

2 >
λ(α0z̃ + (1− α0)r̃) = λ(z̃), leading to a contradiction. In summary, we have shown that

λ(x̃) < λ(z̃), ∀x̃ ∈ U. (29)

Since ρ̂(0) = 0, we have 0 ∈ U . Letting x̃ = 0 in (29) yields λ(z̃) > 0, so we can re-scale w̃ such that
λ(z̃) = 1 = ρ̂(z̃). Thus, (29) becomes λ(x̃) < 1 for any x̃ such that x̃ ∈ B and ρ̂(x̃) < 1, from which (23)
holds. �
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Lemma A.2 Let B be defined in (21) and Bo be the interior of B. For any fixed z̃ ∈ Bo and any ρ̂
satisfying Axiom C1-C4, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn such that w̃ satisfies (3) and (4),
and

ρ̂(x̃) ≥

m∑

i=1

ni∑

j=1

wijx
i
j for any x̃ ∈ B, and ρ̂(z̃) =

m∑

i=1

ni∑

j=1

wijz
i
j . (30)

Proof. We will show this by considering three cases.

Case 1: ρ̂(z̃) = 1. From Lemma A.1, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn such that the linear
functional λ(x̃) :=

∑m
i=1

∑ni

j=1 w
i
jx
i
j satisfies (22) and (23).

Firstly, we prove that w̃ satisfies (3), which is equivalent to λ(1) = 1. To this end, first note that for any
c < 1, Axiom C1 implies ρ̂(c1) = c < 1. Thus, (23) implies λ(c1) < 1, and, by continuity of λ(·), we obtain
that λ(1) ≤ 1. On the other hand, for any c > 1, Axiom C1 implies ρ̂(2z̃ − c1) = 2ρ̂(z̃)− c = 2− c < 1.
Then it follows from (23) and (22) that 1 > λ(2z̃ − c1) = 2λ(z̃)− cλ(1) = 2 − cλ(1), i.e. λ(1) > 1/c for
any c > 1. So λ(1) ≥ 1, and w̃ satisfies (3).

Secondly, we prove that w̃ satisfies (4). For any fixed i and 1 ≤ j ≤ ni, let k = n1+n2+ · · ·+ni−1+ j
and ẽ = (0, . . . , 0, 1, 0, . . . , 0) be the k-th standard basis of Rn. Then wij = λ(ẽ). Since z̃ ∈ Bo, there
exists δ > 0 such that z̃−δẽ ∈ B. For any ε > 0, Axiom C1 and C2 imply ρ̂(z̃−δẽ−ε1) = ρ̂(z̃−δẽ)−ε ≤
ρ̂(z̃)− ε = 1− ε < 1. Then (23) and (22) imply 1 > λ(z̃− δẽ− ε1) = λ(z̃)− δλ(ẽ)− ελ(1) = 1− ε− δλ(ẽ).
Hence, wij = λ(ẽ) > −ε/δ, and the conclusion follows by letting ε go to 0.

Thirdly, we prove that w̃ satisfies (30). It follows from Axiom C1 and (23) that

∀c > 0, λ(x̃) < c for any x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (31)

For any c ≤ 0, we choose b > 0 such that b + c > 0. Then by (31), we have λ(x̃ + b1) < c+ b for any x̃
such that x̃ ∈ B and ρ̂(x̃+b1) < c+b. Since λ(x̃+b1) = λ(x̃)+bλ(1) = λ(x̃)+b and ρ̂(x̃+b1) = ρ̂(x̃)+b,
we have

∀c ≤ 0, λ(x̃) < c for any x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (32)

It follows from (31) and (32) that ρ̂(x̃) ≥ λ(x̃) for any x̃ ∈ B, which in combination with ρ̂(z̃) = 1 = λ(z̃)
completes the proof of (30).

Case 2: ρ̂(z̃) 6= 1 and ρ̂(z̃) > 0. Since ρ̂
(

1
ρ̂(z̃) z̃

)
= 1 and 1

ρ̂(z̃) z̃ ∈ Bo, it follows from the result proved

in Case 1 that there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn such that w̃ satisfies (3), (4), and the linear

functional λ(x̃) :=
∑m
i=1

∑ni

j=1 w
i
jx
i
j satisfies ρ̂(x̃) ≥ λ(x̃) for ∀x̃ ∈ B and ρ̂

(
1

ρ̂(z̃) z̃
)

= λ
(

1
ρ̂(z̃) z̃

)
, or

equivalently ρ̂(z̃) = λ(z̃). Thus, w̃ also satisfies (30).

Case 3: ρ̂(z̃) ≤ 0. Choose b > 0 such that ρ̂(z̃ + b1) > 0. Since z̃ + b1 ∈ Bo, it follows from the
results proved in Case 1 and Case 2 that there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn such that w̃
satisfies (3), (4), and the linear functional λ(x̃) :=

∑m
i=1

∑ni

j=1 w
i
jx
i
j satisfies ρ̂(x̃) ≥ λ(x̃) for ∀x̃ ∈ B, and

ρ̂(z̃ + b1) = λ(z̃ + b1), or equivalently ρ̂(z̃) = λ(z̃). Thus, w̃ also satisfies (30). �

Proof of Theorem 3.1. Firstly, we prove part (i). Suppose ρ̂ is defined by (5), then obviously ρ̂
satisfies Axiom C1 and C4. To check Axiom C2, suppose x̃ ≤ ỹ. For each i = 1, . . . ,m, let (pi,1, . . . , pi,ni

)
be the permutation of (1, . . . , ni) such that (yi(1), y

i
(2), . . . , y

i
(ni)

) = (yipi,1 , y
i
pi,2 , . . . , y

i
pi,ni

). Then for any

1 ≤ j ≤ ni and 1 ≤ i ≤ m, yi(j) = yipi,j = max{yipi,k ; k = 1, . . . , j} ≥ max{xipi,k ; k = 1, . . . , j} ≥ xi(j),
which implies that ρ̂ satisfies Axiom C2 because

ρ̂(ỹ) = sup
w̃∈W





m∑

i=1

ni∑

j=1

wijy
i
(j)



 ≥ sup

w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
(j)



 = ρ̂(x̃).

