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Abstract

Inspired by ride-hailing and bike-sharing systems, we study the design of state-dependent

controls for a closed queueing network model. We focus on the assignment policy, where the

platform can choose which nearby vehicle to assign to an incoming customer; if no units are

available nearby, the request is dropped. The vehicle becomes available at the destination

after dropping the customer. We study how to minimize the proportion of dropped requests

in steady state.

We propose a family of simple state-dependent policies called Scaled MaxWeight (SMW)

policies that dynamically manage the geographical distribution of supply. We prove that

under the complete resource pooling (CRP) condition (analogous to the condition in Hall’s

marriage theorem), each SMW policy leads to exponential decay of demand-dropping prob-

ability as the number of supply units scales to infinity. Further, there is an SMW policy that

achieves the optimal exponent among all assignment policies, and we analytically specify

this policy in terms of the customer arrival rates for all source-destination pairs. The opti-

mal SMW policy maintains high supply levels near structurally under-supplied locations. We

also propose data-driven approaches for designing SMW policies and demonstrate excellent

performance in simulations based on the NYC taxi dataset.

∗A preliminary version of this work appeared in ACM SIGMETRICS 2018 (Banerjee et al. 2018). That
publication is an extended abstract containing only a subset of the current theoretical results, proof sketches, and
no simulation experiments.
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1 Introduction

Recently, there is increasing interest in the control of shared transportation systems for ride-

hailing such as Uber, Lyft, DiDi and Ola. These platforms are dynamic two-sided markets where

customers (demands) arrive at different physical locations stochastically over time, and vehicles

(supplies) circulate in the system as a result of transporting demands to their destinations. The

platform’s goal is to maximize throughput (proportion of demands fulfilled), revenue or other

objectives by employing various control levers.

The main inefficiency in such systems comes from the geographic mismatch between supply

units and customers: when a customer arrives, he has to be matched immediately with a nearby

supply unit, otherwise the customer will abandon the request due to impatience. There are two

sources of spatial supply-demand asymmetry: structural imbalance and stochasticity. In ride-

hailing, the former is dominant during rush hours in the city when most of the demand pickups

concentrate in a particular region of the city while dropoffs concentrate on others, otherwise the

latter source often dominates, see Hall et al. (2015). We propose an assignment (scheduling)

policy that deals with both sources simultaneously : the state dependent nature of policy allows

near-optimal management of stochasticity, while the choice of policy parameters accounts for

the structural imbalance provided it is not too large.

Many control levers have been proposed and analyzed in the literature. Pricing, for example,

enjoys great popularity in both academia and industry, see, e.g., Waserhole and Jost (2016),

Banerjee et al. (2016). By adjusting prices of rides, the system can indirectly re-balance supply

and demand. Braverman et al. (2016) focus on empty-vehicle routing, i.e., sending available

supply units to under-supplied locations in order to meet more demand.

In this paper, we study another important form of control, assignment. When a customer

request comes in, the platform can decide from where to assign a supply unit, which will, in

turn, influence the platform’s ability to fulfill demand in future. Bike-sharing systems can also
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implement a similar control by suggesting to riders where to pick up (or drop off) a bike. Previous

work has studied assignment decisions made in a state-independent manner — by optimizing

the system’s fluid limit, the platform can compute a desired probability of assigning from any

compatible location when a demand arises, and realize this probability by randomization (Ozkan

and Ward 2016, Banerjee et al. 2016). However, this approach requires exact knowledge of

customer arrival rates (which is infeasible in practice), fails to react to stochastic variation

in the system, and creates additional variance due to randomization. Although this control

guarantees asymptotic optimality in the Law of Large Numbers sense, it converges only slowly

to the fluid limit (Banerjee et al. 2016). To counter these issues, we study state-dependent

assignment control.

We model the system as a closed queueing network with n servers representing physical lo-

cations, and K “jobs” that stand for supply units. After a supply unit picks up a customer, it

drops her at the destination and becomes available again. (Supplies do not enter or leave the

system.) This is an appropriate model for ride-hailing systems (Banerjee et al. 2016, Braver-

man et al. 2016, Waserhole and Jost 2016), where supply units are typically long-lived. For

each location i there are some compatible supply locations that are close enough, from where

the platform can assign supply units to serve customers at i. Customers arrive stochastically

with different origin-destination pairs. Each time a customer arrives, the platform makes an

assignment decision from a compatible supply location based on the current spatial distribution

of available supplies.

The platform’s goal is to maintain adequate supply in all neighborhoods and hence meet as

much demand as possible, therefore we adopt the (global) proportion of dropped demands as a

measure of efficiency. For the formal description of our model, see Section 2.

To study state-dependent spatial rebalancing of supply while keeping the size of the state

space manageable, we make a key simplification – we assume that pickup and service of customers

are both instantaneous. This allows us to get away from the complexity of tracking the positions

of in transit supply units, while retaining the essence of our focal challenge, that of ensuring

that all neighborhoods have supplies at (almost) all times. To obtain tight characterizations,

we further consider the asymptotic regime where the number of supply units in the system K
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goes to infinity. It’s worth noting that the large supply regime (demand arrival rates stay fixed

while K → ∞) and the large market regime (demand arrival rate scales with K as K → ∞)

are equivalent in our model. The reason is that we assume instantaneous relocation of assigned

supply units, hence the large market regime is simply a speed-up of the infinite supply regime.

In terms of practical implications for a real setting with transit times, the interpretation of our

parameter K is the number of free cars in the system at any time. Realistic simulations reveal

that our theoretical findings strikingly retain their power even when the above two assumptions

are relaxed, i.e., in a setting with transit times, and where only a small number of cars in the

system are free at any time since almost all cars are en route for pickup or dropoff (Section 6).

A main assumption in our model is the complete resource pooling (CRP) condition. CRP

is a standard assumption in the heavy traffic analysis of queueing systems (see, e.g., Harrison

and López 1999, Dai and Lin 2008, Shi et al. 2015). It can be interpreted as requiring enough

overlapping in the processing ability of servers so that they form a “pooled server”. For the

model considered in this paper, the CRP condition is closely related to the condition in Hall’s

marriage theorem in bipartite matching theory. Violation of Hall’s condition would force a

positive fraction of demand to be dropped as K → ∞. In a real world ride hailing setting,

the demand arrival rates are endogenously determined by system manager’s pricing decisions

(though we do not incorporate this aspect in the present paper; our model “turns off” pricing

and repositioning in the interest of tractability). Intuitively, if CRP condition does not hold for

base prices, the platform may use spatially varying prices and repositioning as in Bimpikis et al.

(2016), Banerjee et al. (2016) to make it true,1 and then use our assignment control to manage

the unpredictable fluctuations in demand, allowing almost all demand (given the prices) to be

fulfilled.

Analogy with classic closed queueing network scheduling problem. Using the termi-

nology of classic queueing theory, the K supply units are “jobs”, each demand location is a

“server”, each supply location is a “buffer”, inter-arrival times of customers with origin i are

“service times” at server i. The distribution of customers’ destinations given origin captures

1When we presented our work to them, data scientists at the largest ride-hailing companies proactively sug-
gested the viewpoint that their pricing can ensure our CRP condition, with the possible exception of certain
countries where pricing is a less acceptable lever (e.g., China and India).
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“routing probabilities”. “Servers” are flexible (i.e. can serve multiple queues), and assignment

is equivalent to “scheduling”.

1.1 Main Contributions

We obtain state-dependent control policies that effectively manage the spatial distribution of

supply, leading to a fraction of demand dropped that decays exponentially fast in K. This

motivates us to perform a thorough large deviations analysis which yields surprisingly elegant

results. As a function of system primitives, we derive a large deviation rate-optimal assign-

ment policy that minimizes demand dropping (maximizes throughput). Our optimal policy is

strikingly simple and its parameters depend in a natural way on demand arrival rates. Our

contribution is threefold:

1. A family of simple policies, and an exponent-optimal policy. We propose a family of

state-dependent assignment policies called Scaled MaxWeight (SMW) policies, and prove that

all of them guarantee exponential decay of demand-drop probability under the CRP condition.

The proof is based on a family of novel policy-dependent Lyapunov functions which are used

to analyze a multi-dimensional variational problem. An SMW policy is parameterized by a

vector of scaling factors, one for each location; each demand is served by assigning a supply

from the compatible location with the largest scaled number of cars. We obtain an explicit

specification for the optimal scaling factors based on location pickup compatibilities and

demand arrival rates. Further, we obtain the surprising finding that the optimal SMW policy

is, in fact, exponent-optimal among all state-dependent policies (Theorem 1). SMW policies

are simple, explicit and promising for practical applications (Section 6 demonstrates stellar

performance in a realistic simulation environment).

2. The value of state-dependent control. We show that no state-independent assignment

policy can achieve exponential decay of demand dropping (Proposition 2), which demonstrates

the value of state-dependent control — even the naive unscaled (“vanilla”) MaxWeight as-

signment policy requiring no knowledge of demand arrival rates achieves exponential decay.

3. Qualitative insights. We establish the critical subset property of the SMW policies: for

each SMW policy, there exist subsets of demand locations that are most vulnerable to the
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depletion of supply in compatible locations, hence leading to demand dropping. The optimal

SMW policy simultaneously “protects” all critical subsets maximally by maintaining high

supply levels near structurally under-supplied locations.

One key difficulty in the analysis is the necessity to deal with a multi-dimensional system

even in the limit. In many existing works that seek to minimize the workload/holding costs of

a queueing system, asymptotic optimality of a certain policy relies on “collapse” of the system

state to a lower dimensional space in the heavy traffic limit. In contrast, in our setting, the limit

system remains n-dimensional, where n is the number of locations.

1.2 Literature Review

MaxWeight scheduling. MaxWeight is a simple scheduling policy in constrained queueing

networks which (roughly speaking) chooses the feasible control decision that serves the queues

with largest total weight, at each time. Examples of weight include queue lengths, scaled queue

lengths, etc. MaxWeight scheduling has been shown to exhibit good performance in various

settings (e.g., Tassiulas and Ephremides 1992, Dai and Lin 2005, Stolyar 2004, Dai and Lin

2008, Eryilmaz and Srikant 2012, Maguluri and Srikant 2016), including by Shi et al. (2015)

who study an open one-hop network version of our setting. In contrast, we find that MaxWeight

is suboptimal in our closed network setting.

Large deviations in queueing systems. There is a large literature on characterizing the

probability of building up long queues in open queueing networks, including controlled (see,

e.g., Stolyar and Ramanan 2001, Stolyar 2003) and uncontrolled (see, e.g., Majewski and Ra-

manan 2008, Blanchet 2013) networks. The work closest to ours is that of Venkataramanan and

Lin (2013), who established the relationship between Lyapunov functions and buffer overflow

probability for open queueing networks. The key difficulty in extending the Lyapunov approach

to closed queueing networks is the lack of a natural reference state where the Lyapunov function

equals to 0 (in an open queueing network the reference state is simply 0). It turns out that as

we optimize the MaxWeight parameters we are also solving for the best reference state.

