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Abstract

Limit theorems are established and relatively simple closed-form approximations are

developed for the busy-period distribution in single-server queues. For the M/G/1 queue, the

complementary busy-period cdf is shown to be asymptotically equivalent as t → ∞ to a scaled

version of the heavy-traffic limit (obtained as ρ → 1), where the scaling parameters are based on

the asymptotics as t → ∞. We call this the asymptotic normal approximation, because it

involves the standard normal cdf and density. The asymptotic normal approximation is

asymptotically correct as t → ∞ for each fixed ρ and as ρ → 1 for each fixed t, and yields

remarkably good approximations for times not too small, whereas the direct heavy-traffic

(ρ → 1 ) and asymptotic (t → ∞) limits do not yield such good approximations. Indeed, even

three terms of the standard asymptotic expansion does not perform well unless t is very large. As

a basis for generating corresponding approximations for the busy-period distribution in more

general models, we also establish a more general heavy-traffic limit theorem.

Key words: queues; busy period; M/G/1 queue; heavy traffic; diffusion approximations;

Brownian motion; inverse Gaussian distribution; asymptotic expansions; relaxation time.



1. Introduction

This paper is an extension of Abate and Whitt (1988b), in which we studied the M/M/1 busy-

period distribution and proposed approximations for busy-period distributions in more general

single-server queues. Here we provide additional theoretical and empirical support for two

approximations proposed in Abate and Whitt (1988b), the natural generalization of the asymptotic

normal approximation in (4.3) there and the inverse Gaussian approximation in (6.6), (8.3) and

(8.4) there. These approximations yield convenient closed-form expressions depending on only a

few parameters, and they help reveal the general structure of the busy-period distribution. The

busy-period distribution is known to be important for determining system behavior.

We first establish a heavy-traffic limit for the busy-period distribution in the M/G/1 queue,

which involves letting ρ → 1 from below, where ρ is the traffic intensity (Theorem 1). This

M/G/1 result is contained in Theorem 4 of Ott (1977), but we provide a different representation

and an interesting new proof. We also show that a variant of this heavy-traffic limit holds in

much more general models (Theorem 6). Our heavy-traffic result for more general models

complements early analysis by Rice (1962).

Next we show that asymptotics for the tail of the busy-period distribution as t → ∞ in the

M/G/1 queue in Section 5.6 of Cox and Smith (1961) and Section III.7.3 of Cohen (1982) can be

expressed differently, in terms of a scaled version of the heavy traffic limit ((2.15) in Theorem 2).

This representation is our asymptotic normal approximation. We show that it is asymptotically

correct both as ρ → 1 for each fixed t and as t → ∞ for each fixed ρ less than 1. We show that it

provides excellent approximations, much better than either limit separately, by making

comparisons with exact numerical results for M/G/1 queues, using numerical transform inversion

as in Abate and Whitt (1992a,b).

Here is how this paper is organized. We establish several M/G/1 results in Section 2. We
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establish the heavy-traffic limit for other models in Section 3. We make the numerical

comparisons with exact M/G/1 results in Section 4. Finally, we present all proofs in Section 5.

2. M/G/1 Queue

We first consider the classical M/G/1 queue with one server, unlimited waiting space and

some work-conserving discipline such as first-come first-served; see p. 249 of Cohen (1982) or

Section 5.6 of Cox and Smith (1961). Customers arrive according to a Poisson process, whose

rate we take to be ρ. The service times are independent and identically distributed, and

independent of the arrival process. Let the service-time distribution have cdf (cumulative

distribution function) G(t) with mean 1 and finite second moment m 2 . Thus the traffic intensity

is ρ. Let ĝ(s) =
0
∫
∞

e − st dG(t) be the Laplace-Stieltjes transform of G.

The busy period is the interval between the epoch of an arrival to an empty system and the

next epoch that the system is empty again. Let B(t) be the cdf of the busy period and

b̂(s) =
0
∫
∞

e − stdB(t) its Laplace-Stieltjes transform. We assume that ρ < 1; then B(t) is proper,

i.e., B(t) → 1 as t → ∞, and it is characterized by the Kendall functional equation

b̂(s) = ĝ(s + ρ − ρ b̂(s) ) . (2.1)

Moreover,

B(t) =
n = 1
Σ
∞

0
∫
t

n!
e − λu (λu) n − 1
_ ____________ dG n (u) , t ≥ 0 , (2.2)

where G n (t) is the cdf of the n-fold convolution of G(t).

For any cdf F(t) with mean m, let F c (t) = 1 − F(t) be the complementary cdf (ccdf) and let
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F e (t) = m − 1

0
∫
t

F c (u) du , t ≥ 0 , (2.3)

be the associated stationary-excess cdf (or equilibrium residual lifetime cdf). Note that

[ 1 − f̂ (s) ]/ sm is the Laplace-Stieltjes transform of F e when f̂ (s) is the Laplace-Stieltjes

transform of F.

We characterize the heavy-traffic limit as the density h 1 (t) of the first-moment cdf H 1 (t) of

regulated or reflecting Brownian motion (RBM) investigated in Abate and Whitt (1987). In

particular, H 1 (t) is the time-dependent mean of RBM starting empty, normalized by dividing by

the steady-state limit. Its density h 1 (t) can be expressed explicitly as

h 1 (t) = 2t − 1/2 φ(t 1/2 ) − 2 [ 1 − Φ(t 1/2 ) ] = 2γ(t) − γ e (t) , t ≥ 0 , (2.4)

where Φ(t) is the cdf and φ(t) is the density of a standard normal random variable with mean 0

and variance 1, γ(t) is the gamma density with mean 1 and shape parameter 1/2, i.e.,

γ(t) = ( 2π t) − 1/2 exp ( − t /2 ) , t ≥ 0 , (2.5)

and γ e (t) is the associated stationary-excess density. From (2.4) we see that h 1 (t) is in

convenient closed form; i.e., it is easy to evaluate directly, e.g., using rational approximations for

the normal cdf Φ(t), e.g., 26.2.17 of Abramowitz and Stegan (1972).