To check Axiom C3, note that if x̃ and ỹ are scenario-wise comonotonic, then for each i = 1, . . . ,m,
there exists a permutation (pi,1, . . . , pi,ni

) of (1, . . . , ni) such that xipi,1 ≤ xipi,2 ≤ · · · ≤ xipi,ni
and yipi,1 ≤

yipi,2 ≤ · · · ≤ yipi,ni
. Hence, we have (x̃i + ỹi)(j) = xipi,j + yipi,j = xi(j) + yi(j), j = 1, . . . , ni; i = 1, . . . ,m.
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Therefore,

ρ̂(x̃+ ỹ) = ρ̂((x̃1 + ỹ1, . . . , x̃m + ỹm))

= sup
w̃∈W





m∑

i=1

ni∑

j=1

wij(x̃
i + ỹi)(j)



 = sup

w̃∈W





m∑

i=1

ni∑

j=1

wij(x
i
(j) + yi(j))





≤ sup
w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
(j)



+ sup

w̃∈W





m∑

i=1

ni∑

j=1

wijy
i
(j)



 = ρ̂(x̃) + ρ̂(ỹ),

which implies that ρ̂ satisfies Axiom C3.

Secondly, we prove part (ii). Let B be defined in (21). By Axiom C4, we only need to show that
there exists a set of weights W = {w̃} ⊂ Rn such that each w̃ ∈ W satisfies condition (3) and (4), and
ρ̂(x̃) = supw̃∈W{

∑m
i=1

∑ni

j=1 w
i
jx
i
j} for ∀x̃ ∈ B.

By Lemma A.2, for any point ỹ ∈ Bo, there exists a weight w̃(ỹ) = (w(ỹ)11, . . . ,
w(ỹ)1n1

; . . . ;w(ỹ)m1 , . . . , w(ỹ)
m
nm

) ∈ Rn such that (3) and (4) hold, and that

ρ̂(x̃) ≥

m∑

i=1

ni∑

j=1

w(ỹ)ijx
i
j for ∀x̃ ∈ B, and ρ̂(ỹ) =

m∑

i=1

ni∑

j=1

w(ỹ)ijy
i
j . (33)

Define W as the collection of such weights, i.e., W := {w̃(ỹ) | ỹ ∈ Bo}, then each w̃ ∈ W satisfies (3) and
(4). From (33), for any fixed x̃ ∈ Bo, we have

ρ̂(x̃) ≥

m∑

i=1

ni∑

j=1

w(ỹ)ijx
i
j for ∀ỹ ∈ Bo, and ρ̂(x̃) =

m∑

i=1

ni∑

j=1

w(x̃)ijx
i
j .

Therefore,

ρ̂(x̃) = sup
ỹ∈Bo





m∑

i=1

ni∑

j=1

w(ỹ)ijx
i
j



 = sup

w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
j



 , ∀x̃ ∈ Bo. (34)

Next, we prove that the above equality is also true for any boundary points of B, i.e.,

ρ̂(x̃) = sup
w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
j



 , ∀x̃ ∈ ∂B. (35)

Let b̃ = (b11, . . . , b
1
n1
, . . . , bm1 , . . . , b

m
nm

) be any boundary point of B. Then there exists a sequence

{b̃(k)}∞k=1 ⊂ Bo such that b̃(k) → b̃ as k → ∞. By the continuity of ρ̂ and (34), we have

ρ̂(b̃) = lim
k→∞

ρ̂(b̃(k)) = lim
k→∞

sup
w̃∈W





m∑

i=1

ni∑

j=1

wijb(k)
i
j



 . (36)

If we can interchange sup and limit in (36), i.e. if

lim
k→∞

sup
w̃∈W





m∑

i=1

ni∑

j=1

wijb(k)
i
j



 = sup

w̃∈W



 lim
k→∞

m∑

i=1

ni∑

j=1

wijb(k)
i
j



 = sup

w̃∈W





m∑

i=1

ni∑

j=1

wijb
i
j



 , (37)

then (35) holds and the proof is completed. To show (37), note by Cauchy-Schwarz inequality
∣∣∣∣∣∣

m∑

i=1

ni∑

j=1

wijb(k)
i
j −

m∑

i=1

ni∑

j=1

wijb
i
j

∣∣∣∣∣∣

≤




m∑

i=1

ni∑

j=1

(wij)
2




1
2



m∑

i=1

ni∑

j=1

(b(k)ij − bij)
2




1
2

≤




m∑

i=1

ni∑

j=1

(b(k)ij − bij)
2




1
2

, ∀w̃ ∈ W ,

because wij ≥ 0 and
∑m

i=1

∑ni

j=1 w
i
j = 1, ∀w̃ ∈ W . Hence,

∑m
i=1

∑ni

j=1 w
i
jb(k)

i
j →

∑m
i=1

∑ni

j=1 w
i
jb
i
j uni-

formly for all w̃ ∈ W as k → ∞. Therefore, (37) follows. �
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Appendix B. The Second Representation via Acceptance Sets. A statistical acceptance set
is a subset of Rn that includes all the data considered acceptable by a regulator in terms of the risk
measured from them. Given a statistical acceptance set A, the risk statistic ρ̂A associated with A is
defined to be

ρ̂A(x̃) := inf{h | x̃− h1 ∈ A}, ∀x̃ ∈ Rn. (38)

ρ̂A(x̃) is the minimum amount of cash that has to be added to the original position corresponding to x̃
in order for the resulting position to be acceptable.

