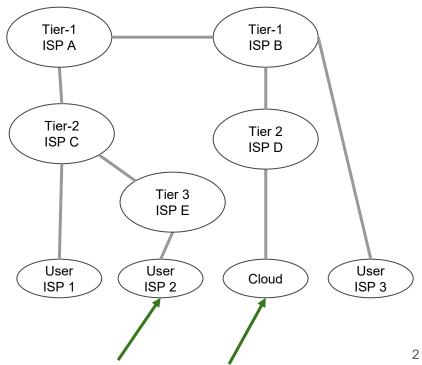
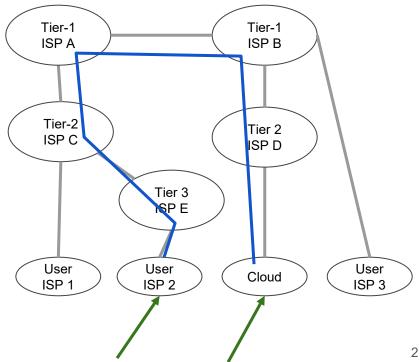
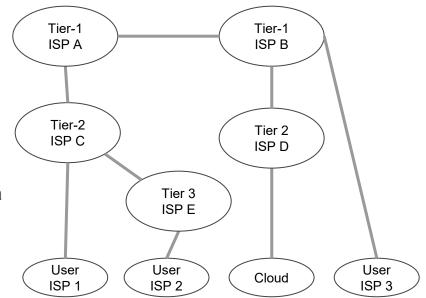
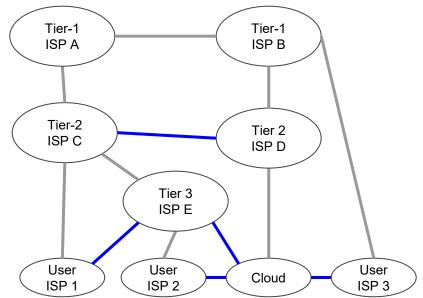
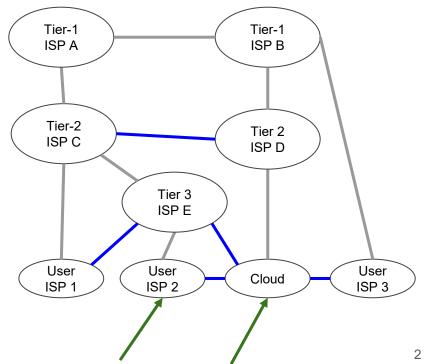

Cloud Provider Connectivity in the Flat Internet


Todd Arnold[†], Jia He[†], Weifan Jiang[†], Matt Calder^{‡†}, Italo Cunha^{§†}, Vasileios Giotsas[#], Ethan Katz-Bassett[†]


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

Motivation and Goals

- Majority of Internet traffic now occurs over direct connections
- Impact of flattening is not captured by traditional approaches
 - Invisible to traditional vantage points
 - Existing metrics of importance (*e.g.*, customer cone)
 - Do not reflect the rich peering interconnectivity of the flat Internet
 - Focus on how much transit an AS could provide rather than how much it does provide
- To understand this gap and capture the progress of Internet flattening
 - Uncover the missing links
 - Understand to what degree they enable the major cloud providers (Amazon, Google, IBM, and Microsoft) to bypass the traditional hierarchy

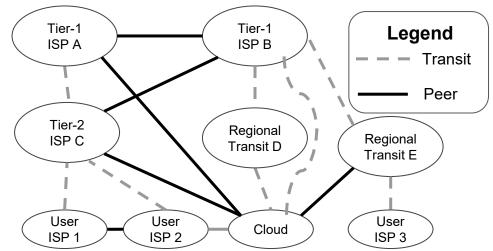
Methodology

AS topology graph from two sources

• CAIDA's AS relationship dataset

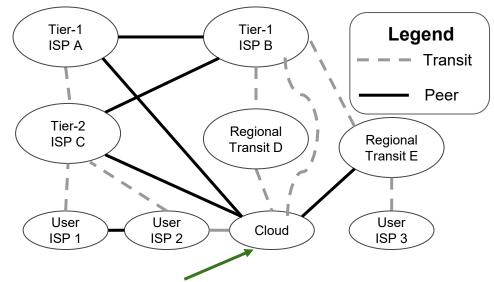
Methodology

AS topology graph from two sources

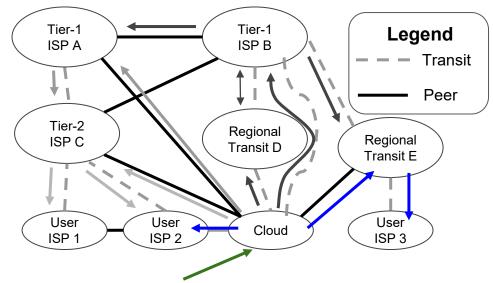

- CAIDA's AS relationship dataset
- Traceroutes from inside clouds
 - \circ ~ Used to identify directly connected neighbors to add to the topology
 - Map IP-to-ASN

