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Abstract

This paper proposes a new approach to estimate panel data models with group specific pa-
rameters when group membership is not known. We first create a set of “pseudo” threshold
variables based on time series estimation of the individual specific parameters. We then use
these variables to stratify individuals. The problem of parameter heterogeneity is turned into
estimation of a panel threshold model in which the threshold variables are themselves being
estimated. We show that individuals can be consistently sorted into groups distinguished by pa-
rameter heterogeneity when N and T are large. Results are compared to the K-means algorithm
adapted to panel data regressions with fixed effects.
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1 Introduction

This paper considers estimation of panel data models when the slope parameters are heterogeneous

across groups, but that group membership is not known to the econometrician. We propose a data

dependent method that groups individuals according to consistent estimates of the slope coefficients

at the individual level. Our analysis proceeds in three steps. First, we use time series estimates of

the individual slope coefficients to form a set of “pseudo” threshold variables. Second, the threshold

value is estimated and used to partition the sample into groups. Third, the model is re-estimated

by pooling observations within groups. Thus, units within a group have homogeneous parameters

but the parameters are heterogeneous across groups. We turn the problem of identifying group

membership into one of estimating a threshold panel regression, where the threshold variable is

itself being estimated. We refer to this as a ‘pseudo’ threshold approach.

Panel data models often take parameter homogeneity as a maintained assumption even though

evidence against it is not difficult to find. Using data on US manufacturing, Burnside (1996) rejects

homogeneity of the parameters in the production function. Lee, Pesaran, and Smith (1997) reject

the hypotheses that the rate of technological growth and the rate of convergence of per capita

output to the steady state level are the same across countries. Hsiao and Tahmiscioglu (1997)

find heterogeneity in the parameters of equations that describe investment dynamics and observed

that such differences cannot be explained by commonly considered firm characteristics. Barsky,

Juster, Kimball, and Shapiro (1997) find substantial heterogeneity in the rate of time preference

(say, ρ) and the elasticity of intertemporal substitution (say, τ) among respondents of the Health

and Retirement Survey. Thus, if r is the real interest rate and c is consumption, and theory implies

∆ log c = τ(r − ρ) for a particular household, the parameters α0 and α1 in a panel regression

model ∆ log cit = α0 + α1rt should vary across individuals. Lawrance (1991) allows the discount

rate and the rate of time preference in the consumption Euler equation to differ between rich and

poor households and along demographic lines. Guvenen (2009) finds that allowing stockholders to

have a higher elasticity of substitution than non-stockholders can explain a number of asset pricing

phenomena. Carroll and Samwick (1997) find that labor income dynamics are heterogeneous across

education groups.

As Browning and Carro (2007) point out, there is usually much more heterogeneity than em-

pirical researchers allow. Robertson and Symons (1992) use monte carlo experiments to show that
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the bias in the Anderson and Hsiao (1982) estimator can be severe when the parameters vary

across individuals but this variation is not allowed for in estimation. While fixed effects estimation

handles heterogeneity in the intercept, few methods are available to allow for heterogeneity in the

slope parameters. The issue is that assuming complete parameter heterogeneity would reduce the

problem to time series estimation on a unit by unit basis which does not take advantage of the panel

structure of the data. Partitioning the data into groups is an immediate approach that permits

some pooling and yet still accommodates heterogeneity in the regression function.

If we know which group each unit belongs, we can simply do split sample linear regressions.

The main obstacle is that group membership is not always known. One approach is to use a priori

and observed information to organize units into groups, but the approach is not objective. For

example, should one use income or wealth to classify who is rich and who is poor, and what is the

cut-off point? Furthermore, units differ in many dimensions and there are often several ways to

partition the data.

Instead of using a priori information, we let the data determine the grouping. Our proposed

‘top down’ method provides a simple characterization of how the units respond differently to the

covariates. In the Euler equation example above, our analysis would sort households into a group

with high and a group with low intertemporal elasticity of substitution. This is to be distinguished

from a ‘bottom up’ approach that forms groups by explicitly specifying the sources of parameter

heterogeneity.

In addition to the pseudo-threshold method, we also adapt the K-means algorithm to panel

regressions. The K-means is a popular clustering algorithm that shuffles observations into appro-

priate groups until the within cluster variances is minimized. The method is usually used to cluster

a set of data points and we are unaware of its application to regression analysis. The main differ-

ence between the K-means and our method is that we use information about the individual slope

coefficients to do the shuffling, which is less of a black box, and is computationally less intensive.

The remainder of this paper is organized as follows. After a review of related work, Section

3 presents the pseudo threshold method. Extension to the case of multiple groups and multiple

covariates is considered in Section 4. Adaptation of the K-means method to panel regressions is

given in Section 5. Simulations are then presented. As an application, we apply the methods to

study economic growth across countries.
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2 Related Literature and the Econometric Framework

There are many methods that allow for heterogeneity in the regression function. For example,

classification analysis in the form of regression trees (CART) involves repeated subdivisions of a

group of observations on the basis of optimal cut-off points of the covariates. Parameters can differ

across nodes if desired. Durlauf and Johnson (1995) use CART to understand why some countries

have high growth while others have low growth. Regression splines also allow for group specific

parameters; it does so using a priori information to form knot points. For example, households

are considered liquidity constrained if their wealth exceeds a certain level, while firms are grouped

by their capital intensity. In cross-country analysis, groups are sometimes formed depending on

whether a country is a member of the OECD. Spatial information has also been used for sample

splitting. However, in regressions with multiple covariates as is often the case, there are often

several logical but not mutually exclusive ways to partition the sample. Furthermore, groups that

are deemed to be economically meaningful need not be optimal from a statistical point of view.

An alternative method of introducing flexibility to the regression function is to allow the co-

efficients to be heterogeneous by parameterizing them as a function observed characteristics as in

Alvarez, Browning, and Ejrnæs (2006). The analysis would necessarily depend on the parametric

functions used. Alternatively, a random coefficient model1 can provide efficient estimates for the

average effect of the covariates on the endogenous variable, but is uninformative about the response

at a more disaggregated level, which is sometimes an object of interest. Indeed, it is not useful to

talk about the individual parameters of the random coefficient model in a frequentist setting since

they are treated as random variables. Maddala, Trost, Li, and Joutz (1997) discuss a Bayesian

method that shrinks the individual estimates toward the estimator of the overall mean.

Allowing the parameters to be homogeneous within groups but heterogeneous across groups

is a form of model based clustering. Clustering analysis partitions a set of data, xi, i = 1, . . . N ,

into G groups according to how near they are to one another.2 This is to be distinguished from

classification analysis in which the objective is to understand how the predefined groups differ.

Allowing the parameters to be different across groups is also different from allowing the marginal

effects to differ through splitting the sample on the basis of values of the regressors.

The simplest way to form clusters is to plot the unconditional mean of the data β̂i = ȳi and

1See, for example, Swamy (1970) and Hsiao and Pesaran (2004).
2See, for example, Fraley and Raftery (2002), Hall, Muller, and Wang (2006), and Chiou and Li (2007).
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then ‘eyeball’ to see when β̂i abruptly shifts from one mean to another.3 Such a graphical approach

is often a useful diagnostic, but does not permit formal statistical statements to be made. Model

based clustering takes as starting point that a set of data with a group structure is generated

by a mixture of distributions such that an observation drawn from sub-population g has density

fg(xi|βg). If qi is the identifying label, i.e. qi = g if unit i belongs to group g, then one can maximize

the likelihood L(x; θ, q) =
∏N
i=1

∏T
t=1 fqi(xit;β) with respect to β using the EM algorithm. The

unknown identifier qi would be estimated by the empirical probability of the group to which unit

i belongs. The method can be cumbersome if N is large because we need to consider up to 2N

possible combinations. Sun (2005) modifies the EM algorithm to restrict the units in a cluster

to share common parameters. A logit regression is used to infer to which group unit i belongs,

and weighted least squares method is used to estimate the group parameters. Consistency and

asymptotic normality of the maximum likelihood estimator are proved under the assumption that

N is large and T is fixed. Juárez and Steel (2010) propose a Bayesian method assuming that the

errors are cross-sectionally homogeneous, and that are independently drawn from a t-distribution,

and the individual-specific fixed effects are normally distributed. Our approach does not impose

parametric assumptions on the functional forms or on the errors.

Our approach is a form of model based clustering, but our primary objective is not identifying

the clusters per se. Rather, we want to pool ‘similar’ observations to estimate the parameters of the

model, where similarity is defined in terms of the slope coefficients. We consider a balanced panel

of data with observations on N cross-section units over T time periods. There are K regressors

and G clusters, and to introduce the main idea, we start with the simple case of K = 1 and G = 2.

Let I0 = (I01 , I
0
2 ) be indicator variables that denote true group membership and let N0

1 and N0
2

denote the number of individuals in clusters I01 and I02 , respectively. The data are assumed to be

well approximated by the model:

ỹit = αi + x̃itβi + ẽit, ẽit ∼ (0, σ2i ) (1)

= αi + x̃itB11(i ∈ I01 ) + x̃itB21(i ∈ I02 ) + ẽit,

where αi is the individual fixed effects, and x̃it is a vector of predetermined variables. The coeffi-

cients for the two clusters are given by B1 and B2. That is, βi = B1 if i ∈ I01 and βi = B2 if i ∈ I02 .

Without loss of generality, we assume that B1 < B2. The case of homogeneous parameters is

3See, for example, Henderson and Russell (2005).
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obtained if B1 = B2, and the case of complete heterogeneity is obtained when there are N clusters

each consisting of only one unit.

We control for the fixed effects by demeaning. Let zit = z̃it − z̃i where z̃i = 1
T

∑T
t=1 z̃it, and z̃it

can be ỹit, x̃it, or ẽit. We can rewrite the model as

yit = xitB11(i ∈ I01 ) + xitB21(i ∈ I02 ) + eit. (2)

We will be concerned with both individual and pooled estimates of βi. For each i, let β̂i be the

least squares estimate of βi obtained from a time series regression of yit on xit. A pooled estimate

of βi is obtained by considering the model

ỹit = αi + x̃itBω + ẽit. (3)

The pooled fixed effects estimator is then defined as

B̂ω =

∑N
i=1

∑T
t=1 x

′
ityit∑N

i=1

∑T
t=1 x

′
itxit

=
N∑
i=1

( ∑T
t=1 x

′
itxit∑N

i=1

∑T
t=1 x

′
itxit

)
β̂i.

