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I. OVERVIEW 
This report describes the third phase of the ​Coverage Closure and BugHunt​  Project. We aim to apply 
formal verification skills learned in the previous two phases to much complex designs using commercial 
tools Mentor Graphics Questa Formal and Cadence Jasper. The project is divided into three tasks, the first 
task is to formally verify two medium designs called fifo_transport_single.sv and 
fifo_transport_double.sv with the instantiation of fifo design from phase II using Questa Formal. The 
second task is to formally verify a ALU design with a comprehensive formal verification approach and 
carry out using the Questa Formal tool. The last task is to reproduce task 1 using Cadence Jasper. The 
report will thoroughly describe the approaches to each task, and the source code can be found from 
www.columbia.edu/~yc3096/fv.zip​.  
 
II. FIFO BUG HUNTING 
In first task, we use cover properties and a set of assertions to formally verify two relatively large design, 
fifo_transport_single.sv​  and ​fifo_transport_double.sv​ , which use a combined read/write ctrl signal. The 
first DUT uses a single instantiation of the faulty ​fifo.sv​  design from phase II, and the second design uses 
two instantiations.  
 
Part 1: fifo_transport_single.sv 
The ​fifo_transport_single​  uses a single instantiation of the “faulty” fifo design and combined read/write 
signal. The combined signal ​in_readwrite_ctrl ​ is decoded into ​in_read_ctrl​  and ​in_write_ctrl​ , and passed 
to the fifo instantiation. The assignments below ensures that only and at least one control signal will be set 
to high.  
 

 
 
Below is a set of coverage cases declared in the 4-deep, synchronous reset FIFO design(​fifo.sv​ ). Since the 
first design only have a depth of 4, we expect only from ​fifo_num_entries_1​  to ​fifo_num_entries_4​  to be 
covered.  
 

 
 
Below is a set of assertions that declared in the 4-deep, synchronous reset FIFO design(​fifo.sv​ ). Our main 
purpose in designing these set of assertions is to find corner cases that can lead to FIFO overflow and 
underflow. We categorized the assertions to reset, full-condition, and empty-condition assertions, and we 
have three additional interesting FIFO assertions listed in the last category. 
Synchronous reset assertion: 
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1. When the FIFO is reset, the ​empty ​flag should be set, ​full​ flag, ​write_ptr​, ​read_ptr​, and 
num_of_current_entries​ should all be set to zero.  

 
 
FIFO full condition assertions: 
2. When the FIFO is full, the ​full​ flag should be set to 1.  
3. When the FIFO is full, the ​empty​ flag should be set to 0. 
4. When the FIFO is has N-1 entries, and ​write​ occurs, then ​full​ flag should be set to 1. 
5. When FIFO is full, the ​write​ control should be zero.  
 

 
 
FIFO empty condition assertions: 
6. When the FIFO is empty, the ​empty​ flag should be 1. 
7. When the FIFO is empty, the ​full​ flag should be set to 0.  
8. When the FIFO is has 1 entry, and ​read​ occurs, then ​empty​ flag should be set to 1. 
9. When FIFO is empty, the ​read​ control should be zero.  
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FIFO other cases 
10. When the FIFO is NOT full, the ​full​ and ​empty​ flags should be set to 0. 
11. Write pointer should not change list in_write_ctrl is 0. 
12. Read pointer should not change whilst in_read_ctrl is 0. 
 

 
 
We declared two assumptions to the top-level design(​fifo_transport_single​ ) to constrain the input control 
signal:​ no push to (but pop out of) the queue whenever full flag set and no pop out of(but push to) the 
queue whenever empty flag set.​  These two constraints are similar to the two assumptions added in phase 
II. It’s important that we only applied the constraints to the top-level input, which is ​in_readwrite_ctrl​ . 
 