The density h 1 (t) also has several other useful characterizations. It is the density of the

equilibrium time to emptiness for RBM, i.e., the density of the first passage time to zero starting

with the exponential stationary distribution. In other words, it is an exponential mixture of

inverse Gaussian densities (an EMIG): see Section 8 of Abate and Whitt (1995). The moment

cdf H 1 (t) is the only cdf on [ 0 , ∞) with mean 1/2 for which the two-fold convolution coincides

with stationary-excess cdf, i.e., for which the transforms satisfy

ĥ 1 (s)2 = 2 [ 1 − ĥ 1 (s) ] ; (2.6)
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see Sections 1.2 and 1.3 of Abate and Whitt (1987).

Our heavy-traffic limit is obtained by simply increasing the arrival rate ρ. It is possible to

consider more general limits in which the service-time distributions also change with ρ, but as

can be seen from Ott (1977) the same limiting behavior holds in considerable generality. To

obtain our heavy-traffic limit, we scale both inside (time) and outside the complementary cdf

Bρ
c (t). We introduce the subscript ρ to indicate the dependence upon ρ. All proofs appear in

Section 5.

Theorem 1. For each t > 0,

ρ →1
lim m 2 ( 1 − ρ) − 1 Bρ

c (tm 2 ( 1 − ρ) − 2 ) = h 1 (t) . (2.7)

Theorem 1 can be obtained from (1.32) of Ott (1977) by letting his parameters be

η n = ( 1 − ρ n ) − 1 , λ n = m 2 ( 1 − ρ n ) − 1 , µ n = ( 1 − ρ n ) ρ n / m 2 and a = σ = 1, and by

identifying his integral limit with h 1 (t). However, we give a different proof.

The scaling in (2.7) is very important to establish the connection to RBM. Indeed, without

the scaling, Bρ
c (t) is continuous in ρ for all ρ > 0 for each fixed t, so that the boundary for

stability ρ = 1 plays no special role without scaling. Moreover, the behavior of Bρ
c (t) for small t

obviously depends strongly on the form of the service-time distribution, but Theorem 1 shows

that for suitably large t it does not. See Abate and Whitt (1988b) for more discussion.

Understanding of Theorem 1 is enhanced by recognizing that the left side of (2.7) is a scaled

version of the density of the busy-period stationary-excess cdf, which in turn is a time-scaled

version of the density of the equilibrium time to emptiness in the M/G/1 model conditional on the

system not being empty; i.e.,

h ρ (t) ≡ b ρe (tm 2 ( 1 − ρ) − 2 ) = m 2 ( 1 − ρ) − 1 Bρ
c (tm 2 ( 1 − ρ) − 2 ) , t ≥ 0 . (2.8)

Theorem 1 thus can be regarded as a local limit theorem establishing convergence of the time-
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scaled M/G/1 conditional equilibrium-time-to-emptiness density h ρ (t) to the RBM equilibrium-

time-to-emptiness density h 1 (t). (The M/G/1 conditioning event has probability ρ and thus

converges to 1 as ρ → 1.) As a consequence of the Lebesgue dominated convergence theorem,

p. 111 of Feller (1971), plus inequality (2.1) below, we also obtain convergence of the associated

scaled conditional equilibrium-time-to-emptiness cdf’s from Theorem 1. The form of the limit

comes from Corollary 1.1.1 and (4.3) of Abate and Whitt (1987).

Corollary. For each t ≥ 0,

ρ →1
lim H ρ (t) = H 1 (t) = 1 − 2 ( 1 + t) [ 1 − Φ(t 1/2 ) ] + 2t 1/2 φ(t 1/2 ) .

We now turn to the asymptotic behavior as t → ∞. Let f (t) ∼ g(t) as t → ∞ mean that

f (t)/ g(t) → 1 as t → ∞. Assume that the busy-period cdf has a density b(t). Under

considerable generality, see (49) on p. 156 of Cox and Smith (1961) or (11)–(13) of Abate,

Choudhury and Whitt (1994),

b(t) ∼
√ 2π βt 3

αe − t /2β
_ _______ = α t − 1 β − 1 γ (t /β) as t → ∞ , (2.9)

so that

B c (t) ∼ 2βb(t) ∼ 2αt − 1 γ(t /β) as t → ∞ , (2.10)

where γ(t) is the gamma density in (2.5) and α and β are constants depending on ρ and G(t). In

particular, β = τ/2 where τ is the relaxation time, with

τ − 1 = ρ + ζ − ρ ĝ( − ζ) , (2.11)

where ζ is the unique real number u satisfying the equation

ĝ ′ ( − u) = − ρ − 1 (2.12)

when it exists, which we assume is the case. In general, (2.12) need not have a solution, in which
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case (2.9) does not hold; we give an example in Section 6. The parameter α in (2.9) and (2.10) is

α = [ρ3 β − 1 ĝ ′ ′ ( − ζ) ] − 1/2 . (2.13)

The following result is obtained by simply integrating both sides of (2.9) over the interval

(t ,∞). The key is to recognize that the right side is indeed integrable and then identify what that

integral is. For this purpose, note that β − 1 γ(t /β) is a density function and, from (2.4), that the

derivative of h 1 (t) has the remarkably simple form

h1′ (t) = − t − 1 γ(t) , t ≥ 0 , (2.14)

so that h 1 (t) ∼ 2t − 1 γ(t) as t → ∞.

Theorem 2. If (2.9) holds, then

Bρ
c (t) ∼ α β − 1 h 1 (t /β) as t → ∞ . (2.15)

for h 1 (t) in (2.4) and α and β in (2.9)–(2.13).

Integrating over the interval (t ,∞) once again, we obtain the following result from (2.15).

Corollary. If (2.15) holds, then

Hρ
c (t) ∼ α H1

c (t( 1 − ρ)2 / m 2 β) as t → ∞ (2.16)

for h 1 (t) in (2.4) and α and β in (2.9)–(2.13).

We previously suggested the approximation (2.15) for the M/M/1 queue in (4.3) of Abate and

Whitt (1988b); as before, we call it the asymptotic normal approximation, because it uses the

normal density and cdf in (2.4). The general idea of using h 1 (t) for approximations seems to

have been first proposed for the M/M/1-LIFO waiting-time distribution by Riordan (1962),

p. 109, but it does not seem to have been pursued.