Shared transportation systems. Ozkan and Ward (2016) studied revenue-maximizing state-

independent assignment control by solving a minimum cost flow problem in the fluid limit.
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Braverman et al. (2016) modeled the system by a closed queueing network and derived the

optimal static routing policy that sends empty vehicles to under-supplied locations. Banerjee

et al. (2016) adopted the Gordon-Newell closed queueing network model and considered static

pricing/repositioning/matching policies that maximizes throughput, welfare or revenue. In con-

trast to our work, which studies state-dependent control, these works consider static control

that completely relies on system parameters. In terms of convergence rate to the fluid-based

solution, Ozkan and Ward (2016) did not study the convergence rate of their policy, Braverman

et al. (2016) observed from simulation an O(1/
√
K) convergence rate as the number of supply

units in the closed system K goes to infinity,2 while Banerjee et al. (2016) showed finite system

bounds with an O(1/K) convergence rate as K → ∞ in the absence of service times and an

O(1/
√
K) convergence rate with service times. Under the CRP condition, we obtain exponential

decay in K of the demand drop probability, and further obtain the optimal exponent.

Other recent works study pricing aspects of ride-hailing; see, e.g., Adelman (2007), Bimpikis

et al. (2016), Waserhole and Jost (2016), Cachon et al. (2017), Hall et al. (2015).

Online stochastic bipartite matching. There is a related stream of research on online

stochastic bipartite matching, see, e.g., Caldentey et al. (2009), Adan and Weiss (2012), Buỳić

and Meyn (2015), Mairesse and Moyal (2016). Different types of supplies and demands arrive

over time, and the system manager matches supplies with demands of compatible types using a

specific matching policy, and then discharges the matched pairs from the system. Our work is

different in that we study a closed system where supply units never enter or leave the system.

Moreover, this literature focuses on the stability and other properties under a given policy

instead of looking for the optimal control (except Buỳić and Meyn 2015).

Other related work. Jordan and Graves (1995), Désir et al. (2016), Shi et al. (2015) and

others study how process flexibility can facilitate improved performance, analogous to our use

of dispatch control to improve demand fulfillment. Along similar lines, network revenue man-

agement is a classical dynamic resource allocation problem, see, e.g., Gallego and Van Ryzin

(1994), Talluri and Van Ryzin (2006), and recent works, e.g., Jasin and Kumar (2012), Bumpen-

2In the setting of Braverman et al. (2016), the drop probability can remain positive even as K grows, in contrast
with our setting where the drop probability can always be sent to 0 because of our CRP condition under which
the flows in the network can potentially be balanced. The comparison of convergence rates is most meaningful if
we restrict attention to instances in their setting where the drop probability goes to zero as K grows.
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santi and Wang (2018). Different types of demands arrive over time, and a centralized decision

is made at each arrival. Again, each of these settings is “open” in that each service token or

supply unit can be used only once, in contrast to our setting.

1.3 Organization of the paper

The remainder of our paper is organized as follows. In Section 2 we introduce the basic notation

and formally describe our model together with the performance metric. In Section 3 we introduce

the family of Scaled MaxWeight policies. In Section 4 we present our main theoretical result,

i.e., that there is an exponent optimal SMW policy for any set of primitives. In Section 5 we

prove the exponent optimality of SMW policies. In Section 6 we describe our simulation study

of SMW policies using NYC yellow cab data. We conclude in Section 7.

2 Model and Preliminaries

2.1 Notation

We use ei to denote the i-th unit vector, and 1 the all-1 vector, both of which are n-dimensional.

For index set A ∈ {1, · · · , n}, define 1A ,
∑

i∈A ei. For a set Ω in Euclidean space Rn, denote

its relative interior by relint(Ω). We use B(x, ε) to denote a ball centered at x ∈ Rn with radius

ε > 0. For event C, we define the indicator random variable I{C} to equal 1 when C is true,

else 0. All vectors are column vectors if not specified otherwise.

2.2 Basic Setting

Underlying Model and Simplifications: We model the shared transportation system as a

finite-state Markov process, comprising of a fixed number of identical supply units circulating

among n nodes (i.e., a given partition of a city into neighborhoods). Customers (i.e., prospective

passengers) arrive at each node j with desired destination k according to independent Poisson

processes with rate φ̂jk. To serve an arriving customer, the platform must immediately assign

a supply unit from a “neighboring” node of j (i.e., one among a set of adjacent neighborhoods,

defined formally below), and subsequently, after serving the customer, the supply unit becomes
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available at the destination node k. If, however, the customer is not assigned a supply unit, for

example because none is available at any neighboring nodes of j, then we experience a demand

drop, wherein the customer leaves the system without being served. Customers do not wait.

The aim of the platform is to assign supplies so as to minimize the fraction of demand dropped.

Intuitively, to achieve this objective, the platform should ensure that it maintains adequate

supply in (or near) all neighborhoods, i.e., it needs to manage the spatial distribution of supply.

To study the design of assignment rules in the above model, we make some simplifications.

First, we assume that pickup and service are instantaneous. This allows us to reformulate

the above model as a discrete-time Markov chain (the so-called jump chain of the continuous-

time process), where in each time slot t ∈ N, with probability proportional to φ̂jk, exactly one

customer arrives to the system at node j with desired destination k. The customer is then served

by an assigned supply unit from a neighboring station of j, which then becomes available at

node k at the beginning of time slot t+ 1. This simplification removes the infinite dimensional

state required for tracking the positions of all in-transit supply units, while still retaining the

complex supply externalities between stations, which is the hallmark of ride-hailing systems.

Unfortunately, however, even after this simplification, the setting is still not amenable to a

performance characterization of complex assignment policies. This motivates us to study the

performance of assignment policies as the number of supply units K grow to infinity, while

fixing all other parameters. Intuitively, K is interpreted as the number of free cars in the system

(typically only a small fraction of the total number of cars in a real system; see Section 6).

Finally, we assume that supply units do not relocate except to pick up or drop off a customer.

Formal System Definition: We define φ ∈ Rn×n to be the arrival rate matrix with a row

for each origin and a column for each destination, normalized3 such that 1Tφ1 = 1. We denote

the k-th column (i.e., the arrival rates at different origins of customers with destination k) as

φ(k), and the transpose of the j′-th row of the arrival matrix (i.e., the arrival rates of customers

with origin j′ and different destination nodes) as φj′ . Thus, the probability a customer arrives

at node j′ is 1Tφj′ , and, assuming all customers are matched, the rate of supply units arriving

3This can always be achieved by appropriately re-scaling the arrival rates {φ̂jk}, which produces an equivalent
setting since pickups and dropoffs are instantaneous.
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Figure 1: The bipartite (assignment) compatibility graph: On the left are supply nodes i ∈ VS ,
and on the right are demand nodes j′ ∈ VD. The edges entering a demand node j′ encode
compatible (i.e., nearby) nodes that can supply node j′. Customers arrive to j′ with different
destinations at rates φj′ ; the total probability of a customer arrival at j′ at each time is thus
1Tφj′ . Similarly, assuming no demand is dropped, the total probability a supply unit arrives at
i at each time is 1Tφ(i).

at node k is 1Tφ(k).

As mentioned above, we consider a sequence of systems parameterized by the number of

supplies K. For the K-th system, its state at any time t ∈ N is given by XK [t], a vector that

tracks the number of supplies at each location in time slot t. The state space of the K-th

system is thus given by ΩK , {x ∈ Rn|1Tx = K}∩Nn. Note that the normalized state 1
KXK [t]

lies in the n-probability simplex Ω = {x ∈ Rn|x ≥ 0,1Tx = 1}. Henceforth, we drop explicit

dependence on t when it is clear from the context.

2.3 Assignment Policies and System Dynamics

The assignment problem in ride hailing is challenging because most arriving customers have a

maximum tolerance, say 7 minutes, for the pickup time or ETA (i.e., expected time of arrival) of

a matched supply unit. Thus when a customer arrives at a node j, then any supply unit located

at a node which is within 7 minutes of j is a feasible match, while other vehicles which are

further away are infeasible. Motivated by this, we use a compatibility graph to capture (binary)

assignment compatibility between nodes in a stylized manner.

Compatibility Graph: For pedagogical reasons, we move to a setup where we distinguish

formally between demand locations VD where customers arrive and supply locations VS where

supply units wait (and where customers are dropped off). We add a prime symbol to the indices
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of nodes in VD to distinguish between the two. We encode the compatibility graph as a bipartite

graph G(VS ∪ VD, E), wherein each station i ∈ V is replicated as a supply node i ∈ VS and a

demand node i′ ∈ VD. (We exclude demand locations {i′ : 1Tφi′ = 0} with zero demand arrival

rate from VD.) An edge (i, j′) ∈ E represents a compatible pair of supply and demand nodes,

i.e., supplies stationed at i can serve demand arriving at j′. See Figure 1 for an illustration.

We denote the neighborhood of a supply node i ∈ VS (resp. demand node j′ ∈ VD) in G as

∂(i) ⊆ VD (resp. ∂(j′) ⊆ VS); thus, for a supply node i, its compatible demand nodes are given

by ∂(i) = {j′ ∈ VD|(i, j′) ∈ E}, and similarly for each demand node. Moreover, for any set of

supply nodes A ⊆ VS , we also use ∂(A) to denote its demand neighborhood (and vice versa).

We use the term network to refer to a given set of primitives: an assignment compatibility

graph G and demand arrival rates φ. We make a mild assumption on arrival rates φ.

Assumption 1. (Non-triviality). There exists an origin-destination pair j′ ∈ VD and k ∈ VS

such that k /∈ ∂(j′) and φj′k > 0, i.e., the destination k for these customers is not a supply

location compatible with their origin j′.

Assumption 1 is made to ensure that the assignment control problem at hand is non-trivial.

If it is violated, and if the system starts with at least one supply unit in each location, then

we can “reserve” a supply unit for each demand origin location j′ ∈ VD, and each such car will

never leave the corresponding neighborhood ∂(j′), ensuring that no demand is ever dropped.

Assignment policies: Given the above setting, the problem we want to study is how to design

assignment policies which minimize the probability of dropping demand. For fixed K, this

problem can be formulated as an average cost Markov decision process on a finite state space,

and is thus known to admit a stationary optimal policy (i.e., where the assignment rule at time

t only depends on the system state XK [t]; see Proposition 5.1.3 in Bertsekas 1995). Let UK be

the set of stationary policies for the K-th system.