Let I = (I1, I2) denote a group membership other than I0 = (I01 , I
0
2 ). For j, k = 1, 2, let

Nkj be the number of individuals assigned to group j when they truly belong to group k. Let

N1 = N11+N21, N2 = N22+N12 and let Ns = Ns(I, I
0) = N12+N21 be the number of misclassified

units. Also, let x̃i = (x̃′i1, . . . , x̃
′
iT )′. The following assumptions will be used throughout for a panel

data model with strictly exogenous regressors.

Assumption 1: For all i’s and t’s, (a) ẽit|x̃i ∼ IID(0, σ2i ). {ẽit} are cross-sectionally independently

distributed and uncorrelated with B1 and B2. (b) max1≤i≤N σ
2
i is finite and min1≤i≤N σ

2
i > 0.

Furthermore, (yit, xit) are jointly stationary.

Assumption 2: For j = 1, 2, N0
j /N > 0 and N0

1 /N → π with 0 < π < 1.

Assumption 3: (a) For each i, Q̂i = T−1
∑T

t=1 x
′
itxit is finite and positive definite and

max1≤i≤N E||Q̂i|| is finite with Q̂i
p→ Qi > 0 as T → ∞, where Qi is a non-stochastic positive

definite and max1≤i≤N E||Qi|| is finite. (b) Let I∗ be a nonempty subset of the whole sample and

let N∗ denote the number of units in I∗. Assume that N−1∗
∑

i∈I∗ Q̂i has the minimal eigenvalue

bounded away from zero in probability as (N∗, T )→∞ jointly.

Assumption 1 is commonly imposed in panel data models with fixed effects. Assumption 2

ensures that the groups are not degenerate. Assumption 3 is an identification condition. Cross-

section dependence can be entertained if we allow ẽit to have a factor structure. This will change the
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formulation of the individual and the pooled regressions but our proposed method remains valid.

To focus on the issue of parameter heterogeneity, cross-section independence is the maintained

assumption. Cross-section dependence will be considered in the application.

A dynamic panel model obtains when x̃it = ỹi,t−1. To accommodate these models, the following

assumptions will be necessary:

Assumption D1: For all i’s and t’s, (a) ẽit ∼ (0, σ2i ) are cross-sectionally and serially indepen-

dently distributed, independent of the initial values yi0, with finite moments up to fourth order, and

are uncorrelated with B1 and B2. (b) max1≤i≤N σ
2
i is finite and min1≤i≤N σ

2
i > 0. Furthermore,

|B1| < 1, |B2| < 1, and N−1
∑N

i=1 αi = O(1).

Assumption D2: (a) For j = 1, 2, N0
j /N > 0 and N0

1 /N → π with 0 < π < 1. (b) 0 ≤ limN/T <

∞ as N and T diverge jointly.

Assumption D3: For all i’s and t’s, the initial observations satisfy ỹi0 = αi/(1− βi) + ũi0, where

ũi0 ∼ (0, σ2v,i) are cross-sectionally independently distributed, independent of ẽit, uncorrelated with

B1 and B2, with 0 < σ2v,i <∞, and with finite moments up to fourth order.

Unlike the panel data model with strictly exogenous regressors, Assumption D2(b) ensures the

asymptotic bias of the fixed effects estimator in a dynamic panel remains bounded as N and T

diverge jointly. See Hahn and Kuersteiner (2002), Alvarez and Arellano (2003), and Pesaran and

Yamagata (2008).

Lemma 1 Let Bω = ωB1+(1−ω)B2, where ω = (
∑N

i=1 Q̂i)
−1∑

i∈I01
Q̂i. Suppose that Assumptions

1–3 hold or that x̃it = ỹi,t−1 and Assumptions D1–D3 hold. Then (a)
√
NT (B̂ω − Bω) = Op(1).

(b) Let ω0 = plimN→∞ω. B̂ω
p−→ ω0B1 + (1− ω0)B2.

Lemma 1 shows that B̂ω is consistent for the population mean Bω even though the regression model

(3) is misspecified when the true model has heterogeneous slope parameters.

3 A Threshold Approach

Goldfeld and Quandt (1973) were the first to use threshold variables, also referred to as transition

variables, to form clusters. They considered a model in which the clusters are determined by a

linear function of several transition variables. They proposed a D-method within the maximum

likelihood framework to enable estimation of the parameters in the transition function. The D
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method assumes deterministic switching of regimes, and stands in contrast to the λ-method in

which units are assigned to regimes in a random manner. A more popular idea, also due to

Goldfeld and Quandt (1973), is to partition a data set based on a known threshold variable taking

on an unknown threshold value. Threshold autoregressive models and structure break models are

variations of this idea in a time series context.

Suppose we can find a variable qi that, along with a set of cut-off parameter values Γ0, will lead

to perfect information about I01 and I02 in the sense that i ∈ I01 if qi ≤ γ0 for any γ0 ∈ Γ0 and i ∈ I02
otherwise. Then (1) can be written as

ỹit = αi + x̃itB11(qi ≤ γ0) + x̃itB21(qi > γ0) + ẽit. (4)

Hansen (1999) considered threshold panel regressions where the sample is split according to

whether qit is less than some γ. In his analysis, qit is an observed variable that is often one of the

x̃it, and it is time varying. Unit i can be in one group in period t if qit ≥ γ0, but is in another

group in period t+ 1 if qit+1 < γ0. In contrast, our threshold variable qi is not observed, and group

structure does not change over time. Because of these differences, we call qi a ‘pseudo threshold

variable’ and γ the ‘pseudo threshold parameter’ to distinguish them from the usual definitions

used in the threshold literature.

If qi and Γ0 are both known, estimates of B1 and B2 can be obtained using a threshold, or

split-sample, regression. Observations with qi ≤ γ0 for any γ0 ∈ Γ0 can be pooled to estimate

B1, while observations with qi > γ0 can be pooled to estimate B2. The problem, however, is that

neither qi nor Γ0 is observed. We first discuss how to estimate γ assuming qi is known. We then

consider two possible choices of qi.

3.1 Estimation of γ when qi is Known

When qi is known and exogenous but Γ0 is not observed, a γ0 ∈ Γ0 can be estimated as follows.

Order the observations by qi. For a given γ ∈ Γ = [qmin, qmax], let B̂1(γ) and B̂2(γ) denote the

least squares estimator of B1 and B2 using observations with qi ≤ γ and qi > γ respectively. Then

γ̃ = arg min
γ∈[qmin,qmax]

SNT (γ), (5)
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where the sum of squared residuals is defined as

SNT (γ) =

N∑
i=1

T∑
t=1

(
yit − xitB̂1(γ)1(qi ≤ γ)− xitB̂2(γ)1(qi > γ)

)2
=

∑
i|qi≤γ

T∑
t=1

(yit − xitB̂1(γ))2 +
∑
i|qi>γ

T∑
t=1

(yit − xitB̂2(γ))2.

Since qi can be used to order the data, this means that if qi is less than some trial value of γ and

the i-th unit is classified into group 1, any unit j with qj < qi will also be classified in the group.

Using qi to split the unordered sample at some γ is isomorphic to splitting the ordered sample at

some observation i∗ that has qi∗ = γ. Therefore, even though there are 2N possible groupings of

the data, we only need to consider at most N − 1 possible values of γ.

Let Nkj(γ) be the number of units that belong to group k but are classified into group j when

the sample is partitioned at γ. Notice that when too many units are put in Group 1 (and thus

N21(γ) > 0), then it will also be the case that N12(γ) = 0. Thus, one of the misclassified set is

always empty. A unit misclassified into Group 1 will contribute a larger squared error than if the

unit was put into Group 2 since B2 is closer to B̂2(γ) than B̂1(γ). Minimizing SNT (γ) should then

yield a γ̃ that also minimizes the number of misclassified units.

Theorem 1 Suppose the data are generated by (1) and qi is exogenous and observed. Suppose

that γ̃ is obtained from (5). Then for j = 1, 2, B̂j(γ̃) − Bj = op(1). If B2 − B1 = νT−α with

0 < ||ν|| <∞ and 0 ≤ α < 1/2, then Ns(γ̃) = Op(T
−1+2α).

If the trial value of γ is too low, B̂2(γ) will be calculated with some observations from group 1

and will not be consistent for B2. Similarly, at too high a value of γ, B̂1(γ) will be calculated

with observations from group 2, and hence will not be consistent for B1. We only need to consider

where to position γ in relation to the N ordered observations of qi, denoted q[i]. There will be a

γ̃ that minimizes the size of the misclassified set. In fact, any γ̃ ∈ [q[i∗], q[i∗]+1), where i∗ is such

that q̃[i∗] = γ̃, will yield the same clusters. For fixed B2 − B1 = O(1), Theorem 1 implies that the

maximum misclassification rate is Ns(γ̃)/N = Op(
1
NT ). If B2 − B1 is in the T−α neighborhood of

zero, the misclassification rate is Ns(γ̃)/N = Op(
1

NT 1−2α ). Thus the misclassification rate tends to

zero as N,T →∞ jointly.

Given γ̃, the two groups can be estimated as I1(γ̃) = {i|qi ≤ γ̃} and I2(γ̃) = {i|qi > γ̃}.

Once group membership is consistently estimated, units within a group can be pooled to yield more
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efficient cluster-specific parameters. Consistency and asymptotic normality of B̂1 and B̂2 can be

established by treating γ̃ as though it was known. While likelihood based cluster analysis yields

a probability that unit i belongs to a group, group membership is known once we can find an

appropriate qi.

3.2 A Two-step Pseudo Threshold Approach

In practice, qi is not observed. We propose to replace qi by some q̂i that has the same information

as qi in the sense that q̂i ≤ γ when qi ≤ γ as T →∞. To simplify notation, hereafter, all variables

indexed by i are assumed to be ordered once qi is estimated. Given q̂i, the problem is to find an

estimate of γ. Let

γ̂ = arg min
γ∈[q̂min,q̂max]

SNT (γ, q̂), (6)

where

SNT (γ, q̂) =
∑
i|q̂i≤γ

T∑
t=1

(yit − xitB̂1(γ))2 +
∑
i|q̂i>γ

T∑
t=1

(yit − xitB̂2(γ))2. (7)

The two groups are then estimated as

Î1 = {i|q̂i ≤ γ̂} and Î2 = {i|q̂i > γ̂}.

