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Abstract. Diffusion probabilistic models (DPMs) have emerged as a promising technique in
generative modeling. The success of DPMs relies on two ingredients: time reversal of diffusion
processes and score matching. Most existing works implicitly assume that score matching is close to
perfect, while this assumption is questionable. In view of possibly unguaranteed score matching, we
propose a new criterion – the contraction of backward sampling in the design of DPMs, leading to a
novel class of contractive DPMs (CDPMs). The key insight is that the contraction in the backward
process can narrow score matching errors and discretization errors. Thus, our proposed CDPMs
are robust to both sources of error. For practical use, we show that CDPM can leverage pretrained
DPMs by a simple transformation, and does not need retraining. We corroborated our approach by
experiments on synthetic 1-dim examples, Swiss Roll, MNIST, CIFAR-10 32×32 and AFHQ 64×64
dataset. Notably, CDPM shows the best performance among all known SDE-based DPMs.

Key words: Contraction, diffusion probabilistic models, discretization, generative models, image
synthesis, sampling, score matching, stochastic differential equations.

1. Introduction

Over the past decade, generative models have achieved remarkable success in creating instances
across a wide variety of data modalities, including images [7, 24, 50], audio [6, 47], video [28], and text
[8, 65, 69]. Diffusion probabilistic models (DPMs) have emerged as a promising generative approach
that is observed to outperform generative adversarial nets on image and audio synthesis [17, 35], and
underpins the major accomplishment in text-to-image creators such as DALL·E 2 [49] and Stable
Diffusion [52], and the text-to-video generator Sora [45]. The concept of DPMs finds its roots in
energy-based models [53], and is popularized by [26, 57, 60] in an attempt to produce from noise
new samples (e.g. images, audio, text) that resemble the target data, while maintain diversity. See
[11, 61, 68] for a review on DPMs.

DPMs relies on forward-backward Markov processes. The forward process starts with the target
data distribution, and runs for some time until the signal is destroyed – this gives rise to noise. The
backward process is then initiated with the noise, and reverses the forward process in time to generate
samples whose distribution is close to the target distribution. In [2, 26, 57], DPMs are discrete time-
indexed Markov chains; [13, 56, 60] model DPMs in continuous time as stochastic differential equations
(SDEs). Nevertheless, there is no conceptual distinction between discrete and continuous DPMs as
continuous DPMs can be viewed as the continuum limits of discrete DPMs, and discrete DPMs are
time discretization of continuous DPMs. In this paper, we adopt a continuous time perspective, and
algorithms are derived by discretization. Being concrete,

• The forward process (Xt, 0 ≤ t ≤ T ) is governed by the SDE:

dXt = b(t,Xt)dt+ σ(t)dBt, with X0 ∼ pdata(·),
where Bt is Brownian motion, b(·, ·) and σ(·) are model parameters to be designed, and pdata(·)
is the target data distribution.
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• The backward process (Xt, 0 ≤ t ≤ T ) is governed by the SDE:

dXt = b(t,Xt)dt+ σ(t)dBt, with X0 ∼ pnoise(·),
where Bt is Brownian motion, b(·, ·) and σ(·) are some functions, and pnoise(·) is the noise
distribution that does not depend on pdata(·).

The forward process transforms data to noise (with a suitable choice of b(·, ·) and σ(·)). What is
miraculous is how the backward process recovers the target data distribution XT ≈ pdata(·) from noise
pnoise(·). The secret consists of two key ingredients.

(1) Time reversal of diffusion processes: The backward process has an explicit form, where b(t, x)
depends on b(T − t, x), σ(T − t) and Stein’s score functions (the gradients of the log marginal
density of the forward process), and σ(t) = σ(T − t) [9, 25].

(2) Score matching: The backward process is easily sampled given b(·, ·), σ(·) and score functions.
The trick is to learn score functions via forward sampling, referred to as score-based DPMs.
Leaning score functions, also known as score matching, features in a body of active research
[27, 34, 59, 66].

In a nutshell, DPMs combine forward score learning with backward sampling.
As is clear, a DPM is specified by the pair (b(·, ·), σ(·)). Popular examples include Ornstein-

Uhlenbeck (OU) processes [16], variance exploding (VE) SDEs, variance preserving (VP) SDEs, and
sub-variance preserving (subVP) SDEs [60] (see Appendix B for definitions). Especially, VE and VP
SDEs are the continuum limits of score matching with Langevin dynamics (SMLD) [57] and denoising
diffusion probabilistic models (DDPMs) [26] respectively. A natural question is:

How do we design the pair (b(·, ·), σ(·))(b(·, ·), σ(·))(b(·, ·), σ(·)) for a DPM?

The first rule of thumb, which is satisfied by all the aforementioned examples, is:

Rule 1. The conditional distributions of Xt |X0 are easy to sample (e.g. Gaussian).
This rule allows efficient sampling in the forward process for score matching via stochastic optimiza-

tion. Notably, Rule 1 provides only instructions on the forward learning step, but no requirement
on backward sampling. The purpose of this paper is to put forward a principle regarding backward
sampling in the design of DPMs. Our proposal is:

Rule 2. The backward process X is contractive.
Roughly speaking, being contractive indicates that the process tends to be confined, or converge

(see Section 3 for explanations). DPMs that comply with Rule 1 and 2 are called contractive DPMs
(CDPMs). Here we abuse the term contractive DPMs by meaning that their backward processes,
rather than the forward processes, exhibit contractive properties. At a high level, the contraction of
the backward process will prevent score matching errors, which may be wild, from expanding over the
time. The contributions of this work are summarized as follows.

Methodology: We propose a new criterion (Rule 2) for designing DPMs. This naturally leads
to a novel class of DPMs, including contractive OU processes and contractive subVP SDEs. The
idea of requiring the backward process to be contractive stems from sampling theory of SDEs, so our
methodology is theory-oriented. To our best knowledge, this is the first paper to integrate contraction
into the design of DPMs, with both theoretical guarantees and good empirical performance.

Theory: We prove Wasserstein bounds between contractive DPM samplers and the target data
distribution. While most previous work (e.g. [13, 16, 37]) focused on Kullback–Leibler (KL) or total
variation bounds for OU processes, we consider the Wasserstein metric because it has shown to align
with human judgment on image similarity [5], and the standard evaluation metric – Fréchet inception
distance (FID) is based on Wasserstein distance. Early work [16, 36] gave Wasserstein bounds for
the existing DPMs (OU processes, VE and VP SDEs) with exponential dependence on T . This was



CDPM 3

improved in recent studies [13, 38, 23] under various assumptions of pdata(·), where the bounds are
typically of form:

(noise inaccuracy) · e−T︸ ︷︷ ︸
initialization error

+(score mismatch) · Poly(T )︸ ︷︷ ︸
score error

+ Poly(step size) · Poly(T )︸ ︷︷ ︸
discretization error

,

with Poly(·) referring to polynomial in the variable. Our result gives a Wasserstein bound for CDPMs:

(noise inaccuracy) · e−T︸ ︷︷ ︸
initialization error

+(score mismatch) · (1− e−T )︸ ︷︷ ︸
score error

+ Poly(step size)︸ ︷︷ ︸
discretization error

.

Score matching is often trained using blackbox function approximations, and the errors incurred in
this step may be large. So CDPMs are designed to be robust to score mismatch and discretization, at
the cost of possible initialization bias.