For each t ∈ N, j′ ∈ VD, k ∈ VS , an assignment policy U ∈ U consists of a sequence of

mappings
(
UK ∈ UK

)∞
K=1

, which map the current queue-length vector to UK [XK [t]](j′, k) ∈

∂(j′) ∪ {∅}. Here UK [XK [t]](j′, k) = i means given the current state XK [t], we assign a supply

unit from i ∈ ∂(j′) to fulfill demand at j′ that goes to k, and UK [XK [t]](j′, k) = ∅ means that
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the platform does not assign supplies to type (j′, k) demands and hence any such demand is

dropped. When XK
i [t] = 0 for all i ∈ ∂(j′), this forces UK [XK [t]](j′, k) = ∅ since there is no

supply at locations compatible to j′. For simplicity of notation, we refer to the policies by U

instead of UK .

System Evolution: We can now formally define the evolution of the Markov chain we want

to study. At the beginning of time slot t, the state of the system is XK [t − 1]; note that

this incorporates the state change due to serving the demand in time slot t − 1. Now suppose

the platform uses an assignment policy U , and in time slot t, a customer arrives at origin

node o[t] with destination d[t] (sampled with joint distribution as specified by arrival matrix

φ). If UK [XK [t]](o[t], d[t]) 6= ∅, then a supply unit from UK [XK [t]](o[t], d[t]) will pick up the

demand and relocate to d[t] instantly. Let S[t] , UK [XK [t]](o[t], d[t]) be the chosen supply node

(potentially ∅). Formally, we have

XK [t] ,


XK [t− 1]− eS[t] + ed[t] if S[t] ∈ VS ,

XK [t− 1] if S[t] = ∅ .

2.4 Performance Measure

The platform’s goal is to find an assignment policy that drops as few demands as possible in

steady state. A natural performance measure is the long-run average demand-drop probability.

Formally, for U ∈ U we define

PK,Uo , min
XK,U [0]∈ΩK

E

 lim
T→∞

1

T

T∑
t=0

I
{
UK [XK,U [t]](o[t], d[t]) = ∅

} , (1)

PK,Up , max
XK,U [0]∈ΩK

E

 lim
T→∞

1

T

T∑
t=0

I
{
UK [XK,U [t]](o[t], d[t]) = ∅

} . (2)

Here (1) is an optimistic (subscript “o” for optimistic) performance measure (which underes-

timates demand-drop probability), whereas (2) is a pessimistic (subscript “p” for pessimistic)

performance measure (which overestimates demand-drop probability). Since U ∈ U is a sta-

tionary policy, the limits in (1) and (2) exist. Note that PK,Uo ≤ PK,Up . We will establish the

exponent optimality of our policy by showing that its pessimistic measure decays as fast with
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K as any policy’s optimistic measure can possibly decay.

The exact values of (1) and (2) for fixed K are challenging to study. To this end, the main

performance measures of interest in this work are the decay rates of PK,Uo and PK,Up as K →∞:

γo(U) , − lim inf
K→∞

1

K
logPK,Uo , (3)

γp(U) , − lim sup
K→∞

1

K
logPK,Up . (4)

For brevity, we henceforth refer to these as the demand-drop exponents. Note that γo(U) ≥

γp(U). The definition (3) uses lim inf so that we can state a strong converse result by upper

bounding supU∈U γo(U), since no policy can achieve a larger demand-drop exponent. Similarly,

the definition (4) uses lim sup so that we can state a strong achievability result (for our proposed

policies the limit will exist; when the limit exists we write γ(U) , γo(U) = γp(U)).

2.5 Sample Path Large Deviation Principle

Our result relies on classical large deviation theory, which we briefly introduce in this subsection.

For each fixed K ∈ N+ and T ∈ (0,∞), define a scaled sample path of accumulated demand

arrivals ĀK [·] ∈ (L∞[0, T ])n
2

as follows. For t = 1/K, 2/K, . . . , dKT e/K, let

ĀK
j′k[t] ,

1

K
AK
j′k[Kt] , for AK

j′k[t
′] ,

t′∑
τ=1

I{o[τ ] = j′, d[τ ] = k} . (5)

ĀK [t] is defined by linear interpolation for other t’s. Let µK be the law of ĀK [·] in (L∞[0, T ])n
2
.

For all f ∈ Rn×n, let

Λ∗(f) ,


DKL(f ||φ) if f ≥ 0,1T f1 = 1 ,

∞ otherwise .
(6)

Here DKL(f ||φ) is Kullback-Leibler divergence between f and φ defined as:

DKL(f ||φ) =
∑
j′∈VD

∑
k∈VS

fj′k log
fj′k
φj′k

.

For any set Γ, let Γ̄ be its closure, and Γo be its interior. Below is the sample path large deviation

principle (a.k.a. Mogulskii’s Theorem, see Dembo and Zeitouni 1998):
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Fact 1. For measures {µK} defined above, and any arbitrary measurable set Γ ⊆ (L∞[0, T ])n
2
,

we have

− inf
Ā∈Γo

IT (Ā) ≤ lim inf
K→∞

1

K
logµK(Γ) ≤ lim sup

K→∞

1

K
logµK(Γ) ≤ − inf

Ā∈Γ̄
IT (Ā) , (7)

where the rate function4 is:

IT (Ā) ,


∫ T

0 Λ∗
(
d
dtĀ(t)

)
dt if Ā(·) ∈ AC[0, T ], Ā(0) = 0 ,

∞ otherwise .
(8)

Here AC[0, T ] is the space of absolutely continuous functions on [0, T ].

Informally, this fact says the following. (Suppose the leftmost term and rightmost term in (7)

are equal.) The probability exponent (with respect to K) for the unlikely event Γ is equal to the

exponent for the most likely fluid sample path (a limit of scaled sample paths, see Section 5.1) of

demand Ā such that the event occurs. The exponent for Ā is the time integral of the exponent

for its time derivative.

In our case, Γ is the demand-drop event. We first derive a converse bound on the exponent by

constructing a limiting sample path that always leads to demand drop regardless of the policy.

Then we analyze the performance of our proposed SMW policies by looking at the limiting

sample paths that lead to demand drop under those policies.

3 Scaled MaxWeight Policies

We now introduce the family of scaled MaxWeight (SMW) policies. The traditional MaxWeight

policy (hereafter referred to as vanilla MaxWeight) is a dynamic scheduling rule that allocates

the service capacity to the queue(s) with largest “weight” (where weight can be any relevant

parameter such as queue-length, sum of queue-lengths, head-of-the-line waiting time, etc.). In

our setting, supply units are like jobs and demand is like service tokens, and vanilla MaxWeight

would correspond to assigning from the compatible location with most supply units (with ap-

propriate tie-breaking rules).

The popularity of MaxWeight scheduling stems from the fact that it is known to be optimal

4Since absolutely continuous functions are differentiable almost everywhere, the rate function is well-defined.
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for different metrics in various problem settings (e.g., refer Stolyar 2003, 2004, Shi et al. 2015,

Maguluri and Srikant 2016). However, in our setting, vanilla MaxWeight is suboptimal (and

further, we will show that it does not achieve the optimal exponent). The suboptimality of

vanilla MaxWeight can be seen from the following simple example.

Example 1. Consider a closed network with two nodes {1, 2}, compatibility graph G = (VS ∪

VD, E) = ({1, 2}∪{1′, 2′}, {11′, 12′, 22′}) and demand arrival rates φ1′1 = 3/8, φ1′2 = 1/8, φ2′1 =

φ2′2 = 1/4, as shown in Figure 2. Suppose at time t we have X1[t] > X2[t] and a demand arrives

at node 2′.

Under the vanilla MaxWeight policy, we would assign from node 1 since there are more supply

units there. However, we claim that vanilla MaxWeight is dominated (in terms of minimizing

demand dropping probability) by another policy where one always assigns from node 2 to serve

demand at 2′ as long as X2 > 0. We call this policy the priority policy. To see this intuitively,

note that under both policies demand at node 2′ will never be dropped, hence demand dropping

happens if and only if supply at node 1 is depleted. The priority policy tries to keep all the servers

at node 1 while vanilla MaxWeight tries to equal the number of servers on both nodes, hence

the priority policy drops less demand. In fact, as we will show formally later, the exponent

of demand dropping under the priority policy is twice as large as the exponent under vanilla

MaxWeight. (Here the priority policy is optimal, and this is true for any φ. In general, the

optimal policy depends on both G and φ, and vanilla MaxWeight is generically suboptimal.)

𝑋2(𝑡)

𝑋1(𝑡)

Demand

𝟏

𝟐

𝟏’

𝟐’

Supply

𝝓𝟏′𝟏 = 𝟑/𝟖

𝝓𝟏′𝟐 = 𝟏/𝟖

𝝓𝟐′𝟏 = 𝟏/𝟒

𝝓𝟐′𝟐 = 𝟏/𝟒

Figure 2: An example of the sub-optimality of vanilla MaxWeight policy.

To deal with this issue, we generalize vanilla MaxWeight by attaching a positive scaling

parameter αi to each queue i ∈ VS , and assign from the compatible queue with largest scaled

queue length Xi/αi. Without loss of generality, we normalize α s.t. 1Tα = 1, or equivalently,
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α ∈ relint(Ω).

We call this family of policies Scaled MaxWeight ( SMW) policies, and use SMW(α) to denote

SMW with parameter α. Going back to Example 1, we can approximate the priority policy by

attaching a much larger scaling parameter at node 1 than at node 2.

The formal definition of SMW is as follows.

Definition 1 (Scaled MaxWeight SMW(α)). Given system state X[t − 1] at the start of t-th

period and for demand arriving at o[t], SMW(α) assigns from

argmaxi∈∂(o[t])

Xi[t− 1]

αi

if maxi∈∂(o[t])
Xi[t−1]
αi

> 0; otherwise the demand is dropped. If there are ties when determining

the argmax, assign from the location with highest index.

Remark 1. Since CRP holds, nearly all demands are fulfilled as K → ∞ regardless of their

destinations. Since the destination cannot be controlled, it turns out that the (asymptotic) per-

formance of SMW policies is not hurt by the fact that they ignore the customers’ destinations.

As may be expected, SMW policies tend to equalize the scaled queue lengths if CRP holds.

The following fact is formalized in Section 5, en route to proving our main result.

Remark 2 (Resting point of state under SMW(α)). If Assumption 2 below holds, under

SMW(α) policy the normalized system state XK/K in steady state concentrates as K → ∞

at α, where all the scaled queue lengths are equal to 1.