To motivate our choices of q̂i, consider letting qi = βi −Bω. It is easy to see that

qi = βi −Bω =


βi −B1 − (1− ω)(B2 −B1) for i ∈ I01 ,

βi −B2 + ω(B2 −B1) for i ∈ I02 ,

where ω = (
∑N

i=1 Q̂i)
−1∑

i∈I1 Q̂i. Now βi − B1 = 0 if i ∈ I01 and B2 6= B1 by assumption. Thus,

qi = −(1−ω)(B2−B1) < 0 if i ∈ I01 . On the other hand, qi = ω(B2−B1) > 0 if i ∈ I02 . The pseudo

variable qi = βi−Bω along with any γ0 ∈ [−(1−ω)(B2−B1), ω(B2−B1)) completely summarizes

group membership. The procedure can be further simplified by noting that Bω is common across i.

This implies that qi = βi along with any γ0 ∈ Γ0 = [B1, B2) will also identify group membership.

As noted by one of the referees, a convenient choice of γ0 in this case is Bω.

Although βi is not known, it can be consistently estimated using the time series observations

on unit i only. Furthermore, B̂ω obtained from a pooled regression is also consistent for Bω. It

follows that q̂i = qi +Op(T
−1/2) for (i) PSEUDO1: q̂i = β̂i − B̂ω, qi = βi −Bω and (ii) PSEUDO2:
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q̂i = β̂i, qi = βi.
4 The main difference between the two is that under PSEUDO1, γ is estimated

from minimization of SNT (γ, q̂). Under PSEUDO2, γ is estimated by the pooled estimate of B,

ie. B̂ω.

In Theorem 1, we have shown that when qi is known and exogenous the classification error

rate is Op(N
−1T−1+2α), and if B2 − B1 is fixed, P (Ns(γ̃)/N |qi) = Op((NT )−1). Although β̂i and

B̂ω are both subject to sampling variability, the classification error rate of our pseudo threshold

method still converges to zero, albeit at a slower rate. Consider first PSEUDO2 with γ̂ = B̂ω.

Under Assumptions 1–3, 5 we have

P (β̂i > B̂ω|βi = B1) = P

(√
T (β̂i −B1) >

√
T (B̂ω −B1)

∣∣∣∣βi = B1

)
= P

(√
T (β̂i −B1) >

√
T

[
(1− ω)(B2 −B1) +Op(

1√
NT

)

]∣∣∣∣βi = B1

)
= P

(
(β̂i −B1) >

[
(1− ω)νT−α+1/2 +Op(

1√
N

)

]∣∣∣∣βi = B1

)
.

Similarly,

P (β̂i < B̂ω|βi = B2) = P

(
(β̂i −B2) >

[
ωνT−α+1/2 +Op(

1√
N

)

]∣∣∣∣βi = B2

)
.

Let Ns(γ̂) be the number of misclassified units given γ̂ and q̂i. Now Ns(γ̂) =
∑

i∈I01
1(β̂i >

B̂ω)+
∑

i∈I02
1(β̂i < B̂ω). Thus, E(Ns(γ̂)/N) = P (β̂i > B̂ω|βi = B1) + P (β̂i < B̂ω|βi = B2) =

O(T−1+2α).

For PSEUDO1 with γ̂ estimated from a threshold regression, we have

P (Ns(γ̂)/N) = Op(max(N−1T−1+2α, T−1+2α)) = Op(T
−1+2α).

Here, the rate of N−1T−1+2α arises from having to estimate γ, while the rate of T−1+2α arises from

having to estimate qi. The overall correct classification rate is then dominated by how precisely we

can estimate qi.

Theorem 2 Suppose the data are generated by (1). Let qi be estimated by PSEUDO1 (q̂i = β̂i−B̂ω)

or PSEUDO2 (q̂i = β̂i). For B2 −B1 = νT−α with 0 < ||ν|| <∞ and 0 ≤ α < 1/2, Ns(γ̂)/N → 0

as (N,T )→∞ jointly.

4 We also consider using q̂i = (β̂i−B̂ω)

σ̂iQ̂
−1/2
i

where Q̂i is defined in Assumption 3(a) with Q̂i → Qi > 0 as T → ∞,

σ̂2
i = 1

T−G−1

∑T
t=1 ê

2
it, and êit = yit − xitβ̂i. By standardizing the deviation between the individual estimate of

βi and an estimate of Bω, we account for the sampling variability arising from time series estimation of βi as well
as fixed effects estimation of Bω. This threshold variable gives more precise classification when there is substantial
heterogeneity in σi.

5Similar results can be obtained under Assumptions D1–D3 when xit = yi,t−1. See the proof to Theorem 2.
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In this framework, q̂i− qi only has a convergence rate of Op(T
−1/2). A consequence of the two step

procedure is that when T is small, the classification error can be high.

3.3 Extension to Multiple Regressors

We now turn to the case when there are K > 1 regressors. Note first that if a subset of the

K parameters are suspicious of being different across groups, a case which we refer to as partial

parameter homogeneity, the analysis in the previous section is still valid. For example, if the second

slope coefficient varies between groups, we can let q̂i = β̂i2.

More difficult to handle is the case of complete parameter heterogeneity which arises when all K

coefficients are group specific. To see why this is more involved, suppose there are two regressors,

x1,it and x2,it and there are G = 2 clusters. Let B1 = (B11, B12)
′ and B2 = (B21, B22)

′ be the slope

parameters for Group 1 and Group 2, respectively. Suppose first that for j, k,= 1, 2, j 6= k, we

have Bj1 > Bk1 and Bj2 > Bk2. Since both parameters are strictly larger in one group than in

another group, a natural pseudo transition variable is β̂+i = β̂i1 + β̂i2. But this pseudo threshold

variable does not always work! For example if (B11, B12) = (0.8, 1) and (B11, B12) = (1, 0.8), we

have B11 +B12 = B21 +B22. Thus when Bj1 > Bk1 but Bj2 < Bk2, the sum of the coefficients is no

longer a sufficient statistic for group membership. In this case we need to consider the transition

variable β̂−i = β̂i1 − β̂i2. Although we can expect β̂+i and β̂−i to separate those i ∈ I01 from those

i ∈ I02 when T is large, we first need to determine the sign of the coefficients and then find a way

uses this information to classify units. In an earlier version of this paper, we used the Goodman-

Kruskal’s gamma statistic to measure the association between pairs of concordant (same sign) and

discordant data (opposite sign) data. As this sample statistic itself has variability, the procedure

remains heuristic even though it works reasonably well in simulations.

A simpler and more effective approach is to recognize that even in the case of complete parameter

heterogeneity, we can still split the sample using β̂ik for some k = 1, . . . ,K since each component

of β̂i = (β̂i1, . . . , β̂iK) is informative about group membership. The only issue that remains is

which particular component of β̂i to use. We let the data speak by considering each component

as a possible candidate and choose the one that minimizes the sum of squared residuals. More

precisely, for each i = 1, . . . , N, k = 1, . . . ,K, let γ̂k be estimated from (6) for PSEUDO1 with
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q̂ik = β̂ik − B̂ωk or γ̂k = B̂ωk for PSEUDO2 with q̂ik = β̂ik. Compute

SNT,k(γ̂k) =
∑

i|q̂ik≤γ̂k

T∑
t=1

(yit − x′itB̂1(γ̂k))
2 +

∑
i|q̂ik>γ̂k

T∑
t=1

(yit − x′itB̂2(γ̂k))
2,

where xit, B̂1, B̂2 are K × 1 vectors. The best threshold variable is β̂ik∗ where

k∗ = min
k
SNT,k(γ̂k). (8)

The appeal of this approach is generality, since the procedure is the same for any K, and it works

for partial or complete parameter heterogeneity.

4 K-means Clustering

Suppose that we observe yi, i = 1, . . . , N and there are no covariates. The K-means algorithm

produces G clusters by moving unit i to an appropriate group to minimize the sum of squared

deviations between the units and the centroids.6 The K-means method can be sensitive to the

initial choice of the centroids and is not guaranteed to find the global minimizer. In spite of these

shortcomings, the algorithm is quite popular in applied statistical work, though we are unaware of

its application to a regression setting. We now modify the K-means method to allow for covariates.

Suppose that there are two groups and consider the transformed fixed effects model in (2). The

algorithm consists of repeating the following steps.

1. Randomly assign individuals into two groups {Ï1, Ï2}, and calculate fixed effects estimator

(B̈1, B̈2) based on {Ï1, Ï2}

2. Repeat (a) and (b) until no individual is changed from one group to another: (a) Calculate

SSRji =
∑T

t=1(yit − xitB̈j)2, i = 1, . . . , N , and j = 1, 2; (b) If SSR1
i ≤ SSR2

i , individual

i is re-assigned to group 1; otherwise, i stays with group 2. Then, (c) update {Ï1, Ï2} and

recalculate the fixed effects estimator (B̈1, B̈2) and SSRji .

3. Re-shuffle individuals unit by unit to form new grouping {Ï ′1, Ï ′2} and calculate (B̈′1, B̈
′
2) and

SSRj′i =
∑T

t=1(yit − xitB̈′j)2. If
∑

j

∑
i∈I′j

SSRj′i <
∑

j

∑
i∈Ij SSR

j
i , then repeat 2.(a)–(c)

with (B̈′1, B̈
′
2).

6There are many variations to the basic algorithm. Harmonic and fuzzy means have also been used instead of
simple means. See, for example, Hartigan (1975), Abraham, Cornillion, Matzner-Lober, and Molinari (2003).
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Steps 1 to 3 are repeated several times to reduce the effects of the initial group assignment. As

discussed in Garcia-Escudero and Gordaliza (1999), the algorithm is known to be sensitive to the

presence of outliers. The algorithm can be extended to the situations with G > 2 groups.

