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Abstract

The Top Trading Cycles mechanism emerges as a desirable solu-
tion in various market design applications. Yet recommendations are
made without any rigorous foundation for the role priorities play in
assignment. We explain that role by recursive individual rational-
ity with respect to a priority structure. We show that a mechanism
is Pareto efficient, strategy-proof and recursively individual rational
with respect to a priority structure if and only if it is the Top Trading
Cycles mechanism defined by that priority structure.

1 Introduction

Various notable market design applications involve allocation of heteroge-
nous indivisible objects without monetary transfers, such as assigning pupils
to public schools in a school choice program and rematching kidney patients
with donors when patients have donors with incompatible kidneys. A com-
mon feature of such problems is that, objects usually rank individuals in a
priority order, which resembles individuals’ preference orderings of the ob-
jects. Top Trading Cycles (TTC) and its variants, the roots of which can be
traced back to Gale’s celebrated top trading cycles algorithm, emerges as a
desirable solution to incorporate such priorities in the allocation process.
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A typical problem consists of a finite set of individuals, say students, and
a set of objects with finite capacities, say schools. Students rank schools
in strict preference order and schools rank students in priority order. For
example, a child who lives within a certain distance from a school may get
neighborhood priority for that school and any tie in priorities may be broken
by a fair lottery.

Given strict preference lists of students and strict priority lists of schools,
TTC assigns students to schools via the following algorithm (Abdulkadiroğlu
and Sönmez 2003): In each round, every student points to the school she
prefers most among the remaining schools, and every remaining school points
to the student that has the highest priority at that school among all remaining
students. A cycle is an ordered list of schools and students {o1, i1, ..., oK , iK}
such that school ok points to student ik and student ik points to school ok+1

and oK+1 ≡ o1. When such a cycle exists, student ik is assigned to school
ok+1, the capacity of school ok+1 is decreased by one, the students in the cycle
and schools with no more capacity are removed; the process is repeated with
the remaining students and schools.

The resulting assignment is Pareto efficient, that is, there is no alternative
assignment that improves a student’s assignment without harming others’.
Furthermore, TTC is strategy-proof, i.e. it makes truthful reporting of pref-
erences over schools a dominant strategy for every student in the induced
preference revelation game.

However many other mechanisms meet these two requirements. For ex-
ample, given an ordering of students, a corresponding serial dictatorship
mechanism determines the assignment as follows: Each student is assigned
in the given order to her most preferred school among the remaining ones.
Any serial dictatorship mechanism is Pareto efficient and strategy-proof as
well.

Given the richness of Pareto-efficient and strategy-proof mechanisms,
then a natural question arises: Why TTC? In other words, what is the
additional property that uniquely pins down TTC among all efficient and
strategy-proof mechanisms? Despite its prevalence in market design appli-
cations, this question remains open. Without a satisfactory answer, any
recommendation of TTC in such applications would not be well-grounded.
We fill in this gap by offering a new characterization of TTC.

The most related work to ours is Pápai (2000). In a model in which each
object has unit capacity, Pápai characterizes a wide class of mechanisms,
hierarchical exchange rules, by Pareto efficiency, group strategy proofness,
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which rules out beneficial preference manipulation by groups of individuals,
and reallocation-proofness, which rules out manipulation by two individu-
als via misrepresenting preferences and swapping objects ex post. TTC is
a hierarchical exchange rule defined by the priority lists of schools. Yet,
none of the properties above makes any explicit reference to any specific
priority structure. In fact, one of them is about efficiency and the other
two are about avoiding sophisticated manipulation schemes by individuals.
Therefore, Pápai’s result does not address the question of why those specific
priorities are used in TTC.1

Any normative explanation to the use of specific priorities in TTC should
involve an axiom that makes a reference to the priorities. For example, if a
student has the highest priority at some school, we might expect her to be
assigned to that school whenever that school is her first choice. TTC satisfies
that criterion, but a serial dictatorship mechanism does not, which is also
a hierarchical exchange rule. Indeed our new axiom, recursive individual
rationality, generalizes that requirement for a given priority structure.