The difference between the two asymptotic expressions in (2.15) and (2.16) is due to the fact

Hρ
c (t) has been time scaled while B c (t) has not. The expressions in Theorem 2 are to be
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contrasted with the standard asymptotic expansions, which are of the form

B c (t) ∼ e − t /2β (δ 1 t − 3/2 + δ 2 t − 5/2 + δ 3 t − 7/2 + O(t − 9/2 ) ) as t → ∞ , (2.17)

where δ i are constants, with

δ 1 = α √ 2β /π (2.18)

from (2.9); see Section 4 of Abate and Whitt (1988b). As shown for the M/M/1 queue in Abate

and Whitt (1988b), (2.15) is a vastly superior approximation than the first few terms of (2.17).

Interestingly, the direct asymptotics for the busy-period density yields a better approximation than

the direct asymptotics for the busy-period cdf (e.g., see Table 1 of Abate, Choudhury and Whitt

(1994)), and this good quality is inherited by the integral. The integral h 1 (t) in (2.15) has

structure not inherited by its asymptotic form.

The good performance of (2.15) can be partly explained theoretically, because it is

asymptotically exact as both ρ → 1 for any fixed t (Theorem 1) and as t → ∞ for any fixed ρ

(Theorem 2). To see the connection to Theorem 1, we need to know how β and α behave as

ρ → 1. As shown in Abate, Choudhury and Whitt (1994),

β − 1 =
m 2

( 1 − ρ)2
_ _______ 

1 + ( 1 − ρ) ( 1 − ξ) + ( 1 − ρ)2 [ 1 − ξ( 2 − ( 9/4 ) ξ) − ψ] + O( ( 1 − ρ)3
(2.19)

and

α = ( 1 − ρ) − 1 ( 1 + ( 1 − ρ) ( 1 − ξ) + O( ( 1 − ρ)2 ) (2.20)

as ρ → 1, where ξ = m 3 /3m2
2 , ψ = m 4 /12m2

3 and m k is the k th moment of the service time.

Hence, we see that

β α − 1 βρ
c (β t) ∼ m 2 ( 1 − ρ) − 1 βρ

c (tm 2 ( 1 − ρ) − 2 ) ∼ h 1 (t) (2.21)

as ρ → 1 for each fixed positive t.
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In Theorem 3.5 of Abate and Whitt (1988a) convergence was also established for the

normalized M/M/1 busy-period density function as ρ → 1. We also obtain such a result for

M/G/1 under extra conditions. First, the busy-period cdf must have a density. A sufficient

condition is for the service-time cdf G(t) to be absolutely continuous. If the service-time cdf

G(t) is absolutely continuous with a density g(t), then so are all n-fold convolutions G n , p. 146

of Feller (1971). Thus, from (2.2) and Fubini, p. 111 of Feller (1971), B(t) is absolutely

continuous with density

b(t) =
n = 1
Σ
∞

n!
e − λt (λ t) n − 1
_ ___________ g n (t) , t ≥ 0 , (2.22)

where g n (t) is the density of G n (t), from which we see that b( 0 ) = g( 0 ) and b ′ ( 0 ) ≡ g ′ ( 0 ).

Theorem 3. Suppose that the service-time cdf G(t) is absolutely continuous with density g(t), so

that the busy-period cdf B(t) is absolutely continuous with density b(t), where b( 0 ) = g( 0 ). If

b( 0 ) < ∞ and b(t) is monotone, then

ρ →1
lim m2

2 ( 1 − ρ) − 3 b(tm 2 ( 1 − ρ) − 2 ) = h1′ (t) = ( 2π t 3 ) − 1/2 e − t /2 , t > 0 . (2.23)

Since b ′ ( 0 ) = g ′ ( 0 ), where in general this is understood to be a one-sided derivative, a

necessary condition in order for b(t) to be monotone is g ′ ( 0 ) < 0. Keilson (1978) has shown

that b(t) is completely monotone (a mixture of exponentials) and thus monotone if g(t) is

completely monotone. Hence, a sufficient condition for Theorem 3 is the complete monotonicity

of the service-time density. However, under this condition we can establish an even stronger

result. For any function f (t), let f (k) (t) be the kth derivative of f at t.

Theorem 4. If the service-time density g(t) is completely monotone, then for all k ≥ 0

ρ →1
lim m2

2 + k ( 1 − ρ) − ( 3 + 2k) b (k) (tm 2 ( 1 − ρ) − 2 ) = h1
(k) (t) , t ≥ 0 . (2.24)
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Theorem 4 describes a remarkable degree of local convergence. However, the good behavior

is easy to understand via the complete monotonicity. By Theorem 2.1 of Keilson (1978), b(t) in

(2.22) and thus B c (t) and h ρ (t) in (2.8) are completely monotone when g(t) is completely

monotone; i.e., for each ρ, 0 < ρ < 1,

h ρ (t) =
0
∫
∞

x − 1 e − t / x dW ρ (x) , t ≥ 0 , (2.25)

for some mixing cdf W ρ (x). Theorem 4 follows easily from a limit theorem for the mixing cdf’s.

Theorem 5. If the service-time density g(t) is completely monotone, so that h ρ (t) in (2.8) admits

the spectral representation (2.25), then for each x > 0

ρ →1
lim W ρ (x) = W 1 (x) =

0
∫
x

w 1 (u) du , (2.26)

where

w 1 (x) =







 π√ x

√ 2 − x_ _____ ,

0

0 ≤ x ≤ 2

x > 2 ,

(2.27)

is the mixing density of h 1 (t) in (1.4).

We know the limit in Theorem 5 because we derived the spectral representation for h 1 (t) in

Theorem 4.2 of Abate and Whitt (1988c). Explicit spectral representations are also given there

for b(t) and h ρ (t) in the M/M/1 model. However, in general we do not know the M/G/1 mixing

cdf W ρ (x) in (2.25). From pp. 610-613 of Cohen (1982), we can identify the spectrum (the

smallest interval containing the support) of W ρ (x) in any specific case.



- 10 -

3. More General Queues

For more general models, we propose again using the asymptotic normal approximation

(2.15), where the parameters α and β are determined from analogs of the asymptotic expansion

(2.10). Such asymptotic expansions can be obtained either analytically or numerically using

transform inversion as in Choudhury and Lucantoni (1994). Rice (1962) in his (75) provides

support for obtaining the asymptotic form (2.10) more generally at least for suitably large ρ. He

expands the transforms in power series and obtains the form (2.10) from a square root transform

expression.

