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Information Disclosure, Intertemporal

Risk Sharing, and Asset Prices

Abstract: How much interim information about a financial asset should be disclosed?
For example, should a central bank publish bank stress test information, or should a
firm issue profit warnings? This paper analyzes the impact of information disclosure on
intertemporal risk sharing and asset prices in a competitive economy with short hori-
zon investors. Interim information disclosure triggers interim price movements, but it
mitigates price movements at a later date, when the information would otherwise have
become public. Disclosure policy can thus be interpreted as a tool to “control” interim
asset price movements. As our main theoretical result we show that interim risk sharing
(through partial disclosure) can both maximize and minimize ex ante market prices. We
also discuss which disclosure policy is preferred by different investors’ types, and which
policy maximizes the sum of investors’ utilities. From an empirical perspective, our paper
predicts that there is no monotonic relationship between the quality of disclosure and the
market value of the firm.

Keywords: Information disclosure, information policy, asset pricing, intertemporal risk
sharing, general equilibrium.

JEL-Classification: D92, G14, M41.



1 Introduction

The discussion about the optimal degree of information disclosure is old but still con-
troversial. The recent debate whether the U. S. Federal Reserve Bank and the European
Central Bank should announce the results of bank stress tests, has attracted much public
and policy attention. The disclosure of information about the state of the banking system
and its ability to manage an adverse change in the future macroeconomic environment
can be interpreted as a pricing factor that triggers price movements of banks stocks. But
this information mitigates price movements at a later date, when the information would
otherwise have become public. Consequently, disclosure shifts the timing of price changes
and can be interpreted as a mechanism to “control” the timing and magnitude of price
changes and intertemporally allocate price risk.1

This paper analyzes whether and how the mere announcement to release future interim
information with no impact on the distribution of cash flows can change today’s asset
prices in a competitive economy with short horizon investors. We assume that investors
need to sell after one period and do not hold the asset until maturity, for example due
to short-term consumption plans. This makes short-term price risk relevant.2 Our paper
focuses on the following two interrelated questions. First, how does the release of interim
information affect interim asset price movements, and thus intertemporal risk sharing
among investors? Second, how does intertemporal risk sharing among different investors
affect the risk premia they demand, and thus ex ante asset prices? The paper discusses
which disclosure policy maximizes the ex ante market value of the asset, which policies
are preferred by different investors, and which policy maximizes the sum of investors’
utilities.

Conventional wisdom may suggest that the announcement of a future announcement is
irrelevant for today’s market price (see Ross, 1989) or maximizes the market price (see
Epstein and Turnbull, 1980; Duffie, Schroder, and Skiadas, 1996, 1997). Gao (2010) states
that “most theoretical studies have examined a competitive, pure exchange economy
and predicted that disclosure quality monotonically reduces cost of capital” and thus
maximizes the market value of the firm.3 The main result of the present paper shows that
intertemporal risk sharing through the release of partial interim information can actually

1Another example for the question on how much disclosure is optimal is earnings guidance by public
companies. After Congress passed the Safe Harbor law that protected companies from legal liability in
performance forecasts, the practice of providing forward-looking information, such as earnings per share
guidance, became routine during the late 1990s. The number of firms providing guidance increased from
92 in 1994 to approximately 1200 in 2001. In a survey, 46% of companies that provide earnings guidance
say that they do so in order to try to limit stock volatility. See Deloitte Financial Executives Research
Foundation, June 2009, “Earnings Guidance: The Current State of the Play,” and Thomson Financial,
April 2006, “Trends in Earnings Guidance.”

2Other papers with short horizon traders or myopic investors include Tirole (1982); Spiegel (1998);
Allen, Morris, and Shin (2006); Cespa and Vives (2009); Watanabe (2008); Biais, Bossaerts, and Spatt
(2010).

3We thoroughly relate our paper to the literature in the next section.
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minimize ex ante market prices in an economy in which financial markets are competitive
and complete. In addition, we characterize how ex ante market prices vary with the
precision of interim disclosure and give conditions when partial disclosure minimizes or
maximizes market prices. We also derive the disclosure policy that different investor types
prefer and the one that maximize the sum of investors’ utilities.

In our model, we consider an economy with three dates and three types of agents, E(arly)-
investors, M(iddle)-investors, and L(ate)-investors. At date 0, all agents have identical
information about the exogenous cash flow distribution of the bank.4 The bank’s cash
flow is realized and publicly known at date 2. At date 0, E-investors sell the bank stocks
to M-investors for an initial price and consume the proceeds. At date 1, M-investors want
to consume and sell their shares to L-investors for an interim price. At date 2, the cash
flow is realized and L-investors consume. All types of agents are (equally) risk averse.
Asset prices are determined in a system of complete and competitive markets. At any
date, there is symmetric information between agents who trade with each other.5

At date 1
2
, the central bank conducts a stress test and learns a signal about the final

payoff of the stock. In addition, the central bank commits to a disclosure policy at date 0
in the sense that it announces whether and what information it will disclose at date 1

2
.

Although E-investors do not face direct price risk, the mere announcement to disclose
some information affects the price of the stock at date 0. For a given cash flow process,
an interim (date 1

2
) disclosure policy can be used as a mechanism to control interim price

movements (i. e., the set of possible interim prices at date 1), and can be interpreted as
“fine-tuning” multi-period risk sharing among investors. This affects the risk premia that
different cohorts of investors demand, and thus the initial market price of the stock at
date 0. If no interim information is released, then M-investors face no risk at all, and L-
investors bear the full risk. If vice versa the central bank obtains perfect information and
releases all information at date 1

2
then M-investors bear all the risk (because the interim

price at which M-investors can sell the asset fluctuates with the information). Therefore,
how M-investors and L-investors share risk affects the initial price at which E-investors
can sell the asset to M-investors at date 0.

As a novel result, we show that intertemporal risk sharing through the release of partial
interim information can actually minimize the initial stock price and the market value of

4We discuss disclosure in a banking context as the leading example. More generally, this “bank” could
be any firm. Our “central bank” with information about future cash flows would then be the firm’s
manager.

5The main purpose of this paper is to show that even under symmetric information and without moral
hazard problems, information disclosure affects asset prices in a non-trivial fashion. With asymmetric
information between traders, the market can break down, see Milgrom and Stokey (1982). Adding
asymmetric information and analyzing how public information disclosure affect trading in market with
asymmetric information is an interesting extension. Dang, Gorton, and Holmstrom (2012) analyze how
the provision of public information affects private information acquisition by agents in decentralized
markets. They show that the disclosure of noisy information can trigger endogenous adverse selection
and reduce trade.
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the bank. In the baseline model with two possible final payoffs of the risky asset (high
and low), our main parameters are the success probability (probability of the high payoff)
and the investors’ absolute risk aversion.

The key intuition for understanding whether interim partial disclosure (at date 0.5) min-
imizes or maximizes the initial price is whether the interim price is closer to the high or
the low payoff when there is no disclosure. We use backward induction to determine the
initial price. With no disclosure, initial and interim price are identical since investors do
not learn anything before trading at date 1.

When does partial disclosure and risk sharing between M- and L-investors minimize the
initial price? This case arises if the success probability is relatively high and risk aversion
is relatively low. Without interim disclosure, the interim price (and thus also the initial
price) is then relatively close to the high payoff. Partial disclosure means that investors
obtain a noisy interim signal which can be wrong with positive probability. If the signal
suggests that the true state is likely to be high, then there is a relatively large price decline
at date 1 and the M-investors bear downside risk. But if the signal turns out to be wrong
and the true state is low, the L-investors experience a gain. Because of risk aversion, the
potential decline of the interim price that the M-investors face has a higher impact on the
initial price than a potential high final payoff. In such a case, partial disclosure causes
interim asset price to fluctuate at date 1. Note that, if there is no disclosure, L-investors
bear all price risk while M-investors face no risk.

Intuitively, for a disclosure policy to minimizes the value at date 0, the sum of the risk
premia that M- and L-investors demand is higher than the risk premium that one cohort
of investors would demand when it bears all the risk. If the central bank cares about
market value of the banking sector at date 0, it chooses a disclosure policy that avoids
pronounced upward movements. Also E-investors prefer such a policy.

On the other hand, if the success probability is low or risk aversion is high, the date 1
(and date 0) price is closer to the low final payoff when there is no disclosure. Again,
L-investors bear all risk. Since the interim price is low, if the true state is high, L-investors
make a relatively large gain. Because of high risk aversion L-investors do not value the
gains so much. With partial disclosure, the initial price is closer to the true final payoff
and the interim price fluctuates. This means M-investors bear some risk. However, the
risk premium M-investors require is offset by the reduction in risk premium L-investors
require when they bear partial rather than full risk without disclosure. In such a case
partial disclosure maximizes the date 0 price and this is what E-investors will lobby for.
All these effects are analyzed formally, but also illustrated in a numerical example in
Appendix C.

The main analysis is framed in terms of the success probability and risk aversion. However,
we can also replace the model parameters by the first three stochastic moments of the final
payoff distribution. This permits to derive empirical implications of disclosure policy on
ex ante market prices. We show that a high success probability and low risk aversion are
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equivalent to positive skewness and low variance of the payoff distribution (and vice versa).
We show how risk aversion and the skewness of the payoff distribution and disclosure
policy affect ex ante market prices. In the Appendix we discuss a case where the payoff
distribution is normal and show that partial disclosure minimizes (maximizes) ex ante
market price if investors have increasing (decreasing) relative risk aversion.