On the other hand, given a risk statistic ρ̂, one can define the statistical acceptance set associated with
ρ̂ by

Aρ̂ := {x̃ ∈ Rn | ρ̂(x̃) ≤ 0}. (39)

We shall postulate the following axioms for the statistical acceptance set A:

Axiom D1. A contains Rn−, where Rn− := {x̃ ∈ Rn | xij ≤ 0, j = 1, . . . , ni; i = 1, . . . ,m}.

Axiom D2. A does not intersect the set Rn++, where Rn++ := {x̃ ∈ Rn | xij > 0, j = 1, . . . , ni; i =
1, . . . ,m}.

Axiom D3. If x̃ and ỹ are scenario-wise comonotonic and x̃ ∈ A, ỹ ∈ A, then λx̃ + (1 − λ)ỹ ∈ A, for
∀λ ∈ [0, 1].

Axiom D4. A is positively homogeneous, i.e., if x̃ ∈ A, then λx̃ ∈ A for any λ ≥ 0.

Axiom D5. If x̃ ≤ ỹ and ỹ ∈ A, then x̃ ∈ A.

Axiom D6. A is empirical-law-invariant, i.e., if x̃ = (x11, x
1
2, . . . , x

1
n1
, . . . , xm1 , x

m
2 , . . . ,

xmnm
) ∈ A, then for any permutation (pi,1, pi,2, . . . , pi,ni

) of (1, 2, . . . , ni), i = 1, . . . ,m, it holds that
(x1p1,1 , x

1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

, . . . , xmpm,nm
) ∈ A.

The following theorem shows that a natural risk statistic and a statistical acceptance set satisfying
Axiom D1-D6 are mutually representable.

Theorem B.1 (i) If ρ̂ is a natural risk statistic, then the statistical acceptance set Aρ̂ is closed and
satisfies Axiom D1-D6.

(ii) If a statistical acceptance set A satisfies Axiom D1-D6, then the risk statistic ρ̂A is a natural risk
statistic (with s = 1 in Axiom C1).

(iii) If ρ̂ is a natural risk statistic, then ρ̂ = sρ̂Aρ̂
.

(iv) If a statistical acceptance set D satisfies Axiom D1-D6, then Aρ̂D = D̄, the closure of D.

Proof. (i) (1) For ∀x̃ ≤ 0, Axiom C2 implies ρ̂(x̃) ≤ ρ̂(0) = 0. Hence, x̃ ∈ Aρ̂ by definition.
Thus, D1 holds. (2) For any x̃ ∈ Rn++, there exists α > 0 such that 0 ≤ x̃ − α1. Axiom C2 and C1
imply that ρ̂(0) ≤ ρ̂(x̃ − α1) = ρ̂(x̃) − sα. So ρ̂(x̃) ≥ sα > 0 and hence x̃ /∈ Aρ̂, i.e., D2 holds. (3)
If x̃ and ỹ are scenario-wise comonotonic and x̃ ∈ Aρ̂, ỹ ∈ Aρ̂, then ρ̂(x̃) ≤ 0, ρ̂(ỹ) ≤ 0, and λx̃ and
(1 − λ)ỹ are scenario-wise comonotonic for any λ ∈ [0, 1]. Thus, Axiom C3 implies ρ̂(λx̃ + (1 − λ)ỹ) ≤
ρ̂(λx̃) + ρ̂((1 − λ)ỹ) = λρ̂(x̃) + (1 − λ)ρ̂(ỹ) ≤ 0. Hence, λx̃ + (1 − λ)ỹ ∈ Aρ̂, i.e., D3 holds. (4) For any
x̃ ∈ Aρ̂ and a > 0, we have ρ̂(x̃) ≤ 0 and Axiom C1 implies ρ̂(ax̃) = aρ̂(x̃) ≤ 0. Thus, ax̃ ∈ Aρ̂, i.e., D4
holds. (5) For any x̃ ≤ ỹ and ỹ ∈ Aρ̂, we have ρ̂(ỹ) ≤ 0. By Axiom C2, ρ̂(x̃) ≤ ρ̂(ỹ) ≤ 0. Hence, x̃ ∈ Aρ̂,
i.e., D5 holds. (6) If x̃ ∈ Aρ̂, then ρ̂(x̃) ≤ 0. For any permutation (pi,1, pi,2, . . . , pi,ni

) of (1, 2, . . . , ni),
i = 1, . . . ,m, Axiom C4 implies ρ̂((x1p1,1 , x

1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

. . . , xmpm,nm
)) = ρ̂(x̃) ≤ 0. So

(x1p1,1 , x
1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

. . . , xmpm,nm
) ∈ Aρ̂, i.e., D6 holds. (7) Suppose {x̃(k)}∞k=1 ⊂ Aρ̂,

and x̃(k) → x̃ as k → ∞. Then ρ̂(x̃(k)) ≤ 0, ∀k. The continuity of ρ̂ (see the comment following the

definition of Axiom C2) implies ρ̂(x̃) = limk→∞ ρ̂(x̃(k)) ≤ 0. So x̃ ∈ Aρ̂, i.e., Aρ̂ is closed.

(ii) (1) For ∀x̃ ∈ Rn, ∀b ∈ R, we have

ρ̂A(x̃+ b1) = inf{h | x̃+ b1− h1 ∈ A} = b+ inf{h− b | x̃− (h− b)1 ∈ A}

=b+ inf{h | x̃− h1 ∈ A} = b+ ρ̂A(x̃).