4 Main Result

In this section we present our main result, namely, that for any network such that CRP holds,

there exists an α such that SMW(α) is exponent optimal. Along the way we establish that all

SMW policies yield exponential decay of demand dropping. In contrast, we show that no state

independent policy can produce exponential decay (Section 4.1).

Complete Resource Pooling Condition. The following is the main assumption of this

paper.
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Assumption 2. We assume that for any J ( VD where J 6= ∅,

∑
i∈∂(J)

1Tφ(i) >
∑
j′∈J

1Tφj′ . (9)

The intuition behind this assumption is simple: it assumes the system is “balanceable” in

that for each subset J ( VD of demand locations we have enough supply at neighboring locations

to meet the demand. Assumption 2 is equivalent to a strict version of the condition in Hall’s

marriage theorem. It is also closely related to the Complete Resource Pooling (CRP) condition

in queueing (Harrison and López 1999, Stolyar 2004, Ata and Kumar 2005, Gurvich and Whitt

2009). This assumption marks the limit of assignment policies — no assignment policy can

achieve exponentially decaying demand drop probability when Assumption 2 is violated.

Proposition 1. For any G and φ’s such that Assumption 2 is violated, it holds that for any

policy U , the demand dropping probability does not decay exponentially,5 i.e., γo(U) = γp(U) = 0

where γo(U) and γp(U) are defined in (3) and (4).

In other words, if Assumption 2 is violated, this means the system has significant spatial

imbalance of demand and demand dropping is unavoidable (unless stronger forms of control like

pricing or repositioning are deployed to restore spatial balance). The proof of Proposition 1 is

in Appendix A.

Rate Optimality of Scaled MaxWeight. In the fluid limit, it is easy to find an assignment

rule such that no demand is dropped (see, e.g., Banerjee et al. 2016). Our goal here is to approach

zero demand dropping as fast as possible as the number of supply units K grows. Define

J ,

J ( VD :
∑
j′∈J

∑
k/∈∂(J)

φj′k > 0

 . (10)

We have J 6= ∅ by Assumption 1. The following is our main result.

Theorem 1 (Main Result). For any network (G,φ) satisfying Assumptions 1 and 2, we have:

1. Achievability: For any α ∈ relint(Ω), SMW(α) achieves exponential decay of the demand

5In fact, if the inequality (9) in Assumption 2 is strictly reversed for some J ( VD, then we have a demand
dropping probability which is at least ε > 0 for all K, where ε =

∑
j′∈J 1

Tφj′ −
∑
i∈∂(J) 1

Tφ(i).
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dropping probability with exponent 6,7

γ(α) = min
J∈J

BJ log

(
λJ
µJ

)
> 0 , (11)

where BJ , 1T
∂(J)α , λJ ,

∑
j′ /∈J

∑
k∈∂(J)

φj′k , and µJ ,
∑
j′∈J

∑
k/∈∂(J)

φj′k .

2. Converse: Under any policy U , it must be that

γp(U) ≤ γo(U) ≤ γ∗ , where γ∗ = sup
α∈relint(Ω)

γ(α) . (12)

Thus, there is an SMW policy that achieves an exponent arbitrarily close to the optimal one.

We will prove Theorem 1 in Section 5. The first part of the theorem states that for any SMW

policy with α in the relative interior of Ω, the policy achieves an explicitly specified positive

demand drop exponent γ(α), i.e., the demand dropping probability decays as e−(γ(α)−o(1))K as

K →∞. The second part of the theorem provides a universal upper bound γ∗ on the exponent

that any policy can achieve, i.e., for any assignment policy U , the demand dropping probability

is at least e−(γ∗+o(1))K . Crucially, γ∗ is identical to the supremum over α of γ(α). In other words,

there is an (almost) exponent optimal SMW policy, and moreover, the scaling parameters for

this policy can be obtained as the solution to the explicit problem: maximizeα∈relint(Ω)γ(α).

We note that this result is qualitatively different from the numerous results showing optimal-

ity of (vanilla) maximum weight matching in various open queuing network settings. Here, our

objective is a natural objective that is symmetric in all the queues. Our result says that there

is an optimal scaled maximum weight policy, that is not symmetric; rather, it is asymmetric via

specific scaling factors that optimally account for the primitives of the network.

The following remark provides some intuition regarding the expression for γ(α).

Remark 3 (Intuition for γ(α)). Consider the expression for γ(α) in (11). It is a minimum of

a “robustness” term for each subset J ∈ J of demand locations. For subset J , the robustness of

SMW(α)’s ability to serve demand arising in J is the product of two terms (see Figure 3 for an

6We show that for SMW policies, the lim inf in (3) and lim sup in (4) are equal, i.e., γo(α) = γp(α). (We use
α to represent the policy SMW(α) in the argument of the γs.)

7Note that the argument of the logarithm has a strictly larger numerator than denominator for every J ( VD
since Assumption 2 holds, implying that γ(α) is the minimum of finitely many positive numbers, and hence is
positive.
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illustration of the quantities involved):

• Robustness arising from α: At the resting point α (see Remark 2) of SMW(α), the supply at

neighboring locations is BJ = 1T∂(J)α, and the larger that is, the more unlikely it is that the

subset will be deprived of supply.

• Robustness arising from excess of supply over demand: The logarithmic term log(λJ/µJ)

captures how vulnerable that subset is to being drained of supply. Observe that λJ is the

maximum average rate at which supply can come in to ∂(J) from VD\J , whereas µJ is the

minimum average rate at which supply goes from J to VS\∂(J) if all demand in J is served

(even if demand in VD\J is served from other locations). The larger the ratio, the more

oversupplied and hence robust J is.

Supply Demand

𝝀𝑱
𝝁𝑱

𝑱
𝝏(𝑱)

𝑩𝑱

𝟎

𝝀𝑱

𝝁𝑱

Figure 3: An illustration of the terms BJ , λJ , and µJ in Theorem 1.

Remarkably, the expression for robustness of subset J is as large (i.e., as good) as the demand

drop exponent for J would be with starting state α under a “protect-J” policy which exclusively

protects J at the expense of all other locations. (Similar to standard buffer overflow probability

calculations, the likelihood of the supply at ∂(J) being depleted by KBJ units under a protect-J

policy is Θ((µJ/λJ)−KBJ ) = Θ(exp(−KBJ log(λJ/µJ))). We then set BJ to the starting scaled

supply at ∂(J), i.e., BJ = 1T∂(J)α, to establish the claim.) Thus, Theorem 1 part 1 says that

given the resting state α, SMW(α) achieves an exponent such that it suffers no loss from the

need to protecting multiple J ’s simultaneously. It is then intuitive that the globally optimal

exponent can be achieved via an SMW policy by choosing α suitably.

Next, we discuss the optimal choice of the resting state α based on Theorem 1.

Remark 4 (Intuition for optimal α). Informally, consider the special case of a “heavy traffic”
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type setting where there is just one subset J which has a vanishing logarithmic term (because it

is only very slightly oversupplied, with λJ only slightly more than µJ), whereas each other subset

of VD has a logarithmic term that converges to some positive number. Then the optimal choice

of α will satisfy BJ = 1T∂(J)α → 1, i.e., all but a fraction of the supply will be at locations that

can serve J in the resting state. The intuition is that the random walk for the supply at ∂(J) has

only slightly positive drift even if the assignment rule protects it, and hence it is optimal to keep

the total supply at these locations at a high resting point, to minimize the likelihood of depletion.

We think an optimal policy for such a special case is itself interesting; Theorem 1 goes much

beyond to solve the general n-dimensional problem considering all subsets simultaneously. The

optimal α protects supply that can serve structurally undersupplied locations.

We establish our result via a novel Lyapunov analysis for a closed queueing network. A key

technical challenge we face in our closed queueing network setting is that it is a priori unclear

what the “best” state is for the system to be in. This is in contrast to open queueing network

settings in which the best state is typically the one in which all queues are empty, and the

Lyapunov functions considered typically achieve their minimum at this state. We get around

this issue via an innovative approach where we define a policy-specific Lyapunov function that

achieves its minimum at the resting point of the SMW policy we are analyzing, and use this

Lyapunov function to characterize its exponent γ(α). Moreover, given the optimal choice of α,

our tailored Lyapunov function corresponding to this choice of α helps us establish our converse

result. Our analysis is described in Section 5.

4.1 No State-Independent Policy Achieves Exponential Decay

To demonstrate the value of state-dependent control, we show that exponential decay of demand-

drop probability is impossible under state-independent policies as studied in Ozkan and Ward

(2016) and Banerjee et al. (2016). We first formally define state-independent policies.

Definition 2. We call a dispatch policy π state independent if it maps each j′ ∈ VD, k ∈ VS,

t ∈ N to a distribution uj′k[t] over ∂(j′)∪{∅}; for a demand with origin j′ and destination k that

arrives at time t, the platform dispatches from i drawn independently from distribution uj′k[t],
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ignoring the current state X̄[t− 1] and the history. If i = ∅ or there is no supply at the dispatch

location, the demand is dropped.

Proposition 2. Under any state-independent dispatch policy π, we have: PK,π = Ω
(

1
K2

)
. In

particular, γo(π) = 0, where γo(·) is the optimistic exponent defined in (3).

The proof of Proposition 2 is in Appendix A.

5 Analysis of Scaled MaxWeight Policies

In this section, we prove the exponent optimality of SMW policies and derive explicitly the

optimal exponent and most likely sample paths leading to demand drop. In Section 5.1, we

follow the standard approach and characterize the system behavior in the fluid scale through

fluid sample paths and fluid limits. In Section 5.2 we define a novel family of Lyapunov functions.

In Section 5.3 we follow the approach in Venkataramanan and Lin (2013) and show that if the

Lyapunov function is scale-invariant and sub-additive, a policy that performs steepest descent

on this Lyapunov function is exponent optimal. In Section 5.4 we prove that SMW policies

perform steepest descent on the policy-dependent Lyapunov functions and are hence exponent

optimal. We also explicitly characterize the optimal exponent, the most likely sample paths

leading to demand dropping, and the critical subsets.

5.1 Fluid Sample Paths and Fluid Limits

For any stationary dispatch policy U ∈ U defined in Section 2, we define the scaled demand and

queue-length sample paths (extending (5) to the latter) by

ĀK
j′k[t] ,

1

K
AK
j′k[Kt] , X̄K,U

i [t] ,
1

K
XK,U
i [Kt] , (13)

for t = 0, 1/K, 2/K, . . .. For other t ≥ 0, we define ĀK
j′k[t] and X̄K,U

i [t] by linear interpolation.

Note that for a fixed policy (with specified tie-breaking rules), each given demand sample path

and initial state uniquely determines the state sample path. We denote this correspondence by

ΨK,U : (ĀK [·], X̄K,U [0]) 7→ X̄K,U [·].
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To obtain a large deviation result, we need to look at the demand process and the queue-

length process in the fluid scaling, as captured in (13). We take the standard approach of fluid

sample paths (FSP) (see Stolyar 2003, Venkataramanan and Lin 2013).