We now establish a generalization of the heavy-traffic limit in Theorem 1 for a much larger

class of single-server queues. As before we assume that some work-conserving discipline is used

and that the mean service time is 1. For non-Poisson arrival processes, we assume that the system

indexed by ρ is obtained by simply scaling a rate-one counting process {A(t) :t ≥ 0 }, i.e.,

A ρ (t) ≡ A(ρ t) ,t ≥ 0. We have two general conditions, one on the mean busy period and the

other on the stationary workload process. Our conditions are in some sense not too appealing,

because they are not directly for the elements of the model (e.g., for the interarrival-time and

service-time distributions), but upon the descriptive quantities of interest. However, our

conditions are intuitively appealing because they clearly reveal what needs to be verified in

applications and they can indeed be verified in special cases, as we show.

Let B ρ be the busy period in the model with traffic intensity ρ. The busy period is understood

to mean the interval from when the server first becomes busy until the server is again idle. For

models more general than GI/G/1, we can interpret this distribution as the long-run average of all

such distributions over all busy periods.

Condition C1. For some constant b, ( 1 − ρ) EB ρ → b as ρ → 1.

Let {Wρ
∗ (t) :t ≥ 0 } be the stationary workload process in the queue with traffic intensity ρ.
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Here Wρ
∗ (t) should be interpreted as the time required for the system to become empty after time t

if no new work were to arrive after time t. Let {R ∗ (t) :t ≥ 0 } be a stationary version of

canonical RBM with drift coefficient − 1 and diffusion coefficient 1. The stationary version is

initialized by the exponential steady-state distribution with mean 1/2. Let = = > denote convergence

in distribution or weak convergence. Let D[ 0 ,∞) be the function space of right-continuous real-

valued functions with left limits, endowed with the usual Skorohod J 1 topology; e.g., see Ethier

and Kurtz (1986).

Condition C.2. For some constant d , {Wρ
∗ (dt( 1 − ρ) − 2 ) :t ≥ 0 } = = > {R ∗ (t) :t ≥ 0 } in D[ 0 ,∞) as

ρ → 1.

We prove the following generalization of Theorem 1 in Section 5.

Theorem 6. If conditions C1 and C2 hold, then

(d / b) ( 1 − ρ) − 1 Bρ
c (dt( 1 − ρ) − 2 ) → h 1 (t) as ρ → 1 (3.1)

for each t.

For the M/G/1 queue, conditions C1 and C2 are known to hold with b = 1 and

d = m 2 = cs
2 + 1, where cs

2 is the squared coefficient of variation (SCV, variance divided by

the square of the mean) of a service time. Hence, Theorem 6 actually contains Theorem 1 as a

special case, but our proofs are somewhat different.

For GI/G/1 queues with mean service time 1, the mean busy period coincides with the

reciprocal of the probability that an arrival finds an empty queue. For the M/G/1 queue, this

probability is just 1 − ρ, but for other models it is more complicated. For the GI/M/1 queue,

Halfin (1985) showed in his (4.6) that condition C1 holds with

b =
2

ca
2 + 1_ _____ , (3.2)

where ca
2 is the SCV of the interarrival time. We now provide a general sufficient condition for
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condition C1 for GI/G/1 models by applying a result of Kella and Taksar (1994) about idle times.

Let ρ − 1 U be an interarrival time in the GI/G/1 system with traffic intensity ρ.

Theorem 7. If EU 2 + ε < ∞ in the GI/G/1 model for some positive ε, then condition C1 holds.

For the standard GI/G/1 queue, it is not difficult to establish condition C2 provided that the

second moments of the interarrival-time and service-time distributions are finite. Heavy-traffic

limits for the steady-state distributions were established by Kingman (1961,1962) and Szczotka

(1990), while weak convergence theorems for workload processes given converging initial

distributions were established by Iglehart and Whitt (1970) and Whitt (1971). In addition, here it

is necessary to verify that the residual interarrival-time and service-time distributions associated

with the stationary initial conditions have negligible effect on the heavy-traffic behavior. Since

these residual distributions are stochastically bounded, they indeed have negligible effect; we

omit the details. Then

d = ca
2 + cs

2 . (3.3)

More generally, d appears as the variance constant in the process representing the total input

of work; i.e., we obtain d from the limit

√ dt

I(t) − t_ _____ = = > N( 0 , 1 ) as t → ∞ , (3.4)

where

I(t) =
i = 1
Σ

A(t)
V i , t ≥ 0 , (3.5)

V i is the i th service time and N( 0 , 1 ) is a standard (mean 0, variance 1) normal random variable.

Combining (3.2) and (3.3), we see that the heavy-traffic limit for GI/M/1 depends on the

general interarrival-time distribution only through its first two moments. However, this nice

property that holds for M/G/1 and GI/M/1 does not hold for general GI/G/1 queues. More
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generally, the busy-period mean is a relatively difficult quantity to obtain. For the K m / G / 1

queue, we can deduce that condition C2 holds and we can calculate b from (5.205) on p. 330 of

Cohen (1982). From this expression, we see that b depends on the interarrival-time and service-

time distributions beyond their first two moments. In particular, it depends on the m roots of the

transform equation

α̂( − s) β̂(s) = 1 (3.6)

where α̂(s) and β̂(s) are the Laplace-Stieltjes transforms of the interarrival-time and service-time

distributions. For many other models the mean busy period can be calculated numerically. For

more on the GI/G/1 busy period, see Cohen (1982), Kingman (1962) and Rice (1962).

For practical purposes, we suggest using the Kraemer and Langenbach-Belz (1976)

approximation, also given in (49) of Whitt (1983),

Eβ ρ =
P(W ρ = 0 )

1_ __________ ∼∼
( 1 − ρ) ( 1 − ρ(ca

2 − 1 ) h(ρ ,ca
2 ,cs

2 )

1_ ___________________________ , (3.7)

where

h(ρ ,ca
2 ,cs

2 ) =









ca
2 + ρ2 ( 4ca

2 + cs
2 )

4ρ_ ______________ ,

1 + ρ(cs
2 − 1 ) + ρ2 ( 4ca

2 + cs
2 )

1 + ca
2 + ρcs

2
_ _______________________ ,

ca
2 ≥ 1 .

ca
2 ≤ 1

(3.8)

From (3.7) and (3.8), we obtain

b ∼∼
1 − (ca

2 − 1 ) h( 1 ,ca
2 ,cs

2 )

1_ ___________________ . (3.9)

For insights into the way the mean EB depends on the parameters ca
2 and cs

2 , see Whitt (1984).