Kou, Peng, and Heyde: External Risk Measures and Basel Accords

Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 19

For ∀x̃ ∈ Rn, ∀a ≥ 0, if a = 0, then ρ̂A(ax̃) = inf{h | 0 − h1 ∈ A} = 0 = aρ̂A(x̃), where the second
equality follows from Axiom D1 and D2. If a > 0, then

ρ̂A(ax̃) = inf{h | ax̃− h1 ∈ A} = a · inf{u | a(x̃− u1) ∈ A}

= a · inf{u | x̃− u1 ∈ A} = aρ̂A(x̃),

by Axiom D4. Therefore, C1 holds (with s = 1). (2) Suppose x̃ ≤ ỹ. For any h ∈ R, if ỹ − h1 ∈ A, then
Axiom D5 and x̃ − h1 ≤ ỹ − h1 imply that x̃ − h1 ∈ A. Hence, {h | ỹ − h1 ∈ A} ⊆ {h | x̃ − h1 ∈ A}.
By taking infimum on both sides, we obtain ρ̂A(ỹ) ≥ ρ̂A(x̃), i.e., C2 holds. (3) Suppose x̃ and ỹ are
scenario-wise comonotonic. For any g and h such that x̃ − g1 ∈ A and ỹ − h1 ∈ A, since x̃ − g1 and
ỹ − h1 are scenario-wise comonotonic, it follows from Axiom D3 that 1

2 (x̃ − g1) + 1
2 (ỹ − h1) ∈ A. By

Axiom D4, the previous formula implies x̃ + ỹ − (g + h)1 ∈ A. Therefore, ρ̂A(x̃ + ỹ) ≤ g + h. Taking
infimum of all g and h satisfying x̃ − g1 ∈ A, ỹ − h1 ∈ A, on both sides of the above inequality yields
ρ̂A(x̃ + ỹ) ≤ ρ̂A(x̃) + ρ̂A(ỹ). So C3 holds. (4) Fix any x̃ ∈ Rn and any permutation (pi,1, pi,2, . . . , pi,ni

)
of (1, 2, . . . , ni), i = 1, . . . ,m. Then for any h ∈ R, Axiom D6 implies that x̃ − h1 ∈ A if and only
if (x1p1,1 , x

1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

, . . . , xmpm,nm
) − h1 ∈ A. Hence, {h | x̃ − h1 ∈ A} = {h |

(x1p1,1 , x
1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

, . . . , xmpm,nm
) − h1 ∈ A}. Taking infimum, we obtain ρ̂A(x̃) =

ρ̂A((x
1
p1,1 , x

1
p1,2 , . . . , x

1
p1,n1

, . . . , xmpm,1
, xmpm,2

, . . . , xmpm,nm
)), i.e., C4 holds.

(iii) For ∀x̃ ∈ Rn, we have ρ̂Aρ̂
(x̃) = inf{h | x̃ − h1 ∈ Aρ̂} = inf{h | ρ̂(x̃ − h1) ≤ 0} = inf{h | ρ̂(x̃) ≤

sh} = 1
s ρ̂(x̃), where the third equality follows from Axiom C1.

(iv) For any x̃ ∈ D, we have ρ̂D(x̃) ≤ 0. Hence, x̃ ∈ Aρ̂D . Therefore, D ⊆ Aρ̂D . By the results (i)
and (ii), Aρ̂D is closed. So D̄ ⊆ Aρ̂D . On the other hand, for any x̃ ∈ Aρ̂D , we have by definition that
ρ̂D(x̃) ≤ 0, i.e., inf{h | x̃ − h1 ∈ D} ≤ 0. If inf{h | x̃ − h1 ∈ D} < 0, then there exists h < 0 such that
x̃−h1 ∈ D. Then since x̃ < x̃−h1, by D5 x̃ ∈ D. Otherwise, inf{h | x̃−h1 ∈ D} = 0. Then there exists
hk such that hk ↓ 0 as k → ∞ and x̃− hk1 ∈ D. Hence, x̃ ∈ D̄. In either case we obtain x̃ ∈ D̄. Hence,
Aρ̂D ⊆ D̄. Therefore, we conclude that Aρ̂D = D̄. �

Appendix C. Proof of Theorem 3.3. In this section, we assume without loss of generality that
s = 1 in Axiom C1. The proof for Theorem 3.3 follows the same line as that for Theorem 3.1. We first
prove two lemmas that are similar to Lemma A.1 and A.2.

Lemma C.1 Let B be defined in (21). For any fixed z̃ ∈ B and any ρ̂ satisfying Axiom C1, C2, E3, C4
and ρ̂(z̃) = 1, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn satisfying (10) such that the linear functional
λ(x̃) :=

∑n1

j=1 w
1
jx

1
j +

∑n2

j=1 w
2
jx

2
j + · · ·+

∑nm

j=1 w
m
j x

m
j satisfies

λ(z̃) = 1, (40)

λ(x̃) < 1 for any x̃ such that ρ̂(x̃) < 1. (41)

Proof. Let U = {x̃ | ρ̂(x̃) < 1}. Axiom C1 and E3 imply that U is convex, and, hence, the closure
Ū of U is also convex.

For any ε > 0, since ρ̂(z̃ − ε1) = ρ̂(z̃) − ε = 1 − ε < 1, it follows that z̃ − ε1 ∈ U . Since z̃ − ε1
converges to z̃ as ε ↓ 0, z̃ is a boundary point of U because ρ̂(z̃) = 1. Therefore, there exists a supporting
hyperplane for Ū at z̃, i.e., there exists a nonzero vector ũ = (u11, . . . , u

1
n1
, . . . , um1 , . . . , u

m
nm

) ∈ Rn such
that µ(x̃) :=

∑m
i=1

∑ni

j=1 u
i
jx
i
j satisfies µ(x̃) ≤ µ(z̃) for any x̃ ∈ Ū . In particular, we have

µ(x̃) ≤ µ(z̃), ∀x̃ ∈ U. (42)

For each i = 1, . . . ,m, let φi : {1, 2, . . . , ni} → {1, 2, . . . , ni} be a bijection such that uiφi(1)
≤ uiφi(2)

≤

· · · ≤ uiφi(ni)
, and ψi(·) be the inverse of φi(·). Define a new weight w̃ and a new linear functional λ(·) as

follows:

wij :=u
i
φi(j)