In the second part of the paper we analyze the preferences of M- and L-investors for
disclosure. In a competitive market, investors earn rents for bearing risk. Analogous to
the standard demand and supply model, the more risk the investor has to bear, the higher
the rents, i. e., the area between demand (marginal willingness to pay) and price curve
becomes larger. Although investors are risk averse, they like bearing risk ex ante since
bearing risk in a competitive financial market means earning higher rents. Consequently,
M-investors prefer full disclosure at date 1

2
, while L-investors want the central bank not

to disclose any interim information. Different types of investors thus have conflicting
interests of information disclosure. We then analyze the optimal disclosure policy if the
central bank maximizes the weighted sum of utilities of the three investors’ types. We
show that partial disclosure can minimize or maximize welfare (i. e., the sum of investors’
utilities).

We use a central bank and banking stress test setting as the leading example, but the
mechanism, intuitions, and the implications are relevant whenever intertemporal risk shar-
ing among short horizon investors is an issue. Similarly, a central bank or treasury de-
partment may decide on how often to release interim macroeconomic information, such
as inflation rates, unemployment rates, or GDP growth forecasts. For example, since
October 2007 the U. S. Federal Reserve Bank publishes these forecasts every quarter.6

The release of macroeconomic information typically triggers price movements at the an-
nouncement day. Potential price movements affect intertemporal risk sharing between
different investor cohorts and thus the market risk premia they demand. Since investors
are rational and forward looking, the anticipation of potential interim price movements
affect the ex ante market prices.

The rest of the paper is organized as follows. The next section relates this paper to the lit-
erature. Section 3 introduces the model. Section 4 analyzes the competitive equilibrium,
first of a one-period model, then the two-period model. Section 5 discusses some appli-
cations and derives testable hypotheses. Section 6 gives a welfare analysis and discusses
the preferred disclosure policy of different cohorts of investors. Section 7 concludes. All
proofs are in appendix A. An example with normally distributed payoffs is in section B.

6See the Minutes of the Federal Open Market Committee October 30-31, 2007 and the speech of
Chairman Ben S. Bernanke at the Cato Institute 25th Annual Monetary Conference, Washington, D.C.,
November 14, 2007.

4



2 Relation to the Literature

The literature on information disclosure in financial markets is large and multifaceted. In a
seminal paper, Ross (1989) employs the no-arbitrage martingale approach and establishes
a Resolution Irrelevancy Theorem which states that, in an arbitrage-free economy, a mere
change of the timing of the uncertainty resolution cannot change current prices, unless
the cash flow distribution is altered.

Epstein and Turnbull (1980) show that in a setting where investors trade and consume
in multi-periods, the disclosure of interim information allows for better consumption and
trading choices. They show that partial disclosure always maximizes the ex ante market
value of the firm. Duffie, Schroder, and Skiadas (1996, 1997) analyze the implications
of disclosure of interim information when traders have recursive utilities, and show that
noisy disclosure always maximizes the ex ante market value.

In contrast to these papers where interim information disclosure is either irrelevant or
always maximizes the value of the firm, the main result of the present paper shows that
the disclosure of partial interim information may actually minimize the ex ante market
value of a firm despite intertemporal risk sharing. Furthermore, this paper gives conditions
when a prescribed disclosure policy of interim information minimizes or maximizes the ex
ante market value of the firm.

The main reason for these different results is the following. Ross (1989), Epstein and
Turnbull (1980) and Duffie, Schroder, and Skiadas (1996, 1997) assume long-lived in-
vestors, while this paper assumes that some investors leave the market so that they only
care about prices in some sub-periods of the whole trading setting. This means that
investors leaving the market will sell their assets for any positive price. Therefore, the
demand side of the market determines asset prices in a competitive equilibrium. But the
buyers at date t anticipate that they need to sell at date t + 1 which determines their
willingness to pay at date t. This “recursive” trading structure across investors drives our
main result. 7In Epstein and Turnbull (1980) and Duffie and Manso (2007), all investors
have the same preference for interim disclosure policy. In contrast, our paper assumes
heterogeneous investors along the time dimension, and is thus able to discuss potential
conflicts of interests between investor cohorts regarding the timing of disclosure.

Hirshleifer (1971) argues that information reduces risk averse agents’ ability to share
risks and thus welfare. Our paper also discusses information revelation and risk sharing
but the results are different in three aspects. First, the mechanism at work is very
different. In our model partial information disclosure implies risk sharing between M-
investors and L-investors. This means risk sharing actually can reduce ex ante market
price. In Hirshleifer (1971), information reduces risk sharing opportunities while in our
paper disclosure improves intertemporal risk sharing opportunities. Second,if we define

7In Section 4, we discuss the case where only a fraction of investors needs to sell.
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welfare as the sum of utilities of all investors, our results are also different. The disclosure
policy that maximizes welfare may have some information disclosed. In Hirshleifer (1971)
it is always optimal if there is no information disclosure (about agents’ types). Third, in
our model agents know their types (preferences). Since investors have a short horizon,
different cohorts of investors have strictly conflicting interests regarding disclosure. There
is thus no disclosure policy that Pareto dominates another policy.

There is also a huge accounting and finance literature on financial reporting (for surveys
see Verrechia, 2001; Leuz and Wysocki, 2008). A main focus of this literature is that
financial reporting may serve as a tool to mitigate and resolve agency problems and
adverse selection due to asymmetric information. For example, in Diamond (1985) there
is asymmetric information in secondary markets. In Shin (2006), managers and investors
have asymmetric information. Also for the special case of central bank communication,
there is an immense literature (see, e. g. Blinder, Goodhart, Hildebrand, Lipton, and
Wyplosz, 2001), focusing on moral hazard, reputation and commitment issues due to
asymmetric information.

In contrast, the present paper abstracts from any type of agency problems and any asym-
metric information, but analyzes information disclosure as a tool to control interim price
movements and intertemporal risk sharing in an economy with complete and competitive
financial markets. Empirical studies on disclosure quality and cost of capital (market
value) of the firm do not find a clear pattern (see Leuz and Wysocki, 2008). Our paper
predicts that there is no monotonic relationship between the quality of disclosure and the
market value of the firm.

The mechanism we identify has implications for the discussion of information disclosure
on a firm level (earnings guidance), industry level (bank stress test) and market wide
level (unemployment rate, GDP growth, and inflation guidance). We argue that the
information about the state of the banking sector which the Fed possess is a pricing
factor of banks stocks and represents systemic risk which has a first order effect on asset
prices.

3 The Basic Model

The main objective of this paper is to show that in an economy where markets are complete
and competitive and agents have symmetric information and there are no moral hazard
problems, the disclosure of interim public information can give rise to interesting and
novel effects on ex ante asset prices when investors have short trading horizon.8

8Adding asymmetric information and analyzing how public information disclosure affect trading in
markets with asymmetric information is an interesting extension but is beyond the scope of this paper.
Dang, Gorton, and Holmstrom (2012) analyze how the provision of public information affects private
information acquisition by agents in decentralized markets (see also previous footnote 5).
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Utility, Assets, and Endowments of Goods. We consider a competitive economy
consisting of three types of agents with unit mass each. The three types of agents are
called E-investors (early consumers), M-investors (middle consumers), and L-investors
(late consumers). An E-investor has a utility UE(c0, c1, c2) = u(c0) and wants to consume
at t = 0. He is endowed with one unit of a risky asset (e. g., shares of a bank or a
firm) that pays off Y units of goods at date 2. The asset yields Yh units of goods with
probability q ∈ (0; 1), otherwise it yields Yl < Yh units of goods. An M-investor has
utility UM(c0, c1, c2) = u(c1) and owns w units of t = 0 goods. An L-investor has utility
UL(c0, c1, c2) = u(c2) and owns w > Yh units of t = 1 goods. In order to abstract
from wealth effects of investors, we assume that all investors have constant absolute risk
aversion, u(c) = −e−ρ c.

Complete and Competitive Market System. The risky asset is traded in a com-
petitive market. In addition, investors can invest in a risk-free asset at rate r. There
are two linearly independent assets and two states, hence the market system is complete.
Given the preferences and endowments, E-investors at t = 0 sell their asset holding to
M-investors for the price P0 in terms of units of t = 0 goods. At t = 1, M-investors sells
the risky asset to L-investors for the price P1 in terms of units of t = 1 goods.

It is worth noting that in this economy any allocation is Pareto efficient, i. e. it is not
possible to make one investor better off without strictly reducing the utility of another
investor. Asset prices (only) affect the relative utility of the investors.

The focus of this paper is to analyze how a social planer (central bank) can affect equi-
librium prices (and thus the utility of the agents) by interim information disclosure. A
central bank that examines all banks has better information about the state of the bank-
ing system than any investor in the market. Information about the banking sector is a
pricing factor for banks stocks. Therefore, the superior information of the central bank
represents systematic risk and is non-diversifiable.