 
 
We set the FPV questa environment using the Makefile created previously with minor changes. A 
screenshot of the Makefile is shown below.  
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To run the formal tool, we first  

make run 

in command line, and the questa will clean the previous work, compile the design and run formal 
verification. The FPV result is shown as below. It’s shown that all properties are either covered and 
proved even though we included the faulty FIFO. Note that the first three cases are uncovered because it’s 
a 4-deep FIFO.  
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The first transport FIFO design is working despite the bug(in ​fifo.sv​ ) because the top-level combined 
read/write control signal ensured that at least one of write and read control will be asserted high, and thus 
will never enter the faulty ​else if ​ state discovered in phase II.  
  
Part 2: fifo_transport_double.sv 
The second step is to verify ​fifo_transport_double​ , which uses two instantiation of the “faulty” 16-deep 
synchronized FIFO design and a combined read/write signal. The design concatenate the two FIFO and 
doubled the depth by adding additional control logic on the top-level. To verified the second design, we 
declared the same set of assertions from part 1, and same two assumptions applied to 
input(​in_readwrite_ctrl​ ) on the top-level design. 
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The screenshot above shows that the FPV found two firings for each FIFO. By analyzing the 
full_fifo_condition ​ property, we found that the failure is caused when the small FIFO is full, and the write 
and read control signals to the submodule are both set to 0, thus the FIFO entered the unexpected faulty 
state while both ​out_is_empty​  and ​out_is_full​  are reset to 0.  
 
The waveform visualizer below shows the counterexample illustrating that the​ full​  flag is not set when the 
FIFO is full. After reset, the write control is set for 16 cycles, and then the ​full​  ​flag is asserted, which 
caused the write control to pull down in the next cycle. Since the read and write control to the submodule 
is not directly generated from the ​in_readwrite_ctrl​  from the top level, it is possible that both of them set 
to 0, which leads to the last ​else if​  statement in the faulty FIFO. Therefore, the ​full​  flag is pulled down 
even though the FIFO is still full.  
 
The another firing, ​empty_fifo_condition​  is also caused by this bug. After filling the FIFO, the read 
control asserted for a number of cycles until the FIFO is empty, empty flag asserted, and then both read 
and write control is set to 0, which also leads to the least ​else if​  statement in the faulty FIFO, so the ​empty 
flag pulled down even though the FIFO is still empty.  
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We removed the two assignment lines, re-verified the design using the same set of assertions, and now all 
assertions are proved as shown below. Note that ​fifo_num_entries_17​  and ​fifo_num_entries_18 ​ are 
uncovered, because both FIFO are 16-deep.  
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III. EFFECTIVE PFV FOR ALU VERIFICATION 
In this task, we are going to dive into more advanced design verification techniques, bug hunting FPV, 
which aims to target complex scenarios and discover subtle corner cases that are unlikely to be hit through 
simulation. We are also going to explore practical issues in setting up an robust FPV environment and 
effectively using it on our model for bug hunting and full proof. We illustrate this process on an 
arithmetic logic unit(ALU) design example from the website ​formalverificationbook.com 
 
Part A: Latency Check 
Our first step is to check whether the latency of all operations in our top-level ALU design is fixed. As we 
scan through the RTL code, we found that the proper latency for majority cases are 3 clock cycles. Our 
formal approach is to add assertions to verify all operations(both logical and arithmetic) have a latency of 
3 clock cycles.  
 
Based on the given top-level RTL, we have to apply additional assumptions so that behaviors are 
restricted to checking operations of the choice. We add two assumptions exhibited as followings: 
 
Assumptions  
1. Assume the defeaturee bit is driven to be 1. When this bit is 0 and src2 is 0, the clock for 

arithmetic module is gated. As this bit will be driven to 1 in most real-lie usages, we can safely 
deprioritize cases where this bit is 0.  
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2. Assume all feeding operations are valid and are either arithmetic or logical operation 
 

 
Coverage & Assertions 
To check the latency of each operation, we first use cover property to check whether all potentially 
operations can be used in our environment. The FPV tool shows that our initial covers on these are 
successful. 

 
 
Then we assert properties to verify when valid operation and uopv arrive, a valid output signal appears in 
three cycles. The assertion is proved from formal tool.  

 
 
We further investigated the possibilities by checking whether the valid result signal will appear after two 
clock cycles.  