, j = 1, . . . , ni; i = 1, . . . ,m, (43)

w̃ :=(w1
1 , . . . , w

1
n1
, . . . , wm1 , . . . , w

m
nm

), (44)

λ(x̃) :=

m∑

i=1

ni∑

j=1

wijx
i
j , (45)
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then by definition w̃ satisfies condition (10). For any fixed x̃ ∈ U , by Axiom
C4, ρ̂((x1ψ1(1)

, . . . , x1ψ1(n1)
, . . . , xmψm(1), . . . , x

m
ψm(nm))) = ρ̂(x̃) < 1, so (x1ψ1(1)

, . . . , x1ψ1(n1)
, . . . ,

xmψm(1), . . . , x
m
ψm(nm)) ∈ U . Then, we have

λ(x̃) =

m∑

i=1

ni∑

j=1

wijx
i
j =

m∑

i=1

ni∑

j=1

uiφi(j)
xij =

m∑

i=1

ni∑

j=1

uiφi(ψi(j))
xiψi(j)

=

m∑

i=1

ni∑

j=1

uijx
i
ψi(j)

=µ((x1ψ1(1)
, . . . , x1ψ1(n1)

, . . . , xmψm(1), . . . , x
m
ψm(nm))) ≤ µ(z̃) (by (42)). (46)

Noting that zi1 ≤ zi2 ≤ · · · ≤ zini
, i = 1, 2, . . . ,m, we obtain

µ(z̃) =

m∑

i=1

ni∑

j=1

uijz
i
j ≤

m∑

i=1

ni∑

j=1

uiφi(j)
zij = λ(z̃). (47)

By (46) and (47), we have
λ(x̃) ≤ λ(z̃), ∀x̃ ∈ U. (48)

We shall show that the strict inequality holds in (48). Suppose, by contradiction, that
there exists r̃ ∈ U such that λ(r̃) = λ(z̃). With wmax := max{w1

1, . . . , w
1
n1
, . . . , wm1 ,

. . . , wmnm
}, we have r̃ + εw̃ ≤ r̃ + εwmax1 for any ε > 0. Thus, Axiom C1 and C2 yield

ρ̂(r̃ + εw̃) ≤ ρ̂(r̃ + εwmax1) = ρ̂(r̃) + εwmax, ∀ε > 0. (49)

Since ρ̂(r̃) < 1, we have by (49) that for small enough ε > 0, ρ̂(r̃ + εw̃) < 1. Hence, r̃+ εw̃ ∈ U and (48)
implies λ(r̃ + εw̃) ≤ λ(z̃). However, λ(r̃ + εw̃) = λ(r̃) + ε|w̃|2 > λ(r̃) = λ(z̃), leading to a contradiction.
In summary, we have shown that

λ(x̃) < λ(z̃), ∀x̃ ∈ U. (50)

Since ρ̂(0) = 0, we have 0 ∈ U . Letting x̃ = 0 in (50) yields λ(z̃) > 0, so we can re-scale w̃ such that
λ(z̃) = 1 = ρ̂(z̃). Thus, (50) becomes λ(x̃) < 1 for any x̃ such that ρ̂(x̃) < 1, from which (41) holds. �

Lemma C.2 Let B be defined in (21). For any fixed z̃ ∈ B and any ρ̂ satisfying Axiom C1, C2, E3 and
C4, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn satisfying (8), (9), and (10), such that

ρ̂(x̃) ≥

m∑

i=1

ni∑

j=1

wijx
i
j for any x̃ ∈ Rn, and ρ̂(z̃) =

m∑

i=1

ni∑

j=1

wijz
i
j. (51)

Proof. We will show this by considering two cases.

Case 1: ρ̂(z̃) = 1. From Lemma C.1, there exists a weight w̃ = (w̃1, . . . , w̃m) ∈ Rn satisfying (10) such
that the linear functional λ(x̃) :=

∑m
i=1

∑ni

j=1 w
i
jx
i
j satisfies (40) and (41).

Firstly, we prove that w̃ satisfies (8), which is equivalent to λ(1) = 1. To this end, first note that for any
c < 1, Axiom C1 implies ρ̂(c1) = c < 1. Thus, (41) implies λ(c1) < 1, and, by continuity of λ(·), we obtain
that λ(1) ≤ 1. On the other hand, for any c > 1, Axiom C1 implies ρ̂(2z̃ − c1) = 2ρ̂(z̃)− c = 2− c < 1.
Then it follows from (40) and (41) that 1 > λ(2z̃ − c1) = 2λ(z̃)− cλ(1) = 2 − cλ(1), i.e. λ(1) > 1/c for
any c > 1. So λ(1) ≥ 1, and w̃ satisfies (8). Secondly, we prove that w̃ satisfies (9). For any fixed i and
1 ≤ j ≤ ni, let k = n1+n2+ · · ·+ni−1+ j and ẽ = (0, . . . , 0, 1, 0, . . . , 0) be the k-th standard basis of Rn.
Then wij = λ(ẽ). For any ε > 0, Axiom C1 and C2 imply ρ̂(z̃− ẽ−ε1) = ρ̂(z̃− ẽ)−ε ≤ ρ̂(z̃)−ε = 1−ε < 1.

Then (40) and (41) imply 1 > λ(z̃− ẽ−ε1) = λ(z̃)−λ(ẽ)−ελ(1) = 1−ε−λ(ẽ). Hence, wij = λ(ẽ) > −ε,
and the conclusion follows by letting ε go to 0. Thirdly, we prove that w̃ satisfies (51). It follows from
Axiom C1 and (41) that

∀c > 0, λ(x̃) < c for any x̃ such that ρ̂(x̃) < c. (52)

For any c ≤ 0, we choose b > 0 such that b+ c > 0. Then it follows from (52) that λ(x̃+ b1) < c+ b for
any x̃ such that ρ̂(x̃ + b1) < c+ b. Since λ(x̃+ b1) = λ(x̃) + bλ(1) = λ(x̃) + b and ρ̂(x̃+ b1) = ρ̂(x̃) + b,
we have

∀c ≤ 0, λ(x̃) < c for any x̃ such that ρ̂(x̃) < c. (53)

It follows from (52) and (53) that ρ̂(x̃) ≥ λ(x̃) for any x̃ ∈ Rn, which in combination with ρ̂(z̃) = 1 = λ(z̃)
completes the proof of (51).
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Case 2: ρ̂(z̃) 6= 1. The argument is the same as that in case 2 and case 3 of the proof for Lemma A.2.
�

Proof of Theorem 3.3. Without loss of generality, we assume s = 1 in Axiom C1.