We remark that Theorem 6 is consistent with (75) of Rice (1962). His approximate

asymptotic formula for the busy-period density can be obtained from (3.1) by first taking the
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derivative and then letting t → ∞. The corresponding formula for Bρ
c (t) is

Bρ
c (t) ∼∼

d
(b( 1 − ρ)_ ________ h 1 (t( 1 − ρ)2 / d)

∼∼ (b /( 1 − ρ)2 )√2d /π t 3 exp ( − t( 1 − ρ)2 /2d)

∼∼ EB√ D /π t 3 e − Dt (3.10)

for D ≡ ( 1 − ρ)2 /2d and EB = P(W = 0 ) − 1 ∼∼ b /( 1 − ρ). Formula (3.10) is intended for high ρ

and large t.

Theorem 6 provides a pure heavy-traffic approximation for B c (t) in very general single-server

queues. However, we do not regard (3.1) as our principal proposed approximation for B c (t).

Our actual proposed approximation is (2.15) for α and β determined by (2.10), assuming that

(2.10) holds for the more general model. We intend to discuss asymptotics of the form (2.10) for

other GI/G/1 models in a future paper. For GI/M/1 the asymptotics can be obtained by exploiting

the duality between M/G/1 and GI/M/1; see (77) of Taka ́ cs (1967). More generally, we can

obtain the desired parameters α and β in (2.10) numerically using the inversion algorithm in

Choudhury and Lucantoni (1994). Rice’s (1962) formula (3.10) provides support for both (2.10)

and the asymptotic behavior of the parameters α and β as in (2.19) and (2.20).

4. Numerical Examples

This section extends the numerical investigation of approximations for the busy-period ccdf

B c (t) done for the M/M/1 queue in Abate and Whitt (1988b) to M/G/1 queues. Our previous

investigation showed that even three terms of the asymptotic expansion (2.17) yields a

remarkably poor approximation; see Table 10 there. Hence, we do not consider the

approximations for B c (t) in the M/G/1 queues based on the asymptotics as t → ∞ in (2.10) or

(2.17).
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Here we consider three candidate approximations. First, we consider the pure heavy-traffic

approximation obtained from Theorem 1, namely,

B c (t) ∼∼ ( 1 − ρ) m2
− 1 h 1 ( ( 1 − ρ)2 t / m 2 ) . (4.1)

Formula (4.1) is obtained from (2.7) by moving the normalizing constants to the righthand side.

Our second approximation is the asymptotic normal approximation provided by Theorem 2,

i.e., (2.15). The heavy-traffic approximation can be regarded as an approximation to the

asymptotic normal approximation in which the asymptotic parameters β and α from (2.9)—(2.13)

in (2.15) are replaced by the first terms in their heavy-traffic expansions in (2.19) and (2.20).

Thus, we can see how these first two approximations differ by evaluating the quality of the one-

term approximations in (2.19) and (2.20). As we would anticipate, these approximations get

closer as ρ increases, but the pure heavy-traffic approximation has significantly bigger errors for

lower values of ρ.

The third approximation considered here is the inverse Gaussian (IG) approximation in (6.6)

and (8.3) of Abate and Whitt (1988b)

B c (t) ∼∼ IG c ( ( 1 − ρ)2 t /( 1 + cs
2 ) ; ν ,x) , (4.2)

where

IG c (t ;ν ,x) = Φc ( (t − x)/√ νt ) − e 2x /ν) Φc ( (t + x)/√ νt ) (4.3)

with Φc (x) the normal cdf and

x =
1 + cs

2

1 − ρ_ ______ and ν = 1 − x . (4.4)

This scaling matches the first two moments.

Given that RBM is a natural heavy-traffic approximation for the workload process, the IG

approximation is a natural approximation for the busy-period distribution, since it is a first-
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passage time distribution for RBM. This idea was the basis for an IG approximation proposed by

Heyman (1974), but our IG approximation is a significant improvement, both because it is

closed-form and because it yields better results, as shown for the M/M/1 queue before. For the

M/M/1 queue, the asymptotic normal and IG approximations were the leading approximations

among a fairly large set, with the asymptotic normal approximation performing better for large

times and the IG approximation performing better for small times; see Tables 10 and 11 of Abate

and Whitt (1988b).

Our numerical experience here for M/G/1 queues with other service-time distributions

confirms our previous experience for M/M/1 queues. To illustrate, we display numerical results

for B c (t) for two different service-time distributions and three traffic intensities. The service-

time distributions are E 4 , the four-stage Erlang with cs
2 = 0. 25, and Γ 1/2 , the gamma density in

(2.5) with shape parameter 1/2 and, thus, cs
2 = 2. Clearly, E 4 is less variable than an

exponential, while Γ 1/2 is more variable than an exponential. As before the mean service time is

always 1. The three traffic intensities are: 0.5, 0.75 and 0.9.

The exact values of B c (t) and the three approximations are given for the six cases in

Tables 1–6. The exact values are obtained by numerical transform inversion, using Abate and

Whitt (1992a,b). Unlike for the M/M/1 queue, here we do not scale time within B c (t); the

different tables would be more closely related if we did. As before, the asymptotic normal

approximation in (2.15) performs remarkably well for times not too small, and all approximations

improve as ρ increases.

The two service-time distributions we consider are both gamma distributions. In general, the

gamma service-time transform is

ĝ(s ;ω) = ( 1 + s /ω) − ω (4.5)

for ω > 0, where ω is the shape parameter and the mean is fixed at 1. The moments satisfy the
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recursions: m 1 = 1 and m k + 1 = ( 1 + k /ω) m k , k ≥ 1. For the gamma transform in (4.5), the

root of (2.12) is

ζ = ω( 1 − ρ1/( 1 + ω) ) , (4.6)

so that the asymptotic parameters in (2.10) are

β − 1 = 2 (ρ + ω − ( 1 + ω) ρ1/( 1 + ω) ) (4.7)

and

α = ρ − q √ β /( 1 + ω − 1 ) , where q = ( 2ω + 1 )/2 (ω + 1 ) . (4.8)

We obtain deterministic (D) service by letting ω → ∞ in (4.5); i.e., then ĝ(s ;ω) → e − s ,

ζ = − log ρ,

β = 2 ( log (ρ − 1 ) − ( 1 − ρ) ) = ( 1 − ρ)2

k = 0
Σ
∞

( 1 − ρ) k /( 1 + k /2 ) (4.9)

and

α = √ β /ρ . (4.10)

Our two numerical examples involve the special cases ω = 4 (E 4 ) and ω = 1/2 (Γ 1/2 ). The

first four moments for E 4 are 1, 5/4, 15/8 and 105/32 and for Γ 1/2 are 1, 3, 15, 105. The

auxiliary parameters in (2.19) are ξ = 2/5 and γ = 7/50 for E 4 and ξ = 5/9 and γ = 35/108

for Γ 1/2 .

