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SUMMARY. The continual reassessment method (CRM) is a sequential design used in phase I cancer trials 
to determine the maximal dose with acceptable toxicity. It has been established that the CRM is consistent 
under model misspecification but not generally. When the method does not converge to the target per- 
centile, some dose-response models will be more sensitive than others in terms of how close the converged 
recommendation is to the target. In this article, we interpret the main condition under which the CRM is 
consistent and apply it to evaluate the sensitivity of the model used with the CRM. The technique presented 
is found to be a useful supplement to simulation when planning a phase I trial. 
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1. Introduction 
The primary objective of phase I clinical trials in cancer is to 
determine a maximal dose that does not exceed an acceptable 
level of toxicity, i.e., the maximum tolerated dose (MTD). The 
continual reassessment method (CRM), a sequential design 
for phase I studies, has received much attention since its first 
proposal (O’Quigley, Pepe, and Fisher, 1990). The method 
uses a simple model to describe the curve that delineates the 
stochastic relationship between dose and probability of toxi- 
city. The model parameter is estimated repeatedly through- 
out the trial as binary toxicity observations are accrued. The 
CRM then assigns the next patient to a dose whose toxicity 
probability is estimated to be closest to the target probabil- 
ity. The two most frequently used doseresponse models, a 
one-parameter logistic function with a known intercept and a 
power function, are examined by Chevret (1993) via simula- 
tion. Since then, not much, if any, effort has been put on the 
choice of dose-response model. It is probably because the per- 
formance of the CRM is believed to be robust against model 
misspecification and therefore practitioners deem the conven- 
tional choice adequate. 

In this article, we illustrate that some models are less sen- 
sitive than others in terms of how close the converged recom- 
mendation is to the desired dose. A numerical technique will 
be presented to evaluate the model sensitivity in the CRM. 
The technique exploits a condition that suffices the method’s 
consistency. While the consistency results were established 

(Shen and O’Quigley, 1996), few insights had been derived, 
partly due to the opaqueness of the condition. This article 
interprets the main condition in Section 3 and then presents 
the technique in Section 4. To start, we review the CRM in 
the following section. 

2. The CRM 
In a phase I trial with doses d l ,  . . . , d K  on trial, the CRM 
models toxicity probability via a single-parameter model F ( d ;  
P). This dose-response model F should be monotone increas- 
ing in d and monotone in the parameter 0; also, the model 
should be flexible enough to reproduce the target probability 
p~ at any dose levels. Other than these, choice of F should 
respect a few regularity conditions (see Appendix A). Let Y,  
be the indication of toxic response for the ith patient who 
receives dose +I. With the first n observations, we estimate 
the model parameter P by maximizing the likelihood 

, 

i=l 

and assigning the next dose level [n + 11 such that 

lWqn+l];bn) -PTI I IF(dlc;bn) --TI for = L ” ‘ , K ,  

where f i n  is the maximizer of L. This maximum-likelihood ap- 
proach of the CRM is proposed by O’Quigley and Shen (1996) 
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and is shown to be consistent under model misspecification 
by Shen and O’Quigley (1996). 

3. Sufficient Conditions for Consistency 
In this section, we state and interpret the main condition un- 
der which the CRM is consistent. We refer readers t o  Shen and 
O’Quigley (1996) for proof of consistency. First, let FI,(P) = 
F(&;  /3) for k = 1,. . . , K and define for level j 

H j  = { P  0 : -PTI < 1FI,(8) --TI for k # j } ,  

where the parameter space 0 is assumed to be a closed fi- 
nite interval [ b l , b ~ + 1 ] .  We show in Appendix B that H i  = 
[bl,b2), HI ,  = ( b k , b k + l )  for k = 2 ,..., K - 1 and H K  = 
( b ~ , b ~ + l ] ,  where bk solves 

(3.1) 

Note that the CRM will recommend dose level j if and only 

Further define 41, = F ; ’ ( ~ I , )  for k = 1,. . . , K ,  where PI, 
is the true toxicity probability associated with d k .  If F is a 
correct model, 41, = Po for all k for some true parameter 00. 
Consistency requires a less restrictive condition, 

(Cl)  41, E Hl for all k ,  where 1 is the correct dose level. 

For example, suppose we set the target probability p~ to 
be .20 and use the power model F ( d ; P )  = dp for /3 E [0,10] 
at doses .05, .lo, .20, .30, .50, and .70 (after rescaling). The 
upper limit 10 of the parameter space is chosen arbitrarily to 
avoid technical difficulty; any large number shall suffice. Then 
we can calculate the sets 

F~,_l(b,+) + F k ( b k )  = 2 p ~  for k = 2 , . .  . , K .  

iffin E H ~ .  