Central Bank and Disclosure Policy. At date 0, the central bank commits to a
disclosure policy θ. At date 1

2
the central bank obtains a perfect signal about the final

payoff Y and announces a signal s ∈ {L,H} on the final payoff Y ∈ {Yl, Yh}. The
signal s can be seen as a garbling of the original information (see, e. g., Baglioni and
Cherubini, 2007; Weber and Croson, 2004).9 Formally, Pr{s = l|Y = Yh} = (θ + 1)/2,

9An equivalent modelling strategy is to assume that the central bank’s decision is binary. It obtains
a noisy signal with precision θ and either announces what it knows or nothing. The employed mod-
elling strategy has the benefit that it highlights how the price at date 0 varies with the signal quality
continuously.
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Figure 1: Timing of the Model

t = 0 The central bank announces a disclosure policy θ and conducts a stress test.
E-investors sell the risky asset for the price P0 to M-investors. E-investors
consume P0 units of goods.

t = 1
2 The central bank learns the true outcome Y , releases a signal about Y with

precision θ.

t = 1 M-investors sell the risk asset for a price P1 to L-investors, and consume
(1 + r)(w − P0) + P1.

t = 2 The project return is realized. L-investors consume (1 + r)(w−P1) + Y units
of goods.

and Pr{s = l|Y = Yl} = (θ + 1)/2. For θ = 1, there is perfect disclosure, for θ = 0, zero
disclosure.10

At any dates, there is symmetric information between agents who trade with each other.
Trade between M- and L-investors at date 1 will be influenced by the signal; a good signal
will lead to a price increase, and the price reaction will be larger if the signal is rather
precise. The initial price P0 cannot depend on the signal s itself, but it may depend on
the signal’s precision θ. The next section analyzes the function P0(θ). As a main result
of the paper, P0(θ) can exhibit an interior minimum. Figure 1 shows the timing of the
model.

In the remainder of the paper we show how the (announcement of a) policy to disclose
interim information about final payoff of the risky asset affects date 0 and date 1 asset
prices and thus the utility of different investor types and how the optimal policy varies
with the weight the central bank is putting on different investor types.

4 Equilibrium Analysis

We first solve the one period model. The case of two periods and an interim signal will
then be a straightforward generalization of these first results.

10Technically speaking, we can think of disclosure as a computer that draws the information to be
release according to an algorithm. The question we address is which algorithm the central bank should
set up ex ante.
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4.1 The One-Period Case

Consider the market for an asset that pays Yh with probability q and otherwise Yl. This
is the case that L-Investor is facing when there is no interim disclosure. We omit the time
subscript in this section. At a market price P , the expected utility for an investor who
buys α units of the risky asset and invests the remaining w − αP0 risk-free is

u(P, α) = q u
[

(1+r)(w−αP ) + αYh

]

+ (1−q) u
[

(1+r)(w−αP ) + αYl

]

= − q e−ρ [(1+r)(w−αP )+αYh] − (1− q) e−ρ [(1+r)(w−αP )+αYl]. (1)

In equilibrium, investors must be indifferent to buying an additional marginal share,
∂u(P, α)/∂α = 0. Furthermore, the market must clear; all of the shares must be dis-
tributed between investors. Because all investors are identical, a representative investor
must hold one share in equilibrium. Consequently, ∂u(P, α)/∂α = 0 for α = 1,

∂u(P, α)

∂α

∣

∣

∣

α=1
= − e−ρ (1+r)w

[

q e−ρ (Yh−(1+r)P ) ρ (Yh − (1 + r)P )

+ (1− q) e−ρ (Yl−(1+r)P ) ρ (Yl − (1 + r)P )
]

= 0 =⇒

P =
1

1 + r

q Yh e
−ρ Yh + (1− q) Yl e

−ρ Yl

q e−ρ Yh + (1− q) e−ρYl
(2)

The market is free of arbitrage; the good event has the risk neutral probability

(1 + r)P − Yl

Yh − Yl
=

q eρ Yl

q eρ Yl + (1− q) eρ Yh
, (3)

depending on ρ, Yh and Yl. If risk aversion is large, P = Yl; hence, only the bad outcome Yl

is taken into account because eρ Yh ≫ eρ Yl. If risk aversion is low, then P ≈ q Yh+(1−q) Yl

equals the expected value. Given that (2) is central to our model, let us discuss some
elementary properties.

Lemma 1 Ceteris paribus, (i) a higher interest rate r decreases the price P , (ii) a higher
success probability q increases the price, (iii) a higher risk aversion ρ decreases the price,
(iv) a higher low yield Yl increases the price, (v) a higher high yield Yh increases the price
to some maximum.

The first four properties are not surprising. However, the last point states that the
market price P does not increase monotonically with the good-state return Yh. In other
words, the asset market does not honor large potential increases in value.11 The reason is

11This property is not a consequence of exponential utility; it holds for more general types of utility
functions, such as CRRA functions and logarithmic functions. We show this at the end of the proof of
Lemma 1. Of course, it cannot hold for risk neutrality.
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that the marginal expected utility of a share, not its actual expected utility, determines
the market price of an asset. The marginal utility from a payment Yh decreases as Yh

increases. Consequently, the market price may even decrease as Yh increases. Let us thus
stress that the benefit to initial investors from large potential price increases is limited.
This property will later help explain why interim information disclosure and interim risk
sharing can minimize the current market price.

The interest rate r appears only as a discount factor 1/(1 + r); hence, it cannot influence
the optimal disclosure policy. As a result, we can set r = 0 without loss of generality in
the following.

4.2 The Two-Periods Case with an Interim Signal

We now solve the full model using backward induction. If there is information disclosure
at date 0.5, using equation (2) the date 1 price depends on the signal s, and is given as
follows. If the signal is good, then

P1h =
Pr{Yh|s = h} · Yh · e−ρ Yh + Pr{Yl|s = h} · Yl · e−ρ Yl

Pr{Yh|s = h} · e−ρ Yh + Pr{Yl|s = h} · e−ρ Yl
. (4)

If the signal is bad, then

P1h =
Pr{Yh|s = l} · Yh · e−ρ Yh + Pr{Yl|s = l} · Yl · e−ρ Yl

Pr{Yh|s = l} · e−ρ Yh + Pr{Yl|s = l} · e−ρ Yl
. (5)

where

Pr{Y = Yh|s = h} =
Pr{s = h|Y = Yh} · Pr{Y = Yh}

Pr{s = h} = q
1 + θ

1 + θ (2 q − 1)
,

Pr{Y = Yh|s = l} =
Pr{s = l|Y = Yh} · Pr{Y = Yh}

Pr{s = l} = q
1− θ

1− θ (2 q − 1)
, (6)

and furthermore Pr{Y = Yl|s = h} = 1 − Pr{Y = Yh|s = h} and Pr{Y = Yl|s =
l} = 1 − Pr{Y = Yh|s = l}. Note that, for θ = 0, we have Pr{Y = Yh|s = h} = q,
the signal contains no information. For θ = 1, we get Pr{Y = Yh|s = h} = 1. As
a consequence, depending on the signal, the date 1 price of the asset fluctuates. After
positive information, the price jumps up. These potential price movements determine the
risk that M-investors must bear.

Analogously, using equation (2) we can determine the date 0 price. We use Bayes’ rule to
determine the probability Pr{s = h} that a good interim signal occurs. The initial price
P0 will depend on the expected intermediate prices Ph and Pl.

The ex ante probability that a positive signal s = h occurs is

Pr{s = h} = q Pr{s = h|Y = Yh}+ (1− q) Pr{s = h|Y = Yl} =
1 + (2 q − 1) θ

2
.

10

L l



Using (2), we find that the price at date t = 0 will be

P0 =
Pr{s = h}Ph e

−ρPh + Pr{s = l}Pl e
−ρPl

Pr{s = h} e−ρPh + Pr{s = l} e−ρPl
. (7)

where Pr{s = h}, Pr{s = l}, Pl and Ph are given above. Before discussing the general
properties of the date 0 price in this model, we first consider some numerical examples.

Suppose Yh = 1, Yl = 0, q = 50%, ρ = 2, and θ = 25%. This is the second example
in Table 1 in Appendix C. For these parameters, we obtain Pr{s = h} = 50%, Pr{Y =
Yh|s = h} = 62.5%, and Pr{Y = Yh|s = l} = 37.5%. Using backward induction, one
can calculate the price after a good signal as Ph = 0.184, the price after a bad signal as
Pl = 0.075, and the initial price as P0 = 0.124. According to (3), risk-neutral probabilities
are 44.6% for a good signal, 18.4% for a good outcome after a good signal, and 7.5% for
a good outcome after a bad signal. Due to the high degree of risk aversion, risk-neutral
probabilities differ substantially from actual probabilities. Now there is an alternative
way to calculate the initial price, (44.6% · 18.4% + (1− 44.6%) · 7.5%) · 1 = 0.124 = P0.

What is the degree of disclosure θ that maximizes the price P0? Unlike Ross (1989), we do
not find a general resolution irrelevance theorem; however, we find resolution irrelevance
at the extreme points θ = 0 (no disclosure) and θ = 1 (perfect disclosure).

Lemma 2 (Resolution Irrelevance at the Extremes) The market value is the same
for zero disclosure and for full disclosure, P0(θ = 0) = P0(θ = 1).