Definition 3 (Fluid sample paths). We call a pair (Ā[·], X̄U [·]) a fluid sample path (under

stationary policy U) if there exists a sequence ( ĀK [·], X̄K,U [0],ΨK,U (ĀK [·], X̄K,U [0]) ) where

ĀK [·] are scaled demand sample paths and X̄K,U [0] ∈ Ω, such that it has a subsequence which

converges to (Ā[·], X̄U [0], X̄U [·]) uniformly on [0, T ].

In short, FSPs include both typical and atypical sample paths. Recall Fact 1, which gives

the likelihood for an unlikely event to occur based on the most likely fluid sample path that

causes the event. Accordingly, the large deviations analysis in Section 5.4 will identify the most

likely FSP that leads to demand dropping.

Fluid limits are fluid sample paths that characterize typical system behavior, as they are the

formal limits in the Functional Law of Large Numbers (Dai 1995).

Definition 4 (Fluid limits). We call a pair (Ā[·], X̄U [·]) a fluid limit (under stationary policy

U) if (i) the pair (Ā[·], X̄U [·]) is a fluid sample path; (ii) we have Āj′k[t] = φj′kt, for all

j′ ∈ VD, k ∈ VS and all t ≥ 0.

5.2 A Family of Lyapunov Functions

Lyapunov functions are a useful tool for analyzing complex stochastic systems. In open queuing

networks the ideal state is one in which all queues are empty, and correspondingly, the sum of

squared queue lengths Lyapunov function is a popular choice (Tassiulas and Ephremides 1992,

Eryilmaz and Srikant 2012, etc.); others have also used piecewise linear Lyapunov functions

(Bertsimas et al. 2001, Venkataramanan and Lin 2013, etc.). Since our setting is a closed queue-

ing network, we instead need to define a novel family of piecewise linear Lyapunov functions,

parameterized by the desired state α, such that the function achieves its minimum at α.

Definition 5. For each α ∈ relint(Ω), define Lyapunov function Lα(x) : Ω→ [0, 1] as Lα(x) ,

1−mini
xi
αi
.
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The intuition behind our definition is as follows. The Lyapunov function value is jointly

determined by the desired state α of the system (under some policy) and the objective, and can

be interpreted as the energy of the system at each state. The desired state should have minimum

energy, and the most undesirable states should have maximum energy. In our case the boundary

∂Ω of Ω is most undesirable since demand dropping only happens there, and correspondingly,

Lα(x) = 1 for x ∈ ∂Ω, whereas Lα(α) = 0 as we want. In general, for x ∈ Ω, Lα(x) is one minus

the smallest scaled queue length, given scaling factors α. See Figure 4 for an illustration.

These functions also have the following properties which are key in the analysis:

Lemma 1 (Key properties of Lα(·)). For Lα(·) with α ∈ relint(Ω), we have:

1. Scale-invariance (about α). Lα(α + c∆x) = cLα(α + ∆x) for any c > 0 and ∆x ∈ Rn such

that 1T∆x = 0 and α+ ∆x ∈ Ω, α+ c∆x ∈ Ω.

2. Sub-additivity (about α). Lα(α+∆x+∆x′) ≤ Lα(α+∆x)+Lα(α+∆x′) for any ∆x,∆x′ ∈ Rn

such that 1T∆x = 1T∆x′ = 0 and α+ ∆x + ∆x′, α+ ∆x, α+ ∆x′ ∈ Ω.

The proof of Lemma 1 is in Appendix B.

𝜶

Figure 4: Sub-level sets of Lα when |VS | = |VD| = 3. State space Ω is the probability simplex
in R3, and its boundary coincides with {x : Lα(x) = 1,1Tx = 1}.

5.3 Sufficient Conditions for Exponent Optimality

In this section, we provide a converse bound on the exponent for any stationary policy U ∈ U ,

and derive sufficient conditions for a policy to achieve this bound.

We use the intuition from differential games (see, e.g., Atar et al. 2003) to informally illustrate

the interplay between the control and the most likely sample path leading to demand drop.

Consider a zero-sum game between the adversary (nature) who chooses the fluid-scale demand
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arrival process Ā[·], and the controller who decides the assignment rule U , where the adversary

minimizes the large-deviation “cost” of a demand sample path that leads to demand drop.

Specifically, the adversary’s cost for a demand sample path Ā[·] is the rate function defined in

(8), i.e., the exponent. The converse bound we will obtain next will correspond to the adversary

playing first and choosing the minimum cost time-invariant demand sample path that ensures

demand drop. The following pleasant surprises will emerge subsequently: (i) we will find an

equilibrium in pure strategies to the aforementioned zero-sum game, (ii) the converse will turn

out to be tight, i.e., the adversary’s equilibrium demand sample path will be time invariant,

(iii) the controller’s equilibrium assignment strategy will be an SMW policy with specific α (this

simple policy will satisfy the sufficient conditions for achievability we will state immediately

after our converse, in Proposition 3).

We provide a policy-independent upper bound of the exponent that only depends on the

starting state. First, define

Xf ,

∆x

∣∣∣∣∣∣∣∣
∆xi =

∑
j′∈VD fj′i −

∑
j′∈∂(i) dij′

(∑
k∈VS fj′k

)
, ∀i ∈ VS∑

i∈∂(j′) dij′ = 1, dij′ ≥ 0, ∀i ∈ VS , j′ ∈ VD

 , (14)

which is the attainable change of (normalized) state in unit time, given that the average demand

arrival rate during this period is f and assuming no demand is dropped. Then given starting

state α, the attainable states at time T belong to α + TXf , if no demand is dropped during

[0, T ] and the average demand arrival rate is f . We obtain an upper bound on the demand-drop

exponent by considering the most likely f and T such that α+TXf is pushed out of state space

Ω, no matter the assignment rule d used by the controller. Because the true state must lie in

Ω, there must be demand drop during [0, T ].

Lemma 2 (Point-wise converse bounds of exponent). For any stationary policy U ∈ U and any

ε > 0, there exists α ∈ relint(Ω) such that (the subscript “CB” stands for “Converse Bound”)

− lim inf
K→∞

1

K
logPK,Uo ≤ γCB(α) + ε, (15)

where, for Λ∗(·) given by (6), γCB(α) , inf
f :vα(f)>0

Λ∗(f)

vα(f)
, and vα(f) , min

∆x∈Xf

Lα(α+ ∆x) .
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In particular, − lim infK→∞
1
K logPK,Uo ≤ supα∈relint(Ω) γCB(α).

Here vα(f) is the minimum rate of increase of Lα(·) under demand f , no matter the assign-

ment rule d. So, starting at α, the state hits Ω and demand is dropped in time at most 1/vα(f)

under f , implying a demand-drop exponent of at most Λ∗(f)
vα(f) . The upper bound γCB(α) follows

from minimizing over f . Informally, the α in (15) is the most frequently visited (normalized)

“resting” state in steady state under U . The proof of Lemma 2 is in Appendix C.

The following proposition provides sufficient conditions for a policy to achieve the converse

bound exponent γCB(α). The conditions are requirements on the time derivative of Lα(X̄U [t]).

Proposition 3 (Sufficient conditions). Fix α ∈ relint(Ω). Let U ∈ U be a stationary, non-idling

policy. Suppose that for each regular point t, the following hold:

1. (Steepest descent). For any demand fluid sample path Ā[·], we have

d

dt
Lα(X̄U [t]) = inf

U ′∈Uni

{
d

dt
Lα(X̄U ′ [t])

∣∣∣X̄U ′ [t] = X̄U [t]

}
,

for corresponding queue-length sample paths, where Uni is the set of non-idling policies;

2. (Negative drift). There exists η > 0 and ε > 0 such that for all FSPs (Ā[·], X̄U [·]) satisfying

d
dtĀ[t] ∈ B(φ, ε) and X̄[t] 6= α, we have d

dtLα(X̄U [t]) ≤ −η. Here B(φ, ε) is a ball with radius

ε centered on the typical demand arrival rate φ. In words, we require the policy to have

negative Lyapunov drift for near typical demand arrival rate, as long as the current state is

not α. This property forces the state to return to α.

Then we have − lim supK→∞
1
K logPK,Up = − lim infK→∞

1
K logPK,Uo = γCB(α).

The full proof of Proposition 3 is quite technical and is included in Appendix D, but the

key idea is straightforward. Given starting state α, the (i) steepest descent property of U and

(ii) the scale-invariance and sub-additivity of Lα(·), together ensure that the speed at which

Lα(·) increases under U cannot exceed the minimum speed vα(f) in the converse construction

(Lemma 2) for f , d
dtĀ[t]. As a result, the demand drop exponent under U is no larger than

γCB(α). Mathematically,

d

dt
Lα(X̄U [t])

= inf
U ′∈U

{
d

dt
Lα(X̄U ′ [t])

∣∣∣∣ ddtĀ′[t] = f

}
(steepest descent)
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= min
∆x∈Xf

lim
∆t→0

Lα(X̄U [t] + ∆x∆t)− Lα(X̄U [t])

∆t

≤ min
∆x∈Xf

lim
∆t→0

Lα(α+ ∆x∆t)

∆t
(sub-additivity, Lemma 1) (16)

= min
∆x∈Xf

Lα(α+ ∆x) = vα(f) . (scale-invariance, Lemma 1)

Faced with a policy satisfying the above sufficient conditions, the adversary wants to force

equality in (16) by forcing the queue-length sample path X̄U to go radially outward starting at

α. This is why our converse in Lemma 2 based on a time invariant demand arrival process will

turn out to be tight. We will formalize this intuition in Section 5.4 and explicitly characterize

the most likely demand FSP forcing demand dropping.

5.4 Optimality of SMW Policies, Explicit Exponent, and Critical Subsets

In this section, we verify that SMW policies satisfy the sufficient conditions in Proposition 3.

In doing so, we reveal the critical subset structure of the most-likely sample paths for demand

drop and derive the explicit exponent for SMW(α). Proofs for this section are in Appendix E.

Lemma 3 shows that the Lyapunov drift only depends on the shortest scaled queue lengths,

and that SMW(α) successfully minimizes its use of supplies from these queues.

Lemma 3 (SMW(α) causes steepest descent). Let (Ā, X̄U ) be any FSP under any non-idling

policy U on [0, T ], and consider any α ∈ relint(Ω). For a regular t ∈ [0, T ], define:

S1(X̄U [t]) ,

{
k ∈ VS : k ∈ argmin

X̄U
k [t]

αk

}
,

S2

(
X̄U [t],

d

dt
X̄U [t]

)
,

{
k ∈ S1(X̄U [t]) : k ∈ argmin

d

dt

X̄U
k [t]

αk

}
.