 
 

 
 
After formal verifying, these two properties are covered, and the counterexample result is a bit surprising, 
as we don’t expect ​resultv​  sets to high in two cycles. Bringing up the waveform, we are surprised to see 
that the ​adduopv04​  node connected to the flip-flop in arithmetic unit has been always high since reset, 
hence the cover passes. The reason for the valid bit is high is that the MSFF is not resettable - the flop 
output can be come out with any value starting from beginning.  
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Therefore, we can formally prove that all operations have the latency of 3 clock cycles, however, due to 
the non-resettable issue of the flip-flop, the ​resultv​  signal could rise earlier than expected. To fix the issue, 
we need to make the flop resettable. We will explain this in Part D in details.  
 
Part B: Liveness Property 
In this section, we exercise writing liveness properties, one that passes and another one that fails.  
a. Passed Liveness Property 
Assumption: 
1. scan debugger is disabled 
2. Opcodes are either arithmetic or logical operations 
3. Clock gating is disabled 
Assertion: when a valid operation arrives, there will be a result eventually. 
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Verification: the liveness property is proved 

 

 
b. Failed Liveness Property 
Assumption: 
1. 1.   scan debugger is disabled 
2. Opcodes are either arithmetic or logical operations 
3. Clock gating is enabled 
Assertion: when a valid operation arrives, there will be a result eventually. 

 
This liveness property failed, because in this environment, we didn’t disable the clock gating, therefore it 
is possible that the formal tool find a counterexample when clock is gated, and the ​resultv​  never set to 
high.  

 

 
Part C: Vacuous Property 
An important of quality checks is to make sure that we do not have any proofs passing vacuously. In this 
section, we exercise writing a vacuous property from the ALU design that will lead to a vacuous truth 
Assumption & Assertion: 

 
The above property is proved to be vacuously. We say that an implication  holds vacuously if p isp → q  
always false. In te case above, our operation valid bit is assumed to be 0, so it’s impossible for uopv to 
hold ture and resultv eventually hold false. So the implication is tautology.  
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Part D: Comprehensive Formal Verification Approach 
 
FPV Plan for Arithmetic Block 

Goals Verify the correct behavior of the arithmetic unit, in the absence of unusual 
activity, such as clock-gating. 

Properties Create cover points that replicate each waveform in the spec that illustrates 
arithmetic unit behavior.  
 
Assume all operations are arithmetic, blackboxing the logic unit, add an 
assumption that the logical subunit valid signal ​logresultv​  is always 0. 
Assume clock gating is off.  

a. Cover each arithmetic operation(ADD, SUB, CMP), alone and 
back-to-back with another arbitrary operation. Assume only 
arithmetic operations and src2 is nonzero. 

b. Cover cases of each operation above with specific data that exercise 
all bits. Assume dft scan is disabled. For example: 

i. opcode: ADD, src1=32’h77777777, src2=32’h88888888. 
ii. opcode: SUB, src1=32’hFFFFFFFE, src2=32’hFFFFFFFF. 

iii. opcode: MUL, src1=32’h0000FFFF, src2=32’h000010001. 
iv. opcode: CMP, src1=32’h0, src2=32’hFFFFFFFF. 

c. Assert that when a valid operation arrives, a valid output appears in 
three clock cycles. 

d. Assert that each operation generates the expected results, given 
specific data.  

e. Create a reference model, and check that the result in the real RTL 
matches our reference model. 

Complexity Staging Initial stages: Blackbox logical subunit, set DSIZE to 8. Disable DFT and 
clock gating. 
Stages for improving verification quality if time permits: 

a. Allow all DSIZE values 
b. Allow DFT functionality 
c. Allow clock-gating 

Exit Criteria We exercise all covers and prove our arithmetic unit assertions for correct 
ALU functionality, under the overconstraints we have specified above. 

The syntax to blackbox the logic unit, and constraint the logic subunit result valid ​logresultv​  is shown 
below: 
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We would start with defining cover properties for typical activities and interesting combinations of basic 
behaviors in test A and B. Then we define assertions to prove targets(arithmetic operation) according by 
the specification in test C and D. Lastly, we created a shadow reference model that calculate the core 
results of the logic, and then compare the result generated by the two units.  
 