The intuition for this lemma is straightforward. If the interim signal is perfect, θ = 1,
L(ate)-investors will perfectly know the final outcome before they trade. Consequently,
date-1 prices will be either Ph = Yh or Pl = Yl. The probability of a high signal will
be q, and the probability of a bad signal will be 1 − q. Hence, all risk is borne by the
M(iddle)-investors. If the interim signal carries no information, θ = 0, then nothing is
learned by M-investors, and there is no price movement, i. e., Ph = Pl = P0. Hence,
all risk in terms of asset payoff is borne by L-investors. In both cases, one cohort bears
the complete risk, while the other uses the shares as a risk-free investment. “Swapping”
cohorts does not change the initial price P0.

12

Full disclosure and no disclosure yield the same initial price, P0. But what happens in
between? In Figure 2, the function P0(θ) is plotted for two different parameter constel-
lations. In the left graphic, parameters are Yh = 1, Yl = 0, ρ = 2, q = 50%. In the
right graphic, parameters are the same, only q = 90%. These examples suggest several
results. First, there is no resolution irrelevancy in general. Both graphics document the

12This result depends on the assumption that risk aversion and the number of investors are the same
in both cohorts. Otherwise, the price would be higher if risk were shifted to the less risk-averse cohort
or to the larger cohort.
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Figure 2: Effect of Disclosure Policy θ on the Initial Price P0
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fact that P0(θ = 0) = P0(θ = 1), but in between, the functions are non-constant. Second,
there can be an interior maximum (left graphic). The market value maximizing policy is
to release some information to the market, but only vague information. Third, the novel
result is that it is possible that partial information reduces market value (right graphic).
In this case, the market value maximizing policy is to choose no disclosure (θ = 0) or full
disclosure (θ = 1) but it avoids the release of any imprecise interim information.

Note, if the central bank obtains a noisy interim signal which we formalize below, then
only the no disclosure policy maximizes the date-0 price and the market value of the firm
or bank.

Now we provide the conditions under which partial disclosure minimize market value, or
equivalently when θ = 0 or θ = 1 (zero or full disclosure) maximizes the market value.
But let us simplify the problem by setting Yl ≡ 0 and Yh ≡ 1. The following lemma shows
that we do not lose any generality.

Lemma 3 (Symmetry Results) The following two statements hold true,

P0(Yh, Yl, ρ, q, θ) = P0(Yh − Yl, 0, ρ, q, θ) + Yl and

P0(Yh, 0, ρ, q, θ) = Yh P0(1, 0, ρ Yh, q, θ).

The first statement tells us that if we increase both Yh and Yl by the same amount, the mar-
ket price increases by exactly this amount. Consequently, we can consider P0(∆Y, 0, ρ, q, θ)
instead of P0(Yh, Yl, ρ, q, θ) without loss of generality, where ∆Y = Yh − Yl. The second
statement tells us that multiplying Yh by some constant has the same effect on mar-
ket prices as multiplying ρ by the same constant and multiplying the price by the same
constant. Consequently, we can consider P0(1, 0, ρ∆Y, q, θ) instead of P0(∆Y, 0, ρ, q, θ).
Without loss of generality, we can even set ∆Y ≡ 1, bearing in mind that an increase
in variation ∆Y has the same effect as an increase in risk aversion ρ. Now, only two
exogenous parameters are left in the model, risk aversion ρ and and success probability
q. The following proposition states their influence on the optimal disclosure policy.
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Figure 3: Market Value Maximizing Policy
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Parameters are Yh = 1 and Yl = 0. However, because of Lemma 3, ρ and q represent the complete
parameter space without loss of generality. The black curve gives condition (8), so that above this curve,
the function P0(θ) has an interior minimum; below the curve, P0(θ) has an interior maximum.

Proposition 1 (Market Value Maximizing Policy) The function P0(θ) has an inte-
rior maximum θ∗ if

q <
eρ (eρ − ρ− 1)

(eρ − 1)2
. (8)

Because the function P0(θ) is not constant, if it does not have an inner maximum, it must
exhibit an inner minimum. Hence, sharing financial risk between cohorts can increase
the market valuation P0, but it does not have to. Intertemporal risk sharing is thus
fundamentally different from static risk sharing. The aggregate risk premium may be
minimized if all risk is shifted to one cohort.

The proposition is illustrated in Figure 3. For large q or for low ρ, we end up in the white
region where zero (or full) disclosure maximizes market value. For small q or for high ρ,
noisy disclosure maximizes market value (gray region). The black curve marks critical
parameter combinations, as defined by (8). Let us give some idea why there may be an
interior optimum in the first place and how q and ρ influence this property.

If q is low or ρ is high, the initial price P0 lies relatively low in the range [Yl; Yh]. From
the fifth point of Lemma 1, we know that E-investors benefit from value increases for
M-investors only up to a point. Therefore, a P0-maximizing disclosure policy is to avoid
large upward price jumps. This can be accomplished by partial disclosure, 0 < θ < 1. As
a result, risk is distributed more evenly between cohorts.

The intuition for the possibility of an interior minimum when q is high and ρ is low,
is the following. Without interim disclosure, the date-1 price (and thus date-0 price) is
close to the final payoff Yh. Partial disclosure means that investors obtain a noisy interim
signal which is wrong with positive probability. If the signal suggests that Yl is likely to
be the final payoff, then there is a relatively large price decline at date 1 such that the
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M-investors bear downside risk. But if the signal turns out to be wrong and the true state
is Y − h, the L-investors experience a gain. Because of risk aversion, the potential price
decline that the M-investors face at date 1 has a higher impact on the date 0 price than a
potential price increase (or high payoff) that L-Investors might experience at date 2. In
such a case, partial disclosure causes prices to fluctuate at date 1. Note that, if there is
no disclosure, L-investors bear all price risk while M-Investors face no risk.

Intuitively, for a disclosure policy to minimizes the value at t = 0, the sum of the risk
premia that M- and L-investors demand is higher than the risk premium that one cohort
of investors would demand when it bears all the risk. This argument explains why the
function P0(θ) has an interior minimum for high q and low ρ.

On the other hand, if q is low or ρ is high, the date 1 (and date 0) price is closer to the
final payoff Yl when there is no disclosure. Again, L-investors bear all the risk. Since
the date 1 price is low, if the true state is Yh, L-investors make a relatively large gain.
Because of high risk aversion L-investors do not value the gains so much. With partial
disclosure, the date 1 price is closer to the true final payoff and the date 1 price fluctuates.
This means M-Investors bear some risk. However, the risk premium M-investors require is
offset by the reduction in risk premium L-investors require when they bear partial rather
than full risk without disclosure.

We have assumed that the central bank can choose θ within the interval [0; 1]. In reality,
there may be reasons why this interval is trimmed. First, information may leak out of the
firm at the interim date. Investors will then aggregate this information and the disclosed
signal precision θ to a new signal. This signal will then have some minimum precision
θmin, equal to the quality of the leaking information. If the price function has an interior
minimum (see Figure 3), the maximum is reached for full disclosure, θ∗ = 1. Second, the
final outcome Y may not be predictable with certainty, entailing a maximum precision
θmax. The precision can be reduced by additional garbling, but it cannot be increased.
Then if the price function has an interior minimum, the maximum is reached for zero
disclosure, θ∗ = 0. Our model implies that, if the future becomes less predictable and
the maximum precision θmax is reduced, and the central bank cares about current price
stability, it switches to zero disclosure (instead of just reducing disclosure).

Note one interesting re-interpretation of the result. We have assumed that the mass
of investors is 1. An interesting question is: how does the disclosure policy change if
ownership is concentrated? Assume for example that just a small fraction of investors
can hold the asset. Then, each investor must hold a larger share of the firm. It can be
shown that formally, this is equivalent to a higher gap between Yh and Yl, which is again
equivalent to a higher degree of risk aversion ρ. As a consequence, Proposition 1 implies
that partial disclosure is optimal for firms with high ownership concentration.
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5 Applications and Hypotheses

In this section, we apply the model to a number of questions and derive testable hypothe-
ses. Some applications are immediate consequences of the model; for others, we have to
modify the assumptions.

5.1 The Shape of the Distribution

We can fully characterize a two point distribution by knowing its first three stochastic
moments. Loosely, speaking the skewness of a two point distribution captures whether Yl

or Yh is closer to the mean. By expressing the underlying parameters of the model (i. e.,
Yl, Yh, q, ρ) in terms of mean, variance and skewness of the payoff distribution, we obtain
empirical predictions of disclosure policy on the market value of the firm.

We have seen that the optimal disclosure policy depends on the success probability q and
risk aversion ρ, where ρ is short for ρ (Yh − Yl) because we have set Yh = 1 and Yl = 0
without loss of generality. Both parameters q and ρ are connected to the shape of the
distribution. For easier interpretation, let us thus rewrite the results in terms of stochastic
moments. First, the first statement of Lemma 3 states that increasing both Yh and Yl by
the same amount c only shifts the complete function P0(θ) upwards by c. The shape of
the function does not change; hence, the optimal θ remains constant. Consequently, the
optimal disclosure policy does not depend on the mean of the yield distribution.