For i.i.d. data, Pollard (1981) used empirical process arguments to obtain a strong consistency

result while Pollard (1982) showed that the centroids estimated by the algorithm are asymptotically

normal. However, Pollard (1981) noted that his consistency result does not necessarily apply to

algorithms used to find optimal partitions in practice. For example, the algorithm needs to be

restarted many times to ensure that the objective function achieves a global minimum. As far as

we are aware of, the asymptotic properties of K-means algorithm used in practice (with multiple

restarts) is not available. Our panel K-means algorithm suffers from the same caveat.

While our pseudo threshold procedure minimizes the same objective function as K-means, three

implementation issues are noteworthy. First, we only estimate the ordered regression once. The

K-means algorithm makes random initial guesses of the centroids and then evaluates if a move to a

different group is desirable unit by unit. This makes the K-means method computationally costly

when N is large. Furthermore, when there are multiple alternatives and N is large, convergence

of the K-means can be slow. Second, because we follow the structural break literature and search

for the optimal threshold value in the [.1, .9] fraction of the sample, our approach is less sensitive

to outliers. Simulations bear this out. Third, we search for the second threshold value after the

first threshold value determines two subgroups. In contrast, the K-means is a global procedure. As

such, units found to be in Group 1 by the K-means when G = 2 can be in Group 2 when G = 3.

The K-means method also has two advantages. First, the algorithm relies only on the pooled

estimator B̂g which is
√
NT consistent, and does not require the individual estimates β̂i’s, which

are
√
T consistent. Thus the K-means method will be more precise even when N or T is small.

In contrast, the pseudo threshold approach requires N and T to be large. Second, the K-means

method considers every unit in the sample for a move to a different group. Our pseudo threshold

method moves all those units with q̂i above and below the threshold value simultaneously. The

simultaneous move method is fast, but can be inaccurate when the ordering of q̂i does not agree

with qi, as may be the case when the sample size is small, or when qi does not provide complete

information about the group structure. We can therefore expect a trade-off between precision and

speed in the different methods.
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5 Determining G

The objective of our analysis is to estimate the parameters of the panel data model. While group

classification is not our main focus, the foregoing analysis assumes that the number of groups G

is known. An informal way of determining G is to graph the value of the objective function (in

our case, the SNT for a given G) against the number of groups G and then locate the ‘knee point’

at which the objective function starts to flatten. More formal procedures have been proposed to

determine the number of clusters outside of a regression framework. Milligan and Cooper (1985)

considered 30 procedures and found that the global procedure of Calinski and J. Harabasz (1974)

works best, while the local procedure of Duda and Hart (1973) is second. But as Sugar and James

(2003) pointed out, most methods were developed for a specific problem and are somewhat ad-hoc.

The statistics literature is still in search of a procedure that can determine the number of groups

in a general setting.

Determining the number of clusters shares similarity with determining the number of break

points or thresholds. In those problems, we can use a sup-Wald type test for the null hypothesis

of no threshold effect.7 However, there are three features that make the SupW test for parameter

homogeneity infeasible here. First, B̂1 and B̂2 are estimated from two split samples ordered by

β̂i. One sample will have smaller values of β̂i and the other will have the larger values. Thus,

the pooled estimate will be biased if B1 = B2. Second, B̂1 and B̂2 are correlated when B1 = B2,

making inference non-standard. Third, as q̂i is ordered, bootstrap procedures valid for cross-

sectionally independent data are now invalid. Furthermore, determining the number of clusters is

not really our ultimate objective of interest.

We experimented with a number of methods developed in the literature, but they tend to be

inaccurate unless when the parameters in different groups are very far apart. However, two methods

seem promising, both not previously considered in the literature. The first is motivated by a result

of Bai (1997) who shows that in time series regressions, the break fractions can be consistently

estimated one at a time. We thus consider a sequential test of parameter homogeneity, which can

be stated as H0 : βi = B ∀i. If we cannot reject H0, then G = 1. If we reject, then we partition

the sample into two using PSEUDO1, PSEUDO2 or the K-means. We then test if H0 holds for

each of the subgroups. We may conclude that G is 2 if we cannot reject subsample heterogeneity.

7See, for example, Davies (1977), Andrews and Ploberger (1994), Hansen (1996), Bai (1997), and Caner and
Hansen (2004).
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If subsample homogeneity is rejected, the sample is split again until the null hypothesis cannot be

rejected for the subsamples.

To implement this sequential procedure, we use the dispersion t test for the null hypothesis of

parameter homogeneity proposed by Pesaran and Yamagata (2008). It is defined as

tg =

√
N(ξN/N −K)√

2KG
, (9)

where K denotes the number of the regressors, ξN =
∑N

i=1 σ̃
−2
i (β̂i− B̃w)′

(∑T
t=1 x

′
itxit

)
(β̂i− B̃w)′,

B̃w is the weighted pooled fixed effects estimator of Swamy (1970), and σ̃2i is obtained by fixed effects

estimation of B under the null hypothesis of homogeneity. This test allows for heteroskedasticity

and non-normally distributed errors and is consistent as N and T go to infinity jointly such that
√
N/T 2 → 0.

The second method for determining G proceeds along the lines of Bai and Perron (1998) for

determining multiple structural breaks. As we have panel data, the BIC for g groups is

BIC(g) = log

(
ΣNT (g, γ̂, q̂)

)
+ gK · cNT log(NT )

NT
+ (g − 1)

log(N2)

N2
, (10)

where

ΣNT (g, γ̂, q̂) =
1

G

G∑
k=1

1

NgT

∑
i∈Îg

T∑
t=1

(yit − xitB̂g(γ̂))2.

The goodness of fit component of the BIC is computed as the average (over groups) of the regres-

sion error variance in each group, where group membership is determined by either PSEUDO1,

PSEUDO2, or K-means. The penalty of log(NT )/NT is guided by the fact that B̂w is
√
NT con-

sistent under the null. In this case, the BIC should consistently select g if
c∗NT
NT → 0 but c∗NT →∞ as

N,T →∞. When all regressors and γ are observed, BIC obtains with c∗NT = log(NT ), or cNT = 1.

We consider a heavier penalty as q̂i and γ̂ are themselves estimated. Base on extensive simulations,

we set the penalty on additional regressors as cNT =
√

min[N,T ]. As c∗NT = cNT log(NT ) diverges,

and
c∗NT
NT → 0, the required conditions for consistent model selection are satisfied. Furthermore, the

breakpoint literature suggests γ̂ is super-consistent with variance that vanishes at rate N2. We put

a penalty of log(N2) on each threshold variable, giving an overall penalty on γ̂ of (g−1) log(N2)/N2.

As discussed earlier, our clustering method depends on the choice of G, but a Ĝ that equals the

correct G need not produce pooled estimates that are closest to the true group parameters. More

parameters are estimated as more groups are allowed. The increased sampling variability must
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be balanced against the bias induced by pooling units from different groups. Indeed, Baltagi and

Griffin (1997) and Baltagi, Griffin, and Xiong (2000) find that models with complete heterogeneity

yield inferior predictions than those that impose homogeneity even though they find substantial

heterogeneity in the price elasticity of demand for gasoline. Thus, while Ĝ is an interesting result

in its own right, accuracy in selecting G may not reflect how well a model captures parameter

heterogeneity. Thus in the simulations to follow, we evaluate both the accuracy of the estimated

parameters and of G.

6 Simulations and Applications

We now use Monte Carlo simulations to examine the finite sample properties of the methods

considered. We generate data as follows. For G = 2, 3, K = 1, 2, t = 1, . . . , T , and i = 1, . . . , N ,

ỹit = αi +
G∑
g=1

(
K∑
k=1

x̃k,itBgk

)
1(i ∈ I0g ) + ẽit,

where αi ∼ i.i.d. N(1, 1), x̃k,it ∼ i.i.d. N(1, 3), and independent of ẽit, ẽit ∼ N(0, 1) is i.i.d. over i

and t. When G = 2, we randomly assign individuals into two groups {I01 , I02} with size N0
1 = b2N/3c

and N0
2 = N −N0

1 , where bAc denotes the maximum integer that does not exceed real number A.

When G = 3, we randomly assign individuals into three groups {I01 , I02 , I03} with size N0
k = bN/3c

for k = 1, 2, and N2
3 = N −N0

1 −N0
2 .

We consider the following configurations:

i For (G,K) = (2, 1), B1 = 0.3 and B2 = 0.9.

ii For (G,K) = (3, 1), (B1, B2, B3) = (0.3, 0.5, 0.8).

iii For (G,K) = (2, 2), B1 = (B11, B12)
′ = (0.1, 0.3)′ and B2 = (B21, B22)

′ = (2/3, 0.6)′.

iv For (G,K) = (3, 2), B1 = (B11, B12)
′ = (0.3,−0.3)′, B2 = (B21, B22)

′ = (0.5, 0)′ and B3 =

(B31, B32)
′ = (0.7, 0.3)′.

These parameterizations give an R2 of around 0.5. We consider combinations of (N,T ) with

N = (50, 100, 200, 500) and T = (20, 50, 100, 200). Throughout, we use M = 1000 replications,

holding {I01 , · · · , I0K} and αi fixed over replications.

We consider three clustering methods: PSEUDO1 with q̂i = β̂i− B̂w or PSEUDO2 with q̂i = β̂i,

and the K-means. To estimate G by tg defined in (9) or BIC(g) defined in (10), we need pooled
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estimation for each group which in turn depends on which units are in the group. As such, the tg

can be implemented in conjunction with any of the three clustering methods. Because the t-test

is asymptotically standard normal, we use the critical value of 1.96. To reduce the effect of the

initial group assignment for the K-means method, for each group size Ġ = 1, . . . , Gmax = 4 under

consideration, we randomly draw Ġ+ 5 sets of initial assignment and take the results from the set

with the minimum sum of squared residuals. When K > 1, the threshold variable is determined

according to (8). In order to avoid having groups with too few units (which arises primarily when

N or T is small), we restrict the number units in each group to be at least max{10, 0.1N}.