Methodology

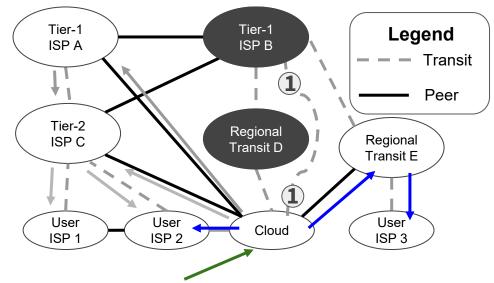
AS topology graph from two sources


- CAIDA's AS relationship dataset
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Map IP-to-ASN
- Validation
 - Iterative process with feedback from both Microsoft and Google
 - Worked with Microsoft while we refined our methodology
 - Google's feedback validated our refinements
 - Microsoft: 11% FDR, 21% FNR, 3,565 neighbors
 - Google: 15% FDR, similar FNR, 7,554 neighbors
 - Amazon: 1,188 neighbors
 - IBM: 2,747

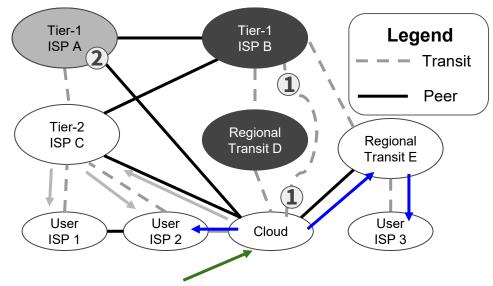
- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet


- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

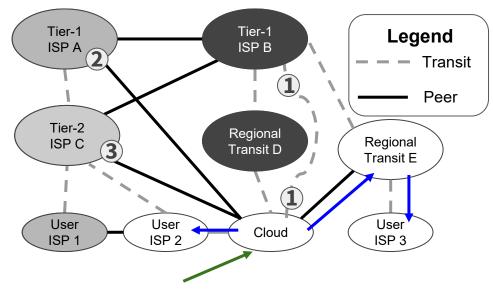
- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet


- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet


- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet


- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet

- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud's providers
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies
- Hierarchy-free Reachability
 - Count of reachable ASes when using peer links and not the hierarchical Internet

- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

Hierarchy-free Reachability Results

Legend

Tier 1 ISP Tier 2 ISP Cloud Transit Content

Takeaway

- Cloud providers have higher reachability than most networks, including the Tier 1 and Tier 2 ISPs
- They are able to reach the majority of networks even when bypassing their transit providers, Tier 1 ISPs, and Tier 2 ISPs.
- Thousands of networks benefit from flattening

	#	Network (AS)	Reachability (total, %)	
	1	Level 3 (3356)	61,154 (90.2%)	
	2	HE (6939)	58,981 (87.0%)	
	3	Google (15169)	58,922 (86.9%)	
	4	Microsoft (8075)	57,357 (84.6%)	
	5	IBM (36351)	55,714 (82.2%)	
	6	Cogent (174)	55,049 (81.2%)	
	7	Zayo (6461)	54,489 (80.4%)	
	8	Telia (1299)	54,324 (80.1%)	
	9	GTT (3257)	53,388 (78.7%)	
	10	SG.GS (24482)	53,157 (78.4%)	
	11	COLT (8220)	52,256 (77.1%)	
	12	G-Core Labs (199524)	51,820 (76.4%)	
\nearrow	13	NTT (2914)	51,374 (75.8%)	
	14	Wikimedia (14907)	51,204 (75.5%)	
	15	Core-Backbone (33891)	51,110 (75.4%)	
	16	WV FIBER (19151)	51,083 (75.3%)	
	17	TELIN PT (7713)	50,919 (75.1%)	
	18	Amazon (16509)	50,867 (75.0%)	
	19	Swisscom (3303)	50,758 (74.9%)	
	20	IPTP (41095)	50,606 (74.6%)	
-				

Hierarchy-free Reachability Results

Legend

Tier 1 ISP Tier 2 ISP Cloud Transit Content

Takeaway

- Cloud providers have higher reachability than most networks, including the Tier 1 and Tier 2 ISPs
- They are able to reach the majority of networks even when bypassing their transit providers, Tier 1 ISPs, and Tier 2 ISPs.
- Thousands of networks benefit from flattening

	#	Network (AS)	Reachability (total, %)	
	1	Level 3 (3356)	61,154 (90.2%)	
	2	HE (6939)	58,981 (87.0%)	
	3	Google (15169)	58,922 (86.9%)	
	4	Microsoft (8075)	57,357 (84.6%)	
	5	IBM (36351)	55,714 (82.2%)	
	6	Cogent (174)	55,049 (81.2%)	
	7	Zayo (6461)	54,489 (80.4%)	
	8	Telia (1299)	54,324 (80.1%)	
	9	GTT (3257)	53,388 (78.7%)	
	10	SG.GS (24482)	53,157 (78.4%)	
	11	COLT (8220)	52,256 (77.1%)	
	12	G-Core Labs (199524)	51,820 (76.4%)	
\backslash	13	NTT (2914)	51,374 (75.8%)	
	14	Wikimedia (14907)	51,204 (75.5%)	
	15	Core-Backbone (33891)	51,110 (75.4%)	
	16	WV FIBER (19151)	51,083 (75.3%)	
	17	TELIN PT (7713)	50,919 (75.1%)	
	18	Amazon (16509)	50,867 (75.0%)	
	19	Swisscom (3303)	50,758 (74.9%)	
/	20	IPTP (41095)	50,606 (74.6%)	

Conclusions

- Emulated connectivity using an AS-level topology graph constructed from
 - BGP data
 - Traceroutes
 - Validated cloud neighbor lists
- Hierarchy-free Reachability quantifies the extent of Internet flattening and how little networks rely on the Internet hierarchy
- Show that thousands of networks benefit from flattening
 - Other metrics do not capture these insights
 - The cloud providers rely less on the hierarchy than most other networks