Given a priority structure, an assignment is individually rational for top
students if every student that is ranked highest at a school receives an as-
signment that she weakly prefers to that school. An assignment is recursively
individually rational with respect to a priority structure, if, given the prior-
ity structure, it is individually rational for top students and it continues to
be individually rational for top students in the reduced problems when the
top students are removed with their assignments recursively. A mechanism
is recursively individually rational with respect to a priority structure if ev-
ery assignment it produces is recursively individually rational with respect
to the given priority structure. Our main result states that a mechanism
is Pareto efficient, strategy proof and recursively individually rational with
respect to a priority structure if and only if it is the TTC defined by the
priority structure.

Our axiom is a generalization of Ma’s (1994) individual rationality axiom.
Ma studies the housing market problem (Shapley and Scarf 1974), in which
each individual owns a house which she would like to exchange for another
one she prefers more. The unique core of the market is found via Gale’s top

1In a similar vein, Pycia and Ünver (2010) introduce and characterize trading cycles
with brokers and owners by Pareto efficiency and group strategy-proofness. Also Kojima
and Manea (2010) provide a characterization for Gale-Shapley and Kojima and Unver
(2010) provide a characterization for the Boston school choice mechanism, both via a
monotonicity condition on preferences.
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trading cycles algorithm (Postlewaite and Roth 1977), in which each agent
points to the owner of his most preferred house among the remaining houses.
An allocation is said to be individually rational for a housing market if every
agent is assigned a house that she weakly prefers to her initial endowment.
Ma shows that Gale’s top trading cycles is characterized by Pareto efficiency,
strategy proofness and individual rationality. It is in that sense that our
generalized axiom provides a foundation for TTC.

Such foundation is important in policy making. A common interpreta-
tion of TTC is that it effectively allows students to trade in their priorities
for better schools of their choice. However that interpretation may prove
difficult in making a case for TTC. For instance, sibling priority is usually
granted on the belief that assigning siblings to the same schools benefits the
siblings via spillover effects and sharing experiences and their parents via
solving transportation and coordination problems. From the point of view of
a policy maker, trading in sibling priority for a better choice may be difficult
to justify since the sibling priority may have been instituted for encouraging
siblings to go to the same school. In contrast, our characterization states
that, when a school district has Pareto efficiency, strategy-proofness and re-
cursive individual rationality –i.e. guaranteeing each student a school as
good as the ones she is top ranked by – as three policy goals to meet, the
unique mechanism that meets those criteria is the TTC defined by the given
priority structure. It is worth noting that there is no reference to any trad-
ing of priorities in the three stated goals, therefore TTC is justified not by
allowing students to trade in their priorities but by three policy goals none
of which require trading of priorities.

Our result provides a clear answer to the question of what role priorities
play in the allocation of indivisible objects. Another intuitive role that can
be attributed to priorities is a monotonicity relation between priorities and
the assignment. Namely, a mechanism respects improvements in priorities if
whenever a student’s standing in priorities improves, her assignment weakly
improves. Note that this notion does not make any reference to any spe-
cific priority structure, so it cannot be used to pin down a single priority
structure to define TTC. However, TTC satisfies this requirement. There-
fore, as a corollary of our main result, Pareto efficiency, strategy-proofness
and recursive individual rationality also implies respecting improvements in
priorities.

We formalize our arguments in the following sections.
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2 Model

A problem consists of a finite set of agents I = {1, ..., n} and a finite set
of objects O = {a, b, c, ...}. To simplify the exposition, we will assume that
each object has a single copy, but the arguments can be easily generalized if
objects come in multiple copies, such as schools with multiple seats in school
choice. An agent can consume at most one object and an object can be
consumed by at most one agent. Each agent i ∈ I has a complete, irreflexive
and transitive binary preference relation Pi over O ∪ {∅} and ∅ represents
consuming nothing. aPib means that i prefers a to b. Each object a ∈ O
ranks agents by a complete, irreflexive and transitive binary priority relation
�a over A. i �a j means that i has higher priority at a than j.

Let P = (Pi)i∈I , �= (�a)a∈O, P−I′ = ((Pj)j∈I−I′) and �−O′= (�b)b∈O−O′ .
We fix I and O and refer to a problem by (P,�).