Second, ρ appears only in the factor ρ (Yh − Yl). Instead of setting Yh = 1 and Yl = 0, let
us set ρ = 1 and Yl = 0 without loss of generality. We are left with the two parameters Yh

and q. Now, the second stochastic moment σ and the third moment ν of the distribution
are functions of Yh and q,

µ = q Yh + (1− q) Y0 = q Yh,

σ =
√

q (Yh − µ)2 + (1− q)µ2,

ν =
q (Yh − µ)3 − (1− q)µ3

σ3/2
. (9)

Conversely, one can write q and Yh as implicit functions of the standard deviation σ and
skewness ν,

Yh = σ
√
4 + ν2,

q =
1

2
− ν

2
√
4 + ν2

. (10)

Figure 4 shows for which combinations of standard deviation σ and skewness ν the price
function has an interior maximum. We obtain the following remark.
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Figure 4: Market Value Maximizing Policy
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Parameters are ρ = 1 and Yl = 0. The figure shows the optimal disclosure policy, depending on standard
deviation σ and skewness ν. The figure illustrates Remark 1: the price function has an interior maximum
for high standard deviation σ and high skewness ν.

Remark 1 The mean of the payoff distribution does not influence the market value maxi-
mizing disclosure policy. The function P0(θ) has an interior maximum θ∗ for high standard
deviation σ and high skewness ν.

Note that σ and ν are stochastic moments of the payoff Y , not of the probability distri-
bution of prices P1 (which is endogenous). Arguably, both risk and skewness are higher
in innovative industrial sectors. Projects are likely to fail, but if they do not fail, they can
deliver high returns. The distribution is typically skewed to the right (positive skewness).
Consequently, the above remark implies a high level of disclosure. For more traditional
industries, the risk is relatively small and the distribution is skewed more to the left. The
remark thus predicts less disclosure at all for traditional industries.

5.2 Market Liquidity

In the baseline model, all M-investors have to sell at date 1. Consequently, the complete
market volume is turned over at date 1. In reality, assets have different degrees of liquidity:
for some, the turnover at each trading date may be low. One may want to ask the
question whether an asset’s liquidity affects the optimal disclosure policy. Let us assume
that only a fraction of M-investors needs to sell at date 1, thus reducing the turnover
(liquidity). There are a couple of consequences. Because some investors hold the asset for
both periods, the importance of intertemporal risk sharing will decrease, and the impact
of disclosure levels on share prices will decline. The market value maximizing level of
disclosure may also change. We show that the condition under which there is an inner
optimum for disclosure does not change.

Let us now assume that, at date 1, only a fraction λ ≤ 1 of M-investors must leave
the market (potentially due to a stochastic liquidity shock, like in Diamond and Dybvig
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(1983)), but another mass λ enters the market. Hence, the aggregate mass of investors is
1 at each date. Now λ is a measure for market turnover, or liquidity. For λ = 0, there is
no interim trading, and disclosure policy is irrelevant. For λ = 1, the complete volume is
traded at t = 1, and we have our original model.

Prices are determined only by future payoff expectations. They are independent of
whether investors have held the asset in the preceding period or not. Consequently,
interim prices at date t = 1 are independent of liquidity λ. Ph and Pl are not influenced
by whether an asset has been held or traded, hence Ph and Pl are independent of λ.
However, the initial price P0 will be influenced by λ. When making buying decisions
at t = 0 , M-investors take into account that they will hold the asset until t = 2 with
probability 1−λ, and get payoffs of Yh and Yl with the according probabilities, or need to
sell the asset at t = 1 with probability λ, and get payoffs of Ph and Pl with the according
probabilities. The expected utility of buying α units of the asset at t = 0 is

u(P0, α) = λ
(

Pr{s = h} u
[

w + α (Ph − P0)
]

+ (1− Pr{s = h}) u
[

w + α (Pl − P0)
]

)

+ (1− λ)
(

q u
[

w + α (Yh − P0)
]

+ (1− q) u
[

w + α (Yl − P0)
]

)

. (11)

In the competitive market equilibrium, ∂u(P0, α)/∂α = 0 must hold, and the market must
clear, α = 1. This again yields an implicit function P0(θ), which may exhibit an interior
maximum or minimum. We have already discussed the extreme case of a maximally liquid
market, λ = 1. For the following remark, liquidity λ may take any value; we show that
Proposition 1 holds for any λ.

Numerical simulations show two more properties. First, the impact of disclosure is smaller
for larger levels of liquidity λ. Second, the optimal degree of disclosure θ∗ depends posi-
tively on liquidity λ.

Remark 2 The question whether partial disclosure maximizes market value is indepen-
dent of the degree liquidity λ.

5.3 Additional Portfolio Risk

Arguably, investors may face other financial risk from outside the firm. A typical investor
holds more than one asset, hence the shares will be part of a larger portfolio. Then, one
may ask whether the conditions under which partial disclosure or full disclosure maximize
the market value of the asset are unchanged. Potentially, if there is more risk, the optimal
allocation of risk between investors look different. Assume that agents own some other
asset that yields a risky X . Assume furthermore that X is stochastically independent
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from Y ∈ {Yl, Yh},13 and follows the distribution F (X) with density f(X). This X could,
for example, stand for the “everything else” that an agent owns.

Remark 3 In the presence of additional risk, the function P0(θ) has an interior maximum
under the same conditions as in the absence of further risk.

This remark is important from a theoretical perspective. Even if an asset contributes
only a small fraction of an average investor’s portfolio, disclosure decisions influence its
market price. Empirical studies on disclosure quality and cost of capital (market value)
of the firm do not find a clear pattern (see Leuz and Wysocki, 2008). Our paper predicts
that there is no monotonic relationship between the quality of disclosure and the market
value of the firm. If interim information is noisy and all firms are subject to the same
disclosure standards (e. g. about fiscal year earnings), then this tends to decrease the cost
of capital (increase market value) of firms with a positively skewed cash flow distribution
(high tech firm) while it tends to increase the costs of firms with more negatively skewed
distributions.

6 The Investors’ Interests and Welfare

So far we have focused on a disclosure policy that maximizes P0, which is equivalent to
maximizing the utility of E-investors. However, M- and L-investors will not be indifferent
with respect to the allocation of risk over time. In this section, we first argue that the
first-best allocation cannot be obtained with information disclosure as the only tool. We
then analyze the interests of M- and L-investors, and conclude with a discussion of welfare.

Consider at date t = 1
2
the case that the central bank has positive information. The case

with negative information is analogous. E-investors have already quitted the game. The
aggregate utility of M- and L-investors is

u
[

(w − P0) + Ph

]

+ u
[

(w − Ph) + Yh

]

(12)

The first-order condition yields

P ∗

h =
P0 + Yh

2
. (13)

This price leads to a transfer between M- and L-investors that aligns their marginal
utilities. In particular, at this point, it is non-stochastic. If the central bank would
want to reach this price P ∗

h with information policy only, it would have to issue a non-
stochastic signal. Investors could thus perfectly infer the state h from the signal. But

13If X and Y were correlated, then the signal s would contain information not only about Y , but also
about X .
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Figure 5: M- and L-Investors’ Expected Utility
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Like in Figure 2, q = 50% in the left picture, and q = 90% in the right.

then, the market clearing condition would yield the equilibrium price Ph = Yh. This
proves that disclosure policy as the only policy tool cannot implement the first-best.

We now discuss the interests of M- and L-investors. They are indifferent with respect to
buying one more marginal share at the given price, but this does not imply that they do
not earn any rents. If information is perfect and the final payoff Y is known, an investor’s
demand function would be flat, hence his rent would be zero. When stock prices fluctuate,
demand for shares is elastic, and thus rents will be positive. The higher the risk for a
cohort of investors, the higher the rents that this cohort will earn. As a consequence,
from an ex ante perspective, each cohort will want to bear as much risk as possible. For
example, M-investors prefer full disclosure (θ = 1). In that case, they bear a large interim
price risk. The risky asset is all but a perfect substitute for the risk-free investment.
Hence, in that case, M-investors earn large rents. Analogously, L-investors prefer θ = 0.
This is illustrated in Figure 5. Once M-investors have bought the asset, they are already
compensated for the risk. They now prefer the asset to be safe, which is equivalent to
zero disclosure.

Lemma 4 (Divergence of Interests) From an ex ante perspective, M-investors prefer
θ = 1 (full disclosure); L-investors prefer θ = 0 (zero disclosure).

Investors like risk ex ante because it enables them to pay a low price for the asset.
Consequently, their attitude changes as soon as they have bought the issue: M-investors
will prefer not to have any information revealed while they own the shares. The same holds
true for L-investors. The lemma suggests that, if disclosure standards were determined
in a political process, the result would heavily be influenced by the timing of the decision
(and by the proportion between cohorts of investors). Each cohort would lobby towards
vague disclosure once they held shares; beforehand, they would argue they want to have
access to information as soon as it is available.

Figure 5 shows the expected utilities of M- and L-investors as dotted lines for two nu-
merical examples that illustrate Lemma 4: UM increases with θ, whereas UL decreases. It
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also shows the sum of utilities, UM +UL. For both parameter constellations, this sum has
an inner maximum θ̂. The following proposition shows that this is a general property. It
(seemingly) contains a paradox. Although M- and L-investors, in the aggregate, always
prefer to smooth risk between generations (Proposition 2), this is not necessarily reflected
in the asset price P0 (Proposition 1).