H i  = [0.00,0.62), 
H2 = (0.62,0.84), 
H3 = (0.84,1.16), 
H4 = (1.16,1.80), 
H5 = (1.80,3.35), 
H6 = (3.35,10.0] 

according to equation (3.1). Now suppose the correct level is 
level 3. Condition (Cl) requires q5k E (0.84,1.16) for all k or, 
equivalently, PI ,  E {F(d1,;/3) : P E (0.84,1.16)}, which is an 
interval for each k.  A graphical representation is illustrated 
in the left panel of Figure 1: The condition is satisfied if the 
true dose-response curve crosses all six vertical bars in the 
shaded area. 

It is intuitive that a reasonable design will perform well 
when the true curve is steep around the MTD (Storer, 1989). 
Therefore, we further postulate that consistency will hold un- 
der a more relaxed condition, 

(C2) 41 Hl,  41, E U g I , + l H j  for k = 1 , .  . . ,1  - 1, 41, E 

u S , ~ H ~  for k = I + 1,. . . , K .  

Graphically, condition (C2) is satisfied for 1 = 3 if the true 
monotone increasing curve crosses all six vertical bars in the 
right panel of Figure 1. 

The above design setup for the CRM was considered by 
O’Quigley et al. (1990) and Cheung and Chappell (2000). 
Both reported that the CRM had mediocre performance un- 
der the scenario where toxicity probabilities at the six doses 
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Figure 1. If the true monotone increasing dose-response 
curve crosses all six vertical bars in the left and right panels, 
conditions (Cl)  and (C2) are, respectively, satisfied with the 
power model F ( d ; P )  = dp at doses .05, . lo ,  .20, .30, .50, .70 
and p~ = .20. 

were .OO, .OO, .03, .05, .11, .22; in addition, the method showed 
little improvement in accuracy as sample size grew from 25 to 
48 (Cheung and Chappell, 2000, Table 2). Shen and O’Quigley 
(1996) conduct simulations to verify failure in convergence to 
the MTD (dose level 6), positing that such failure is due to the 
violation of condition (Cl).  We here observe that condition 
(C2) is also violated: In this case, both conditions do not hold 
because $5 = log(.ll)/log(.50) = 3.18 $ (3.35,10.0] = ff6. 

Consider yet another scenario with toxicity probabilities 
.06, .08, .12, .18, .40, .71 (d4 is the MTD) where condition 
(Cl)  is not obeyed because 4 6  = 0.96 $ (1.16,1.80) = H4. 
However, convergence did occur, as with simulations of larger 
trials. In this case, condition (c2), requiring 4 6  E (0,3.35), is 
satisfied and thus appears to be a more reliable indication for 
consistency of the method. 

4. Application and Discussion 
In reality, the true curve is fixed, and we would like to choose 
F so as to ensure certain nice estimation properties, such 
as convergence of the recommended dose to the correct dose 
d l .  However, the true curve is unknown and cannot be used 
to verify condition (C2). A reasonable approach then is to 
determine, for a given model F ,  an interval of probabilities in 
which the converged recommended dose will fall. The shorter 
the range, the less sensitive is the model F to the underlying 
truth and vice versa. 

Reconsider the CRM design setup in Section 3. If we knew 
that level 3 is the correct dose, condition (C2) would have 
required 41 E (0.62, lo], 4 2  E (0.84, lo], 4 3  E (0.84,1.16), 
$4 E (0,1.16), 4 5  E (0,1.80), and 46 E (0,3.35), which is 
equivalent to 
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Table 1 
Indifference intervals for various CRM setups. ( a )  Section 
3: F(d; ,B)  = do at doses 0.05, 0.10, 0.20, 0.30, 0.50, 0.70 
a n d p ~  = 0.20. ( b )  Chevret (1993): logit{F(d;,B)} = 1 + 

pd at doses -3.94, -3.20, -2.10, -1.62, -1.00, -0.15 and 
p~ = 0.25. (c) Chevret (1993): logit{F(d;,B)} = 3 + ,Bd at 
doses -5.94, -5.20, -4.10, -3.62, -3.00, -2.15 a n d p ~  = 

0.25. ( d )  Gasparini and Eisele (2000): F(d;  p) = do at doses 
0.05, 0.10, 0.15, 0.25, 0.35, 0.45, 0.60, 0.80 a n d p T  = 0.25. 