We have noted that the heavy-traffic approximation is equivalent to the asymptotic normal

approximation with the first terms of the heavy-traffic expansions for β − 1 and α in (2.19) and

(2.20). Refined heavy-traffic approximations can be obtained by using more terms in (2.19) and

(2.20). Let β k be the approximation of β based on k terms of the heavy-traffic asymptotic

expansion for β in (1.19), and similarly for α. Table 7 shows the quality of these approximations
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for β for different values of ρ for the Γ 1/2 and D service. We use D because from (2.19) we see

that the single term β 1 performs worst in that case because 1 − ξ is largest for that case. We do

not show any refined approximations in Tables 1–6. The approximations based on (α 2 ,β 2 ) and

(α 2 ,β 3 ) are successive improvements over the basic heavy-traffic approximation based on

(α 1 ,β 1 ). They fall between the heavy-traffic approximation based on (α 1 ,β 1 ) and the

asymptotic normal approximation based on (α ,β). The (α 2 ,β 3 ) refined approximation tends to

be essentially the same as the asymptotic normal approximation at ρ = 0. 75, but not at

ρ = 0. 25.

We might also evaluate the asymptotic normal approximation from a moment or integral-

average point of view; i.e., we can ask about the quality of the approximation

0
∫
∞

B c (t) dt ∼∼ α
0
∫
∞

tβ − 1 h 1 (t /β) dt , (4.11)

from which we get

b 2 /2 ∼∼ α β/2 , (4.12)

where b k is the k th busy-period moment. However, b 2 = α 1 β 1 and, by (2.19) and (2.20),

α β = α 1 β 1 ( 1 + O( ( 1 − ρ)2 ) as ρ → 1 , (4.13)

so that the error in (4.11) is only O( ( 1 − ρ)2 ) as ρ → 1.

5. Proofs

Proof of Theorem 1. By Chebychev’s inequality using the first moment, p. 152 of Feller (1971),

B c (t) ≤ 1/ t( 1 − ρ) and

h ρ (t) = m 2 ( 1 − ρ) − 1 B c (tm 2 ( 1 − ρ) − 2 ) ≤ 1/ t (5.1)

for all t and ρ. Since B c (t) is monotone, we can thus apply the Helly selection theorem, p. 267 of

Feller (1967), to conclude that any sequence {h ρ n
(t) : n ≥ 1 } with ρ n → 1 has a subsequence
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that converges to a monotone function f (t) (depending on the subsequence) with 0 ≤ f (t) ≤ 1/ t,

where the convergence is pointwise at all continuity points of f. We establish convergence to h 1

by showing that h 1 is the only possible limit for a convergent subsequence. To do this we work

with the transforms and the functional equation (2.1).

We begin by expressing the busy-period functional equation (2.1) in terms of the busy-period

stationary-excess transform b̂ e (s). First,

b̂(s) = ĝ(s + sρ( 1 − ρ) − 1 b̂ e (s) ) (5.2)

and then

b̂ e (s) =
s

( 1 − ρ) [ 1 − b̂(s) ]_ _________________ =
s

( 1 − ρ)_ _______ ( 1 − ĝ(s + sρ( 1 − ρ) − 1 b̂ e (s) ) . (5.3)

We then change the time scale to obtain form (2.8) and (5.3)

ĥ ρ (s) = b̂ e ( ( 1 − ρ)2 m2
− 1 s) =

( 1 − ρ) s

m 2_ ________







1 − ĝ





m 2

( 1 − ρ)2 s_ _________



1 +

1 − ρ
ρ_ _____ ĥ ρ (s)
















.

(5.4)

Now we assume ĥ ρ (s) → f̂ (s) as ρ → 1 for some subsequence, and show that we must

have f̂ (s) = ĥ 1 (s). Note that the service-time distribution does not change with ρ, but the

argument of ĝ in (5.4) is getting small as ρ → 1. Since the service-time distribution has a finite

second moment,

ĝ(s) = 1 − s +
2

m 2 s 2
_ _____ + o(s) as s → 0 . (5.5)

Expanding ĝ in (5.4), we obtain

ĥ ρ (s) = 1 − ρ + ρ ĥ ρ (s) −
2

ρ2 ( 1 − ρ) sĥ ρ (s)2
_ ________________ + o( 1 − ρ) (5.6)
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so that, after subtracting ρ ĥ ρ (s) from both sides,

ĥ ρ (s) = 1 −
2

ρ2 sĥ ρ (s)2
_ _________ + o( 1 ) as 1 − ρ → 0 (5.7)

and any limit f̂ (s) must satisfy (2.6), which implies that f̂ (s) = ĥ 1 (s). (By Corollary 1.5.2 of

Abate and Whitt (1987), ĥ 2 (s) is the unique solution to (1.6).)

Proof of Theorem 3. Since b(t) is monotone with b( 0 ) = g( 0 ) < ∞, g( 0 ) − 1 b(t) can be

regarded as a complementary cdf, say C c (t), where C e (t) = B(t). Hence, C(t) has mean

g( 0 ) − 1 and second moment 2/( 1 − ρ) g( 0 ). As in the proof of Theorem 1, apply Chebychev’s

inequality, but now with the second moment, to conclude that C c (t) ≤ 2/ t 2 ( 1 − ρ) g( 0 ) and

hρ′ (t) = m2
2 ( 1 − ρ) − 3 b(tm 2 ( 1 − ρ) − 1 ) ≤ 2/ t 2 g( 0 ) (5.8)

for all t an ρ. Hence, any sequence {hρ n
′ (t) : n ≥ 1 } with ρ n → 1 has a subsequence that

converges to a monotone function f (t) with 0 ≤ f (t) ≤ g / t 2 g( 0 ) for all t. Given some

convergent subsequence, apply the Lebesgue dominated convergence theorem, p. 111 of Feller

(1971), on [ε , ∞) for any ε > 0 to get the integrals to converge. Hence, the limit f (t) must

satisfy
t 1

∫
t 2

f (u) du = h 1 (t 2 ) − h 1 (t 1 ) =
t 1

∫
t 2

h1′ (u) du for all t 2 > t 1 > ε, so that t(t) = h1′ (t);

i.e., f of any convergent subsequence must be h1′ (t). Hence, the proof is complete.