Depending on how far the coefficients in two groups are separated, a model estimated with

homogeneity imposed might well approximate the conditional mean better, even though misclssifi-

cation rate would be high. Comparing goodness of fit when the number of free parameters differs

across models will always favor a complex model. Instead, we record the root mean squared error

of the estimates (RMSE) defined as

RMSE =
1

M

M∑
m=1

N∑
i=1

1

N

∥∥∥B̂(m)
i (Ĝ)− βi(G)

∥∥∥2
where B

(m)
i (Ĝ) is the pooled slope parameter in the m-th replication estimated for the ith unit

based on Ĝ and group assignment determined by one of the three clustering methods, and βi(G)

is the true slope coefficient for the unit. Figure 1 plots the RMSE for the different configurations

of the sample size. For each configuration, we have results (starting from the leftmost bar) for

K-means, PSEUDO1, PSEUDO2 using the tg test to determine G. This is followed by K-means,

PSEUDO1, PSEUDO2 using the BIC to determine G. To study the error due to miss-classification

and/or incorrect estimation of G, we also graph (i) the RMSE when G and group membership are

known, and (ii) when G is known but group membership is not and is determined by PSEUDO1

or the K-means.

As can be seen from Figure 1, regardless of the method used to cluster the sample (which can

be K-means, PSEUDO1, or PSEUDO2), the RMSE tends to decrease as N or T increases, but an

increase in T has a larger impact on RMSE than an increase in N . Conditional on Ĝ, K-means

and PSEUDO1 have similar RMSEs when T is large, but the K-means has smaller errors when T is

small. This is to be expected since the pseudo threshold method requires
√
T consistent estimation

of the individual slope parameters. However, PSEUDO2 is much more sensitive to N and T and is

clearly inferior to PSEUDO1 and K-means. Further investigation reviews that the issue is not with
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using β̂i as threshold variable, but with using B̂ω as threshold value. If we let the data determine

γ, PSEUDO2 is similar to PSEUDO1. In other words, even though γ̂ = B̂ω is a valid threshold

value, it is inferior to estimating γ by minimizing SNT (γ, q̂), As this is also the case for other DGPs,

results for PSEUDO2 will not be discussed further.

While B̂i(Ĝ) − βi(G) tells us how well we have captured the heterogeneity in coefficients, this

metric has no obvious relation to how far Ĝ is from G. Define the accuracy of selecting the true

group number GR by

GR =
1

M

M∑
m=1

1(Ĝm = G).

Also define the accuracy of classification by

CR =
1

M

M∑
m=1

1

N

N∑
i=1

Ĝ∑
g=1

1
(

(i ∈ Î(m)
g )

⋂
(i ∈ I0g )

)
.

Note that GR evaluates difference between Ĝ and G while CR indicates accuracy of assigning

individuals into groups. Thus these two indicators need not be close.

The results for GR and CR are presented in Figures 2 and 3 respectively. Observe first that

while the BIC accurately selects G when T ≤ N , the GR is quite low when N > T . The tg test

is more robust to variations in the sample size, regardless of the clustering method used. Not

surprisingly, when N and T are small, and there are more than two groups, G cannot be estimated

precisely. The K-means used in conjunction with tg selects the correct G wit probability around

0.95 when T ≥ 50, which is higher than the tg used in conjunction with PSEUDO1. The results

when K = 1 are similar to those when K > 1. Because we can obtain additional information from

the second regressor, the estimated G with two regressors tend to be more accurate than in the

one regressor case. The CR evidently improves as T increases and does not change much with N

as Theorem 2 suggests.

The RMSE presented in Figure 1 is based on the slope parameters. To give an overall sense of

goodness of fit, we consider out-of-sample validation as follows. For units i′ = 1, . . . , J = bN/3c

not in the estimation sample, where bAc the largest integral not exceeding A, we obtain individual

estimates of their slope parameters, denoted β̂i′ . We then use the threshold of γ̂ to assign the unit

into one of the Ĝ groups. Pooled estimates of the slope parameters are then obtained and the sum

of squared residuals SJT (γ̂, q̂, Ĝ) for the J units is recorded. For comparison, we consider three

benchmarks: (i) SJT (G = 1) for the model that imposes homogeneity, (ii) SJT (γ̂, q̂, G) for the case
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when G is known but group membership is not, and (iii) SJT (γ, q,G) for the case when both G

and group membership are known. As we can see from Figure 4 the sum of squared residuals with

unknown group membership and unknown G are similar to those when G and/or group membership

has to be estimated. This suggests that the clustering error that our methods produce has little

impact of the fitted regression model. Importantly, the sum of squared residuals is always smaller

than wrongly imposing homogeneity.

We also generate data from a dynamic panel model with group specific parameters:

ỹit = αi + ρgỹi,t−1 + φgt+ ẽit, if i ∈ I0g . (11)

We set αi = 0 for all i’s, (ρ1, ρ2) = (.3, .8), (φ1, φ2) = (0, .03), ẽit ∼ N(0, 1) is i.i.d. over i and

t. The results are presented in Table 1. As in the static DGP, the RMSE tends to decrease as T

increases, and the RMSE is smaller when G is chosen correctly. When T is small, the tg is preferred

over the BIC judged in terms of both the CR and GR. The RMSE for PSEUDO1 and K-means are

similar when T is large.

Overall, the results lead to four conclusions. First, the tg-test in conjunction with K-means

or PSEUDO can accurately estimate the number of groups in our setup. Second, PSEUDO2 is

inferior to PSEUDO1. Third, existing methods in the literature fail to select G accurately. The

proposed method of sequential testing using tg is best, while the BIC with an additional penalty

term is reasonably accurate when T is large. Fourth, for small sample size, the K-means is much

preferred over PSEUDO1. However, when the sample size is large, PSEUDO1 is as effective as

K-means. In this latter case, PSEUDO1 has a distinct computational advantage as the number of

regressions under the threshold approach is of order N , while the K-means involves an enumeration

of GN regressions.8

6.1 Empirical Study

The existence of “convergence clubs” has generated much research interests in the growth literature.

A group of countries with a similar steady state that can be characterized by the same linear model

are said to form a convergence club. Most studies use observed variables to group the countries and

then estimate the group specific parameters. See Durlauf, Kourtellos, and Tan (2008) for a survey.

Some find that the quality of institutions and ethnic fractionalization are the most important

8 In unreported results, ignoring the individual-specific fixed effects leads to more inaccurate estimates of the
clusters, as expected.
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determinants of economic growth. Others argue that the savings rate is more important, as are

education-related variables. See Barro and Sala-i-Martin (2003) for a discussion on issues relating

to empirical growth regressions.

To motivate the estimation issue when group membership is not known, consider the model

used in Lee, Pesaran, and Smith (1997) for 69 countries, taken from the PWT v6.2 by Heston,

Summers, and Aten (2006) for the sample 1965 to 2003.9 The regression model is

ỹit = αi + ρgỹit−1 + φgt+ ẽit, i ∈ Ig, g = 1, 2, . . . , G, (12)

where ỹit is the log per-capita output, αi denotes country-specific fixed effects, ρg and φg, g =

1, . . . , G, G = {1, 2, . . . , Gmax}, are group specific. While previous studies allow for differences in

αi and in estimation of φi, heterogeneity in ρ rarely allows.

We first obtain, for each i, estimates of φi and ρi from individual time series regression. The

tg test suggests either G = 4 or G = 5 depending on whether K-means or PSEUDO1 is used. We

choose the more parsimonious specification of G = 4. The results, reported in the top panel of

Table 2, show that the groups have different features in terms of ρ̂g and φ̂g. Specifically, ρ̂g is

much smaller in groups 1 and 3 than in groups 2 and 4. Furthermore, φ̂g is negative in groups

1 and 2, but positive in groups 3 and 4. Both ρg and φg are thus heterogeneous across groups.

Interestingly, while the 21 OECD countries do not all belong to the same group, the fast growing

countries like Indonesia, Korea, Malaysia, and Thailand are in the same (non-OECD) group. A

priori information would unlikely arrive at such a grouping.

Equation (12) assumes cross-section independence in ẽit. Pesaran (2006) suggests controlling for

cross-correlated errors by adding the cross-section average of appropriate variables to the pooled

regression. Our analysis consists of both pooled and individual regressions. To guard against

simultaneity bias, we add ∆ȳt−1 and ∆ȳt−2 to both the pooled and the individual regressors, where

ȳs = N−1
∑N

i ỹis, 4̄ys = ȳs − ȳs−1, s = 1, . . . , T . The results, reported in the bottom panel of

Table 2, show that after allowing for cross-section dependence, φg in group 1 is now positive, and

group 3 may warrant further splitting. However, the parameter estimates reinforce the main finding

that income dynamics across countries differ in two dimension: in the growth rate and in the speed

of adjustment to equilibrium.

9See Mankiw, Romer, and Weil (1992) on how to select 75 intermediate countries. However, Germany is removed
from data set due to consolidation. Due to limitation of data, we also remove Bangladesh, Bolivia, Botswana, Haiti,
and Myanmar.
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7 Conclusion

We use time series estimates of the coefficients for each unit to form ‘pseudo threshold variables’.

These are then used to partition the panel into groups. Our model based method is shown to

consistently estimate the true number of groups identified by distinct coefficients on the covariates.

The methodology can be modified to use weighted least squares with weight 1/σ̂i. Simulations

show that taking into account of heteroskedasticity when this feature is present in the data yields

smaller RMSEs in the parameter estimates.
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APPENDIX: PROOFS

To prove Theorem 1, we let I0 = (I01 , I
0
2 ) be the true group membership and let I = (I1, I2) denote

group membership other than (I01 , I
0
2 ). Suppose that the DGP is

ỹit = αi + x̃itB1 + ẽit, for i ∈ I01 ,
ỹit = αi + x̃itB2 + ẽit, for i ∈ I02 .

We will consider the general case where B2 − B1 = νT−α, 0 ≤ α < 1/2, ν does not depend on T ,
and ||ν|| > 0. Then α = 0 corresponds to the case when B2 −B1 = ν 6= 0.