Firstly, we prove part (i). We only need to show that under condition (10), the risk statistic (11)
satisfies subadditivity for any x̃ and ỹ ∈ Rn. Let (pi,1, pi,2, . . . , pi,ni

) be the permutation of (1, . . . , ni)
such that (x̃i + ỹi)pi,1 ≤ (x̃i + ỹi)pi,2 ≤ · · · ≤ (x̃i + ỹi)pi,ni

. Then for k = 1, . . . , ni − 1, the partial sum
up to k satisfies

k∑

j=1

(x̃i + ỹi)(j) =

k∑

j=1

(x̃i + ỹi)pi,j =

k∑

j=1

(xipi,j + yipi,j ) ≥

k∑

j=1

(xi(j) + yi(j)). (54)

In addition, we have for the total sum

ni∑

j=1

(x̃i + ỹi)(j) =

ni∑

j=1

(x̃i + ỹi)j =

ni∑

j=1

(xij + yij) =

ni∑

j=1

(xi(j) + yi(j)). (55)

Re-arranging the summation terms yields

ρ̂(x̃ + ỹ) = ρ̂((x̃1 + ỹ1, x̃2 + ỹ2, . . . , x̃m + ỹm)) = sup
w̃∈W





m∑

i=1

ni∑

j=1

wij(x̃
i + ỹi)(j)





= sup
w̃∈W





m∑

i=1



ni−1∑

j=1

(wij − wij+1)

j∑

k=1

(x̃i + ỹi)(k) + wini

ni∑

k=1

(x̃i + ỹi)(k)





 ,

which, along with (54), (55), and the fact wij − wij+1 ≤ 0, shows that

ρ̂(x̃+ ỹ) ≤ sup
w̃∈W





m∑

i=1



ni−1∑

j=1

(wij − wij+1)

j∑

k=1

(xi(k) + yi(k)) + wini

ni∑

k=1

(xi(k) + yi(k))







= sup
w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
(j) +

m∑

i=1

ni∑

j=1

wijy
i
(j)





≤ sup
w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
(j)



+ sup

w̃∈W





m∑

i=1

ni∑

j=1

wijy
i
(j)



 = ρ̂(x̃) + ρ̂(ỹ).

Secondly, we prove part (ii). Let B be defined in (21). By Axiom C4, we only need to show that
there exists a set of weights W = {w̃} ⊂ Rn such that each w̃ ∈ W satisfies (8), (9), and (10), and
ρ̂(x̃) = supw̃∈W{

∑m
i=1

∑ni

j=1 w
i
jx
i
j} for ∀x̃ ∈ B.

By Lemma C.2, for any ỹ ∈ B, there exists a weight w̃(ỹ) = (w(ỹ)11, . . . , w(ỹ)
1
n1
;

. . . ;w(ỹ)m1 , . . . , w(ỹ)
m
nm

) satisfying (8), (9), and (10), such that

ρ̂(x̃) ≥

m∑

i=1

ni∑

j=1

w(ỹ)ijx
i
j for any x̃ ∈ Rn, and ρ̂(ỹ) =

m∑

i=1

ni∑

j=1

w(ỹ)ijy
i
j . (56)

Define W as the collection of such weights, i.e., W := {w̃(ỹ) | ỹ ∈ B}. Then each w̃ ∈ W satisfies (8),
(9), and (10). From (56), for any fixed x̃ ∈ B, we have ρ̂(x̃) ≥

∑m
i=1

∑ni

j=1 w(ỹ)
i
jx
i
j for ∀ỹ ∈ B, and

ρ̂(x̃) =
∑m
i=1

∑ni

j=1 w(x̃)
i
jx
i
j . Therefore,

ρ̂(x̃) = sup
ỹ∈B





m∑

i=1

ni∑

j=1

w(ỹ)ijx
i
j



 = sup

w̃∈W





m∑

i=1

ni∑

j=1

wijx
i
j



 , ∀x̃ ∈ B,

which completes the proof. �
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Appendix D. Proof of Theorem 3.4. Proof. We assume, without loss of generality, that s = 1
in Axiom F4. The “if” part can be proved by using the same argument as that in the proof for part (i)
of Theorem 3.1. To prove the “only if” part, we shall first prove

ρ̂(cx̃) = cρ̂(x̃), ∀c ≥ 0, ∀x̃ ≥ 0. (57)

By Axiom F3, we have ρ̂(0) = ρ̂(0) + ρ̂(0), so ρ̂(0) = 0. Axiom F3 also implies ρ̂(mx̃) = mρ̂(x̃), ∀m ∈
N, x̃ ∈ Rn, and ρ̂( km x̃) =

1
m ρ̂(kx̃) =

k
m ρ̂(x̃), for ∀m ∈ N, k ∈ N ∪ {0}, x̃ ∈ Rn, or equivalently, for the set

of nonnegative rational numbers Q+,

ρ̂(qx̃) = qρ̂(x̃), ∀q ∈ Q+, x̃ ∈ Rn. (58)

In general, for any c ≥ 0 there exist two sequences {dn}
∞
n=1 ⊂ Q+ and {en}

∞
n=1 ⊂ Q+, such that dn ↑ c

and en ↓ c as n→ ∞. Then for ∀x̃ ≥ 0, ∀n, we have dnx̃ ≤ cx̃ ≤ enx̃. It follows from Axiom F2 and (58)
that dnρ̂(x̃) = ρ̂(dnx̃) ≤ ρ̂(cx̃) ≤ ρ̂(enx̃) = enρ̂(x̃), ∀n, ∀x̃ ≥ 0. Letting n→ ∞, we obtain (57).