Interval 

(a) (b) (c) (4 
1 p ~ =  .20 p ~ = . 2 5  p ~ =  .25 p~ 1.25 

[-, .242] [-, .291] [-, .301] [-, .295] 
[. 158, ,2571 [.209, .331] [. 199, .339] [.205, .283] 
[.143, ,2461 [.169, .301] [.161, .297] [.217, ,3041 
[.154, ,2861 [.199, .342] [.203,.321] [.196, ,2981 
[.114, ,3021 [.158, .496] [.179,.371] [.202,.297] 

[.174, .387] 
[.098, -1 [.004, -1 [.lag, -1 [.203, .326] 

[.113, -1 

On the one hand, the CRM will converge to the MTD (d3) 
if the true toxicity probabilities fall in the intervals specified 
in (4.1), particularly p2 E (0,.14) and p4 E (.25,1]. On the 
other hand, if p2 is close, though not as close as p3, to p~ = 
.20, we expect that the CRM may recommend level 2. To be 
more precise, condition (C2) is violated when p2 E [.14,p3). 
Likewise, if p4 E (p3, ,251, the CRM may converge to level 4. 
We shall call [.14, .25] the indifference interval of model F for 
1 = 3 because the CRM with F may fail to distinguish level 3 
from its neighbor levels whose toxicity probabilities fall in this 
interval. Because the CRM tends to choose a level close to the 
correct level, if not the correct level itself, we may ignore the 
nonneighbor levels. 

Table 1, column (a), shows the indifference intervals of F 
when we assume 1 = 1,. . . , 6  under this design setup. From the 
table, we deduce that the CRM will recommend a dose that 
is somewhere between the 10th and 30th percentiles eventu- 
ally and hereby solicit from the clinicians whether this range 
is acceptable, i.e., not too wide. This notion is analogous to 
the idea of minimal relevance difference in the context of hy- 
pothesis testing. We note that the CRM can recommend a 
dose outside the [lo, 301th percentile range either when all the 
doses are way too low or when all are very toxic. Neverthe- 
less, it holds no implication for the model Sensitivity. Rather, 
this issue should be taken care of when selecting doses for 
experimentation. 

Example 1. Chevret (1993) examines via simulation the sen- 
sitivity of the CRM with a one-parameter logistic model, 

where a0 is fixed. Before running a simulation, we could have 
analyzed the method's sensitivity with the indifference inter- 
vals of the model. Tables 1, columns (b) and (c), shows the 
intervals with a0 = 1 and a0 = 3, respectively. The latter was 
recommended based on simulations. In contrast, the CRM 
using the model with a0 = 1 may recommend a virtually 
nontoxic, and probably ineffective, dose if dose level 6 is the 
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Figure 2. The percentages of recommending levels 6, 7, 
and 8 by the CRM with the power model used in Gasparini 
and Eisele (2000) versus sample size. The results are based 
on 2000 simulated trials. Each trial starts at the lowest level, 
does not allow skipping levels in escalation, and takes in three 
patients at a time until a fixed sample size is reached. 

MTD. Thus, we may rule out this model without spending 
computing time on simulations. Compared with simulations, 
calculation of indifference intervals is easy to program and 
much faster to run. 

Example 2 .  Gasparini and Eisele (2000) propose an alterna- 
tive design to the CRM for phase I trials. The authors com- 
pared their method to the CRM with the power model via 
simulation where the target p~ = .25. In all six scenarios con- 
sidered in their article, the CRM was comparable with their 
method except in scenario 4, where true toxicity probabilities 
are .01, .05, .lo, .lo, .15, .15, .20, .20; thus, the correct level is 
1 = 8. According to the indifference intervals in Table 1, col- 
umn (d), we expect the CRM will fail to distinguish level 7 
from level 8. The percentages of recommending levels 6, 7, and 
8 by the CRM are plotted in Figure 2, which shows that the 
CRM converges to  level 7 as sample size grows. This agrees 
with the sensitivity analysis: the indifference interval for 1 = 7 
not covering p6 = .15 implies that the CRM is able to distin- 
guish level 6 from level 7 in scenario 4 in Gasparini and Eisele 

In addition, the indifference intervals suggest that the CRM 
is likely to recommend a dose that lies in the short range from 
the 20th percentile to the 30th percentile if the MTD is among 
the first six doses. It therefore seems that this CRM setup is 
a promising method if the clinicians have a strong belief a 
priori that the desired dose is among the first six levels. 