For j, k = 1, 2, let Nkj be the number of individuals assigned to be in group j by I = (I1, I2)

when individuals truly belong to group k and let B̂kj denote the estimator of slope parameter for

i ∈ I0k∩Ij , B̂j for i ∈ Ij , and B̂0
k for i ∈ I0k . Let N0

k denote the number of individuals truly belonging
to group k and let N1 = N11 + N21 and N2 = N22 + N12. Notice that in Theorem 1 individuals
are ordered by qi. Without loss of generality, we assume N12 = 0. Therefore, N1 = N11 + N21,
N2 = N22 and we let Ns = Ns(I, I

0) = N21 be the number of misclassified units. We then define
I(C) = {I : Ns(I, I

0) ≥ C/T 1−2α}.
Let zit = z̃it − z̃i, where z̃it can be ỹit, x̃it, ẽit, ̂̃eit, and z̃i = 1

T

∑T
t=1 z̃it. Then for (k, j) =

(1, 1), (2, 1), and (2, 2),

yit = xitBk + eit = xitB̂j + êkjit ,

where êkjit = eit + xit(Bk − B̂j). Thus,

êkjit
2 = e2it + (B̂j −Bk)′x′itxit(B̂j −Bk) + 2eit[xit(Bk − B̂j)].

It is convenient to define xi = (x′i1, . . . , x
′
iT )′, ei = (ei1, . . . , eiT )′, and

Hkj =
∑

i∈I0k∩Ij

x′ixi with H1 = H21 +H11 and H2 = H22.

Also, we define ∆kj = B̂kj − Bk = H−1kj
∑

i∈I0k∩Ij
x′iei and ∆0

k = B̂0
k − Bk for (k, j) = (1, 1), (2, 1)

or (2, 2). Let SNT (I) and SNT (I0) denote the total sum of squared residuals under I and I0,
respectively. After some tedious algebra, we obtain

SNT (I)− SNT (I0) = ψ1 + ψ2 + ψ3, (13)

where

ψ1 = T−αν ′(H21H
−1
1 H11)νT

−α

ψ2 = −2T−αν ′(H21H
−1
1 H11∆11) + 2T−αν ′(H11H

−1
1 H21∆21)

ψ3 = −(H11∆11 +H21∆21)
′H−11 (H11∆11 +H21∆21) + ∆0

1
′
H11∆

0
1 −∆′22H22∆22 + ∆0

2
′
(H22 +H21)∆

0
2.

The detailed proof of equation (13) is available from authors upon request. In the following, we
will show a few lemmas used in Theorem 1.

Lemma A1 Under Assumptions 1 and 3,

(a) For each i, T−1/2x′iei
d→ N(0, σ2iQi) as T →∞.

(b) Let I∗ denote a nonempty subset of the whole sample and let N∗ ≥ 1 be the number of

units in I∗. Then, (N∗T )−1/2
∑

i∈I∗ x
′
iei

d→ N(0, Q∗) as (N∗, T ) → ∞ jointly, where Q∗ =

limN∗→∞N
−1
∗
∑

i∈I∗ σ
2
iQi.
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Proof of Lemma A1: Lemma A1(a) follows from Assumption 1 by central limit theorems used
in classical linear regression models. Lemma A1(b) directly follows because ẽit is assumed to be
cross-sectionally independent and E||QiT || is finite by Assumption 3(a). See Lemma 4 in Pesaran
(2006).

Lemma A1’ Under Assumptions D1–D3 with x̃it = ỹi,t−1,

(a) For each i, T−1x′ixi = Op(1), 0 < E|T−1x′ixi| is finite, and T−1x′ixi is strictly positive. Also,

T−1/2x′iei
d→ N(0, σ2iQi) as T →∞.

(b) Let I∗ denote a nonempty subset of the whole sample and let N∗ ≥ 1 be the number of units

in I∗. Then, (N∗T )−1
∑

i∈I∗ x
′
ixi = Op(1) and (N∗T )−1/2

∑
i∈I∗ x

′
iei = Op(1).

Proof of Lemma A1’: The first part of Lemma A1(a) follows from the fact that 0 < E|x′ixi/T | =
σ2i /(1− β2i ) <∞, x′ixi/T = σ2i /(1− β2i ) +Op(T

−1/2), and x′ixi/T > 0. The second part of Lemma
A1’(a) follows from Assumptions D1 and D3 by central limit theorems used in a stationary AR(1)
regression model. Next, consider Lemma A1’(b). Following the proof of Theorem 3 in Pesaran and
Yamagata (2008, p.84), we obtain

(N∗T )−1
∑
i∈I∗

x′ixi = N−1∗

 ∑
i∈I∗∩I01

σ2i
1−B2

1

+
∑

i∈I∗∩I02

σ2i
1−B2

2

+O(T−1) +Op(N
−1/2
∗ T−1/2),(14)

(N∗T )−1/2
∑
i∈I∗

x′iei − BiasN∗T (B1, B2)
d→ N(0, Q∗),

where

BiasN∗T = − lim
N∗,T→∞ jointyly

√
N∗
T
N−1∗

 ∑
i∈I∗∩I01

σ2i
1−B1

+
∑

i∈I∗∩I02

σ2i
1−B2

 , (15)

Q∗ = lim
N∗→∞

N−1∗

 ∑
i∈I∗∩I01

σ4i
(1−B2

1)
+

∑
i∈I∗∩I02

σ4i
(1−B2

2)

 .

Since N∗ ≤ N and 0 ≤ N/T < ∞ as N,T → ∞ jointly, (N∗T )−1
∑

i∈I∗ x
′
ixi = Op(1) and

(N∗T )−1/2
∑

i∈I∗ x
′
iei = Op(1). �.

Lemma A2 Under Assumptions 1–3 or under Assumptions D1–D3 with x̃it = ỹi,t−1,

(a) For (k, j) = (1, 1), (2, 1) and (2, 2), if Nkj ≥ 1, Hkj/(NkjT ) = Op(1) and Hkj∆kj/
√
NkjT =

Op(1). Otherwise, Hkj = 0 and Hkj∆kj = 0.

(b) For k = 1, 2, H0
k/(N

0
kT ) = Op(1) and H0

k∆0
k/
√
N0
kT = Op(1), where H0

1 = H11 and H0
2 =

H22 +H21.

(c) For j = 1, 2, Hj/(NjT ) = Op(1), (H11∆11 +H21∆21)/
√
N1T = Op(1), and H22∆22/

√
N2T =

Op(1).
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Proof of Lemma A2: We first show the proof under Assumptions 1–3. Consider (a). When
Nkj > 0, Hkj/(NkjT ) = Op(1) directly follows from Assumption 3. Since ∆kj = H−1kj

∑
i∈I0k∩Ij

x′iei
and by Lemma A1,

N
−1/2
kj T−1/2Hkj∆kj = HkjH

−1
kj

(
N
−1/2
kj T−1/2

) ∑
i∈I0k∩Ij

x′iei = Op(1).

When I0k ∩ Ij = ∅, Nkj = 0. It follows that Hkj = 0 and
∑

i∈I0k∩Ij
x′iei = 0. Analogously, (b)

holds by Assumptions 1–3, Lemma A1, and the fact that H0
k∆0

k =
∑

i∈I0k
x′iei. For (c), the first

claim holds because H1 = H11 + H21, H2 = H22, N1 = N11 + N21, and N2 = N22. Because
(H11∆11 + H21∆21) =

∑
i∈I1 x

′
iei and H22∆22 =

∑
i∈I2 x

′
iei, the second claim follows by Lemma

A1.
Similarly, under the Assumptions D1–D3, the same results follows by Lemma A1’ in a dynamic

model with x̃it = ỹi,t−1.
�.

Lemma A3 Under Assumptions 1–3 or under Assumptions D1–D3 with x̃it = ỹi,t−1,
infI∈I(C)N

−1
s (T−1+2α)ψ1 > 0.

Proof of Lemma A3: Notice that

(N−1s T−1+2α)ψ1 = ν ′T−1N−1s (H21H
−1
1 H11)ν. (16)

Lemma A3 follows if we can show that the minimal eigenvalue of T−1N−1s (H21H
−1
1 H11) is bounded

away from zero uniformly in I(C). Notice that Ns = N21, N1 = N11 +N21, and

T−1N−1s H21H
−1
1 H11 =

H21

N21T

(
H1

N1T

)−1 H11

N11T

N11

N1
.

First, we consider a panel data model under Assumptions 1–3. By Assumption 3, H21
N21T

has the

minimal eigenvalue bounded away from zero, which is then equivalent to show (16) is strictly
positive.

Similarly, consider a dynamic panel model with x̃it = ỹi,t−1. Under Assumptions D1–D3, H21
N21T

,
H1
N1T

, and H11
N11T

N11
N1

are all strictly positive. Therefore, the desired results follows. �

Lemma A4 Under Assumptions 1–3 or under Assumptions D1–D3 with x̃it = ỹi,t−1,
(a) (N−1s T−1+2α)ψ2 = op(1) uniformly in I(C).
(b) (N−1s T−1+2α)ψ3 = op(1) uniformly in I(C).

Proof of Lemma A4: Consider (a) first. Notice that

(N−1s T−1+2α)ψ2 = −2ν ′T−1/2+α
[
N−1s T−1/2

(
H21H

−1
1 H11∆11 −H11H

−1
1 H21∆21

)]
.

When N21 = 0, H21H
−1
1 H11∆11 −H11H

−1
1 H21∆21 = 0. When N21 > 0,(

N−1s T−1/2H21H
−1
1 H11∆11

)
= N−1/2Op(1) and

(
N−1s T−1/2H11H

−1
1 H21∆21

)
= N

−1/2
21 Op(1) by

Lemma A2. Because −1/2 + α < 0,

−2ν ′T−1/2+α
[
N−1s T−1/2

(
H21H

−1
1 H11∆11 −H11H

−1
1 H21∆21

)]
= op(1)
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uniformly in I(C).
Next consider (b). By Lemma A2(c), (H11∆11 +H21∆21)

′H−11 (H11∆11 +H21∆21) = Op(1) and

∆′22H22∆22 = Op(1) uniformly in I(C). Also, by Lemma A2(b), ∆0
1
′
H11∆

0
1 + ∆0

2
′
(H22 +H21)∆

0
2 =

Op(1) uniformly in I(C). Thus,

(N−1s T−1+2α)ψ3 = (N−1s T−1+2α)(H11∆11 +H21∆21)
′H−11 (H11∆11 +H21∆21)

+(N−1s T−1+2α)∆′22H22∆22 + (N−1s T−1+2α)
[
∆0

1
′
H11∆

0
1 + ∆0

2
′
(H22 +H21)∆

0
2

]
= op(1). �

Proof of Theorem 1: We first show Ns = Op(T
−1+2α). Define I(C) = {I : Ns(I, I

0) ≥
C/T 1−2α}. We want to show that for any ε and C > 0, P (Ns >

C
T 1−2α ) < ε. Since P (Ns >

C
T 1−2α ) < P (I ∈ I(C)), by the definition of I, it suffices to show that

P

(
sup

I∈I(C)
SSR(I0) ≥ SSR(I)

)
< ε.