Proposition 2 The sum of expected utilities UM + UL is always maximized with partial
disclosure, θ̂ ∈ (0; 1)

The reason why there is always an interior maximum at an interior θ̂ differs slightly from
the explanation for an interior maximum of P0(θ). A single investor cohort’s ex ante utility
generally increases with the amount of risk it takes. However, due to risk aversion, the
marginal utility with respect to taking more risk decreases and can even become negative.
This implies that by sharing risk between the M- and L-investors, the aggregate rent of
investors is maximized. A formal proof can be found in the appendix.

Welfare. Proposition 1 considers the interests of E-investors (to maximize the initial
price P0), Proposition 2 considers the aggregate interests of M- and L-investors. What
about aggregate welfare (defined as the sum of the utilities of all three cohorts of agents,
W = UE + UM + UL)? We want to argue that aggregate welfare as a function of the
disclosure policy, W (θ), can exhibit an interior maximum, but also a minimum. One
component of welfare, UM +UL, always has an interior maximum. The other component,
UE , depends on the price P0(θ), which can have a minimum or maximum. If it has an
inner maximum, for example because risk aversion is high or the success probability is
low (Proposition 1), then the case is closed: a partial disclosure policy must maximize
welfare.

If P0(θ) has an inner minimum, however, then the behavior of aggregate welfare depends
on the relative size of the two effects. Because investors are risk averse, and their utility
functions become flatter for large wealth levels, if the M- and L-investors’ endowment w
is large, the absolute level of their utility hardly moves for changes in θ. The impact of
P0(θ) then dominates that of UM and UL, and the welfare function is hump-shaped. This
simple consideration shows that partial disclosure may minimize not only P0(θ), but also
aggregate welfare.

7 Conclusion

Introducing liquidity concerns into a disclosure model with risk averse and short horizon
investors in an economy with complete and competitive financial markets, we derive a
rich set of implications for asset prices, even in the complete absence of asymmetric
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information, moral hazard, and trading frictions. In particular, we show that partial
disclosure of interim information and interim risk sharing can minimize the ex ante market
price of a risky asset. We show that there is no monotonic relationship between the quality
of disclosure and the market value of a firm.

The novel result that interim disclosure can minimize or maximize ex ante market prices
in an economy with short horizon investors is relatively intuitive. If the priors about
fundamentals (payoff distribution and risk aversion) give rise to high ex ante market
prices when there is no disclosure, then disclosing partial interim information minimizes
ex ante market prices. Since information is noisy, investors obtain information that is
wrong with positive probability. If the signal suggests a low final payoff this causes a
relatively large price decline and investors selling at that date face large downside risk.
But if the final payoff turns out to be high late investors make a relatively large gain.
Disclosure causes interim prices to fluctuate. Because of risk aversion the first effect can
dominate the second one. Therefore, disclosing noisy interim information can minimize
ex ante market prices.

On the higher hand if investors’ prior and risk aversion give rise to low ex ante market
prices when there is no disclosure, then partial interim information disclosure maximizes
market prices. Since investors are risk-averse, the market’s appreciation for large upward
value increases of an asset is limited. Hence caring about current market prices, one
should design the disclosure policy to avoid large interim upward jumps.

In terms of stochastic moments of the payoff distribution we show that if the distribution
exhibits negative (positive) skewness, i. e., there is a low probability of a large downside
risk (high upside gains), partial disclosure minimizes (maximizes) ex ante market prices.
In the Appendix we show that these results also hold when the payoff distribution is nor-
mally distributed. If agents have constant CARA, the ex ante market price is independent
of interim disclosure. But if agents have decreasing (increasing) absolute risk aversion,
then partial disclosure maximizes (minimizes) ex ante market prices.

This paper identifies a new mechanism of how the disclosure of interim information affects
ex ante asset prices through intertemporal risk sharing. The results have implications for
the discussion of information disclosure on a firm level (earnings guidance), industry level
(bank stress test) as well as market wide level (unemployment rate, GDP growth, and
inflation guidance). Some of the information represents systematic risk and has a first
order effect.

As a second main result, this paper shows that there is disagreement about the optimal
disclosure policy among different investor types. Investors who enter the market in sub-
sequent periods prefer different disclosure policy than the one that maximizes ex ante
market prices. There is conflict of interest between different types of stock holders. An-
other important class of stakeholders in a bank is depositors. Dang, Gorton, Holmstrom,
and Ordonez (2013) show that depositors have a strict preference that information is kept
secret.
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In the light of the recent financial crisis, the academic and policy debate about information
disclosure and the role of transparency is likely to remain controversial, especially in
financial institutions. Our paper adds the aspects of liquidity concerns and intertemporal
risk sharing among short-term stock holders to the debate by delivering some new insights.

A Appendix

Proof of Lemma 1: According to (2), the equilibrium price is

P =
1

1 + r

q Yh e
−ρ Yh + (1− q) Yl e

−ρ Yl

q e−ρ Yh + (1− q) e−ρYl
.

Taking derivatives, we obtain

dP

dq
=

1

1 + r
eρ (Yh+Yl)

(Yh − Yl)

(q eρ Yl + (1− q) eρ Yh)2
> 0,

dP

dρ
= − 1

1 + r
q (1− q) eρ (Yh+Yl)

(Yh − Yl)
2

(q eρ Yl + (1− q) eρ Yh)2
< 0,

dP

dYl

=
1

1 + r
(1− q) eρYh

q eρ Yl (1 + ρ (Yh − Yl)) + (1− q) eρ Yh

(q eρ Yl + (1− q) eρYh)2
> 0,

dP

dYh
=

1

1 + r
q eρ Yl

q eρ Yl + (1− q) eρYh (1− ρ (Yh − Yl))

(q eρ Yl + (1− q) eρ Yh)2
.

The signs of the first three derivatives are unambiguous. For the fourth derivative,

dP

dYh
> 0 ⇐⇒ q eρ Yl + (1− q) eρYh (1− ρ (Yh − Yl)) > 0.

The sign of the term is ambiguous. If ρ is large (or the difference Yh − Yl is large), the
second addend turns negative, and it also dominates the first addend. If ρ is small (or the
difference Yh − Yl is small), both addends are positive. One can also give a condition for
whether the derivative is positive, but unfortunately it involves a non-standard function,
the product-log (plog y gives the x that solves the equation y = x ex). Then the derivative
is positive if and only if Yh − Yl <

(

1 + plog[e−1 q/(1− q)]
)

/ρ.

We want to stress two points. First, the property that dP/dYh can turn negative is not
unique to the choice of the utility function (see the argument below). Second, it is not
a necessary condition for the main results of the paper. A more important property is
the concavity of P in Yh. But why can dP/dYh turn negative at all? If the payout Yh

is high, investors get a high return in the good state. Their marginal utility is thus low,
and they want to move consumption from the good to the bad state. They can do this
by buying less assets, and storing more. But the supply of assets is fixed, hence the price
drops. This is a standard microeconomic phenomenon; for sufficiently large risk aversion,
consumption behaves like a Giffen good.
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The property that the dP/dYh reaches a maximum at some Yh is not specific to exponential
utility functions of investors. Consider constant relative risk aversion, u(c) = c1−ρ, with
ρ > 1. The relative risk aversion is then ρ > 1. Analogous to (2), we then get

∂u(P, α)

∂α

∣

∣

∣

α=1
= (1− ρ) q (Yh − P ) (W + Yh − P )−ρ

+ (1− ρ) (1− q) (Yl − P ) (W + Yl − P )−ρ. (14)

If the market clears, this term (14) must be equal to zero. Due to risk aversion, the
price P cannot exceed the expected yield, P ≤ q Yh + (1 − q) Yl. As a consequence,
(Yh−P ) (W+Yh−P )−ρ → 0 as Yh → ∞. However, this implies that (Yl−P ) (W+Yl−P )−ρ

must converge to zero for Yh → ∞, which is only possible if P → Yl. This proves that
the function P (Yh) cannot be monotonic if the relative risk aversion ρ exceeds 1. �

Proof of Lemma 2: If θ = 0, then Pr{s = h} = 1/2, Pr{Y = Yh|s = h} = q, and
Pr{Y = Yh|s = l} = q. The signal contains no information; nothing can be learned.
Consequently, Ph = Pl, and hence

P0 =
q Yh e

−ρ (Yh−Yl) + (1− p) Yl

q e−ρ (Yh−Yl) + (1− q)

as in (2). Now consider the second case, θ = 1. Then Pr{s = h} = q, Pr{Y = Yh|s =
h} = 1, and Pr{Y = Yh|s = l} = 0. As a result, Ph = Yh and Pl = Yl, and P0 is exactly
as above. Hence, P0 is independent of whether θ = 0 or θ = 1. �

Proof of Lemma 3: The first statement is obvious. For the second statement, first
look at the one-period case,

P (c Yh, 0, ρ, q, θ) =
q c Yh e

−ρ c Yh

q e−ρ Yh + (1− q)
= c P (Yh, 0, c ρ, q, θ).

This result immediately carries through to the two-period case. �

Proof of Proposition 1: We want to distinguish between the two cases of Figure 2.
Both have dP0/dθ|θ=0 = 0; this can easily be shown analytically. Hence, to see whether
the function increases or decreases around θ = 0, consider the second derivative at the
origin,

d2P0

dθ2

∣

∣

∣

θ=0
= 8 eρ q2 (1− q)2 λ ρ

e2 ρ (1− q)− q − eρ(1− 2 q + ρ)

(eρ (1− q) + q)4
.