Test A: Coverages for all Arithmetic Operations 
Cover each arithmetic operation(ADD, SUB, MUL, CMP), alone and back-to-back with another arbitrary 
operation. Assume only arithmetic operations and src2 is nonzero. 
 
Assumption: 

 
Cover Property: 

 
The result shows that all opcodes can potentially be used in our environment. We have examined the 
waveform to confirm the fact.  

 

 
Test B: Coverages with Specific Data 
Cover cases of each operation above with specific data that exercise all bits. Assume dft scan is disabled. 
Assumption: 

 
We designed a set of inputs for each operation to exercise all bits in arithmetic unit.  
Coverages:  
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The result shows that both scenarios with our specific data alone and back-to-back with another 
operations give cover points.  

 

 
Test C: Operations with Valid Latency 
Assert that when a valid operation arrives, a valid output appears in three clock cycles. 

 
We receive proofs for the assertions above. 

 
We also tested cases when clock gating is enabled, when a valid operation arrives, a valid result will not 
show up in three cycles. 

 
15 



 
 
 
 

 
Assertion: 

 
The FPV result shows firings for all four arithmetic operations.  

 

 
Bringing up the waveform, and tracing back from the ​resultv​  signal, we found the ​arithresultv​  node 
connected to the flip-flop in arithmetic unit has been always high since reset, hence the assertion fires. 
The reason for the valid bit is high is again that the MSFF is not resettable - the flop output can be come 
out with any value starting from beginning.  
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This issue could lead to more firings in further verification, therefore, we added asynchronous reset to the 
MSFF. The new RTL for MSFF is shown as below. Then we modified the corresponding RTL for ALU, 
which takes a rst bit as input, and passes it to it’s submodules.  

 

 
After we made the flop resettable and completed these modifications to the ALU to our enviroment and 
rerun, we saw a pass to the assertions. We also went back to the previous test, and saw proves as well.  
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Test D: ​Operations​ with Expected Result 
Then we verify that each arithmetic operation generates the expected results, given specific data.  
Assumption: 

 
Assertions: 

 
 
The result shows three unexpected firings for SUB, MUL and CMP operations. We look into each 
counterexample and find out why the design is not behaving sanely. 
 

 

 
Subtraction Firing: 
The waveform below shows that when a valid SUB opcode arrives and the two specified operands arrive 
at the next cycle, then we get an unexpected result of 32’hd(should be 32’h4). We trace back to line 340, 
and find that although ​opsub04​  is correctly set, the uninverted ​src2inv04​  is incorrectly assigned to 
result04​ . 
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To fix the issue, we change the assignment in line 331 as following: 

 
 
Multiplication & Comparator Firing: 
The waveforms below show that when a valid MUL or CMP opcode arrives and the two specified 
operands arrive at the next cycle, then we get an unexpected result of 32’h10(MUL) or 32’h04 (CMP), 
however, the expected result should be 32’h20 and 32’h8 respectively. We follow the same steps as the 
last task, and found that ​src1mask04​ , ​src2mask04 ​ and ​cmpresult04 ​ have the correct values, but the 
multiplied or compared results are not properly assigned to ​result04.​  The issue is that the last bit of the 
multiplied or compared result is assigned to the ​dummyout04​ . This dummy bit is useful to eliminate the 
cin bit from ADD/SUB operation, but will cause bug when the operation is multiplication and 
comparison.  
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To fix the issue, we change the assignment in line 340 as following: 

 
 
We rerun the FPV tool, and all three firings are fixed with the modifications above.  

 

 
We verify another set of data that exercise all bits. Each operation generates the expected result in three 
cycles.  
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Test E: Reference Model 
Next we would like to create a reference model, calculating the expected result for each operation without 
including any of the complexities of a real design such as pipelining, scan, or debug logic.  
 
The reference model for arithmetic looks like this: 
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Once the above module is instantiated to the top-level ALU module, we can add the following assertion to 
check that the result is the read RTL matches our reference model. We first assume that clock gating is 
disabled, and the maximum data value is 8 bits. 