Notice that

P

(
sup

I∈I(C)
SSR(I0) ≥ SSR(I)

)
≤ P

(
sup

I∈I(C)

−(ψ2 + ψ3)

NsT 1−2α ≥ inf
I∈I(C)

ψ1

NsT 1−2α

)
.

By Lemma A3, infI∈I(C) ψ1/(NsT
1−2α) is strictly positive. By Lemma A4: supI∈I(C)−(ψ2 +

ψ3)/(NsT
1−2α) = op(1). Together with these lemmas,

P

(
sup

I∈I(C)

−(ψ2 + ψ3)

NsT 1−2α ≥ inf
I∈I(C)

ψ1

NsT 1−2α

)
< ε,

and, therefore, Ns = Op(T
−1+2α). Since Ns/N = Op(N

−1T−1+2α), B̂j → Bj and Theorem 1
follows. �
Proof of Lemma 1: Recall that ω = (

∑N
i=1 Q̂i)

−1∑
i∈I01

Q̂i. Let B̂0
j = (

∑
i∈I0j

x′ixi)
−1∑

i∈I0j
x′iyi.

By direct calculations,
√
NT

[
B̂ω − (ωB1 + (1− ω)B2)

]
=
√
NT

( N∑
i=1

x′ixi

)−1(∑
i∈I01

x′iyi +
∑
i∈I02

x′iyi

)
− (ωB1 + (1− ω)B2)


=
√
NTω

(∑
i∈I01

x′ixi

)−1∑
i∈I01

x′iyi −B1

+
√
NT (1− ω)

(∑
i∈I02

x′ixi

)−1∑
i∈I02

x′iyi −B2


=

√
N

N0
1

[
ω
√
N0

1T
(
B̂0

1 −B1

)]
+

√
N

N0
2

[
(1− ω)

√
N0

2T
(
B̂0

2 −B2

)]
+ κNT + op(1),

where κNT = 0 under Assumptions 1–3, and under Assumptions D1-D3, κNT = Op(1) by Lemma
A1’(b) and

∑
i∈I0g x

′
ixi/N

0
gT > 0, g = 1, 2. Thus,

√
NT

[
B̂ω − (ωB1 + (1− ω)B2)

]
= Op(1),

and B̂ω is consistent for ωB1 + (1 − ω)B2. Also, if ω0 = plimN→∞ω, then B̂ω is consistent for
ω0B1 + (1− ω0)B2. �
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Proof of Theorem 2: If Ns/N → 0, then we have B̂j(q̂) → Bj . In the following, we will show
Ns/N → 0 under PSEUDO1 and PSEUDO2, respectively.

Consider PSEUDO1 with B2−B1 = νT−α, 0 ≤ α < 1/2 first. Let Γ0 be a set of threshold values
that will achieve correct clustering. Let γ0min = minγ{γ : γ ∈ Γ0} and γ0max = maxγ{γ : γ ∈ Γ0}.
Then for any γ0 ∈ [γ0min, γ

0
max],

F (γ0) = P (q0i < γ0) =

∑N
i=1 1(q0i < γ0max)

N
=
N0

1

N
.

Consider the following cases:

I. Γ0 known, qi estimated Suppose we know Γ0 but not q0i . Let ĉi√
T

= q̂i − q0i

Ns

N
=

1

N

N∑
i∈I01

1
(
q̂i > γ0max

)
+

1

N

N∑
i∈I02

1
(
q̂i < γ0min

)
=

1

N

∑
i∈I01

1

(
γ0max < q0i +

ĉi√
T

)
+

1

N

∑
i∈I02

1

(
γ0min > q0i +

ĉi√
T

)

=
1

N

∑
i∈I01

1

(
ĉi√
T
> γ0max − q0i

)
+

1

N

∑
i∈I02

1

(
ĉi√
T
< γ0min − q0i

)
.

Note that ĉi > 0 if q̂i > q0i and i ∈ I01 and ĉi < 0 if q̂i < q0i and i ∈ I02 . Now γ0max = B0
2 and

γ0min = B0
1 with q0i = B0

1 for those i ∈ I01 and q0i = B0
2 for those i ∈ I02 ,

Ns

N
=

1

N

∑
i∈I01

1

(
ĉi√
T
> B0

2 − q0i
)

+
1

N

∑
i∈I02

1

(
ĉi√
T
< B0

1 − q0i
)

=
1

N

∑
i∈I01

1

(
ĉi√
T
> B0

2 −B0
1

)
+

1

N

∑
i∈I02

1

(
ĉi√
T
< B0

1 −B0
2

)

=
1

N

∑
i∈I01

1
(
ĉi > νT 1/2−α

)
+

1

N

∑
i∈I02

1
(
ĉi < −νT 1/2−α

)
Since 0 ≤ α < 1/2, Ns/N tends to zero as T →∞.

II. Γ0 and q0i both unknown Now turn to the case when Γ0 and q0i are both unknown. Under

the assumption that γ̂min − γ0min and γ̂max − γ0max are of order Op(N
−1T−1/2), we can let d̂max

N
√
T

=

γ0max − γ̂max and d̂min

N
√
T

= γ0min − γ̂min. Note that d̂max and d̂min do not depend on i. Because

q̂i = q0i + ĉi√
T

, we have

Ns

N
≤ 1

N

N∑
i∈I01

1 (q̂i > γ̂max) +
1

N

N∑
i∈I02

1 (q̂i < γ̂min)

=
1

N

∑
i∈I01

1

(
ĉi√
T

+
d̂max

N
√
T
> γ0max − q0i

)
+

1

N

∑
i∈I02

1

(
ĉi√
T

+
d̂min

N
√
T
< γ0min − q0i

)
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=
1

N

∑
i∈I01

1

(
ĉi√
T

+
d̂max

N
√
T
> B0

2 −B0
1

)
+

1

N

∑
i∈I02

1

(
ĉi√
T

+
d̂min

N
√
T
< B0

1 −B0
2

)

=
1

N

∑
i∈I01

1

(
ĉi√
T

+
d̂max

N
√
T
> νT−α

)
+

1

N

∑
i∈I02

1

(
ĉi√
T

+
d̂min

N
√
T
< −νT−α

)

=
1

N

∑
i∈I01

1

(
ĉi > νT−α+1/2 − d̂max

N

)
+

1

N

∑
i∈I02

1

(
ĉi < −νT−α+1/2 − d̂min

N

)

Notice that

P
(
q̂i > γ̂max|i ∈ I01

)
= P

(
ĉi > νT−α+1/2 − d̂max

N

∣∣∣∣∣ i ∈ I01
)

≤ P
(
|ĉi| > νT−α+1/2 +Op(N

−1)
∣∣∣ i ∈ I01) = Op(T

2α−1),

where the last equality comes from the Chebyshev’s inequality. Similarly,

P
(
q̂i < γ̂min|i ∈ I02

)
= Op(T

2α−1)

Thus, E(Ns/N) = Op(T
2α−1). Since 0 ≤ α < 1/2, Ns/N tends to zero as T →∞.

Next, consider PSEUDO2 with γ̂ = B̂ω. Under Assumptions 1–3, we have

P (β̂i > B̂ω|βi = B1) = P

(√
T (β̂i −B1) >

√
T (B̂ω −B1)

∣∣∣∣βi = B1

)
= P

(√
T (β̂i −B1) >

√
T

[
(1− ω)(B2 −B1) +Op(

1√
NT

)

]∣∣∣∣βi = B1

)
= P

(
(β̂i −B1) >

[
(1− ω)νT−α+1/2 +Op(

1√
N

)

]∣∣∣∣βi = B1

)
.

Also,

P (β̂i < B̂ω|βi = B2) = P

(
(β̂i −B2) >

[
ωνT−α+1/2 +Op(

1√
N

)

]∣∣∣∣βi = B2

)
.

Similarly, under Assumptions D1–D3 with x̃it = ỹi,t−1, we have 10

P (β̂i > B̂ω|βi = B1) = P

(
(β̂i −B1) >

[
(1− ω)νT−α+1/2 +Op(

1√
T

) +Op(
1√
N

)

]∣∣∣∣βi = B1

)
,

P (β̂i < B̂ω|βi = B2) = P

(
(β̂i −B2) >

[
ωνT−α+1/2 +Op(

1√
T

) +Op(
1√
N

)

]∣∣∣∣βi = B2

)
.

Now Ns =
∑

i∈I01
1(β̂i > B̂ω)+

∑
i∈I02

1(β̂i < B̂ω). Thus, E(Ns/N) = P (β̂i > B̂ω|βi = B1) + P (β̂i <

B̂ω|βi = B2) = O(T−1+2α). �

10Under Assumptions D1-D3 with x̃it = yi,t−1, B̂0
g −Bg =

∑
i∈I0g

x′iei/
∑
i∈I0g

x′ixi = (1 +Bg)/T +Op(
√

1/N0
gT ),

g = 1, 2, by (14), (15) and Cramer’s theorem. See, for example, Alvarez and Arellano (2003, Theorem 1) for the case
with σ2

i = σ2 for all i’s.

27



References

Abraham, C., P. Cornillion, E. Matzner-Lober, and N. Molinari (2003): “Unsupervised
Curve Clustering Using B-Splines,” Scandinavian Journal of Statistics, 30, 581–595.

Alvarez, J., and M. Arellano (2003): “The Time Series and Cross-Section Asymptotics of
Dynamic Panel Data Estimators,” Econometrica, 71, 1121–1160.

Alvarez, J., M. Browning, and M. Ejrnæs (2006): “Modelling Income Processes with Lots of
Heterogeneity,” Oxford University Discussion Paper 285.