Experiments: We apply the proposed CDPMs to both synthetic and real data. In dimension one,
we compare contractive OU with OU by adding a fixed noise to the true score function, which yields
the same score matching error. Our result shows that contractive OU consistently beats OU, and
is robust to different error levels and time discretization. We further compare the performance of
different models via Wasserstein-2 distance of the SWISS Roll dataset and FIDs of MNIST, which
show that CDPMs outperform other SDE models. On the task of CIFAR-10 unconditional generation,
we obtain an FID score of 2.47 and an inception score of 10.18 for CDPM, which requires no retraining
by transforming the pretrained weights of VE-SDE in [60], surpassing all other SDE models.

Literature review. In the context of generative modeling, DPMs were initiated by [57] (SMLD)
and [26] (DDPM) using forward-backward Markov chains. The work [60, 56] unified the previous
models via a score-based SDE framework, which also led to deterministic ordinary differential equation
(ODE) samplers. Since then the field has exploded, and lots of work has been built upon DPMs and
their variants. Examples include DPMs in constrained domains [20, 41, 51, 18], DPMs on manifolds
[46, 15, 10], DPMs in graphic models [42], variational DPMs [32, 63] and consistency models [55],
just to name a few. Early theory [16, 15, 36] established the convergence of DPMs with exponential
dependence on time horizon T and dimension d. Recently, polynomial convergence of various DPMs
has been proved for stochastic samplers [13, 3, 40, 23, 37, 38] and deterministic samplers [4, 12, 14, 40],
under suitable conditions on the target data distribution.

The remainder of the paper is organized as follows. In Section 2, we provide background on DPMs
and score matching techniques. Theoretical results for CDPMs are presented in Section 3, and
connections to VE are discussed in Section 4. Experiments are reported in Section 5. We conclude
with Section 6.

2. Background

2.1. Diffusion models. Let’s explain DPMs in the context of SDEs. We follow closely the presentation
in [61]. Consider the forward process:

dXt = b(t,Xt)dt+ σ(t)dBt, with X0 ∼ pdata(·), (2.1)

where b : R+ × Rd → Rd and σ : R+ → R+ are model parameters. Some conditions on b(·, ·) and σ(·)
are required so that the SDE (2.1) is at least well-defined (see [29, Chapter 5], [62, Section 3.1]). Let
p(t, ·) be the probability density of Xt.

Set T > 0 to be fixed, and run the SDE (2.1) until time T to get XT ∼ p(T, ·). Now if we start
with p(T, ·) and run the process X backward, then we can generate a copy of p(0, ·) = pdata(·). Being
precise, consider the time reversal Xt := XT−t for 0 ≤ t ≤ T . Assuming that X also satisfies an SDE,
we can run the backward procedure by

dXt = b̄(t,Xt)dt+ σ̄(t)dBt, with X0 ∼ p(T, ·),
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which samples the desired XT ∼ pdata(·) at time T . Note that the distribution p(T, ·) depends on the
target distribution pdata(·). The idea of DPMs is, however, to generate samples from noise. So we need
to replace p(T, ·) by a proxy pnoise(·) that is independent of pdata(·). This yields the backward process:

dXt = b̄(t,Xt)dt+ σ̄(t)dBt, with X0 ∼ pnoise(·). (2.2)

Two questions arise:

(1) How can we choose pnoise(·)?
(2) What are the parameters b̄(·, ·) and σ̄(·)?

For (1), the noise pnoise(·) is often derived by decoupling the conditional distribution of Xt |X0 from
X0. It is expected that the closer the distributions p(T, ·) and pnoise(·) are, the closer the distribution
of XT sampled from (2.2) is to pdata(·). For (2), it relies on the time reversal of SDEs [1, 25].

Theorem 1. Under suitable conditions on b(·, ·), σ(·) and {p(t, ·)}0≤t≤T , we have

σ(t) = σ(T − t), b(t, x) = −b(T − t, x) + σ2(T − t)∇ log p(T − t, x), (2.3)

where the term ∇ log p(·, ·) is called Stein’s score function.

We give a derivation of Theorem 1 with further references in Appendix A. As a consequence, the
backward process is:

dXt =
(
−b(T − t,Xt) + σ2(T − t)∇ log p(T − t,Xt)

)
dt+ σ(T − t)dBt. (2.4)

Various examples of DPMs are provided in Appendix B. Since b(·, ·) and σ(·) are chosen in advance,
all but the term ∇ log p(T − t,Xt) in (2.4) are available.

2.2. Score matching. As previously mentioned, we need to compute the score function ∇ log p(t, x)
for backward sampling. The idea from recently developed score-based generative modeling [26, 57, 60]
is to estimate ∇ log p(t, x) by function approximations. More precisely, denote by {sθ(t, x)}θ a family
of functions on R+ × Rd parametrized by θ. Fixing t, the goal is to solve the problem:

min
θ

JESM(θ) := Ep(t,·)|sθ(t,X)−∇ log p(t,X)|2, (2.5)

which is known as the explicit score matching (ESM) objective. The stochastic optimization (2.5) is
far-fetched since the scores ∇ log p(t, x) are not available. Interestingly, this problem has been studied
in the context of estimating statistical models with unknown normalizing constant. The following result
[27] shows that the score matching problem (2.5) can be recast into a feasible stochastic optimization
with no ∇ log p(t,X)-term, known as implicit score matching (ISM) objective.

Theorem 2. Let JISM(θ) := Ep(t,·)
[
|sθ(t,X)|2 + 2∇ · sθ(t,X)

]
. Under suitable conditions on sθ, we

have JISM(θ) = JESM(θ)+C for some C independent of θ. Consequently, the minimum point of JISM
and that of JESM coincide.

We give a proof of this theorem in Appendix C.1 for completeness. In practice, the score matching
problem with a continuous weighted combination is considered:

min
θ

J̃ESM(θ) = Et∈U(0,T )Ep(t,·)
[
λ(t)|sθ(t,X)−∇ log p(t,X)|2

]
. (2.6)

where U(0, T ) denotes a uniform distribution on [0, T ], and λ : R → R+ is a positive weighting function.
We can alternate the inside part by ISM to solve the problem:

min
θ

J̃ISM(θ) = Et∈U(0,T )Ep(t,·)
[
λ(t)

(
|sθ(t,X)|2 + 2∇ · sθ(t,X)

)]
. (2.7)

However, the problem (2.7) can still be computationally costly when the dimension d is large. Using
a neural network for sθ(t, x), we need to conduct d times of backward propagation of all parameters
to compute ∇ · sθ(t, x). This means that the computation of the gradient scales linearly with the
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dimension, thus making the gradient descent methods not efficient for solving the problem (2.7) with
respect to examples such as image data in high dimension. Denoising score matching (DSM) [66]
serves as a scalable alternative:

J̃DSM(θ) = Et∼U(0,T )

{
λ(t)EX0∼pdata(·)EXt|X0

[
|sθ(t,X(t))−∇Xt

log p(t,Xt | X0)|2
]}

.

Its equivalent form and other methods such as sliced score matching [59] are discussed in Appendix
C.2. Now we replace ∇p(t, x) with the matched score sθ(t, x) in (2.2) to get the backward process:

dXt =
(
−b(T − t,Xt) + σ2(T − t) sθ(T − t,Xt)

)
dt+ σ(T − t)dBt, X0 ∼ pnoise(·). (2.8)

3. Theory for contractive DPMs

In this section, we introduce the idea of CDPMs, and present supportive theoretical results. For a
DPM specified by (2.1)-(2.8), we consider the Euler-Maruyama discretization of its backward process
X. Fix δ > 0 as the step size, and set tk := kδ for k = 0, . . . , N := T

δ . Let X̂0 = X0, and

X̂k := X̂k−1 + (−b(T − tk, X̂k−1)+a(T − tk−1)sθ(T − tk−1, X̂k−1))δ

+ σ(T − tk−1)(Btk −Btk−1
), for k = 1, . . . , N.