 
The two assertions prove that the two units should generate the same outputs, give complete coverage of 
the data space of all arithmetic operations.  

 
As the time permits, we tried DSIZE with 16 bits, however, we ran into inconclusive issue with the 
timeout of 30 mins. We received proofs for ADD, SUB and CMP, but the assertion for multiplication 
obtained an inconclusive result as the time runs out. 
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Furthermore, this reference model only covers a subset data sizes and arithmetic operations due to the 
state complexity. If time permits, we can relax the constraint(DSIZE and clock gating) to further expand 
the scope of our verification.  
 
 
FPV Plan for Logical Block 

Goals Verify the correct behavior of the logical unit, in the absence of unusual 
activity, such as DFT scan. 

Properties Create cover points that replicate each waveform in the spec that illustrates 
logical unit behavior.  
Assume all operations are logical operation, blackboxing the arithmetic unit, 
add an assumption that the arithmetic subunit valid signal ​arithresultv​  is 
always 0. 

a. Cover each logical operation(AND, OR, XOR), alone and 
back-to-back with another arbitrary operation. Assume only logical 
operations. 

b. Cover cases of each operation above with specific data that exercise 
all bits. Assume dft scan is disabled. For example: 

c. Assert that when a valid operation arrives, a valid output appears in 
three clock cycles, with DFT disabled and enabled. 

            DFT disabled: 
i. opcode: AND, src1=32’hFFFFFFFF, src2=32’hFFFFFFFF. 

ii. opcode: OR, src1=32’hFFFFFFFF, src2=32’h00000000. 
iii. opcode: XOR, src1=32’hFFFFFFFF, src2=32’h00000000. 

DFT enabled: 
iv. opcode: AND, dftdata=32’hFFFFFFFF, 

src2=32’hFFFFFFFF. 
v. opcode: OR, dftdata=32’hFFFFFFFF, src2=32’h00000000. 

vi. opcode: XOR, dftdata=32’hFFFFFFFF, src2=32’h00000000. 
d. Assert that each operation generates the expected results, given 

specific data, with DFT disabled and enabled. 
e. Create a reference model, and check that the result in the real RTL 

matches our reference model. 

Complexity Staging Initial stages: Blackbox logical subunit, set DSIZE to 8. Disable DFT and 
clock gating. 
Stages for improving verification quality if time permits: 

a. Allow all DSIZE values 
b. Allow DFT functionality 

Exit Criteria We exercise all possible corner cases for different operation codes to prove 
our logical block’s results are valid and working correctly. 

 
The syntax to blackbox the arithmetic unit, and constraint the logic subunit result valid ​arithresultv​  is 
shown below: 
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Similar to the previous plan, we would to start with defining cover properties for typical activities and 
interesting combinations of basic logical behaviors in test A, B and C. Then we define assertions to proof 
targets(arithmetic operation) according by the specification in test C and D. Lastly, we created a shadow 
reference model that calculate the core results of the logic, and then compare the result generated by the 
two units.  
 
Test A: Coverages for all Logical Operations 
Cover each logical operation(AND, OR, XOR), alone and back-to-back with another arbitrary operation. 
Assume only logical operations. 

 
The result shows that all opcodes can potentially be used in our environment. We have examined the 
waveform to confirm the fact.  

 

 
Test B: Coverages with Specific Data 
Cover cases of each operation above with specific data that exercise all bits. Assume dft scan is disabled. 

 
The result shows that both scenarios with our specific data alone and back-to-back with another 
operations give cover points.  
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Test C: Operations with Valid Latency 
Assert that when a valid operation arrives, a valid output appears in three clock cycles. 

 
Result showing that all logical operations will generate a result with a latency of 3 cycles. 

 
Test D: Operations with Expected Result 
Then we verify that each logical operation generates the expected results, given specific data with DFT 
disabled and enabled. 

 
The result shows that in either mode, we see expected result in three cycles.  
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Test E: Reference Model 
Similar to what we did to the arithmetic unit, we would like to create a reference model for the logical 
unit, calculating the expected result for each operation without including any of the complexities of a real 
design such as pipelining.  
 