For i ∈ I let Ri be the symmetric extension of Pi, that is, for all a, b ∈
O ∪ {∅}, if aPib then aRib, and if a = b then aRib and bRia. Let the
indifference relation Ii denote the symmetric part of Ri. Define % similarly.

A matching of agents to objects is a function µ : A −→ O such that
µ(i) ⊂ O, |µ(i)| ≤ 1 for all i ∈ I.

A matching µ (Pareto) dominates another matching ν if µ(i)Riν(i) for
all i ∈ I and µ(i)Piν(i) for some i ∈ I.

A matching is Pareto efficient if it is not dominated by another match-
ing.

A (deterministic) mechanism selects a matching for every problem. A
mechanism is efficient if it selects an efficient matching for every problem. If ϕ
is a mechanism, let ϕ(P ;�) denote the matching selected by ϕ. A mechanism
ϕ is strategy-proof if reporting true preferences is a dominant strategy for
every agent in the preference revelation game induced by ϕ, that is

ϕ(P ;�)(i)Riϕ(P ′i , P−i;�)(i) (1)

for all P , �, i ∈ I and P ′i .

3 Top Trading Cycles (TTC)

Given a problem (I, O, P,�), TTC finds the matching via the following al-
gorithm:
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In the first round of the algorithm, all students and schools are avail-
able. In every round of the algorithm,

• Every available object points to its highest priority agent among all
available agents. Every agent points to her most preferred object among
all available objects.

• A cycle c = {ok, ik}k=1,...,K is an ordered list of objects and agents such
that ok points to ik and ik points to ok+1 for every k = 1, ..., K, where
oK+1 = o1.

• For every cycle c = {ok, ik}k=1,...,K , match each agent with the object
she points to in that cycle and remove the agent and the object. In
that case, we say that ik trades ok for ok+1.

• Repeat the algorithm in the next round until no more agents are
matched.

4 Charaterization: Recursive Individual Ra-

tionality

Definition 1 Given �, a matching µ is individually rational for top
students if every student that is ranked highest at a school is matched with
an alternative that she weakly prefers to that school. µ is recursively in-
dividually rational with respect to �, if, given the priority structure,
it is individually rational for top students and it continues to be individually
rational for top students in the reduced problems when the top students are
removed with their assignments recursively.
Formally, define the following recursively: T0 = ∅ and O0 = ∅. Given
{Tk, Ok}k=0,...,K, let

OK+1 = O −
⋃

k=1,...,K

⋃
i∈Tk

µ(i),

be the set of remaining objects in the reduced problem,

ÎK+1 = I −
⋃

k=1,...,K

Tk
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be the set of remaining students in the reduced problem and

TK+1 = {i ∈ ÎK+1 : ∃o ∈ OK+1 s.t. i �o j ∀j ∈ ÎK+1}

be the set of top students in the reduced problem. Also define e : I −→ 2O:
o ∈ e(i) if and only if for some k, i ∈ Tk, o ∈ Ok and i �o j ∀j ∈ Îk. µ
is recursively individually rational with respect to � if for all i ∈ I,
µ(i)Rio for all o ∈ e(i).

The definition trivially extends for mechanisms.

Definition 2 A mechanism is ϕ is recursively individually rational if for
every (P,�), ϕ(P,�) is recursively individually rational with respect to �.

Theorem 3 A mechanism ϕ is Pareto efficient, strategy-proof and recur-
sively individually rational if and only if ϕ(P,�) = TTC(P,�) for all (P,�).

We defer the proof to the appendix. Although our new axiom is a general-
ization of Ma’s individual rationality axiom, our proof technique is different
than his. In Ma’s environment, which is a special case of ours, the proof
can be carried out by induction on agents. By the recursive nature of our
individual rationality axiom, we utilize the TTC algorithm and give a proof
by induction on the rounds in which TTC allocates objects. In particular, we
show that, a Pareto efficient, strategy-proof and recursively individual ratio-
nal mechanism must assign the same objects as TTC does to the individuals
who get their assignment in the first round of TTC. Given the induction
hypothesis that the mechanism assign the same objects as TTC does to the
individuals who get their assignment in the first k − 1 rounds of TTC, we
show that it must assign the same objects as TTC does to the individuals
who get their assignment in the kth round of TTC.