(3.1)

Our goal is to bound the Wasserstein-2 distance W2(pdata(·), X̂N ). Clearly,

W2(pdata(·), X̂N ) ≤ W2(pdata(·), XT ) +
(
E|XT − X̂N |2

) 1
2

, (3.2)

where the first term on the right side of (3.2) is the sampling error at the continuous level, and the
second term is the discretization error. We will study these two terms in the next two subsections.

3.1. Sampling error in continuous time. We are concerned with the term W2(pdata(·), XT ).
Existing work [13, 38, 16] established W2 bounds for OU processes under a bounded support assumption.
Closer to our result (and proof) is the concurrent work [23], where a W2 bound is derived for a class
of DPMs with b(t, x) separable in t and x, under a strongly log-concavity assumption.

Assumption 3. The following conditions hold:

(1) There exists rb : [0, T ] → R such that (x− x′) · (b(t, x)− b(t, x′)) ≥ rb(t)|x− x′|2 for all t and
x, x′.

(2) There exists L > 0 such that |∇ log p(t, x)−∇ log p(t, x′)| ≤ L|x− x′| for all t and x, x′.
(3) There exists ε > 0 such that E|sθ(t,XT−t)−∇ log p(t,XT−t)|2 ≤ ε2 for all t.

The condition (1) assumes the monotonicity of b(t, ·) and (2) assumes the Lipschitz property of the
score functions. In the previous examples, b(t, x) is linear in x so the density p(t, ·) is Gaussian-like,
and its score is almost affine. Thus, it is reasonable to assume (2). Conditions (1) and (2) are used to
quantify how a perturbation of the model parameters in an SDE affects its distribution. The condition
(3) specifies how accurate Stein’s score is estimated by a blackbox estimation. There has been work
(e.g. [10, 34, 44]) on the efficiency of score approximations. So it is possible to replace the condition
(3) with those score approximation bounds.

Theorem 4. Let Assumption 3 hold, and h > 0. Define η := W2(p(T, ·), pnoise(·)), and

u(t) :=

∫ T

T−t

(
−2rb(s) + (2L+ 2h)σ2(s)

)
ds. (3.3)

Then we have

W2(pdata(·), XT ) ≤

√
η2eu(T ) +

ε2

2h

∫ T

0

σ2(t)eu(T )−u(T−t)dt. (3.4)



6 WENPIN TANG AND HANYANG ZHAO

The proof of Theorem 4 is deferred to Appendix D. A similar result was given in [36] under an
unconventional assumption that the score matching functions sθ(t, x), rather than the score functions
∇p(t, x), are Lipschitz. In fact, the (impractical) assumption that the score matching functions are
Lipschitz is not needed at the continuous level, and can be replaced with the Lipschitz condition on
the score functions. On the other hand, the Lipschitz property of the score matching functions are
required, for technical purposes, to bound the discretization error in Section 3.2.

It is possible to establish sharper bounds under extra (structural) conditions on (b(·, ·), σ(·)), and
also specify the dependence in dimension d (e.g. [13, 23]). For instance, if we assume b(t, x) is separable
in t and x and linear in x, and pdata(·) is strongly log-concave, then the term Lσ2(s) in (3.3) will
become −L′σ2(s) for some L′ > 0. Since the purpose of this paper is to introduce the methodology of
CDPMs, we leave the full investigation of its theory to the future work.

Now let’s explain contractive DPMs. Looking at the bound (3.4), the sampling error W2(pdata(·), XT )
is linear in the score matching error ε and the initialization error η, and these errors may be amplified in
time T – in most aforementioned DPMs, rb(t) ≤ 0 so u(t) is positive and at least linear. As mentioned
earlier, it is problematic if we don’t know how good a blackbox score matching sθ(t, x) is. Our idea is
simply to make u(t) be negative, that is to set rb(t) > 0 sufficiently large, in order to prevent the score
matching error from propagating in backward sampling. This yields the class of CDPMs, which is
inherently different from existing DPMs in the sense that these DPMs often have contractive forward
processes, while our proposal requires contractive backward processes. Quantitatively, we can set for
some α > 0,

inf
0≤t≤T

(
rb(t)− (L+ h)σ2(t)

)
≥ α. (3.5)

In practice, it suffices to design (b(·, ·), σ(·)) with a positive rb(t). We present three examples, contractive
OU processes and contractive subVP SDEs:

(a) Contractive Ornstein-Ulenback (COU) process: b(t, x) = θ(x − µ) with θ > 0, µ ∈ Rd and
σ(t) = σ. The backward process is:

dXt =

(
− θ(Xt − µ) + σ2∇ log p(T − t,Xt)

)
dt+ σdBt, X0 ∼ N

(
0,

σ2

2θ
(e2θT − 1)I

)
. (3.6)

(b) Contractive variance preserving (CVP) SDE: b(t, x) = 1
2β(t)x and σ(t) =

√
β(t), where

β(t) = βmin + t
T (βmax − βmin). The backward process is:

dXt =

(
−1

2
β(T − t)Xt + β(T − t)∇ log p(T − t,Xt)

)
dt

+
√

β(T − t)dBt, X0 ∼ N
(
0, (e

T
2 (βmax+βmin) − 1)I

)
.

(3.7)

(c) Contractive sub-variance preserving (CsubVP) SDEs: b(t, x) = 1
2β(t)x and σ(t) =

√
β(t)(e2

∫ t
0
β(s)ds − 1).

By setting γ(t) = e2
∫ t
0
β(s)ds, the backward process is:

dXt =

(
− 1

2
β(T − t)Xt + β(T − t)(γ(T − t)− 1)∇ log p(T − t,Xt)

)
dt

+
√
β(T − t)(γ(T − t)− 1)dBt, X0 ∼ N

(
0, (e

T
2 (βmax+βmin) − 1)2I

)
.

(3.8)

To illustrate, we give a bound for CVP. Recall that a function ℓ : Rd → R is κ-strongly concave if
(∇ℓ(x)−∇ℓ(y)) · (x− y) ≤ −κ|x− y|2.
Theorem 5. Let (Xt, 0 ≤ t ≤ T ) be specified by (3.7) (the backward process of CVP). Assume that
log pdata(·) is κ-strongly log-concave, and Epdata(·)|x|

2 < ∞. We have

W 2
2 (pdata(·), XT ) ≤ e−2( κ

1+κ−βmaxhT+O(e−βminT ))Epdata(·)|x|
2 +

ε2

2h(1− 2h)
. (3.9)
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The proof of Theorem 5 is given in Appendix E. It is easy to see from the theorem that CVP (and
other CDPMs) allow to control the score matching error ε, at the possible cost of initialization error
coming from η. Note that if βmaxT is asymptotically small, this error is bounded. This requires
scaling the hyperparameters with respect to T in the model. We observe in the experiment that
tuning a moderate level β is important to let CDPM benefit from contraction while not suffer from
the initialization error. Also note that it is not necessary to send T → ∞, and T = 1 is taken in [60].

3.2. Discretization error. We study the discretization error
(
E|XT − X̂N |2

) 1
2

for CDPMs. Classical

SDE theory [33] indicates that
(
E|XT − X̂N |2

) 1
2 ≤ C(T )δ, with the constant C(T ) exponential in T .

Here we show that by a proper choice of the pair (b(·, ·), σ(·)) leading to CDPMs, the constant C(T )
can be made independent of T . In other words, the discretization error will not expand over the time.
We need some technical assumptions.