The reference model for logical unit looks like this: 

 
 
Once the above module is instantiated to the top-level ALU module, we can add the following assertion to 
check that the result is the read RTL matches our reference model. We first assume that DFT scan is 
disabled, and the maximum data value is 8 bits. 
 
We obtained proofs for all assertions under the constraints above. Then we changed the uopsize to 
DSIZE16 and DSIZE32, along with relaxed src1, src2 and dftdata values. All cases give complete proofs. 
DSIZE = 8 
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DSIZE = 8 

 
DSIZE = 16 

 

 
DSIZE = 32 
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FPV Plan for Overall ALU Block 
Goals Verify the correct behavior of the overall ALU with different operation mode, 

including all DSIZEs, clock-gating and scan/debug feature. 

Properties Create assertions that set various kinds of inputs environment mode to 
illustrates overall ALU unit behavior by monitoring result valid bit.  

a. Assume clock gating is defeatured.  
i. Assert that when a valid operation arrives, each operation will 

generate valid output bit in three clock cycles. 
ii. Assert that when a valid operation is not arrived, the valid 

output will not arrive in three cycles. 
iii. Assert that when opcodes are not valid (neither arithmetical 

nor logical operations), the valid output will not arrive in 
three clock cycles. 

iv. Assert that each operation generates the expected results, 
given specific data, with DFT disabled. 

b. Assume clock gating is relaxed. 
i. Cover cases of when valid arithmetic operation arrives, the 

valid output does not arrive in three cycles.  
ii. Assert that when a valid logical operation arrives, the valid 

output arrives in three cycles. 
c. Assume both clock gating and dft scan/debug enabled: 

i. Create a reference model, and check that the result in the real 
RTL matches our reference model. 

Complexity Staging Since we have already verified each individual blocks, we would like to test 
the entire block with much relaxed constraints.  
Initial stages: set DSIZE to 8. Defeature clock gating and DFT scan. 
Stages for improving verification quality if time permits: 

1. Allow DFT functionality 
2. Allow all DSIZE values 

Exit Criteria We exercise all possible corner cases for different operation codes to prove 
our entire ALU block’s results are valid and working correctly.  

 
Lastly, we remove the blackboxes, and test the entire ALU unit by relaxing some of the initial 
compromises we made earlier.  Below is the actual assumptions and assertions wrote in systemverilog. 
 
Test A: Clock Gating & DFT Scan Disabled 
We first tested the mode when clock gating is disabled, and DFT is also shut off.  
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The result below shows that all assertions are proved with no counterexample.  

 
 
Test B: Operations with Defeature Clock Relaxed 
Assume clock gating is relaxed.  Cover cases of when valid arithmetic operation arrives, the valid output 
does not arrive in three cycles. Also add assertions that when a valid logical operation arrives, the valid 
output arrives in three cycles. 

 
The result shows that the coverage property are covered and assertions are proved. Look into the coverage 
case, the no result happens when src2 is 0, and the clock gating signal is ON. The coverage point is 
expected.  
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Test C: Reference Model 
Lastly, we combined two reference models in previous two tasks, and generated a shadow model for the 
entire ALU block.  This model includes all 7 operations and DFT scan, however, the clock gating feature 
is skipped as the specification for this feature remains unclear.  
 
We started with data size of 8 bits, with several assumptions such as assuming valid logical or arithmetic 
operations, operands smaller than 8 bits value, and disabled clock gating. we added the following 
assertion to check that the result is the read RTL matches our reference model. 

 
 
The two assertions prove that the two ALU units will generate the same outputs, give complete coverage 
of the data space of all arithmetic and logical operations with DSIZE08 and defeatured clock gating.  
 

 
DSIZE = 16:  
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To further improving our PFV coverages, we tried DSIZE16 with a much longer runtime(3 hours). 
However, we still run into inconclusive issue for the multiplication due to enormous state space and 
design complexity. The good thing is that we are able to get proofs for all other operations(ADD, SUB, 
CMP, AND, OR and XOR) in DSIZE16 and DSIZE32.  
 