This term is positive if (8) holds. Consequently, P0(θ) increases around θ = 0, but
P0(1) = P0(0). Because P0(θ) is differentiable, there must be an interior optimum. �
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Proof of Lemma 4: We first want to argue that, ex ante, each cohort of investors
wants to bear as much risk as possible. Look at one cohort only, and set W = 0 without
loss of generality. Furthermore, set Yh = Ȳ +(1−p) ǫ and Yl = Ȳ −p ǫ, such that the mean
is always Ȳ , and ǫ measures (lack of) information before the trade. Then, substituting
(2) into (1) with α = 1 due to market clearing, we receive

u = −
(

(1− p) e
p ǫ ρ

(1−p) eǫ ρ+p + p e
−(1−p) ǫ ρ

p e−ǫ ρ+(1−p)

)

,

Ȳ drops out of the equation. The derivative with respect to ǫ is

∂u

∂ǫ
=

(1− p) p ǫ ρ2 e
p ǫ ρ

(1−p) eǫ ρ+p

(1− p) eǫ ρ + p
,

which is positive for ǫ > 0. As a consequence, higher risk raises utility (ex ante). Now
take the ex interim perspective, i. e., keep the price fixed. Then (1) with α = 1 yields

u = −
(

p+ (1− p) eǫ ρ
)

e(P−Ȳ )−(1−p) ǫ.

The derivative with respect to ǫ is now

∂u

∂ǫ
= ρ p (1− p) (1− eǫ ρ) e(P−Ȳ )−(1−p) ǫ,

which is negative for ǫ > 0. Hence, higher risk decreases utility ex interim. The argument,
as it stands, applies to early and late investors. Hence, ex ante, early investors find θ = 1
optimal; late investors like θ = 0 best. Ex interim, preferences are reversed. �

Proof of Proposition 2: The proof is structurally similar to that of Proposition 1. Let
U = UM + UL denote the sum of the two utilities. From Figure 5, we have two examples
where UM +ML is hump-shaped in θ and reaches its optimum for some θ∗ ∈ (0; 1). Now
dU(θ)/dθ = 0 for θ = 0. For the two examples, d2U(θ)/dθ2 > 0 at the point θ = 0. Hence,
in order to turn into a U-shaped function, d2U(θ)/dθ2 would have to vanish at θ = 0 for
some parameter constellation (ρ, q). However,

d2U
dθ2

∣

∣

∣

θ=0
= 4 e

q ρ

eρ(1−q)+q
(1− q)2 q2 ρ2

(eρ(1− q) + q)4

(

e
(2eρ(1−q)+q)ρ

eρ(1−q)+q − e2ρ(1− q)− eρq
)

.

All terms are clearly positive, except for the large bracket term. But the bracket term is
larger than

(

e
(eρ(1−q)+q)ρ
eρ(1−q)+q − e2ρ(1− q)− eρq

)

= eρ(1− q)(1− eρ),

which is also positive. Hence, the second derivative is positive, which implies that the
welfare function is increasing for small values of θ, which implies that it must exhibit in
interior maximum. �
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Proof of Remark 1: The fact that the distribution’s mean does not enter into the
optimal disclosure policy follows from the first property of Lemma 3. The rest of the proof
follows immediately from the conversion of statistical moments into model parameters,
see (10). An increase in the variance has the same effect as an increase in risk aversion.
The relation between q and the skewness ν is negative. To see this, take the derivative of
(10),

∂q

∂ν
= − 2

(4 + ν2)3/2
< 0.

Ceteris paribus, a higher skewness is equivalent to a lower q. �

Proof of Remark 2: Without loss of generality, set Yh = 1 and Yl = 0. The market
price is determined by the clearing condition, ∂u(P0, α)/∂α = 0 for α = 1, where u(P0, α)
is given by (11), hence it also depends on liquidity λ. We are interested in how the
properties of P0(θ) depend on λ. As in the proof of Proposition 1, we want to know
whether the second derivative ∂2P0(θ)/∂θ

2 is positive or negative at the origin θ = 0. Use
(2) to see that the equilibrium price at the origin θ = 0 is

P0 =
q

q + e−ρ (1− q)
.

Entering this into ∂2P0(θ)/∂θ
2 gives

d2P0

dθ2

∣

∣

∣

θ=0
= 8 eρ q2 (1− q)2 λ ρ

e2 ρ (1− q)− q − eρ(1− 2 q + ρ)

(eρ (1− q) + q)4
.

Apart from the factor λ, this term is identical to (15). Consequently, the root is the same.
The term is positive when (8) holds. Consequently, P0(θ) increases around θ = 0, but
P0(1) = P0(0). Because P0(θ) is differentiable, there must be an interior optimum. �

Proof of Remark 3: Concentrate on one period first, and set r = 0 without loss of
generality. The expected utility of an agent is then

u(P, α) = q E
[

u
[

(w−αP ) + αYh+X
]

]

+ (1−q)E
[

u
[

(w−αP ) + α Yl+X
]

]

= q

∫

e−ρ [(w−αP )+αYh+X] dF (X) + (1−q)

∫

e−ρ [(w−αP )+αYl+X] dF (X)

=
[

q e−ρ [(w−αP )+αYh] + (1−q) e−ρ [(w−αP )+αYl]
]

·
∫

e−ρX dF (X). (15)

When taking the derivative for the first order condition, the integral over X drops out.
As a result, the equilibrium price for the asset is exactly like in (2). But this also implies
that the function P0(θ) is not changed at all by the existence of additional risk. Hence,
whether the function exhibits a minimum or maximum is not affected by further outside
risk. �
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B Normally Distributed Payoffs

In the main paper, we have argued that the commitment to disclose some information
at an interim period can maximize, but also minimize the ex ante market prices. For
tractability we have assumed CARA utility and a two-point distribution for the payoff
of the risky asset. We have also argued that the property of an inner minimum (or
maximum) depends mainly on the investors’ utility functions and on the variance and
skewness of the return distribution. However, in the model, (i) the final profit could take
only two values, and (ii) the utility function was exponential (CARA).

We can show that, if agents have logarithmic utility and the payoff distribution is discrete,
then we also obtain the result that partial disclosure of interim information minimizes ex
ante asset prices. If all agents have CARA utility and the payoff distribution is normal
then ex ante asset price is independent of disclosure policy. But in general, point (i) is
not easy to generalize, for the following reason. We need a model with some random
variable, where some information is published in advance. If Bayesian learning should
some tractable algebraic structure, then the final payoff and the signal should be normally
distributed. But then there is no skewness, so we cannot make the claim that skewness
matters. A model with discrete payoffs and discrete signals is more tractable, so we have
chosen that the parametrization.

For the assumption (ii) of exponential utility, however, there is a tractable generalization.
Assume that the final payoff is µ+ ǫ1 + ǫ2, where ǫ1 and ǫ2 are normally distributed with
zero mean and standard deviation σ1 and σ2, respectively. The standard deviation of the
aggregate payoff is thus σ =

√

σ2
1 + σ2

2. At date t = 0, investors only know µ. At date
t = 1, they learn µ + ǫ1. Keeping σ constant, the variable σ1 measures the transparency
of the firm’s disclosure policy. For σ1 = σ2 = σ/

√
2, half of the information is disclosed

at date t = 1, the rest is learned at date t = 2.

Assume that investors have the utility function u(c) = − exp(−ρ1 c− ρ2 c
2). For ρ2 = 0,

we have a constant absolute risk aversion of ρ1. In general,

∂

∂c

[

ARA
]

=
∂

∂c

[

− u′′(c)

u′(c)

]

= 2 ρ2
ρ21 + 4 c ρ1 ρ2 + 2 ρ2 (1 + 2 c2 ρ2)

(ρ1 + 2 c ρ2)2
. (16)

Hence for ρ2 > 0, absolute risk aversion increases, otherwise it decreases. Note also that
u′(c) is positive only for ρ1 + 2 c ρ2 > 0. For negative ρ2, consumption c must hence not
become too small. We keep this in the back of our mind. Figure 6shows a picture of
possible utility functions. Parameters are always ρ1 = 1. The solid curve has ρ2 = 0,
hence constant absolute risk aversion. The dashed curve has ρ2 = 1/4 (increasing ARA),
the dotted curve has ρ2 = −1/4 (decreasing ARA).