Assumption 6. The following conditions hold:

(1) There exists Lσ > 0 such that |σ(t)− σ(t′)| ≤ Lσ|t− t′| for all t, t′.
(2) There exists Rσ > 0 such that σ(t) ≤ Rσ for all t.
(3) There exists Lb > 0 such that |b(t, x)− b(t′, x′)| ≤ Lb(|t− t′|+ |x− x′|) for all t, t′ and x, x′.
(4) There exists Ls > 0 such that |sθ(t, x)− sθ(t

′, x′)| ≤ Ls(|t− t′|+ |x− x′|) for all t, t′ and x, x′.
(5) There exists Rs > 0 such that |sθ(T, x)| ≤ Rs(1 + |x|) for all x.

Next we introduce a contractive assumption that is consistent with (3.5)

Assumption 7. There exists β > 0 such that∫ T

T−t

(rb(s)− Lsσ
2(s)) ds ≥ βt, for all t, (3.10)

or simply
β := inf

0≤t≤T

(
rb(t)− Lsσ

2(t)
)
> 0. (3.11)

Theorem 8. Let Assumptions 3, 6 and 7 hold. Then there exists C > 0 (independent of δ, T ) such
that for δ > 0 sufficiently small, (

E|XT − X̂N |2
) 1

2 ≤ C
√
δ. (3.12)

The proof of Theorem 8 is given in Appendix F.

4. Connections between CDPM and VE

In this section, we draw connections between CDPM and VE. We first show that VE exhibits some
hidden contractive property. Then we show how to exploit the pretrained models such as VE to achieve
CDPM, which does not require retraining.

4.1. VE is implicit CDPM at earlier denoising steps. We illustrate with an example that the
backward process of VE also yields the contractive property at earlier stages of the denoising process.
In Figure 1, the angles correspond to the scores of a normal distribution with mean 0 (the case of
the VE prior). We see that the two points becomes closer after a denosing step , which provides an
explanation of the hidden contraction. However, VE may lose this contractive property when the
distribution is close to the target data distribution, which motivates the design of CDPM.
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Figure 1. Contraction of
VE Figure 2. Perturbation kernels

4.2. CDPM is a change of variables of VE. We show that CDPM, though different from existing
DPMs, can be derived from VE via a time/space change, so does not require pretraining the score
matching objectives. Note that for COU, CVP and CsubVP, the parameter b(t, x) is separate in t and
x. We follow [30], and define the perturbation kernel of CDPM as:

Xt | X0 ∼ N
(
f(t)X0, f(t)

2g(t)2I
)
,

where

f(t) = e
t2

4T (βmax−βmin)+
t
2βmin and g(t) = f(t)− f−1(t). (4.1)

Figure 2 plots different perturbation kernels of SDE models: existing models lead to either a constant
or a decreasing kernel, while we propose the kernel be increasing. This yields CsubVP and EDM+,
which we will show in Section 5.3.

Denote by pVE(t, ·) and pCsubVP(t, ·) the probability distribution of Xt following VE and CsubVP
respectively. Assume that we have access to a pretrained VE score matching spre(t, x) ≈ ∇ log pV E(t, x).
We can then compute the CDPM score by the following transformation, which is read from [30, Equation
(12) and (19)].

Theorem 9. Assume that σ2
max − σ2

min > g2(T ). We have for t ∈ [0, T ],

pCsubVP(t, x) = f(t)−dpVE(τ(t), x/f(t)), (4.2)

where

τ(t) =
T

2

log(1 + g2(t)
σ2
min

)

log(σmax/σmin)
. (4.3)

So it suffices to take ∇ log pCsubVP(t, x) ≈ spre(τ(t), x/f(t)), meaning that we can exploit existing
score matching neural nets, or pretrained weights for CDPM sampling.

5. Experiments

In this section, we report empirical results on the proposed contractive approach and CDPMs. We
conduct experiments on a 1-dimensional synthetic example, Swiss Roll, MNIST, CIFAR10 32×32 and
AFHQv2 64×64 datasets.
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5.1. CDPM shows better performance with the same scoring matching error. The goal is
to learn/generate a single point mass at x0 = −1 in dimension one. Since we can compute the score
explicitly, we test the performance of different SDE models by adding the SAME noise level of error at
each time/point. Implementation details are given in Appendix G.1. Table 1 compares the W2 errors
for OU and COU, with different noise levels and time discretization. As is expected from the theory,
COU is more robust to score matching error and time discretization.

Noise Level \ W2 ↓ OU COU

ϵ = 0.02 0.245 0.22
ϵ = 0.05 0.265 0.227
ϵ = 0.1 0.30 0.23
ϵ = 0.2 0.39 0.25
ϵ = 0.5 0.7 0.42
ϵ = 1 1.3 0.8

(a) time discretization ∆t = 0.02

Noise Level \W2 ↓ OU COU

ϵ = 0.02 0.41 0.35
ϵ = 0.05 0.44 0.36
ϵ = 0.1 0.48 0.36
ϵ = 0.2 0.58 0.36
ϵ = 0.5 0.92 0.43
ϵ = 1 1.5 0.7

(b) time discretization ∆t = 0.05

Table 1. W2 distance under the same score matching error.

5.2. Swiss Roll and MNIST datasets. We apply CsubVP to Swiss Roll and MNIST datasets.
Implementation details are reported in Appendix G.2. Figure 2a shows the evolution process of
CsubVP on the Swiss Roll data. Figure 2b provides image synthesis by CsubVP on MNIST. Table 2
shows a clear advantage of CDPMs over other SDE models in terms of W2 error and FID score.

Model (SDE) W2 ↓ FIDs ↓
OU 0.29 -
VP [60] 0.33 0.79
subVP [60] 0.34 0.52
VE [60] 0.18 0.20

CDPMs

COU 0.10 -
CsubVP 0.14 0.03

Table 2. W2 metric on
Swiss Roll and FIDs on
MNIST synthesis.

(a) Swiss Roll generation with 200, 400, 600, 800, 10000
iterations.

(b) MNIST synthesis by CsubVP.

5.3. CIFAR-10 dataset. We first test the performance of our proposed CsubVP on the task of
unconditional synthesis of the CIFAR-10 dataset. We compute and compare FID and inception scores
of CsubVP and other SDE models. Implementation details are given in Appendix G.3.

Figure 3 provides image synthesis on CIFAR-10. From Table 3, CsubVP shows the best performance
among all known classes of SDE-based diffusion models. In particular, it outperforms VE SDEs
(non-deep version in [60]) by achieving both smaller FIDs and higher Inception Scores. (∗ the model
evaluation is conducted on our own machine (4 4090RTX GPUs) given the checkpoints provided by
[60]).



10 WENPIN TANG AND HANYANG ZHAO

Figure 3. CIFAR-10 Synthesis
(CsubVP).

Model Inception ↑ FID ↓

PixelCNN [64] 4.60 65.9
IGEBM [19] 6.02 40.6
ViTGAN [39] 9.30 6.66
StyleGAN2-ADA [31] 9.83 2.92
NCSN [57] 8.87 25.32
NCSNv2 [58] 8.40 10.87
DDPM [26] 9.46 3.17
DDIM, T = 50 [54] - 4.67
DDIM, T = 100 [54] - 4.16

NCSN++

VP SDE [60] 9.58 2.55
subVP SDE [60] 9.56 2.61
VE SDE [60] 9.68∗ 2.50∗

CsubVP 10.18 2.47

Table 3. Inception & FID.