5 Monotonicity

Another intuitive role that can be attributed to priorities is a monotonicity
relation between priorities and the assignment. Namely, if whenever a stu-
dent’s standing in priorities improves, her assignment is expected to improve.
We make this formal below.
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Definition 4 �′ is an improvement in priorities for i ∈ I if

�′ is not equivalent to �,
i � j ⇒ i �′ jand

∀j, k ∈ I − {i} : j �′ k ⇔ j � k

Definition 5 A mechanism ϕ is respects improvements in priorities if for
all (P,�), i ∈ I

(i) if �′ is an improvement for i, then ϕ(P,�′)(i)Riϕ(P,�)(i); and

(ii) if ϕ(P,�)(i) is not i’s first choice, then there exists an improvement
�′ for i such that ϕ(P,�′)(i)Piϕ(P,�)(i).

Since this notion does not make any reference to any specific priority
structure, it does not pin down a TTC with a particular priority structure
from the set of Pareto efficient and strategy-proof mechanisms. However,
TTC satisfies this requirement. Therefore, as a corollary of our main result,
Pareto efficiency, strategy-proofness and recursive individual rationality also
implies respecting improvements in priorities.

Corollary 6 Pareto efficiency, strategy-proof and recursive individual ratio-
nality implies respecting improvements in priorities.

6 Extensions and Discussion

Priorities and priority-based mechanisms play an essential role in the alloca-
tion of indivisible objects when monetary transfers are not allowed. The role
of priorities in Gale-Shapley’s celebrated student proposing deferred accep-
tance mechanism (Gale-Shapley) is well understood. Gale-Shapley is charac-
terized as the student optimal stable stable matching mechanism. Likewise,
the Boston mechanism is the student optimal mechanism which produces a
stable matching according to the preference-adjusted priorities in which a
student who rank a school higher in her choice list has higher priority than
a student who ranks it lower and they are ranked according to the original
priority order otherwise. Our result complements the picture by explaining
the role priorities play in TTC.

To simplify the exposition of the ideas, we have assumed that each object
comes in single copy When objects have multiple copies, such as schools in
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school choice, an object is removed in the definition of recursive individual
rationality when all of its copies are removed in the recursive process. With
this modification to the definition of the axiom, the main results follows
without any change.

A second assumption is that objects rank individuals in strict priority
order. The main result follows directly after the breaking of ties potentially
via some lottery but not before. To see this, suppose that there is only
one school with one seat and two students with equal priority at the school.
Since no mechanism can give both the students the single available seat,
no mechanism can guarantee individual rationality with respect to the weak
priority structure.

When ties at school priorities are broken randomly, an interesting mono-
tonicity relation between priorities and the random TTC allocation emerges.
Namely, consider an improvement in priorities for a student. Then the stu-
dent’s random TTC allocation under the improved priority structure first
order stochastically dominates her random TTC allocation under the origi-
nal priority structure. This follows from the fact that, for any tie breaking,
her assignment weakly improves under the improved priority structure. A
characterization of random TTC remains an open question.
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A Proof of Theorem 1

TTC is Pareto efficient and strategy-proof. It is trivial to show that it is also
recursively individual rational.

Let ϕ be a Pareto efficient, strategy-proof and recursively individually
rational mechanism. To the contrary, suppose that there exists (P,�) such
that ϕ(P,�) 6= TTC(P,�).

The proof will proceed by induction on the steps of TTC. Let Ĩk(P,�)
be the set of agents who are matched in step k of TTC(P,�).

Consider agents in Ĩ1(P,�). Suppose that ϕ(P,�)(i) 6= TTC(P,�)(i) for
some i ∈ Ĩ1(P,�). Let c = {ok, ik}k=1,...,K be the cycle in which i is matched
with TTC(P,�)(i) and i = iK .

Note that every ik trades ok for ok+1, which is her first choice. Consider
the alternative preference relation P ′iK : o1oK .... By construction, the TTC
matching remains the same, i.e.