We construct the initial price P0 in two steps, as in the main text. First, we consider just
one period with noise ǫ (with standard deviation σ). We will then get an equation for
the assets price P at the beginning of that period. We can iterate the equation to get a
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Figure 6: Market Value Maximizing Policy
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general equation for P0. We then look for extrema of P0 as a function of σ1. For the first
step, consider an investor’s expected utility depending on his investment into the risky
asset, take the first order condition, and then take into account market clearing. The
resulting price is

P = µ− 1

4 ρ2

(

√

(1 + 2 ρ2 σ2)
(

ρ2w (1 + 2 ρ2 σ2)− 16 ρ22 σ
2
)

− ρw (1− 2 ρ2 σ
2)
)

(17)

with ρw := ρ1 + 2w ρ2. For ρ2 = 0, this term becomes simply P = µ − ρ1 σ
2. Now we

carry out the backward induction. At date t = 1, depending on the realization of ǫ1, the
price will be

P1 = µ+ ǫ1 −
1

4 ρ2

(
√

(1 + 2 ρ2 σ
2
2)
(

ρ2w (1 + 2 ρ2 σ
2
2)− 16 ρ22 σ

2
2

)

− ρw (1− 2 ρ2 σ
2
2)
)

. (18)

As a consequence, from the perspective of date t = 0, the price P1 is also normally
distributed with mean

µ− 1

4 ρ2

(

√

(1 + 2 ρ2 σ2
2)
(

ρ2w (1 + 2 ρ2 σ2
2)− 16 ρ22 σ

2
2

)

− ρw (1− 2 ρ2 σ
2
2)
)

(19)

and standard deviation σ1. The price P0 is thus

P0 = µ− 1

4 ρ2

(
√

(1 + 2 ρ2 σ2
2)
(

ρ2w (1 + 2 ρ2 σ2
2)− 16 ρ22 σ

2
2

)

− ρw (1− 2 ρ2 σ
2
2)
)

− 1

4 ρ2

(
√

(1 + 2 ρ2 σ2
1)
(

ρ2w (1 + 2 ρ2 σ2
1)− 16 ρ22 σ

2
1

)

− ρw (1− 2 ρ2 σ
2
1)
)

. (20)

Now the aggregate risk is σ2 = σ2
1 + σ2

2. We want to keep σ constant, thus substitute
σ2
2 → σ2 − σ2

1. Figure B shows possible shapes of the function P0(σ). In the left picture,
for parameters ρ1 = 1, σ = 1, w = 1, µ = 2, and ρ2 = 5/7, there is an inner minimum. In
the right picture, for parameters ρ2 = −1/7 (others as before), there is an inner maximum.
These pictures are remarkably similar to those in Figure 2 in the main paper. This already
suggests that the results do not depend on the functional form of utility functions and
probability distributions.

We now ask the same question as in the main paper: when do we get an inner maximum
or minimum, and where is that extremum? The answer is algebraically simple. P ′

0(σ1) = 0
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if and only if σ1 = 0 or σ1 = σ/
√
2. The first point is an artefact (if we looked at P0(σ

2
1)

instead of P0(σ1), this solution would disappear). The second solution is due to the fact
that P0 is symmetric in σ1 and σ2. Therefore, σ1 = σ2 must be an extremum, hence
σ1 = σ2 = σ/

√
2. Now to see whether the extremum is a minimum or maximum, consider

the second order condition,

P ′′

0 (σ1 = σ/
√
2) =

64 ρ32 σ
2

(

(1 + 2 ρ2 σ
2
2) (ρ

2
w (1 + 2 ρ2 σ

2
2)− 8 ρ2 σ2)

)3/2
. (21)

If this term is real (otherwise, the price P0 does not exist in the first place), then it is
positive for positive ρ2, and vice versa. This proves the following proposition. Increasing
absolute risk aversion thus promotes an inner maximum of P0(θ), and Remark 1 shows
that a positive skewness promotes an inner minimum. These results can be combined.
For example, if investors have log-utility (decreasing absolute risk aversion), P0(θ) would
have an interior minimum if Y were distributed with a sufficiently negative skewness.

Proposition 3 With the parametrization as above, the initial price P0 has an inner max-
imum (minimum) at σ1 = σ2 = σ/

√
2 if and only if the investors’ utility function has

decreasing (increasing) absolute risk aversion.

C Numerical Example

Consider the numerical example Yl = 0, Yh = 1, q = 0.5, and ρ = 2 (see Table 1 on
page 30). The table shows how prices can evolve for five different levels of disclosure
(five different values of θ). Without disclosure (θ = 0), in equilibrium P0 = P1 = 0.119.
M-investors bear no risk while L-investors bear full risk. If the final payoff is Yl = 0, they
suffer 100% loss. If the final payoff is Yh = 1, they make a profit of 739%. Since investors
are relatively risk averse, the potential profit is not valued that much.

By shifting some price risk to the M-investors (θ > 0), this can increase the ex ante P0

price. To illustrate the intuition, suppose that θ = 0.5. In equilibrium, P0 = 0.136. If
investors obtain a low signal, then P1L = 0.043. If the signal is high, then P1H = 0.289.

28



M-investors bear some risk now since they pay P0 = 0.136 and can sell the asset either
for P1L = 0.043 (−68% loss) of for P1H = 0.289 (112% profit). Now in the high signal
state, the L-investors pay 0.289. If the final payoff is Yl = 0, they still make 100% loss
(as in the θ = 0 case). But if the final payoff is Yh = 1, they make 246% profit (instead
of 740% when θ = 0). This type of risk sharing increases ex ante market price.

The intuition for the possibility of an interior minimum when q is high and ρ is low goes
as follows. Without interim disclosure, the date 1 price (and thus date 0 price) is close
to the final payoff Yh. Partial disclosure means that investors obtain a noisy interim
signal which is wrong with positive probability. If the signal suggests that Yl is likely to
be the final payoff, then there is a relatively large price decline at date 1, such that the
M-investors bear downside risk. But if the signal turns out to be wrong and the true
state is Yh, the L-investors experience a gain. Because of risk aversion, the potential price
decline that the M-investors face at date 1 has a higher impact on the date 0 price than
a potential price increase that L-Investors might experience at date 2. In such a case,
partial disclosure causes prices to fluctuate at date 1. If there is no disclosure, L-investors
bear all price risk while M-Investors face no risk.

Intuitively, for a disclosure policy to minimizes the value at t = 0, the sum of the risk
premia that M- and L-investors demand is higher than the risk premium that one cohort
of investors would demand when it bears all the risk. This argument explains why the
function P0(θ) has an interior minimum for high q and low ρ.

As a numerical example, consider the parameters Yl = 0, Yh = 1, q = 0.9, and ρ = 1
(see Table 2 on page 31). Without disclosure (θ = 0), in equilibrium P0 = P1 = 0.768.
M-investors bear no risk while L-investors bear full risk. If the final payoff is Yl = 0, they
suffer a 100% loss. If the final payoff is Yh = 1, they make a profit of 30%. With partial
disclosure, say θ = 0.5, in equilibrium P0 = 0.754, P1L = 0.321 and P1H = 0.959. So
the M-investors also bear risk of either making a loss of −57% or a profit of 27%. With
partial disclosure, if the signal is high at t = 1, L-investors makes a 100% loss (when the
final payoff is Yl) or a profit of 4% (when the final payoff is Yh). If the signal is low at
t = 1 and if P1L = 0.321, L-investors make a profit of 211% (when the final payoff is Yh).
This type of risk sharing reduces ex ante market prices.
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Table 1: Numerical Example with ρ = 2.0 and q = 0.5

0% t = 0 t = 1 t = 2

0.119$ 50% 0% 0.119$ 50% 739% 1.000$
50% 100%

50% 739%

50% 0% 0.119$ 50% 100% 0.000$

25% t = 0 t = 1 t = 2

0.124$ 50% 49% 0.184$ 63% 443% 1.000$
38% 100%

38% 1232%

50% 39% 0.075$ 63% 100% 0.000$

50% t = 0 t = 1 t = 2

0.136$ 50% 112% 0.289$ 75% 246% 1.000$
25% 100%

25% 2217%

50% 68% 0.043$ 75% 100% 0.000$

75% t = 0 t = 1 t = 2

0.151$ 50% 223% 0.486$ 88% 106% 1.000$
13% 100%

13% 5172%

50% 87% 0.019$ 88% 100% 0.000$

100% t = 0 t = 1 t = 2

0.119$ 50% 739% 1.000$ 100% 0% 1.000$
0% 100%

0%

50% 100% 0.000$ 100% 0% 0.000$

=

=

=

=

=

In this numerical example, Yh = 1, Yl = 0, ρ = 2.0, q = 0.5, and θ varying between 0 and 1. In this case,
there is an inner maximum at θ = 0.79 with P0 = 0.1514.
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Table 2: Numerical Example with ρ = 1.0 and q = 0.9

0% t = 0 t = 1 t = 2

0.595$ 50% 0% 0.595$ 80% 68% 1.000$
20% 100%

80% 68%

50% 0% 0.595$ 20% 100% 0.000$

25% t = 0 t = 1 t = 2

0.593$ 58% 20% 0.710$ 87% 41% 1.000$
13% 100%

71% 113%

43% 21% 0.469$ 29% 100% 0.000$

50% t = 0 t = 1 t = 2

0.588$ 65% 39% 0.815$ 92% 23% 1.000$
8% 100%

57% 204%

35% 44% 0.329$ 43% 100% 0.000$

75% t = 0 t = 1 t = 2

0.585$ 73% 56% 0.912$ 97% 10% 1.000$
3% 100%

36% 476%

28% 70% 0.174$ 64% 100% 0.000$

100% t = 0 t = 1 t = 2

0.595$ 80% 68% 1.000$ 100% 0% 1.000$
0% 100%

0%

20% 100% 0.000$ 100% 0% 0.000$

=

=

=

=

=

In this numerical example, Yh = 1, Yl = 0, ρ = 1.0, q = 0.9, and θ varying between 0 and 1. In this case,
there is an inner minimum at θ = 0.76 with P0 = 0.5015.
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