Part E: Comparing Two alu0 Instances  
In this section, we create a high-level module named ​alu_cmp​ , and instantiate two instances of ​alu0​  to the 
top module. Then we assert properties to check whether the outputs ​result ​ and ​resultv ​ are the same from 
both instances respectively .  
The high-level module is looking like this: 
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We obtained four firings as the ​result1​  and ​result2​  different from each other,  Bringing up the waveform, 
The counterexample shows that both defeature bit and source2 are 0, and an arithmetic operation asserted 
at the second cycle. Since the clock is gated, neither logical nor arithmetic unit would be selected. We 
obtain floating results, thus the two results could be different.  

 
This is due to a design issue with the MUX_2_1. The MUX output a floating output when ​sa​  and ​sb​  are 
both set to 0. We generally don’t want this to happen. Therefore, to fix the problem, we add a default case 
that set out to 0.  
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Before: 

 
After: 

 
 
With the modified MUX2, we rerun the assertion, we obtain another failure. Bringing up the waveform, 
and tracing back from both instances, we see that after ​addopov03​  set high, ​addopov04 and resultv​  are set 
to high for two cycles as the clock signal is being gated.  

 

 

 

 
In this case, the floating variable ​cin ​ in the two instances are set to different values, which leads to 
different arithmetic results. Although it is not a valid arithmetic operation, a false ​arithmetic_resultv​  is 
still passed to the alu0, and ​arithmetic_result​  is selected as the output for the ALU unit.  
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To fix the floating issue, we add default case for ​cin​  same as what we did to the MUX2​, ​ then we obtain 
proof for all assertions.  

 

 
In general, when we compare two instances of a design, we can find design problems that caused by 
floating gates. Because the design can go to multiple states with the same inputs. These are usually 
unwanted situations. 
 
Part F: Inconclusive Result & Blackboxes 
Inconclusive analysis happens when the formal analysis timed out before proving or disproving the 
assertion. As the complexity of the design increases, it takes much longer time for the checker to 
exhaustively reach a conclusive result. Blackboxing is one of the approaches to reduce design state space 
and complexity.  
 
If we obtained a proof for the design with blackboxed modules, the proof is valid for the target unit. 
However, we should consider this as one proof apart from many other proofs in our comprehensive FPV 
plan. On the other hand, if we obtained a counterexample, it could either mean that we have a true bug in 
our design or we need to add more assumptions related to the blackbox to rectify some false positive 
situations.  
 
When choosing the potential blackbox candidates, it is very important to think about the data flow 
through the design and what the effects of a blackbox might be. Since the outputs of a blackbox become 
free variables, we also need to carefully consider adding new assumptions, so that the blackbox does not 
appear to be producing faulty signals for the other modules.  
 
Part G: Blackbox Vs. Abstractions 
While abstraction techniques simplify the state space of the design by reducing the size of logic, 
blackboxes help to minimize the logic complexity by ignoring submodules that is irrelevant for formal 
verification. We have used both techniques in our formal verification project. The example of blackbox is 
blackboxing the logical unit while verifying arithmetic unit while verifying the ALU design. This 
technique requires making new assumptions such as setting ​logresultv​  to 0. An example of abstraction is 
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to reduce the size of counter from 32 bits to 8 bits in FIFO verification, which allow the tool to find the 
overflow issue at a much lower bound. 
 
IV. CADENCE JASPER TOOL 
Our last task is to reproduce task 1 using another popular commercial tool, Cadence Jasper.  
The biggest difference in term of running the code is to use tcl file rather than Makefile. The tcl file looks 
like this: 
 

 

We wrote a bash script, named run.sh. To run the script, execute:  

bash run.sh 

 
The Jasper FPV tool pops up, we obtain a pass for our set of assertions in ​fifo_transport_single​ . Also, we 
will not reach 5, 6 and 7 entries in the FIFO as we expected 
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Then we tried ​fifo_transport_double, ​ which uses two instantiation of the faulty 16-deep synchronized 
FIFO design and a combined read/write signal. We received several firings.  