All the derivatives are well defined since t is regular. We have

d

dt
Lα(X̄U [t]) = − d

dt

X̄U
k [t]

αk
for any k ∈ S2(X̄U [t]) (17)

≥ − 1

1T
S2
α

 ∑
j′∈VD,k∈S2

d

dt
Āj′k[t]−

∑
j′∈VD:∂(j′)⊆S2,k∈VS

d

dt
Āj′k[t]

 . (18)

Inequality (18) holds with equality under SMW(α), i.e., SMW(α) satisfies the steepest descent

property in Proposition 3.

In Lemma 4, we prove that SMW(α) satisfies the negative drift property. In particular, the
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drift η is related to the Hall’s gap of the network; see Appendix E for details.

Lemma 4 (SMW(α) satisfies negative drift). For any α ∈ relint(Ω), under Assumptions 1 and

2, the policy SMW(α) satisfies the negative drift condition in Proposition 3.

Combining Proposition 3 with Lemmas 1, 3 and 4, we immediately deduce that SMW(α)

achieves the best possible exponent given resting state α.

Corollary 1. For any α ∈ relint(Ω), we have − lim supK→∞
1
K logPK,SMW(α)

p = γCB(α).

We argued in Section 5.3 that the most likely queue-length sample path leading to demand

drop with initial state α should be radial: when the controller chooses an exponent-optimal

policy, the adversary picks a constant arrival rate f such that the sample path of queue lengths

is radial starting at α, and the Lyapunov function increases at a constant rate. From Lemma 3

we see that the rate at which the Lyapunov function increases depends on the (scaled) inflow

and outflow rate of supply in each subset. Since the most likely queue-length sample path is

radial, this sample path should drain the supply of one subset (the critical subset), and that

subset will determine the demand drop exponent. We first obtain the explicit expression of

γCB(α) and the most likely demand FSP forcing demand drop.

Lemma 5. Recall the definitions of J in (10) and BJ , λJ and µJ in (11). For any α ∈ relint(Ω),

we have γCB(α) = γ(α) = minJ∈J BJ log(λJ/µJ). Moreover, the infimum in the definition of

γCB(α) in Lemma 2 is achieved by the following f∗, for any J∗ ∈ argminJ∈JBJ log(λJ/µJ),

f∗j′k ,


φj′kλJ∗/µJ∗ for j′ ∈ J∗, k /∈ ∂(J∗) ,

φj′kµJ∗/λJ∗ for j′ /∈ J∗, k ∈ ∂(J∗) ,

φj′k otherwise .

(19)

Remark 5 (Critical Subset Property). Lemma 5 provides the most likely demand sample path

that leads to demand dropping under any dispatch policy that is exponent optimal, starting at

state8 α. We observe the critical subset property: (Adversary’s strategy) For each starting state

α ∈ relint(Ω), there is (are) corresponding critical subset(s) J∗ ∈ argminJ∈JBJ log(λJ/µJ),

8Remark 5 applies to demand dropped over a (long) finite horizon given starting state α. SMW(α) further
forces the state to return to α (negative drift), so our observations carry over to the steady state as well under
that policy.
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such that the most likely demand sample path causing demand dropping drains a critical subset.

(Controller’s strategy) If the current state x is on the most likely sample path forcing demand

dropping in critical subset J∗ starting at α, an exponent optimal policy (for given α) will maxi-

mally protect J∗ at x. Lemma 3 tells us that SMW(α) is such a policy.

We can now prove the main theorem.

Proof of Theorem 1. Proof of achievability: for α ∈ relint(Ω), by Corollary 1 we know the

pessimistic exponent of SMW(α) is equal to γCB(α), which also implies that the optimistic

exponent is equal to γCB(α) by Lemma 2. By Lemma 5 we have γCB(α) = γ(α), which concludes

the achievability proof.

The last sentence of Lemma 2 contains the converse result.

We conclude with a result that “vanilla” MaxWeight, i.e., SMW with identical scaling factors

α = 1
n1, achieves demand-drop exponent that is no smaller than 1

n of γ∗.

Proposition 4. Suppose Assumption 2 holds, then we have γ
(

1
n1
)
≥ 1

nγ
∗.

6 Numerical Experiments

In this section, we use data from NYC Taxi & Limousine Commission and Google Maps to

simulate SMW-based dispatch policies in an environment that resembles the real-world ride-

hailing system in Manhattan, New York City. Our theoretical model made several simplifying

assumptions (Section 2):

1. Service is instantaneous (i.e., vehicles travel to their destination with no delay).

2. Pickup is instantaneous (i.e., vehicles travel to matched customers with no delay).

3. The objective is system performance (fraction of dropped demand) in steady state.

We relax these assumptions one by one in our numerical experiments. We study three set-

tings: (i) steady state performance with Service times (Section 6.2); (ii) steady state performance

with Service+Pickup times (Section 6.3); and (iii) Transient performance with Service+Pickup

times (Section 6.4). For the second and third settings, we modify SMW policies heuristically

to incorporate pickup times. In each case, we assume a minimal realistic number of free cars
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K by letting the number of cars in the system be only slightly (3% or less) above the “fluid

requirement” (see Appendix F for a formal definition of the fluid requirement) to meet demand.

A highlight of SMW policies is that they are a simple family of policies with a manageable

number of parameters (one per location). We describe how the scaling parameters α can be cho-

sen in a practical setting using simulation-based optimization. Our theoretical results guarantee

that this family of policies contains a member which is exponent optimal in the (huge) space

of all possible policies, so we expect that there is some SMW policy with good performance

(optimistically, near optimal performance). From there, we proceed based on the intuition that

non-zero service times and pickup times do not damage the effectiveness of the SMW family

policies at managing the spatial distribution of supply. Finally, we conjecture that there is an

SMW policy that has exponent optimal transient performance (see Section 7). Accordingly, we

deploy SMW policies in the Transient with Service + Pickup times setting as well.

Summary of findings. Consistently across all three settings, we find that the vanilla

MaxWeight policy, which requires no knowledge of the demand arrival rates, vastly outperforms

static (fluid-based) control, dropping very little demand even with small K (just ∼ 10 free cars

per location, whereas the static policy has a lot more free cars to work with since it drops so much

more demand). Furthermore, in each of the settings, the SMW policy obtained using simulation-

based optimization further significantly outperforms vanilla MaxWeight. Encouragingly, the

simulation-based optimal scaling factors α that we find in the Service time setting are similar

to the theory-based optimal α, indicating robustness of our structural results to travel time.

6.1 The Data, Simulation Environment and Benchmark

Throughout this section, we use the following set of model primitives.

• Graph topology. We consider a 30-location model of Manhattan below 110-th street excluding

Central Park (see Figure 5), based on Buchholz (2015). We let pairs of regions which share a

non-trivial boundary be compatible with each other.

• Demand arrival process, Pickup/service times, and number of cars. Throughout this section,
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Figure 5: A 30 location model of Manhattan below 110-th street, excluding the Central Park.
(Source: tessellation is based on Buchholz (2015), the figure is generated using Google Maps.)

we consider a stationary demand arrival rate that satisfies the CRP condition,9 which is ob-

tained by “symmetrizing” the decensored demand estimated in Buchholz (2015) (see Appendix

F for a full description). We estimate travel times between location pairs using Google Maps,

and use as a baseline the fluid requirement Kfl on number of cars needed to meet demand.

We use Ktot (not K) to denote the total number of cars, and Kslack = Ktot −Kfl to denote

the excess over the fluid requirement. Here Kslack is similar to the K in our theory since it is

the average number of free cars assuming all demand is met.

Simulation Design. We consider the following simulation settings:

1. Stationary performance with Service time. We investigate steady state performance; steady

state is reached in ∼1-2 hours under SMW policies.

2. Stationary performance with Service+Pickup time. Same as above.

3. Transient performance with Service + Pickup time. We investigate performance over a short

horizon (below 2 hours) for different initial configurations.

Benchmark policy: fluid-based policy. The benchmark policy we consider is a static

randomization based on the solution to the fluid problem (Banerjee et al. 2016, Ozkan and

Ward 2016). See Appendix F for details.

9We leave the cases where demand is time-varying or violates CRP for future research. Our numerical study
in Section 6.4 regarding transient performance may be seen as a first step towards the time-varying case, and for
a setting where CRP is violated, we conjecture that a back-pressure type policy that generalizes SMW could work
well.
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Learning the optimal parameters. We use MATLAB’s built-in particleswarm solver to

learn the optimal SMW scaling parameters via simulation-based optimization in each setting.

6.2 Steady state with Service times

A preliminary simulation of the setting in our paper (i.e., pickup and service are both instan-

taneous) showed that under vanilla MaxWeight policy we only need Kslack = 120 to obtain a

demand-drop rate below 1%, under SMW(α) with α defined in Theorem 1 the number further

reduces to 80. However, the demand-drop rate stays above 5% under the fluid-based policy even

when Kslack = 200.10 We then proceeded to simulate the Service time setting, and obtained

similarly encouraging results. In this setting, the average trip time is 13.2 minutes, and the fluid

requirement is Kfl = 7, 061 cars.

Results. The simulation results on performance11 are shown in Figure 6, and the theoretical

and learned α are shown in Figure 7. Figure 6 confirms that SMW policies including vanilla

MaxWeight outperform the fluid-based policy; in fact only Kslack = 100 extra cars (< 1.5% of

Ktot, or < 4 free cars per location on average if all demand is met) in the system lead to a

negligible fraction of demand dropped. The demand dropping probability decays rapidly with

Kslack under SMW policies, while it decays much slower under the fluid-based policy. SMW

with parameters chosen based on Theorem 1 performs nearly as well as the learned SMW policy,

despite small Kslack = 100. Figure 7 shows that the learned α is very similar to the theoretically

optimal α structurally. Both policies allocate larger parameters (i.e., give more protection to

the supply) in the Upper West Side area which has a small Hall’s gap.

6.3 Steady state with Service and Pickup times

In the following experiment we further incorporate pickup times. The average pickup time is 5.5

minutes, and the fluid requirement increases to Kfl = 10, 002 cars. Our objective here is to show

that SMW policies can be heuristically adapted to more general settings, and retain their good

performance. We propose the following SMW-based heuristic policy. Intuitively, pickup times

need to be taken into consideration when making dispatch decisions, because every minute spent

10The results remain similar when service time is included, hence we only include the graph of the latter case.
11We also tested stochastic service times and found no significant difference in performance.
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Figure 6: Service times setting: Stationary demand-drop probability under the static fluid-
based policy, vanilla MaxWeight policy, SMW policy with theoretically optimal α, and SMW
policy with learned α. Note that the y-axis is in log-scale. Here Kfl = 7, 061. The plots indicate
significant separation between fluid and SMW policies at all values of K, and separation between
vanilla MaxWeight and optimized SMW. For each data point we run 200 trials and take the
average.