We also show how to improve the baseline pretrained models using our idea of contraction. Given
the checkpoints of EDM [30] on CIFAR10 and AFHQv2 datasets, we modify the perturbation kernel to
let s(0) = 1− ϵ < 1, leading to an increasing function as in Figure 2. This simple technique, motivated
by our contraction approach, yields improvement to the EDM baselines as in Table 4. Moreover, we
observe the improvement of the sample quality by comparing the images generated by EDM and EDM
with contraction, see Figure 4.

Figure 4. (CIFAR10
sample) LEFT: EDM,
RIGHT: EDM with
contraction.

Model/FID ↓ EDM*[30] ‘+’ Contraction NFE

CIFAR10 32×32

VP SDE (cond) 1.85 1.83 35
VE SDE (cond) 1.83 1.82 35
VP SDE (uncond) 1.96 1.94 35
VE SDE (uncond) 1.97 1.97 35

AFHQv2 64×64

VP SDE (uncond) 2.10 2.08 79
VE SDE (uncond) 2.24 2.20 79

Table 4. FID scores (*our reruns).

6. Conclusion

In this paper, we propose a new criterion – the contraction of backward sampling in the design of
SDE-based DPMs. This naturally leads to a novel class of contractive DPMs. The main takeaway
is that the contraction of the backward process limits score matching errors from propagating, and
controls discretization error as well. Our proposal is supported by theoretical considerations, and is
corroborated by experiments. Notably, our proposed contractive subVP outperforms other SDE-based
DPMs on CIFAR 10 dataset. Though the intention of this paper is not to beat SOTA diffusion models,
CDPMs show promising results that we hope to trigger further research.
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There are a few directions to extend this work. First, we assume that score matching errors are
bounded in L2 as in [13, 23, 38]. It is interesting to see whether this assumption can be relaxed to more
realistic conditions given the application domain. Second, it is desirable to establish sharp theory for
CDPMs, with dimension dependence. Finally, our formulation is based on SDEs, and hence stochastic
samplers. We don’t look into ODE samplers as in [60, 67, 40, 12]. This leaves open the problems such
as whether the proposed CDPMs perform well by ODE samplers, and why the ODE samplers derived
from SDEs outperform those directly learnt, as observed in previous studies.

Acknowledgement: We thank Jason Altschuler, Yuxin Chen, Sinho Chewi, Xuefeng Gao, Dan
Lacker, Yuting Wei and David Yao for helpful discussions. We gratefully acknowledges financial
support through NSF grants DMS-2113779 and DMS-2206038, and by a start-up grant at Columbia
University.
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Appendix

A. Proof of Theorem 1.

Proof. Here we give a heuristic derivation of the time reversal formula (2.3). First, the infinitesimal
generator of X is L := 1

2σ
2(t)∆+b·∇. It is known that the density p(t, x) satisfies the the Fokker–Planck

equation:
∂

∂t
p(t, x) = L∗p(t, x), (.1)

where L∗ := 1
2σ

2(t)∆−∇ · b is the adjoint of L. Let p(t, x) := p(T − t, x) be the probability density of
the time reversal X. By (.1), we get

∂

∂t
p(t, x) = −1

2
σ2(t)∆p(t, x) +∇ · (b(T − t, x) p(t, x)) . (.2)

On the other hand, we expect the generator of X to be L := 1
2σ

2(t)∆ + b · ∇. The Fokker-Planck
equation for p(t, x) is

∂

∂t
p(t, x) =

1

2
σ2(t)∆p(t, x)−∇ ·

(
b(t, x) p(t, x)

)
. (.3)

Comparing (.2) and (.3), we set σ(t) = σ(T − t) and then get(
b(T − t, x) + b(t, x)

)
p(t, x) = σ2(T − t)∇p(t, x).

This yields the desired result. □

Let’s comment on Theorem 1. [25] proved the result by assuming that b(·, ·) and σ(·, ·) are globally
Lipschitz, and the density p(t, x) satisfies an a priori H1 bound. The implicit condition on p(t, x) is
guaranteed if ∂t+L is hypoelliptic. These conditions were relaxed in [48]. In another direction, [21, 22]
used an entropy argument to prove the time reversal formula in the case σ(t) = σ. This approach was
further developed in [9] which made connections to optimal transport.

B. Examples of DPMs. We present a few examples of DPMs.

(a) OU processes: b(t, x) = θ(µ − x) with θ > 0, µ ∈ Rd; σ(t) = σ > 0. The distribution of
(Xt |X0 = x) is N (µ+ (x− µ)e−θt, σ2

2θ (1− e−2θt)I), which is approximately N (µ, σ2

2θ I) as t is
large. The backward process specializes to

dXt = (θ(Xt − µ) + σ2∇ log p(T − t,Xt))dt+ σdBt, X0 ∼ N
(
µ,

σ2

2θ
I

)
. (.4)

(b) VE-SDE: b(t, x) = 0 and σ(t) = σmin

(
σmax

σmin

) t
T
√

2
T log σmax

σmin
with σmin ≪ σmax. The distri-

bution of (Xt |X0 = x) is N
(
x, σ2

min

((
σmax

σmin

) 2t
T − 1

)
I

)
, which can be approximated by

N (0, σ2
maxI) at t = T . The backward process is:

dXt = σ2(T − t))∇ log p(T − t,Xt) + σ(T − t)dBt, X0 ∼ N (0, σ2
maxI). (.5)

(c) VP-SDE: b(t, x) = − 1
2β(t)x and σ(t) =

√
β(t), where β(t) := βmin + t

T (βmax − βmin) with
βmin ≪ βmax. The distribution of (Xt |X0 = x) is

N (e−
t2

4T (βmax−βmin)− t
2βminx, (1− e−

t2

2T (βmax−βmin)−tβmin)I),

which can be approximated by N (0, I) at t = T . The backward process is:

dXt =

(
1

2
β(T − t)Xt + β(T − t)∇ log p(T − t,Xt)

)
dt

+
√
β(T − t))dBt, X0 ∼ N (0, I).

(.6)
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(d) subVP-SDE: b(t, x) = − 1
2β(t)x and σ(t) =

√
β(t)(1− e−2

∫ t
0
β(s)ds). The distribution of

(Xt |X0 = x) is N (e−
t2

4T (βmax−βmin)− t
2βminx, (1− e−

t2

2T (βmax−βmin)−tβmin)2I), which can be ap-
proximated by N (0, I) at t = T . The backward process is:

dXt =

(
1

2
β(T − t)Xt + β(T − t)(1− γ(T − t))∇ log p(T − t,Xt)

)
dt

+
√

β(T − t)(1− γ(T − t))dBt, X0 ∼ N (0, I),

(.7)

where γ(t) := e−2
∫ t
0
β(s)ds = e−

t2

T (βmax−βmin)−2tβmin .

C. Score matching.

C.1. Proof of Theorem 2.

Proof. We have

∇θJISM(θ) = ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2Ep(t,·) [∇θsθ(t,X) · ∇ log p(t,X)]

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2

∫
∇θsθ(t, x) · ∇p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2∇θ

∫
sθ(t, x) · ∇p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
+ 2∇θ

∫
∇ · sθ(t, x) p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2 + 2∇ · sθ(t,X)

]
= ∇θJ̃ (θ),

where we use the divergence theorem in the fourth equation. □

C.2. Scalable score matching methods.

(a) Sliced score matching. One way is that we further address the term ∇x · sθ(t, x) by random
projections. The method proposed in [59] is called sliced score matching. Considering the Jacobian
matrix ∇sθ(t, x) ∈ Rd×d, we have

∇ · sθ(t, x) = Tr(∇sθ(t, x)) = Ev∼N (0,I)

[
v⊤∇sθ(t, x)v

]
.