 
 
We bring up the waveform for the first firing. The counterexample shows that the the FIFO Transport 
keeps adding values to the the first FIFO until it’s full and it stops writing. Then both read and write 
control are set to zero, which reset the full signal to zero, enen though FIFO1 is still filled full with 16 
entrities. As we mentioned in the first task, this bug is caused by the last ​else if​  statment added in the 
fifo.sv​ . After removing the last part, all firings are gone.  
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V. CONCLUSION 
In this project, we first explored the basic methods, SystemVerilog assertions and line coverages of 
formal verification through small FIFO design exercies. we also explored the limitations of formal 
verification in some scenarios that could lead to incomplete verification. Then, we studied two advanced 
design verification techniques, bug hunting and full proof FPV techniques from Chapter 6 of Formal 
Verification textbook[1], and applied these techniques to a relatively complex ALU design. Our main 
tasks are accomplished Mentor Questa, however, we also exploited another commercial industry-standard 
tools, Cadence’s JasperGold in some tasks.  
 
In the phase of ALU verification, we verified each individual block using line coverages, assertions, and 
reference models. However, due to the complexity of multiplication operation, we were not able to obtain 
a prove for this operation beyond DSIZE08. Also, because lacking of specification, we were not able to 
understand what the ​defeature_clock​  bit means(it shut down some of the flops when src2=0 and 
defeature_clock=0). Therefore, we were not able to verify the correct behavior of the alu0 while it set to 
zero. However, we found several bugs with this bit drive to 1, including flop resetability issue, MUX 
output floating issue and incorrect arithmetic operation issue(SUB, MUL and CMP).  
 
With increasing design complexity, verification becomes a very important but costly step of the design 
flow. As traditional simulation based testing cannot guarantee sufficient coverages, we found formal 
verification approach appears to be very cost effective in many cases. We particularly found it useful in 
the process of RTL design, since testbench creation usually is a very slow and error prone task.  
  
VI. COLLABORATIONS 
We found the topic to be very attractive and useful, thus both of us worked extremely hard and 
collaboratively on this project. The detail contributions are listed below: 
 

Name Yuxiang Chen(yc3096) Ao Li(al3483​) 

Contributions 50% 50% 

Details 1. Read user manual, search for 
     relative papar and techniques 
2. PFV Plan Adjustment 
3. SVA Implementation 
4. Debug Firing  
5. Report Composing 
6. Final Report Polishing and 

Adjustment  

1.Read Textbook, search for relative 
techniques  

2. PFV Planning  
3. SVA Implementation 
4. Debug Firings 
5. Report Composing 

 
VII. ACKNOWLEDGMENT 
We would like to thank our professor Michael Theobald for his excellent course Formal Verification of 
Hardware and Software Systems, Your extensive knowledge, enthusiasm and organization made the class 
a pleasure to attend and study for. Thank you for completing our Columbia experience. We really 
appreciate it. 
 

 
37 



 
 
 
 

Meanwhile, we also would like to say thank you to our hardworking TAs, Xinhao and Tiezheng for their 
efforts before the midterm. It is your efforts that make our learning progress to be smooth.  
 
VIII. REFERENCES 
[1] E. Seligman, T. Schubert, and M. V. Achutha Kiran Kumar, ​Formal verification: An essential Toolkit 
for modern VLSI design​ . United States: Morgan Kaufmann Publishers In, 2015. 
 
[2] C. E. Cummings, "SystemVerilog Assertions Design Tricks and SVA Bind Files," SNUG, 2009. 
 
[3] "SystemVerilog assertions part-i," in ​ASIC World​ , 2014. [Online]. Available: 
http://www.asic-world.com/systemverilog/assertions1.html. Accessed: Dec. 20, 2016. 
 
[4] Doulos, “Developing & Delivering KnowHow,” ​SystemVerilog Assertions Tutorial​ . [Online]. 
Available: https://www.doulos.com/knowhow/sysverilog/tutorial/assertions/. [Accessed: 20-Dec-2016].  

 
38 