Anderson, T., and C. Hsiao (1982): “Formulation and Estimation of Dynamic Models Using
Panel Data,” Journal of Econometrics, 18, 47–82.

Andrews, D., and W. Ploberger (1994): “Optimal Tests When a Nuisance Parameter is
Present only under the Alternative,” Econometrica, 62, 1383–1414.

Bai, J. (1997): “Estimation of a Change Point in Multiple Regression Models,” Review of Eco-
nomics and Statistics, 79, 551–563.

Bai, J., and P. Perron (1998): “Estimating and Testing Linear Models with Multiple Structural
Changes,” Econometrica, 66, 47–78.

Baltagi, B., and J. Griffin (1997): “Pooled Estimators vs. their Heterogeneous Counterparts
in the Context of Dynamic Demand for Gasoline,” Journal of Econometrics, 77, 303–327.

Baltagi, B., J. Griffin, and W. Xiong (2000): “To Pool or Not to Pool: Homogeneous versus
Heterogeneous Estiatmors Applied to Cigarate Demand,” Review of Economics and Statistics,
82, 117–126.

Barro, R. J., and X. Sala-i-Martin (2003): Economic Growth. The MIT Press.

Barsky, R. B., F. T. Juster, M. S. Kimball, and M. D. Shapiro (1997): “Preference Param-
eters and Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement
Survey,” The Quarterly Journal of Economics, 112, 537–579.

Browning, M., and J. Carro (2007): “Heterogeneity and Microeconometric Modeling,” Ad-
vances in Economics and Econometrics, 3, edited by Richard Blundell, Whitney Newey and
Torsten Persson, Cambridge University.

Burnside, C. (1996): “Production Function Regressions, Returns to Scale and Externalities,”
Journal of Monetary Economics, pp. 177–201.

Calinski, R., and J. J. Harabasz (1974): “A Dendrite Method for Cluster Analysis,” Commu-
nication in Statistics, 3, 1–27.

Caner, M., and B. E. Hansen (2004): “Instrumental Variable Estimation of a Threshold Model,”
Econometric Theory, 20, 813–843.

Carroll, C. D., and A. A. Samwick (1997): “The Nature of Precautionary Wealth,” Journal
of Monetary Economics, 40, 41–71.

Chiou, J.-M., and P.-L. Li (2007): “Functional Clustering and Identifying Substructure of Lon-
gitudinal Data,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69,
679–699.

28



Davies, R. B. (1977): “Hypothesis Testing when a Nuisance Parameter is Present only under the
Alternative,” Biometrika, 64, 247–254.

Duda, R., and P. Hart (1973): Pattern Classification and Scene Analysis. Wiley.

Durlauf, S., and P. Johnson (1995): “Multiple Regimes and Cross-Country Growth Behavior,”
Journal of Applied Econometrics, 10, 365–384.

Durlauf, S. N., A. Kourtellos, and C. M. Tan (2008): “Empirics of Growth and Devel-
opment,” International Handbook of Development Economics, 1, edited by Amitava Dutt and
Jaime Ros, Edward Elgar.

Fraley, C., and A. E. Raftery (2002): “Model-Based Clustering, Discriminant Analysis, and
Density Estimation,” Journal of the American Statistical Association, 97, 611–631.

Garcia-Escudero, L., and A. Gordaliza (1999): “Robustness Properties of K Means and
Trimmed K Means,” Journal of the American Statistical Association, 94, 956–969.

Goldfeld, S., and R. Quandt (1973): “The Estimation of Structural Shifts by Switching Re-
gressions,” Annals of Economic and Social Measurement, 2, 475–485.

Guvenen, F. (2009): “An Empirical Investigation of Labor Income Processes,” Review of Eco-
nomic Dynamics, 12, 58–79.

Hahn, J., and G. Kuersteiner (2002): “Asymptotically Unbiased Inference for A Dynamic
Panel Model with Fixed Effects when Both N and T are Large,” Econometrica, 70, 1639–1657.

Hall, P., H. Muller, and J. Wang (2006): “Properties of Principal Component Methods for
Functional and Longitudinal Data Analysis,” The Annals of Statistics, 34, 1493–1517.

Hansen, B. E. (1996): “Inference When a Nuisance Parameter Is Not Identified under the Null
Hypothesis,” Econometrica, 64, 413–430.

(1999): “Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference,”
Journal of Econometrics, 93, 345–368.

Hartigan, J. A. (1975): Clustering Algorithms. Wiley.

Henderson, D. J., and R. R. Russell (2005): “Human Capital and Convergence: A Production-
Frontier Approach,” International Economic Review, 46, 1167–1205.

Heston, A., R. Summers, and B. Aten (2006): Penn World Table Version 6.2. Center for
International Comparisons of Production, Income and Prices at the University of Pennsylvania.

Hsiao, C., and M. H. Pesaran (2004): “Random Coefficient Panel Data Models,” edited by L.
Matyas and P. Sevestre, Third Edition, Springer Publishers, Ch. 6.

Hsiao, C., and A. K. Tahmiscioglu (1997): “A Panel Analysis of Liquidity Constraints and
Firm Investment,” Journal of the American Statistical Association, 92, 455–465.
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Figure 1: RMSEs of the proposed methods
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Figure 2: Probability of Selecting the Correct Group Number
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Figure 3: Accuracy of Assigning Group Membership
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Figure 4: Out of Sample Sum of Squared Residuals
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Table 1: Results for Dynamic Panel Model.

tg-test

RMSE×10

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 1.35 0.35 0.19 0.12 0.07 1.55 0.62 0.18 0.12 0.07
100 1.36 0.41 0.22 0.12 0.06 1.59 0.73 0.22 0.11 0.05
200 1.40 0.46 0.25 0.12 0.06 1.63 0.79 0.23 0.12 0.06
500 1.50 0.50 0.31 0.15 0.06 1.65 0.72 0.29 0.13 0.05

Probability of Selecting the Correct Group Number (GR)

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 0.88 0.89 0.91 0.94 0.95 0.79 0.82 0.92 0.95 0.95
100 0.73 0.66 0.83 0.91 0.96 0.43 0.62 0.83 0.91 0.96
200 0.45 0.42 0.72 0.87 0.93 0.20 0.65 0.72 0.87 0.93
500 0.07 0.08 0.44 0.78 0.93 0.12 0.37 0.44 0.78 0.93

Accuracy of Classification(CR)

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 0.85 0.92 0.94 0.96 0.97 0.75 0.86 0.94 0.97 0.96
100 0.78 0.80 0.88 0.93 0.97 0.62 0.74 0.88 0.94 0.97
200 0.63 0.64 0.79 0.90 0.95 0.51 0.75 0.80 0.91 0.96
500 0.39 0.44 0.59 0.83 0.95 0.46 0.61 0.59 0.84 0.95

BIC

RMSE×10

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 1.31 0.30 0.16 0.10 0.06 1.54 0.58 0.16 0.10 0.06
100 1.34 0.27 0.14 0.08 0.04 1.60 0.67 0.14 0.08 0.04
200 1.55 0.25 0.12 0.07 0.03 1.66 0.76 0.13 0.07 0.03
500 1.59 0.52 0.28 0.06 0.03 1.65 0.72 0.23 0.06 0.03

Probability of Selecting the Correct Group Number (GR)

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 0.98 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00
100 0.80 1.00 1.00 1.00 1.00 0.40 0.96 1.00 1.00 1.00
200 0.00 1.00 1.00 1.00 1.00 0.07 0.89 1.00 1.00 1.00
500 0.00 0.00 0.20 1.00 1.00 0.10 0.37 0.26 1.00 1.00

Accuracy of Classification(CR)

K-means PSEUDO1

T=20 50 100 200 500 T=20 50 100 200 500

N=50 0.89 1.00 1.00 1.00 1.00 0.80 0.98 1.00 1.00 1.00
100 0.80 1.00 1.00 1.00 1.00 0.62 0.95 1.00 1.00 1.00
200 0.35 1.00 1.00 1.00 1.00 0.43 0.91 1.00 1.00 1.00
500 0.31 0.31 0.46 1.00 1.00 0.44 0.60 0.50 1.00 1.00
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Table 2: Application: Growth Regression

Model A

Group 1 2 3 4

K-means PSUEDO1 K-means PSUEDO1 K-means PSUEDO1 K-means PSUEDO1

Ng 9 9 20 13 27 23 13 24

ρg 0.8394 0.8663 0.9727 0.9693 0.8764 0.9178 0.9519 0.9592
(31.052) (35.858) (166.939) (125.573) (73.124) (79.362) (93.948) (123.846)

φg -0.0009 -0.0009 -0.0004 -0.0005 0.0018 0.0011 0.0018 0.0009
(-3.074) (-3.423) (-2.577) (-2.318) (7.369) (4.412) (4.893) (3.858)

tg-test 0.5454 2.9625 1.2584 -0.2241 1.1865 0.9209 0.0757 6.3712

Model B

Group 1 2 3 4

Ng 8 9 11 20 14 19 36 21

ρg 0.8771 0.8736 0.9279 0.9606 0.924 0.8866 0.9791 0.9681
(42.684) (41.152) (57.232) (114.852) (73.169) (59.59) (201.029) (131.614)

φg 0.0009 0.0011 -0.0004 -0.0002 0.0021 0.0026 0.0004 0.0011
(2.133) (3.130) (-1.477) (-1.081) (6.244) (7.375) (3.263) (4.695)

tg-test 0.1194 -0.3125 -0.0374 2.8038 6.0253 5.1246 1.6078 3.2935

Note: Regression models for g = 1, 2, . . . , G:

Model A : ỹit = αi + ρg ỹit−1 + φgt+ ẽit, i ∈ Ig,
Model B : ỹit = αi + ρg ỹit−1 + φgt+ βg4̄yt−1 + γg4̄yt−2 + ẽit, i ∈ Ig,

where αi denotes country-specific fixed effects, ρg, φg, βg and γg, g = 1, . . . , 4, are group specific, ȳs = N−1 ∑N
i ỹis,

4̄ys = ȳs − ȳs−1, s = 1, . . . , T . The number in parentheses is the t-value. The detailed definition of the tg-test can

be found in Equation (9).
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