Proof of Theorem 4. The proof of Theorem 3 can be extended by induction: Since b(t) is

completely monotone with b (k) ( 0 ) = g (k) ( 0 ) < ∞ for all k, g (k) ( 0 ) b (k) (t) can be regarded as a

complementary cdf, cay Ck
c (t) for each k, where C ke (t) = C k − 1 (t). Hence, if m k j denotes the

j th moment of C k , then m k, j = m k − 1 , j + 1 /( j + 1 ) m k − 1 , 1 . As in the proofs of Theorems 1 and

3, apply Chebychev’s inequality, but now with the (k + 1 ) st moment to conclude that

Ck
c (t) ≤ K k / t 2 + k ( 1 − ρ) for a constant K k independent of ρ. The rest of the proof follows the

proof of Theorem 3.
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Proof of Theorem 5. Since the service-time cdf G(t) has mean 1 and finite second moment m 2 ,

the busy-period cdf has mean 1/( 1 − ρ) and second moment m 2 /( 1 − ρ)3 . Thus h ρ (t) in (2.8)

is a density with mean 1/2 for all ρ. Consequently,

1/2 =
0
∫
∞

th ρ (t) dt =
0
∫
∞

dt
0
∫
∞

tx − 1 e − t / x dW(x) =
0
∫
∞

xdWρ (x) . (5.9)

Hence, the family of cdf’s {W ρ (x) : 0 < ρ < 1 } is tight or stochastically bounded, p. 254 of

Feller (1971), so that every subsequence has a convergent subsequence with a proper limit, p. 267

of Feller (1971). Since h ρ (t) → h 1 (t) as ρ → 1 for each t > 0, the associated cdf’s converge,

i.e., H ρ (t) → H 1 (t) as ρ → 1 for each t > 0, as noted in the Corollary to Theorem 1, but the

cdf’s can be regarded as Laplace-Stieltjes transforms of the mixing cdf’s. Hence, if W ρ n
→ W as

ρ n → 1, then we must have W = W 1 . Thus every convergent subsequence with ρ n → 1 from

{W ρ (x) : 0 < ρ < 1 } must converge to W 1 in (2.26). Hence, the mixing cdf’s must converge

as stated in (2.26).

Proof of Theorem 4 from Theorem 5. In terms of the mixing cdf W ρ (x) in (2.25), the k th

derivative of h ρ (t) is

hρ
(k) (t) =

0
∫
∞

x − (k + 1 ) e − t / x dW ρ (x) , t ≥ 0 . (5.10)

Since the function x − (k + 1 ) e − t / x is a modification of a gamma density, it is continuous and

bounded. Since W ρ (x) → W 1 (x) as ρ → 1 for each x, hρ
(k) (t) → h1

(k) (t) as ρ → 1 for each k

and t; p. 249 of Feller (1971).

Proof of Theorem 6. Just as in the proof of Theorem 1, we can apply Chebychev’s inequality and

condition C1 to deduce that Bρ
c (t) ≤ K / t( 1 − ρ) for some K > b and ρ suitably larger. Hence

(d / b) ( 1 − ρ) − 1 Bρ
c (dt( 1 − ρ) − 2 ) ≤ K / bt (5.11)

for all t and for all ρ suitably close to 1. As in the proof of Theorem 1, we have established
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relative compactness, i.e., every sequence { (d / b) ( 1 − ρ n ) − 1 Bρ n

c (dt( 1 − ρ n ) − 2 ) :n ≥ 1 } obtained

by taking ρ n → 1 has a further subsequence converging to a monotone limit. It thus remains to

show that any such limit must be h 1 (t).

For this purpose, consider a subsequence converging to some f (t). We then obtain

convergence of the associated integrals

(d / b) ( 1 − ρ) − 1 ∫
0

t
Bρ

c (du( 1 − ρ) − 2 ) du → ∫
0

t
f 1 (u) du ≡ F(t) , (5.12)

but the left side of (5.12) can be reexpressed after a change of variables as

b − 1 ( 1 − ρ)∫
0

td( 1 − ρ)− 2

Bρ
c (v) dv = b − 1 ( 1 − ρ) (EB ρ ) B eρ (td( 1 − ρ) − 2 ) , (5.13)

where B eρ (t) is the stationary-excess cdf associated with B ρ , defined in (2.3). By condition C1,

b − 1 ( 1 − ρ) EB ρ → 1 as ρ → 1. Moreover, by condition C2 and the continuous mapping

theorem with the first passage time map

B eρ (td( 1 − ρ) − 2 ) → H 1 (t) as ρ → 1 , (5.14)

because, as noted before, H 1 (t) is also the cdf of the equilibrium time to emptiness of B. Also

( 1 − ρ) + ρB eρ (t) is the equilibrium time to emptiness for Wρ
∗ (t). (With probability ρ, the

server is busy. Conditional on the server being busy, the remaining busy period has cdf B eρ (t).)

Hence, we must have F(t) = H 1 (t) and thus f (t) = h 1 (t) for all t. (The limit h 1 (t) is

continuous.)

Proof of Theorem 7. In the GI/G/1 model (and more generally) with traffic intensity ρ,

EI ρ / EB ρ = ( 1 − ρ)/ρ , (5.15)

where I ρ is the idle time; e.g., see p. 286 of Cohen (1982). To understand (5.15), recall that B ρ is

a random number of service times, while B ρ + I ρ is the same random sum of interarrival times.