Now we are ready to prove the “only if” part. Let ẽj := (0, . . . , 0, 1, 0, . . . , 0) be the j-th standard

basis of Rn, and ℓ1 := 0, ℓi :=
∑i−1
j=1 nj , i = 2, . . . ,m. By Axiom F1 and F3,

ρ̂(x̃) = ρ̂((x1(1), x
1
(2), . . . , x

1
(n1)

, . . . , xm(1), x
m
(2), . . . , x

m
(nm)))

= ρ̂

(
m∑

i=1

(0, 0, . . . , 0, xi(1), x
i
(2), . . . , x

i
(ni)

, 0, 0, . . . , 0)

)

=

m∑

i=1

ρ̂((0, 0, . . . , 0, xi(1), x
i
(2), . . . , x

i
(ni)

, 0, 0, . . . , 0)). (59)

Further, by Axiom F3,

ρ̂((0, . . . , 0, xi(1), x
i
(2), . . . , x

i
(ni)

, 0, . . . , 0))

=ρ̂((0, . . . , 0, 0, xi(2) − xi(1), . . . , x
i
(ni)

− xi(1), 0, . . . , 0)) + ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj




=ρ̂((0, . . . , 0, 0, 0, xi(3) − xi(2), . . . , x
i
(ni)

− xi(2), 0, . . . , 0)) + ρ̂


(xi(2) − xi(1))

ℓi+ni∑

j=ℓi+2

ẽj




+ ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj




= · · ·

=ρ̂


(xi(ni)

− xi(ni−1))

ℓi+ni∑

j=ℓi+ni

ẽj


+ · · ·+ ρ̂


(xi(2) − xi(1))

ℓi+ni∑

j=ℓi+2

ẽj


+ ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj




=(xi(ni)
− xi(ni−1))ρ̂




ℓi+ni∑

j=ℓi+ni

ẽj


+ · · ·+ (xi(2) − xi(1))ρ̂




ℓi+ni∑

j=ℓi+2

ẽj


+ ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj


 , (60)

where the last equality follows from (57). If xi(1) ≥ 0, then by (57) we have

ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj


 = xi(1)ρ̂




ℓi+ni∑

j=ℓi+1

ẽj


 . (61)

If xi(1) < 0, then since xi(1)
∑ℓi+ni

j=ℓi+1 ẽj and −xi(1)
∑ℓi+ni

j=ℓi+1 ẽj are scenario-wise comonotonic, we have by

Axiom F3 that ρ̂
(
xi(1)

∑ℓi+ni

j=ℓi+1 ẽj

)
+ ρ̂

(
−xi(1)

∑ℓi+ni

j=ℓi+1 ẽj

)
= ρ̂(0) = 0, which implies

ρ̂


xi(1)

ℓi+ni∑

j=ℓi+1

ẽj


 = −ρ̂


−xi(1)

ℓi+ni∑

j=ℓi+1

ẽj


 = xi(1)ρ̂




ℓi+ni∑

j=ℓi+1

ẽj


 , (62)

where the last equality follows from (57). Then by (59), (60), (61), and (62), we obtain ρ̂(x̃) =∑m
i=1

∑ni

j=1 w
i
jx
i
(j), where wij := ρ̂(

∑ℓi+ni

k=ℓi+j
ẽk) − ρ̂(

∑ℓi+ni

k=ℓi+j+1 ẽk). Since by Axiom F2 wij ≥ 0 and∑m
i=1

∑ni

j=1 w
i
j = ρ̂(1) = 1, the proof is completed. �
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Appendix E. Proof of Theorem 4.1 and Theorem 4.2. Proof of Theorem 4.1. Let
x̃i = (xi1, . . . , x

i
ni
) ∈ Rni be the data subset that is used to calculate VaRt−i, i = 1, . . . , 60, and x̃i+60 =

(xi+60
1 , . . . , xi+60

ni+60
) ∈ Rni+60 be the data subset used to calculate sVaRt−i, i = 1, . . . , 60. In addition, define

the 121-th scenario x̃121 := 0 ∈ R and n121 := 1. Let n :=
∑121

i=1 ni. We will show that (14) and (15) are
natural risk statistics defined onRn. Define w̃ = (w̃1, . . . , w̃121) = (w1

1 , . . . , w
1
n1
, . . . , w121

1 , . . . , w121
n121

) ∈ Rn

such that wij := 1{j=⌈0.99ni⌉}, 1 ≤ j ≤ ni, i = 1, . . . , 121. Then we have

VaRt−i =

ni∑

j=1

wijx
i
(j), sVaRt−i =

ni+60∑

j=1

wi+60
j xi+60

(j) ; i = 1, . . . , 60. (63)

By (63), the Basel II risk measure (14) is equal to

k ·max





121∑

i=1

ni∑

j=1

uijx
i
(j),

121∑

i=1

ni∑

j=1

vijx
i
(j)



 , (64)

where the two weights ũ = (ũ1, . . . , ũ121) and ṽ = (ṽ1, . . . , ṽ121) are defined by

ũ1 :=
1

k
w̃1; ũi := 0, i = 2, . . . , 120; ũ121 :=

k − 1

k
w̃121,

ṽi :=
1

60
w̃i, i = 1, . . . , 60; ṽi := 0, i = 61, . . . , 121.