We can then rewrite the training objective as:

min
θ

J̃SSM(θ) = Et∈U(0,T )Evt∼N (0,I)Ep(t,·)
[
λ(t)

(
∥sθ(t,X)∥2 + 2 v⊤∇(v⊤sθ(t, x))

)]
. (.8)

which can be computed easily. It requires only two times of back propagation, as v⊤sθ(t, x) can be
seen as adding a layer of the inner product between v and sθ.

(b) Denoising score matching. The second way is that we go back to the objective (2.6), and use
a nonparametric estimation. The idea stems from [27, 66], in which it was shown that JESM is
equivalent to the following denoising score matching (DSM) objective:

J̃DSM(θ) = Et∼U(0,T )

{
λ(t)EX0∼pdata(·)EXt|X0

[
|sθ(t,X(t))−∇Xt

log p(t,Xt | X0)|2
]}

Theorem 10. Let JDSM(θ) := EX0∼pdata(·)EXt|X0

[
|sθ(t,X(t))−∇Xt log p(t,Xt | X0)|2

]
. Under

suitable conditions on sθ, we have JDSM(θ) = JESM(θ)+C for some C independent of θ. Consequently,
the minimum point of JDSM and that of JESM coincide.
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Proof. We have

JESM(θ) = Ep(t,·)|sθ(t,X)−∇ log p(t,X)|2

= Ep(t,·)
[
|sθ(t,X)|2 − 2sθ(t,X)⊤∇ log p(t,X) + |∇ log p(t,X)|2

]
.

Consider the inner product term, rewriting it as:

Ep(t,·)
[
sθ(t,X)⊤∇ log p(t,X)

]
=

∫
x

p(t, x)sθ(t, x)
⊤∇ log p(t, x)dx

=

∫
x

sθ(t, x)
⊤∇p(t, x)dx

=

∫
x

sθ(t, x)
⊤∇

∫
x0

p(0, x0)p(t, x|x0)dx0dx

=

∫
x0

∫
x

sθ(t, x)
⊤p(0, x0)∇p(t, x|x0)dxdx0

=

∫
x0

p(0, x0)

∫
x

sθ(t, x)
⊤p(t, x|x0)∇ log p(t, x|x0)dxdx0

= EX0∼p(0,·)EXt|X0

[
sθ(t,X(t))⊤∇Xt

log p(t,Xt | X0)
]
,

combining EX |sθ(t,X)|2 = EX0
EX|X0

|sθ(t,X)|2 concludes our proof. □

The intuition of DSM is that following the gradient sθ of the log density at some corrupted point
x̃ should ideally move us towards the clean sample x. The reason that the objective JDSM is
comparatively easy to solve is that conditional distribution usually satisfies a good distribution, like
Gaussian kernel, i.e. p(Xt | X0) ∼ N

(
Xt;µt(X0), σ

2
t I
)
, which is satisfied in many cases of DPM, we

can explicitly compute that:

∇Xt log p(t,Xt | X0) =
1

σ2
t

(µt(X0)−Xt).

Direction 1
σ2
t
(X0 − µt(X0)) clearly corresponds to moving from x̃ back towards clean sample x, and we

want sθ to match that as best it can. Moreover, empirically validated by e.g. [60], a good candidate of
λ(t) is chosen as:

λ(t) ∝ 1/E
[
|∇Xt

log p(t,Xt | X0)|2
]
= σ2

t

Thus, our final optimization objective is:

J̃DSM(θ) = Et∼U(0,T )

{
σ2
tEX0∼pdata(·)EXt|X0

[
|sθ(t,X(t))−∇Xt

log p(t,Xt | X0)|2
]}

= Et∼U(0,T )

{
EX0∼pdata(·)EXt|X0

[∣∣∣∣σtsθ(t,X(t)) +
Xt − µt(X0)

σt

∣∣∣∣2
]}

= Et∼U(0,T )

{
EX0∼pdata(·)Eϵt∼N (0,I)

[
|σtsθ(t, µt(X0) + σtϵt) + ϵt|2

]}
where the second equality holds when Xt | X0 follows a conditionally normal and the third equality
follows from a reparameterization/change of variables.

D. Proof of Theorem 4. The idea relies on coupling, which is similar to [70, Lemma 4]. Consider
the coupled SDEs:{

dYt =
(
−b(T − t, Yt) + σ2(T − t)∇ log p(T − t, Yt)

)
dt+ σ(T − t)dBt,

dZt =
(
−b(T − t, Zt) + σ2(T − t)sθ(T − t, Zt)

)
dt+ σ(T − t)dBt,
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where (Y0, Z0) are coupled to achieve W2(p(T, ·), pnoise(·)), i.e. E|Y0 −Z0|2 = W2(p(T, ·), pnoise(·)). It is
easy to see that

W 2
2 (pdata(·), XT ) ≤ E|YT − ZT |2. (.9)

So the goal is to bound E|YT − ZT |2. By Itô’s formula, we get

d|Yt − Zt|2 = 2(Yt − Zt) · (−b(T − t, Yt) + σ2(T − t)∇ log p(T − t, Yt)

+ b(T − t, Zt)− σ2(T − t)sθ(T − t, Zt))dt

which implies that

dE|Yt − Zt|2

dt
= −2E((Yt − Zt) · (b(T − t, Yt)− b(T − t, Zt))︸ ︷︷ ︸

(a)

)

+ 2E((Yt − Zt) · σ2(T − t)(∇ log p(T − t, Yt)− sθ(T − t, Zt)))︸ ︷︷ ︸
(b)

. (.10)

By Assumption 3 (1), we get
(a) ≥ rb(T − t)E|Yt − Zt|2. (.11)

Moreover,

(b) = σ2(T − t)

(
E((Yt − Zt) · (∇ log p(T − t, Yt)−∇ log p(T − t, Zt)))

+ E((Yt − Zt) · (∇ log p(T − t, Zt)− sθ(T − t, Zt)))

)
≤ σ2(T − t)

(
LE|Yt − Zt|2 + hE|Yt − Zt|2 +

1

4h
ε2
)
,

(.12)

where we use Assumption 3 (2)(3) in the last inequality. Combining (.10), (.11) and (.12), we have

dE|Yt − Zt|2

dt
≤
(
−2rb(T − t) + (2h+ 2L)σ2(T − t)

)
E|Yt − Zt|2 +

ε2

2h
σ2(T − t). (.13)

Applying Grönwall’s inequality, we have:

E|YT − ZT |2 ≤ eu(T )E|Y0 − Z0|2 +
ε2

2h

∫ T

0

σ2(T − t)eu(T )−u(t)dt,

which combined with (.9) yields (3.4).