Figure 7: Service times setting: Theoretically optimal α derived from Theorem 1 (left) and the α
learned via simulation-based optimization (right), both for the NYC dataset with Kslack = 200.
Darker shades indicate smaller values of αi, while lighter shades correspond to larger values.

on picking up a customer leads to an opportunity cost. We consider policies of the following

form. When demand arrives at location j, dispatch from

argmaxi∈∂(j)

xi
αi
− βDij ,
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Figure 8: Service+Pickup times setting: Stationary demand-drop probability under the fluid-
based policy, the vanilla MaxWeight policy, and the SMW policy with α learned via simulation
optimization. Here Kfl = 10, 002 cars. For each data point we average over 200 trials.

where xi is the number of free cars at i, and Dij is the pickup time between i and j. In addition

to scaling parameters α, we have an additional parameter β which captures the importance

given to pickup delay in making dispatch decisions.

Results. Simulation results are shown in Figure 8. We observe that the SMW-based policies

including vanilla MaxWeight significantly outperform the fluid-based policy. A few hundred

extra cars (< 3% of Ktot) in the system suffice to ensure that only ∼ 1% of demand is dropped.

6.4 Transient Behavior with Service and Pickup times

In the last experiment, we consider transient behavior instead of steady state performance. We

fix Kslack to be 200. For initial configurations, we sample 4 initial queue-length vectors uniformly

from the simplex {x : x1 + · · ·+x30 = 200}, and the cars initially in transit are based on picking

up all demand that arose in the last hour. For each initial state we consider 4 time horizons:

0.5, 1, 1.5 and 2 hours. We learn the optimal SMW parameters for each initial state and time

horizon pair to minimize the fraction of demand dropped and then compare the performance of

SMW policies, vanilla MaxWeight and the fluid-based policy. The results are shown in Figure 9.

It turns out that SMW policies outperform the fluid-based policy by an even larger margin in

this case since they are able to quickly (in under an hour) spread the supply out across locations.
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Figure 9: Transient Performance with Service+Pickup times: The plots show the demand-drop
probability under the fluid-based policy, the vanilla MaxWeight policy, and the SMW policy
with learned α, with 4 different initial configurations, chosen randomly on the simplex. We fix
Kslack = 200, and consider time horizons ranging from 0.5 to 2 hours. For each data point we
run 200 trials and take the average.

7 Conclusions and Future Directions

In this paper we study state-dependent assignment control of a shared transportation system

modeled as a closed queueing network. We introduce a family of state-dependent assignment

policies called Scaled MaxWeight (SMW) and prove that they have superior performance guar-

antees in terms of maximizing throughput, comparing with state-independent policies. In par-

ticular, we construct an SMW policy that (almost) achieves the optimal large deviation rate

of decay of demand dropping. Our analysis also uncovers the structure of the problem: given

system state, demand dropping is most likely to happen within a state-dependent critical subset

of locations. The optimal SMW policy protects all subsets simultaneously. SMW policies are

simple and explicit, and hence have the potential to influence practice.

Before closing, we point out several interesting directions for future theoretical research

(note that the below concerns do not hinder practitioners who want to execute our suggestion

of choosing scaling factors α for SMW using simulation-based optimization, see Section 6):

1. Choosing α where φ is imperfectly known. In practice, a key issue is knowledge of the true
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arrival rates φ. We remark that if these rates are entirely unknown, but Assumption 2 holds,

the platform can pick an SMW policy such as vanilla MaxWeight, and be sure to achieve

exponential decay of the demand dropping probability (albeit with a suboptimal exponent).

This is already an improvement over the state-independent control policies studied thus far

Ozkan and Ward (2016), Banerjee et al. (2016) – in particular, any state-independent policy

will drop an Ω(1) fraction of demand if there is any model misspecification whatsoever. If

φ is not precisely known but is known to lie within some set, that setting may lend itself to

a natural robust optimization problem of maximizing the demand dropping exponent, worse

case over possible φ.

2. Computational challenges. A limitation of Theorem 1 is that it does not prescribe how to

compute α. It simply specifies a concave maximization problem that must be solved, one

where the objective is the minimum over an exponential number of linear functions. It seems

plausible that structural properties of “realistic” G and φ may be exploited to make this

problem tractable.

3. General customer arrival process. Because our analysis relies mostly on fluid sample paths

and large deviations, the result may potentially be generalized to a setting where arrival

processes are non-Poisson and spatially correlated. One would expect the arrival process

information to enter our result through its moment generation function.

4. Performance with service time. As is demonstrated by simulation results (Section 6), SMW

policies retain good performance with service times. Indeed, we can prove that in this case

probability of demand drop still decreases exponentially as K → ∞ under SMW policies,

though it is unclear whether they are exponent-optimal.

5. Relations to robust queueing. The large deviation analysis in our paper can be interpreted as

a zero-sum game between an adversary (nature) and the platform: the adversary tries to force

demand dropping with minimum “cost” which is the large deviation rate function. Another

interesting question would be: what is the worse case system performance if the adversary

has a finite budget? The latter question is closely related to works on robust queueing (Bandi

et al. 2015).

6. Extension to bike-sharing systems. In the context of bike sharing we may interpret the
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assignment of supply units as suggestions to customers regarding where to pick up a bike.

Further, the bike sharing setting may afford the platform the additional control lever of

suggesting to customers where to drop off their bike, and has the additional wrinkle that

both extremes are problematic — a station running out of empty docks, or of bikes. It would

be interesting to extend our analysis incorporating those features.

7. Relation to scrip systems. Our model is related to scrip systems (e.g., see Johnson et al.

2014) which are also closed networks. Our findings might shed some light on the design of

selections rules to match potential trade partners in scrip systems.

8. Transient performance. We have a conjecture on the SMW policies’ transient performance:

For a given initial queue length vector and fixed time horizon, there exists an SMW policy

that achieves the optimal demand-drop exponent among all state dependent policies.
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Appendix

This technical appendix is organized as follows.

• Appendix A shows that the CRP condition and state-dependent control are necessary to

achieve exponential decay of demand drop probability, including the proofs of Proposition 1

and Proposition 2.

• Appendix B discusses fluid sample paths in detail and establishes key properties of our Lya-

punov functions, including the proof of Lemma 1.

• Appendix C includes the proof of Lemma 2, a converse bound on the demand drop exponent.

• Appendix D includes the proof of Proposition 3, containing sufficient conditions for a policy

to achieve the optimal exponent.

• Appendix E shows that SMW satisfies the sufficient conditions above, and derives explicitly

the optimal exponent and most-likely sample paths, including the proofs of Lemma 3, Lemma

4, Lemma 5 and Proposition 4.

• Appendix F explains the simulation settings in more detail.
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A Necessity of CRP Condition and State-Dependent Control

for Exponential Decay

A.1 Necessity of CRP Condition: Proof of Proposition 1

Proof of Proposition 1. There are two cases:

1. Some inequalities in (9) are strictly reversed, i.e., there exists J ( VD s.t.
∑

i∈∂(J) 1Tφ(i) <∑
j′∈J 1Tφj′. Consider the following balance equation:

#{demands arrive to J in [1,Kt] that are dropped}
= #{demands arrive to J in [1,Kt]} −#{demands arrive to J in [1,Kt] that are fulfilled}
≥ #{demands arrive to J in [1,Kt]} −#{supplies assigned from ∂(J) in [1,Kt]}

≥
Kt∑
s=1

I{o[s] ∈ J} −
Kt∑
s=1

I{d[s] ∈ ∂(J)} −#{initial supply in ∂(J)} .

Divide both sides by K and let K →∞, by the strong law of large numbers, we have:

lim inf
t→∞

{proportion of dropped demand in [1,Kt]} ≥
∑
j′∈J

1Tφj′ −
∑
i∈∂(J)

1Tφ(i) > 0 ,

hence a positive portion of demand will be dropped, and the exponent is 0.

2. No inequality in (9) is strictly reversed but there exists J ∈ J such that
∑

i∈∂(J) 1Tφ(i) =∑
j′∈J 1Tφj′. Divide the discrete time periods into epochs with length MK2, where

M ,
6∑

j′∈J,k/∈∂(J) φj′k
.

Without loss of generality, consider the first epoch [1,MK2]. Define random walk St with

the following dynamics:

• S0 = 1T
∂(J)X[0].

• St+1 = St + 1 if o[s] /∈ J, d[s] ∈ ∂(J).

• St+1 = St − 1 if o[s] ∈ J, d[s] /∈ ∂(J).

• St+1 = St otherwise.

It is not hard to see that if no demand is dropped during [1, T ] under some policy U , then St

is an upper bound on the number of supply units in ∂(J), namely, 1T∂(J)X[t], for any t ∈ [1, T ].

With this observation, we have:

P
(

some demand is dropped in [1,MK2]
)

≥ P
(
St′ = 0 for some t′ ∈ [1,MK2]

)
·

∑
j′∈J,k∈VS

φj′k .

The above is true because when the event on RHS happens, either (1) some demand is

dropped before t′, or (2) no demand is dropped before t′, then since 0 = St′ ≥ 1T∂(J)X[t′],

any demand with origin in J is dropped at t′. For J of interest, note that St is an unbiased
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random walk, hence a martingale. It is easy to verify that

Gt = S2
t − 2t

∑
j′∈J,k/∈∂(J)

φj′k

is also a martingale. Using the optional stopping theorem, we have the following bound for

the first time τ when St hits
{

1T
∂(J)X[0]− 2K,1T

∂(J)X[0] + 2K
}

:

E[τ ] =
2K2∑

j′∈J,k/∈∂(J) φj′k
.

Note that St hitting
{

1T
∂(J)X[0]− 2K

}
implies that it hit 0 before, so we have

P
(
St′ = 0 for some t′ ∈ [1,MK2]

)
= 1− P(τ > MK2)− P(τ ≤MK2)P

(
X[τ ] = 1T

∂(J)X[0] + 2K
∣∣∣τ ≤MK2

)
≥ 1− P(τ > 3E[τ ])− 1

2

≥ 1

6
,

where the last inequality follows from Markov’s inequality. As a result, the probability that

demand drop happens during any epoch of length MK2 is lower bounded by a uniform

constant under any U . Therefore we have

PK,Up ≥ PK,Uo = Ω

(
1

K2

)
,

hence γp(U) = γo(U) = 0 for any U .