Given (5.15), we see that to establish C1 it suffices to show that EI ρ → EI 1 as ρ → 1, but the

sufficiency of the moment condition is established in Lemma 3.1 of Kella and Taksar (1994).
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6. An Example With No Root

The asymptotics in (2.9) and (2.10) is based on the equation (2.12) having a root. We have

noted that in general (2.12) need not have a root. Here we give an example, using the generalized

inverse Gaussian service-time density

g(t) = √3/4π t 5 exp ( − (t − 3 )2 /12t) , t > 0 , (6.1)

with Laplace transform

ĝ(s) = ( 1 + ( 2/3 ) r(s) ) e − r(s) , (6.2)

where

r(s) = (√ 1 + 12s − 1 )/2 , (6.3)

as in (38) of Abate, Choudhury and Whitt (1994). In this case the service-time distribution has a

finite moment generating function in the neighborhood of the origin. In this case, equation (12)

becomes

1 − √ 1 − 12u = 2 log ρ − 1 . (6.4)

Therefore, (12) has a root only when ρ > e − 1/2 ∼∼ 0. 607. For ρ > e − 1/2 ,

ξ = [ 1 − ( 1 − 2 logρ − 1 )2 ]/12 , (6.5)

and

τ − 1 = logρ − 1 − ( 1 − ρ) − ( logρ − 1 )2 /3 . (6.6)

When ρ < e − 1/2 , the asymptotics evidently has the form of the service-time distribution itself

with a new constant, as in the long-tail case treated by De Meyer and Teugels (1980). In

particular, by that argument we should have

b(t) ∼ ( 1 − ρ) g( ( 1 − ρ) t) as t → ∞ ; (6.7)
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see Section 3 of Abate, Choudhury and Whitt (1994).
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inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ ___________________________________________________________

0.5 .881 .811 1.10 .66
1 .582 .560 .617 .384
2 .289 .306 .300 .202
3 .175 .188 .180 .130
5 .0800 .0852 .0815 .0667
9 .0239 .0240 .0242 .0248

12 .0110 .0106 .0112 .0135
15 .00551 .00494 .00555 .00781
20 .00186 .00152 .00188 .00340
32 .000175 .000113 .000176 .000578

















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

































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Table 1. A comparison of approximations with exact values for the busy-period ccdf B c (t)
in the M / E 4 / 1 queue with ρ = 0. 5.

inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ ____________________________________________________________

0.5 .891 .800 1.05 .82
1 .640 .599 .670 .531
2 .399 .400 .410 .329
6 .159 .166 .161 .134

10 .0924 .0964 .0930 .0780
15 .0554 .0575 .0556 .0493
30 .0179 .0182 .0180 .0174
40 .00982 .00978 .00986 .01005
80 .00136 .00126 .00136 .00170

120 .000252 .000218 .000252 .000382_ ____________________________________________________________ 
















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
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Table 2. A comparison of approximations with exact values of the busy-period ccdf B c (t) in
the M / E 4 / 1 queue with ρ = 0. 75.



inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ ____________________________________________________________

0.5 .897 .796 1.02 .93
1 .671 .618 .697 .637
5 .265 .266 .268 .246

15 .124 .127 .125 .115
30 .0703 .0717 .0704 .0656
60 .0353 .0360 .0354 .0334

120 .0147 .0148 .0147 .0141
200 .00626 .00628 .00626 .00620
400 .00125 .00123 .00125 .00131
600 .000330 .000318 .000330 .000366
















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
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





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Table 3. A comparison of approximations with exact values of the busy-period ccdf B c (t) in
the M / E 4 / 1 queue with ρ = 0. 9.

inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ ___________________________________________________________

0.1 .755 .94 2.0 1.3
1 .369 .368 .467 .313
2 .237 .223 .269 .186
5 .103 .095 .109 .081
8 .0585 .0546 .0606 .0477

15 .0218 .0211 .0222 .0197
20 .0123 .0122 .0125 .0120
30 .00452 .00476 .00457 .00512
40 .00186 .00207 .00188 .00244
60 .000378 .000466 .000380 .000657
















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
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

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
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Table 4. A comparison of approximations with exact values of the busy-period ccdf B c (t) in
the M /Γ 1 / 2 / 1 queue with ρ = 0. 5.



inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ ____________________________________________________________

0.1 .757 .94 1.7 .1.4
1 .392 .404 .457 .382
5 .152 .147 .157 .133
8 .106 .102 .108 .093

15 .0607 .0587 .0615 .0537
30 .0284 .0276 .0286 .0258
60 .0103 .0102 .0104 .0099
80 .00607 .00605 .00609 .00599

120 .00244 .00248 .00244 .00256
250 .000222 .000239 .000222 .000282












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
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Table 5. A comparison of approximations with exact values of the busy-period ccdf B c (t) in
the M /Γ 1 / 2 / 1 queue with ρ = 0. 75.

inverse asymptotic
exact by Gaussian normal heavy-traffic

transform apoproximation approximation approximation
time inversion in (4.2)–(4.4) in (2.15) in (4.1)_ _____________________________________________________________

0.1 .758 .93 1.5 .1.4
1 .406 .424 .458 .428
5 .183 .181 .186 .174

10 .121 .119 .122 .115
20 .0772 .0762 .0777 .0731
50 .0392 .0387 .0393 .0372

100 .0212 .0209 .0212 .0202
250 .00738 .00732 .00738 .00716
500 .00241 .00241 .00241 .00240

1000 .000470 .000475 .000470 .000488











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
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

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Table 6. A comparison of approximations with exact values of the busy-period ccdf B c (t) in
the M /Γ 1 / 2 / 1 queue with ρ = 0. 9.



_ __________________________________________
Γ 1/2 service-time distribution_ __________________________________________
exact 3 terms 2 terms 1 terms

ρ β β 3 /β β 2 /β β 1 /β_ __________________________________________
0.25 3.232 1.12 1.24 1.65
0.50 9.084 1.03 1.08 1.32
0.75 42.43 1.003 1.02 1.13
0.90 









286.5 








1.000 








1.002 








1.05_ __________________________________________
D service-time distribution_ __________________________________________

exact 3 terms 2 terms 1 term
ρ β β 3 /β β 2 /β β 1 /β_ __________________________________________

0.25 0.786 1.27 1.51 2.26
0.50 2.59 1.06 1.16 1.55
0.75 13.26 1.007 1.03 1.21
0.90 93.33 1.000 1.005 1.07_ __________________________________________ 









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

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
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
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Table 7. A comparison of heavy-traffic expansion approximations for the M/G/1 asymptotic
parameter β.