Indifference interval, though exact in asymptotics, may not 
bear relevance in the context of phase I studies, where the 
sample size is usually small. However, a model with poor 
asymptotic sensitivity is likely to give poor performance in 
small-sample settings. In the two examples illustrated above, 
the sensitivity analyses successfully point out when the CRM 
may fail. 

(2000). 
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So far, simulation has been the only tool to evaluate the 
CRM’s operating characteristics in actual trials. With infinite 
possibility of choices of dose-response models, it is sensible 
to restrict consideration to those with adequate sensitivity. 
While the technique presented in this article is not intended 
to replace simulation studies when planning a trial, it is a 
simple and useful supplement. 

RBSUMB 
La methode de r6evaluation continue (CRM) est une mkthode 
sequentielle utiliske dans les essais de phase I en canckrologie 
pour determiner la dose maximale tolkrke avec une toxicite 
acceptable. I1 a 6th demontre que la CRM n’est pas toujours 
robuste face a des erreurs de specification du modkle. Quand 
cette methode ne converge pas, certains modbles dose-r6ponse 
seront plus sensibles que d’autres pour converger vers une 
dose proche de celle ciblee. Dans cet article, nous interprktons 
la condition principale sous laquelle la CRM est robuste et 
l’appliquons pour Cvaluer la sensibilite du modkle utilish avec 
la CRM. La technique presentee est un complement utile aux 
simulations lorque l’on planifie un essai de phase I. 
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APPENDIX A 

Regularity Conditions for Dose-Response Model F 

(MI) F(d;  p) is strictly increasing in d for all p. 
(M2) F(d;  p) is strictly monotone in p in the same direction 

for all d .  

(M3) Given any 7r E (0, l), for each d, there should exist P in 
the interior of 0 such that F(d;  P )  = 7r.  

(M4) Fk(/3) is bounded away from zero and one for all k 
and P E 0; and F’(d; p )  := aF(d;  p)/6’p is uniformly 
bounded in P. 

(M5) For each 0 < p < 1 and each d, the function 

is continuous and strictly monotone in 0. 

APPENDIX B 

Derivation of the Sets { H k }  for k = 1,. . . , K 

Without loss of generality, assume F ( d ;  0) is strictly decreas- 
ing in p and let 0 = [ b l , b ~ + 1 ] ,  where --oo < bl < b ~ + 1  < 
00. For k = 2, .  . . , K ,  define bk such that 

F k - l ( b k )  + F k ( b k )  = 2PT. 

Assuming (M2) and (M3), we can always find such b k .  Our 
goal is to show that b2 < . .  . < bK and that H1 = [bl, b z ) ,  H j  
= (b j ,b j+l ) ,  j = 2 , . .  . , K  - 1, and HK = ( b ~ , b ~ + ~ ]  as 
defined in Section 3. 

Definition (3.1) gives Fk-l(bk)+Fk(bk) = 2PT = Fk(bk+l) 
fFk+l(bk+l)  for k = 2,. . . , X - 1. On the other hand, (MI) 
implies 

Fk-l(bk)  + F k ( b k )  < F k ( b k )  + Fk+l(bk), 

which leads to 

F k ( b k + l )  + Fk+l(bk+l)  < F k ( b k )  + Fk+l(bk) 

and hence bk < bk+l for k = 2, .  . . , K - 1 by (M2). 

(3.1) and (M2) together imply 
Now, suppose P E ( b j ,  b j + l )  for k = 2,.  . . , K-1. Definition 

Fj- 1 ( P )  + Fj ( P )  < 2PT 

and 

Fj ( P )  + Fj+ 1 ( P )  > 2PT 

and, in turn together with (Ml), implies Fj- l (p)  < p~ < 
Fj+l(/3). It follows that /3 E H j .  

Suppose p 5 bj .  We further assume F j - l ( p )  5 p~ 5 F j (p ) .  
Otherwise, P $! H j .  Definition (3.1) and (M2) together imply 
Fj-1(/3) + Fj (p )  2 2 p ~ .  It follows that 

IFj(P)-PTI = F j ( P ) - P T  > P T - F j - l ( P )  = IFj-l(P)-PTI 

and therefore p f H j .  By similar argument, we can show that 
2 bj+l implies P f H j .  As a result, /3 E Hj  iff P E ( b j ,  b j+l)  

for k = 2, .  . . , K - 1. Using a similar argument gives that 
P E [bl,b2) iff P E H I  and that P E (bK,bK+I] iff p E H K .  