Hence, by Theorem 3.1, (14) is a natural risk statistic that corresponds to s = k in Axiom C1. Again,
by (63), the Basel III risk measure (15) is equal to

k ·max





121∑

i=1

ni∑

j=1

uijx
i
(j),

121∑

i=1

ni∑

j=1

vijx
i
(j)



+ ℓ ·max





121∑

i=1

ni∑

j=1

gijx
i
(j),

121∑

i=1

ni∑

j=1

hijx
i
(j)



 , (65)

where the two weights g̃ = (g̃1, . . . , g̃121) and h̃ = (h̃1, . . . , h̃121) are defined by

g̃i := 0, ∀i 6= 61 and i 6= 121; g̃61 :=
1

ℓ
w̃61; g̃121 =

ℓ− 1

ℓ
w̃121,

h̃i := 0, i = 1, . . . , 60; h̃i :=
1

60
w̃i, i = 61, . . . , 120; h̃121 = 0.

It is straightforward to verify that (65) satisfies Axiom C1-C4, with s = k + ℓ in Axiom C1. Hence, (15)
is also a natural risk statistic. �

Proof of Theorem 4.2. The IRC risk measure (16) corresponds to a natural risk statistic with
s = 1, which can be shown by following the same argument as that for proving Theorem 4.1. �

Appendix F. Analysis of the Robustness of TCM and TCE. The following tools in robust
statistics show that TCM is more robust than TCE.

(i) The influence function is an important tool for assessing the robustness of statistics. Let F be the
distribution function of X , x̃ = (x1, . . . , xn) be a sample of X , and Fn(·) be the empirical distribution
function. Let M be the space of distribution functions on R. Consider estimating T (F ) from x̃ for some
statistical functional T (·) : M → R. TCM and TCE are both such functionals, since

TCMα(F ) = F−1(
1 + α

2
), TCEα(F ) =

1

1− α

∫ 1

α

F−1(s)ds. (66)

A natural estimator for T (F ) is T (Fn), e.g.,

TCMα(Fn) = x(⌈n(1+α)/2⌉), (67)

TCEα(Fn) =
1

1− α


(k
n
− α)x(k) +

1

n

n−1∑

j=k

x(j+1)


 , k = ⌈nα⌉. (68)

The robustness of the statistic T (Fn) can be asymptotically characterized by its influence function
IF (y, T, F ) := limε↓0

1
ε [T ((1− ε)F + εδy)− T (F )] , y ∈ R, where δy is the point mass 1 at y which

represents a contamination point to the distribution F . If the influence function is bounded, i.e.,
supy∈R

|IF (y, T, F )| < ∞, then T (Fn) is robust; otherwise, T (Fn) is not robust and outliers in the
data may cause large changes to T (Fn) (Huber and Ronchetti [25]). The following proposition shows
that TCE has an unbounded influence function but TCM has a bounded one.
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Proposition F.1 If the random loss X has a positive probability density function f(·), then the influence
function of TCMα is given by

IF (y,TCMα, X) =





1
2 (α− 1)/f(VaR 1+α

2
(X)), y < VaR 1+α

2
(X),

0, y = VaR 1+α
2
(X),

1
2 (1 + α)/f(VaR 1+α

2
(X)), y > VaR 1+α

2
(X).

If f(·) is continuous at VaRα(X), then the influence function of TCEα is given by

IF (y,TCEα, X) =

{
VaRα(X)− TCEα(X), if y ≤ VaRα(X),
y

1−α − TCEα(X)− α
1−αVaRα(X), if y > VaRα(X).

(69)

Proof. The result for TCM can be found at Section 5.3.1 of Shao [41]. To show (69), noting that
by equation (3.2.4) in Staudte and Sheather [44], the influence function of the (1 − α)-trimmed mean
T1−α(X) := E[X |X < VaRα(X)] is

IF (y, T1−α, X) =

{
y−(1−α)VaRα(X)

α − E[X |X < VaRα(X)], if y ≤ VaRα(X),

VaRα(X)− E[X |X < VaRα(X)], if y > VaRα(X).
(70)

By simple calculation, the influence function of E[X ] is

IF (y, E[X ], X) = y − E[X ]. (71)

Since E[X ] = αT1−α(X) + (1− α)TCEα(X), it follows that

IF (y, E[X ], X) = αIF (y, T1−α, X) + (1− α)IF (y,TCEα, X). (72)

Now (69) follows from equations (70), (71), and (72). �

(ii) The asymptotic breakdown point is, roughly, the smallest fraction of bad observations that may
cause an estimator to take on arbitrarily large aberrant values; see Section 1.4 of Huber and Ronchetti [25]
for the mathematical definition. Hence, a high breakdown point is clearly desirable. From (66), both
TCM and TCE are L-statistics, and then by Theorem 3.7 in Huber and Ronchetti [25], the asymptotic
breakdown point for TCMα is 1−α and that for TCEα is 0, which clearly shows the robustness of TCM.

(iii) Hampel’s theorem (see Huber and Ronchetti [25, Section 2.6]) shows that for a statistical functional
T (·) : M → R, the sequence of statistics T (Fn) is robust at F0 if and only if T is continuous at F0. Again
by Theorem 3.7 in Huber and Ronchetti [25], TCMα is continuous at F0 provided F−1

0 is continuous at
(1 + α)/2, but TCEα is discontinuous.

(iv) The finite sample breakdown point (see Huber and Ronchetti [25, Chap. 11]) of TCMα(Fn) is
(n − ⌈n(1 + α)/2⌉+ 1)/(2n− ⌈n(1 + α)/2⌉+ 1) ≈ (1 − α)/(3 − α), but that of TCEα(Fn) is 1/(n+ 1),
which means one additional corrupted sample can cause arbitrarily large bias to TCEα.
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[8] Dańıelsson, J., B. N. Jorgensen, G. Samorodnitsky, M. Sarma, C. G. de Vries. 2005. Subadditivity re-
examined: the case for Value-at-Risk. Working paper, London School of Economics.

[9] Delbaen, F. 2002. Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher,
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