TTC(P ′iK , P−{iK},�) = TTC(P,�).

Since o1 is iK ’s first choice and

ϕ(P,�)(iK) 6= TTC(P,�)(iK),

o1PiKϕ(P,�)(iK). Also, since oK ranks iK highest, by recursive individual
rationality of ϕ,

ϕ(P ′iK , P−{iK},�)(iK)R′iKoK

so that
ϕ(P ′iK , P−{iK},�)(iK) ∈ {o1, oK}.

By strategy-proofness of ϕ, it must be that

ϕ(P ′iK , P−{iK},�)(iK) = oK .

Then

ϕ(P ′iK , P−{iK},�)(iK−1) 6= TTC(P ′iK , P−{iK},�)(iK−1) = oK .

Now consider the alternative preference relation P ′iK−1
: oKoK−1.... By

construction, the TTC matching remains the same, i.e.

TTC(P ′iK−1
, P ′iK , P{−iK},�) = TTC(P ′iK , P−{iK},�) = TTC(P,�).
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Since oK is iK−1’s first choice and

ϕ(P ′iK , P−{iK},�)(iK−1) 6= TTC(P ′iK , P−{iK},�)(iK−1),

we obtain
oKPiK−1

ϕ(P ′iK , P−{iK},�)(iK−1).

Also, since oK−1 ranks iK−1 highest, by recursive individual rationality of ϕ,

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1)R

′
iK−1

oK−1

so that
ϕ(P ′iK−1

, P ′iK , P−{iK−1,iK},�)(iK−1) ∈ {oK , oK−1}.

By strategy-proofness of ϕ, it must be that

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK) = oK−1.

Then

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1) 6= TTC(P ′iK−1

, P ′iK , P−{iK−1,iK},�)(iK−2) = oK−1.

Repeating this argument recursively for every agent in the cycle c, we
obtain that ϕ(P ′c, P−c,�)(ik) = ok where P ′c = {P ′ik}ik∈c and P ′ik : ok+1ok....
Then this contradicts with Pereto efficiency of ϕ because every agent in the
cycle will be better off if every ik is matched with ok+1 without changing the
matching of agents in I − c.

So ϕ(P,�)(i) = TTC(P,�)(i) for all i that is matched in the first step
of TTC, i.e. i ∈ Ĩ1(P,�).

Now assume that ϕ(P,�)(i) = TTC(P,�)(i) for all i that is matched in
the first m− 1 steps of TTC, i.e. i ∈

⋃
l=1,...,m−1 Ĩl(P,�). We will show that

ϕ(P,�)(i) = TTC(P,�)(i)

for all i ∈ Ĩm(P,�). Suppose to the contrary that there exists i ∈ Ĩm(P,�)
such that

ϕ(P,�)(i) 6= TTC(P,�)(i).

Consider the Tk sets in the definition of recursive individual rationality. By
construction, i ∈ Ĩm(P,�) implies that i ∈ Tl for some l = 1, ...,m. If i ∈ Tl

for some l = 1, ...,m − 1, then ϕ(P,�)(i) = TTC(P,�)(i) by our induction
hypothesis, a contradiction. So i ∈ Tm. Also, by some overuse of notation,
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let c = {ok, ik}k=1,...,K be the cycle in which i is matched with TTC(P,�
)(i) in step m of TTC(P,�) and i = iK . By construction of TTC and
the selection iK , oK ∈ e(iK). So ϕ(P,�)(iK)RiKoK by recursive individual
rationality. We repeat the arguments above to arrive a contradiction. In the
order of iK , iK−1, ..., i1, replace agents’ preference relations one by one with
P ′ik : ok+1ok.... At each replacement, our induction hypothesis, recursive
individual rationality and strategy-proofness of ϕ imply that

ϕ(P ′ik , ..., P
′
iK
, P−{ik,...,iK},�)(ik) = ok

and eventually
ϕ(P ′c, P−c,�)(ik) = ok

where P ′c = {P ′ik}ik∈c, which contradicts with Pareto efficiency of ϕ.
Therefore ϕ(P,�) = TTC(P,�) for all (P,�).
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