E. Proof of Theorem 5. Recall that rb(t) = 1
2β(t), σ(t) =

√
β(t) and pnoise(·) ∼ N (0, (e

T
2 (βmax+βmin)−

1)I). By [23, Proposition 10], if log pdata(·) is κ-strongly log-concave, then ∇ log p(T − t, ·) is

κ
(
e
∫ T−t
0

β(s)ds + κ
∫ T−t

0
e
∫ T−t
s

β(v)dvβ(s)ds
)−1

-strongly concave. Thus, the term E((Yt−Zt)·(∇ log p(T−
t, Yt)−∇ log p(T − t, Zt))) in (.12) is bounded from above by

− κ

e
∫ T−t
0

β(s)ds + κ
∫ T−t

0
e
∫ T−t
s

β(v)dvβ(s)ds
E|Yt − Zt|2,

instead of LE|Yt − Zt|2. Consequently, the bound (3.4) holds by replacing u(t) with

uCVP(t) :=

∫ T

T−t

β(s)

(
−1 + 2h− 2κ

e
∫ s
0
β(v)dv + κ

∫ s

0
e
∫ s
v
β(u)duβ(v)dv

)
ds. (.14)

Note that uCVP(T ) ≤ −
∫ T

0
β(s)ds + 2βmaxhT − 2κ

κ+1

(
1− e−βminT

)
and uCVP(T ) − uCVP(T − t) ≤

βmax(2h − 1)t. Moreover, W 2
2 (p(T, ·), pnoise(·)) ≤ e

∫ T
0

β(s)dsEpdata(·)|x|
2. Combining (3.4) with the

above estimates yields (3.9).
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F. Proof of Theorem 8. The analysis of the error
(
E|XT − X̂N |2

) 1
2

relies on the following lemmas.

The lemma below proves the contraction of the backward SDE X.

Lemma 11. Let (X
x

t , 0 ≤ t ≤ T ) be defined by (2.8) with X
x

0 = x. Let Assumptions 3, 6 and 7 hold.
Then (

E|Xx

t −X
y

t |2
) 1

2 ≤
(
E|x− y|2

) 1
2 exp(−2βt), for all t, (.15)

where X
x

and X
y

be coupled, i.e. they are driven by the same Brownian motion with (different) initial
values x and y respectively (x and y represent two random variables).

Proof. Note that

d|Xx

s −X
y

s |2 = 2
(
X

x

s −X
y

s

)
·
(
− b(T − s,X

x

s ) + σ2(T − s)sθ(T − s,X
x

s )

+ b(T − s,X
y

s)− σ2(T − s)sθ(X
y

s)

)
ds.

Thus,
d

ds
E|Xx

s −X
y

s |2 = −2E
[
(X

x

s −X
y

s) · (b(T − s,X
x

s )− b(T − s,X
y

s))
]

︸ ︷︷ ︸
(a)

+ 2E
[
(X

x

s −X
y

s)σ
2(T − s)(sθ(T − s,X

x

s )− sθ(T − s,X
y

s))
]

︸ ︷︷ ︸
(b)

.
(.16)

By Assumption 3 (1), we get
(a) ≥ rb(T − s)E|Xx

s −X
y

s |2. (.17)
By Assumption 6 (4), we obtain

(b) ≤ Lsσ
2(T − s)E|Xx

s −X
y

s |2. (.18)

Combining (.16), (.17) and (.18) yields
d

ds
E|Xx

s −X
y

s |2 ≤ −2(rb(T − s)− Lsσ
2(T − s))E|Xx

s −X
y

s |2.

By Grönwall’s inequality, we have

E|Xx

s −X
y

s |2 ≤ E|x− y|2 exp
(
−2

∫ t

0

(rb(T − s)− Lsσ
2(T − s))ds

)
,

which, by the condition (3.10), yields (.15) □

Next we deal with the local (one-step) discretization error of the process X. Fixing t⋆ ≤ T − δ, the
(one-step) discretization of X starting at Xt⋆ = x is:

X̂t⋆,x
1 = x+ (−b(T − t⋆, x) + σ2(T − t⋆)sθ(T − t⋆, x))δ + σ(T − t⋆)(Bt⋆+δ −Bt⋆). (.19)

The following lemma provides an estimate of the local discretization error.

Lemma 12. Let (X
t⋆,x

t , t⋆ ≤ t ≤ T ) be defined by (2.8) with X
t⋆,x

t⋆ = x, and X̂t⋆,x
1 be given by

(.19). Let Assumption 6 hold. Then for δ sufficiently small (i.e. δ ≤ δ for some δ < 1), there exists
C1, C2 > 0 independent of δ and x such that(

E|Xt⋆,x

t⋆+δ − X̂t⋆,x
1 |2

) 1
2 ≤ (C1 + C2

√
E|x|2) 1

2 δ
3
2 , (.20)

|E(Xt⋆,x

t⋆+δ − X̂t⋆,x
1 )| ≤ (C1 + C2

√
E|x|2) 1

2 δ
3
2 . (.21)
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Proof. For ease of presentation, we write Xt (resp. X̂1) for X
t⋆,x

t (resp. X̂t⋆,x
1 ). Without loss of

generality, set t⋆ = 0. We have

Xδ = x+

∫ δ

0

−b(T − t,Xt) + σ2(T − t)sθ(T − t,Xt)dt+

∫ δ

0

σ(T − t)dBt,

X̂1 = x+

∫ δ

0

−b(T, x) + σ2(T )sθ(T, x)dt+

∫ δ

0

σ(T )dBt.

So

E|Xδ − X̂1|2

= E
∣∣∣∣ ∫ δ

0

b(T, x)− b(T − t,Xt)dt+

∫ δ

0

σ2(T − t)sθ(T − t,Xt)− σ2(T )sθ(T, x)dt

+

∫ δ

0

σ(T − t)− σ(T )dBt

∣∣∣∣2
≤ 3E

( ∣∣∣∣∣
∫ δ

0

b(T, x)− b(T − t,Xt)dt

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ δ

0

σ2(T − t)sθ(T − t,Xt)− σ2(T )sθ(T, x)dt

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ δ

0

σ(T − t)− σ(T )dBt

∣∣∣∣∣
2)

≤ 3

(
δ

∫ δ

0

E|b(T, x)− b(T − t,Xt)|2dt︸ ︷︷ ︸
(a)

+δ

∫ δ

0

E|σ2(T − t)sθ(T − t,Xt)− σ2(T )sθ(T, x)|2dt︸ ︷︷ ︸
(b)

+

∫ δ

0

|σ(T − t)− σ(T )|2dt︸ ︷︷ ︸
(c)

)
,

(.22)

where we use the Cauchy–Schwarz inequality and Itô’s isometry in the last inequality. By Assumption
6 (1), we get

(c) ≤
∫ δ

0

L2
σt

2dt =
L2
σ

3
δ3. (.23)

By Assumption 6 (3), we have

(a) ≤
∫ δ

0

2L2
b(t

2 + E|Xt − x|2)dt = 2L2
b

(
δ3

3
+

∫ δ

0

E|Xt − x|2dt

)
.

According to [33, Theorem 4.5.4], we have E|Xt−x|2 ≤ C(1+E|x|2)teCt for some C > 0 (independent
of x). Consequently, for t ≤ δ sufficiently small (bounded by δ < 1),

E|Xt − x|2 ≤ C ′(1 + E|x|2)t, for some C ′ > 0 (independent of δ, x).

We then get

(a) ≤ 2L2
b

(
δ3

3
+

C ′(1 + E|x|2)
2

δ2
)

≤ 2L2
b

(
1

3
+

C ′

2
+

C ′

2
E|x|2

)
δ2. (.24)

Similarly, we obtain by Assumption 6 (1)(2)(4)(5):

(b) ≤ C ′′(1 + E|x|2)δ2, for some C ′′ > 0 (independent of δ, x). (.25)

Combining (.22), (.23), (.24) and (.25) yields the estimate (.20).
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Next we have

|E(Xδ − X̂1)|

=

∣∣∣∣∣E
∫ δ

0

b(T, x)− b(T − t,Xt)dt+ E
∫ δ

0

σ2(T − t)sθ(T − t,Xt)− σ2(T )sθ(T, x)dt

∣∣∣∣∣
≤
∫ δ

0

E|b(T, x)− b(T − t,Xt)|dt+
∫ δ

0

E|σ2(T − t)sθ(T − t,Xt)− σ2(T )sθ(T, x)|dt

≤ C ′′′
∫ δ

0

(
t(1 + E|x|) + E|Xt − x|

)
dt

≤ C ′′′′(1 +
√

E|x|2)δ 3
2 , for some C ′′′′ > 0 (independent of δ, x).

where the third inequality follows from Assumption 6, and the last inequality is due to the fact that
E|Xt − x| ≤

(
E|Xt − x|2

) 1
2 ≤

√
C ′(1 + E|x|2)t. This yields the estimate (.21). □

Proof of Theorem 8. The proof is split into four steps.

Step 1. Recall that tk = kδ for k = 0, . . . , N . Denote Xk := Xtk , and let

ek :=
(
E|Xk − X̂k|2

) 1
2

.

The idea is to build a recursion for the sequence (ek)k=0,...,N . Also write (X
t⋆,x

t , t⋆ ≤ t ≤ T ) to

emphasize that the reversed SDE (2.8) starts at X
t⋆,x

t⋆ = x, so Xk+1 = X
tk,Xk

tk+1
. We have

e2k+1 = E
∣∣∣∣Xk+1 −X

tk,X̂k

tk+1
+X

tk,X̂k

tk+1
− X̂k+1

∣∣∣∣2
= E|Xk+1 −X

tk,X̂k

tk+1
|2︸ ︷︷ ︸

(a)

+E|Xtk,X̂k

tk+1
− X̂k+1|2︸ ︷︷ ︸

(b)

+2E
[
(Xk+1 −X

tk,X̂k

tk+1
)(X

tk,X̂k

tk+1
− X̂k+1)

]
︸ ︷︷ ︸

(c)

.
(.26)

Step 2. We analyze the term (a) and (b). By Lemma 11 (the contraction property), we get

(a) = E|Xtk,Xk

tk+1
−X

tk,X̂k

tk+1
|2 ≤ e2k exp(−2βδ). (.27)

By (.20) (in Lemma 12), we have

(b) ≤
(
C1 + C2E|X̂k|2

)
δ3. (.28)

Step 3. We analyze the cross-product (c). By splitting

Xk+1 −X
tk,X̂k

tk+1
= (Xk − X̂k) +

[
(Xk+1 −Xk)− (X

tk,X̂k

tk+1
− X̂k)

]
︸ ︷︷ ︸

:=dδ(Xk,X̂k)

,

we obtain

(c) = E
[
(Xk − X̂k)(X

tk,X̂k

tk+1
− X̂k+1)

]
︸ ︷︷ ︸

(d)

+E
[
dδ(Xk, X̂k)(X

tk,X̂k

tk+1
− X̂k+1)

]
︸ ︷︷ ︸

(e)

. (.29)
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For the term (d), we have

(d) = E
[
(Xk − X̂k)E(X

tk,X̂k

tk+1
− X̂k+1|Fk)

]
≤ ek

(
E|E(Xtk,X̂k

tk+1
− X̂k+1|Fk)|2

) 1
2

≤ ek

(
C1 + C2

√
E|X̂k|2

)
δ

3
2 ,

(.30)

where we use the tower property (of the conditional expectation) in the first equation, the Cauchy-
Schwarz inequality in the second inequality, and (.21) in the final inequality. According to [43, Lemma
1.3], there exists C0 > 0 (independent of δ, X̂k) such that(

Ed2δ(Xk, X̂k)
) 1

2 ≤ C0ek
√
δ. (.31)

Thus,

(e) ≤
(
Ed2δ(Xk, X̂k

) 1
2

(
E|Xtk,X̂k

tk+1
− X̂k+1|2

) 1
2

≤ C0ek

(
C1 + C2

√
E|X̂k|2

)
δ2.

(.32)

where we use (.20) and (.31) in the last inequality. Combining (.29), (.30) and (.32) yields for δ
sufficiently small,

(c) ≤ ek

(
C ′

1 + C ′
2

√
E|X̂k|2

)
δ

3
2 , for some C ′

1, C
′
2 > 0 (independent of δ, X̂k). (.33)

Step 4. Combining (.26) with (.27), (.28) and (.33) yields

e2k+1 ≤ e2k exp(−2βδ) +
(
C1 + C2E|X̂k|2

)
δ3 + ek

(
C ′

1 + C ′
2

√
E|X̂k|2

)
δ

3
2 .

A standard argument shows that Lemma 11 (the contraction property) implies E|Xt|2 ≤ C for some
C > 0. Thus, E|X̂k|2 ≤ 2(C + e2k). As a result, for δ sufficiently small,

e2k+1 ≤ e2k

(
1− 3

4
βδ

)
+D1δ

3 +D2e
2
k

(
δ3 + δ

3
2

)
+D3ekδ

3
2 , (.34)

for some D1, D2, D3 > 0 (independent of δ). Note that

D2e
2
k

(
δ3 + δ

3
2

)
≤ 1

4
e2kβδ, for δ sufficiently small,

and

D3ekδ
3
2 ≤ 1

4
e2kβδ +

2D2
3

β
δ2.

Thus, the estimate (.34) leads to

e2k+1 ≤ e2k

(
1− 1

4
βδ

)
+Dδ2, for some D > 0 (independent of δ). (.35)

Unfolding the inequality (.35) yields the estimate (3.12). □

As a remark, if we can improve the estimate in (.21) to

|E(Xt⋆,x

t⋆+δ − X̂t⋆,x
1 )| ≤ (C1 + C2

√
E|x|2) 1

2 δ2, (.36)

(i.e. δ2 local error instead of δ
3
2 ), then the discretization error is Cδ.
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G. Experimental Details. We provide implementation details of the experiments in Section 5. All
codes will soon be available at github.

G.1. 1-dimensional data experiments. For this 1-dimensional experiments, we start from a single
point mass, and the parameters of the DPMs (OU and COU) are chosen as θ ≡ 0.2, σ(t) ≡ 0.5.

G.2. Swiss Roll and MNIST experiments. In both experiments, we use contractive subVP with
predictor-corrector sampler. We recommend to use βmin = 0.01 and βmax = 8 for a good result. The
signal-noise-ratio is set to be 0.2 for Swiss Roll, and 0.1 for MNIST. The Jupyter Notebooks can be
found in the zip file of supplementary materials.

G.3. CIFAR10 experiments. We use contractive subVP with predictor-corrector sampler. with all
the other settings the same as VE SDE in [60]. We recommend to use βmin = 0.01 and βmax = 8 for a
good result. The signal-noise-ratio is set to be 0.11 for the best result. The experiments based on
NCSN++ [60] are as below in Table 5.

For EDM [30] with contraction, we adopt f(0) = 0.98 to yield the best result by adding contraction,
i.e. ϵ = 0.02. We find that f(0) = 0.97 or 0.99 also leads to better results than original EDM. Our
denoising sampler is based on the deterministic sampler (2nd order scheme) of EDM paper and yields
the same settings of sampling steps or other sampler constants. For computational resource, we used 4
L40S GPUs, and these results could readily be realized within 0.5 hours for each separate task.

Parameter Value

βmin 0.01
βmax 8
snr 0.11
gradclip 10
αlr 5e−4

Table 5. Parameters of the CDPM for CIFAR-10.

G.4 More examples of CIFAR10 synthesis by CsubVP. Here we provide more examples of
CIFAR10 32×32 synthesis by CsubVP SDEs in Figure 5.
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Figure 5. CsubVP CIFAR10 samples
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