A.2 Necessity of State-dependent Control: Proof of Proposition 2

Proof of Proposition 2. Denote the probability mass function of distribution uj′k[t] by uj′k[t](·).
We first define an “augmented” policy π̃ for any state-independent policy π. Policy π̃ is also

state independent with distribution ũj′k[t], where:

ũj′k[t](i) = uj′k[t](i) +
1

|∂(j′)|
uj′k[t](∅) for i ∈ ∂(j′) ,

ũj′k[t](∅) = 0 .

In the following analysis, we couple π and π̃ in such a way that if π dispatches from i to serve

the t-th demand, then π̃ will do the same.

We first divide the discrete periods into epochs with length K2. We will lower bound the

probability of demand drop in any epoch. Without loss of generality, consider epoch [1,K2].

Suppose XK,π[0] = X0. By Assumption 1, ∃j′ ∈ VD, k /∈ ∂(j′) ⊂ VS such that φj′k > 0.

Consider the following process St, which is the “virtual” net change of supply in ∂(j′):

• S0 = 0.

• St+1 = St + 1 if d[t] ∈ ∂(j′) and policy π̃ dispatches a vehicle from outside of ∂(j′) to serve it

(regardless of whether there is available supply to dispatch).
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• St+1 = St− 1 if d[t] /∈ ∂(j′) and policy π̃ dispatches a vehicle from ∂(j′) to serve it (regardless

of whether there is available supply to dispatch).

• St+1 = St if otherwise.

We argue that

P
(

some demand is dropped in epoch [1,K2]
)
≥ P

(
SK2 + 1T∂(j′)X0 > K or < 0

)
, (20)

≥ P
(
|SK2 | > K

)
. (21)

(20) holds because when the event on the left-hand-side (LHS) does not happen, the event on

the right-hand-side (RHS) does not happen either. Suppose there is no demand drop during

[1,K2] under policy π, then there is no demand drop under π̃ either (because of the coupling).

Hence SK2 + 1T∂(j′)X0 is exactly the number of supplies in ∂(j′) at K2, which cannot exceed K

or be negative. (21) holds because {|SK2 | > K} ⇒ {SK2 + 1T∂(j′)X0 > K or < 0}.
Note that SK2 is the sum of K2 independent random variables Zt, where Zt = St − St−1.

Here independence holds because we ignore demand drops in the definition of the process. Here

Zt has support {−1, 0, 1} and satisfies:

P(Zt = −1) ≥ δ , φj′k > 0 , (22)

where k /∈ ∂(j). There are two cases:

1. If E[SK2 ] ≤ −K2

2 , then for K ≥ 8, we have

1− P
(
SK2 ∈ [−K,K]

)
≥ 1− P

(
SK2 − E[SK2 ] ≥ −K +

K2

2

)

≥ 1− 2 exp

(
−K

2

32

)
(Hoeffding’s inequality, −K +K2/2 ≥ K2/4)

≥ 1

2
.

Plugging into (21) establishes that demand is dropped with likelihood at least 1/2.

2. If E[SK2 ] > −K2

2 , then using linearity of expectation and simple algebra we obtain that the

number of t’s such that E[Zt] ≥ −3
4 is at least K2

7 .

Denote the set of these t’s as T . Hence

K2 ≥ Var(SK2) =
K2∑
t=1

Var(Zt) ≥
∑
t∈T

Var(Zt) ≥
K2

7
· δ
(

1− 3

4

)2

=
δ

102
K2 , (23)

using (22).

Note from (21) that to show a constant lower bound of demand-drop probability on [1,K2],

it suffices to derive a uniform upper bound on P
(
SK2 ∈ [−K,K]

)
that is strictly smaller than

1. To this end, apply Theorem 7.4.1 in Chung (2001) (Berry-Esseen Theorem) to obtain:

sup
x∈R

∣∣∣∣P(SK2 − E[SK2 ] ≤ x
√

Var[SK2 ]
)
− Φ(x)

∣∣∣∣ ≤ ∑K2

t=1 E|Zt − EZt|3(
Var[SK2 ]

)3/2 ≤ 5000δ−3/2K−1 ,

(24)
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where Φ(·) is the cumulative distribution function of the standard normal distribution.

Denote B(x, a) , [x− a, x+ a]. Note that there are two subcases (indexed 2(i) and 2(ii)):

[−K,K] ⊂ B
(
E[SK2 ], 4K

)
, [−K,K] ∩B

(
E[SK2 ], 2K

)
= ∅ .

In subcase 2(i),

P
(
SK2 ∈ [−K,K]

)
≤ P

(
SK2 ∈ B

(
E[SK2 ], 4K

))
,

whereas in subcase 2(ii),

P
(
SK2 ∈ [−K,K]

)
≤ 1− P

(
SK2 ∈ B

(
E[SK2 ], 2K

))
.

Hence

P
(
SK2 ∈ [−K,K]

)
≤ max

{
P
(
SK2 ∈ B

(
E[SK2 ], 4K

))
, 1− P

(
SK2 ∈ B

(
E[SK2 ], 2K

))}
.

(25)

Use (24) and Var(SK2) ≤ K2 to obtain

P
(
SK2 ∈ B

(
E[SK2 ], 4K

))
≤ P

(
SK2 − E[SK2 ] ≤

√
Var[SK2 ]

4K√
Var[SK2 ]

)

≤ 5000δ−3/2K−1 + Φ

(
4K√

Var[SK2 ]

)
≤ 5000δ−3/2K−1 + Φ

(
50δ−1/2

)
,

1− P
(
SK2 ∈ B

(
E[SK2 ], 2K

))
= P

(
SK2 − E[SK2 ] ≤

√
Var[SK2 ]

−2K√
Var[SK2 ]

)

+ P

(
SK2 − E[SK2 ] ≥

√
Var[SK2 ]

2K√
Var[SK2 ]

)

≤ 10000δ−3/2K−1 + 2Φ

(
−2K√

Var[SK2 ]

)
≤ 10000δ−3/2K−1 + 2Φ (−2) .

Hence for K > max

{
10000δ−3/2

Φ̄(50δ−1/2)
, 10000δ−3/2

1
2
−Φ(−2)

}
, plugging into (25) and then into (21), we obtain

P(some demand is dropped in [1,K2]) ≥ min

{
1

2
Φ̄
(

50δ−1/2
)
,
1

2
− Φ(−2)

}
> 0 .

Since we obtained a uniform lower bound on the likelihood of dropping demand in both cases,

we conclude that the steady state demand-drop probability is Ω(1/K2) as K →∞.
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B Fluid Sample Paths and Lyapunov Functions

B.1 Existence of FSPs

The existence of FSPs under Definition 3 is guaranteed by the Arzelà-Ascoli theorem. Since all

elements in the sequence (ĀK [·], X̄K,U [0],ΨK,U (ĀK [·], X̄K,U [0])) are Lipschitz continuous with

Lipschitz constant 1, it must have a subsequence that converges uniformly to a limit by Arzelà-

Ascoli theorem. Moreover, uniform convergence passes the Lipschitz continuity to the limit (see

Rudin 1964), hence all FSPs are Lipschitz continuous.

Also, one must take extra care when stating results involving FSP. Although for fixed U ∈ U ,

each ĀK [·] uniquely defines a queue-length sample path X̄K,U [·], it is not necessarily true that the

Ā[·] component in FSP uniquely defines the X̄U [·] component. In other words, it is possible that

for different X̄U
1 [·] and X̄U

2 [·], (Ā[·], X̄U
1 [·]) and (Ā[·], X̄U

2 [·]) are both FSPs. Contraction principle

(see Dembo and Zeitouni 1998) can rule out such behaviors, but it is technically challenging to

prove it for MaxWeight policies (see Subramanian 2010 for its proof under a different setting).

As a result, we circumvent this technicality by considering all FSPs in the following proofs.

B.2 Properties of the Lyapunov Functions Lα(x)

B.2.1 Scale-invariance and sub-additivity (about α): proof of Lemma 1

Proof of Lemma 1. (i) For c > 0, α ∈ relint(Ω), we have

Lα(α+ c∆x) = 1−min
i

αi + c∆xi
αi

= −min
i

c∆xi
αi

= −cmin
i

∆xi
αi

= cLα(α+ ∆x) .

(ii) For α ∈ relint(Ω), we have

Lα(α+ ∆x + ∆x′) = 1−min
i

αi + ∆xi + ∆x′i
αi

= −min
i

∆xi + ∆x′i
αi

≤ −min
i

∆xi
αi
−min

i

∆x′i
αi

= Lα(α+ ∆x) + Lα(α+ ∆x′) .

B.2.2 Regularity properties

The following lemma is a collection of regularity properties of Lα(x) that are useful in the

following proofs. The norm || · || is Euclidean norm unless stated otherwise.

Lemma 6. For α ∈ relint(Ω) and Lα(x) specified in Definition 5, we have

1. Lα(x) ≥ 0 for all x ∈ Ω, and Lα(x) = 0 if and only if x = α.

2. Lα(x) is globally Lipschitz on Ω, i.e.

|Lα(x1)− Lα(x2)| ≤ 1

mini∈VS αi
||x1 − x2||∞ .

3. For all fluid sample paths (Ā[·], X̄[·]) (here n = |VS |),

d

dt
Lα(X̄[t]) ≤ 1

mini∈VS αi
.
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Proof of Lemma 6. Properties 1 is easy to verify hence we omit the proof.

For property 2, define iα(x) as the smallest index in index set: argmini∈VS
xi
αi

. It’s not hard

to see that gα(x) , − 1
αiα(x)

eiα(x) is a sub-gradient of Lα(·) at x, where ei is the i-th unit vector.

Using the convexity of Lα(·) (implied by the concavity of minimum function) we have

Lα(x1)− Lα(x2) ≥ gα(x2)T (x1 − x2) ,

Lα(x2)− Lα(x1) ≥ gα(x1)T (x2 − x1) .

Therefore using Hölder’s inequality we have

|Lα(x1)− Lα(x2)| ≤
(

max
{
||gα(x1)||1, ||gα(x2)||1

})
· ||x1 − x2||∞

≤ 1

mini∈VS αi
· ||x1 − x2||∞ .

For property 3, note that X̄[t] is Lipschitz with Lipschitz constant 1 in the l∞ norm since

one demand arrives per period. Combined with 2, we conclude the proof.

C Point-wise Converse Bound: Proof of Lemma 2

Proof of Lemma 2. Step 1: Find the proper α. Fix a sequence of stationary policies. For each

K, the system under policy U is a finite state Markov chain. The cardinality of this chain’s

state space is smaller than Kn. Since we are considering the optimistic exponent, let the K-th

system start with a state that minimizes steady state demand drop among all initial states.

Denote the stationary distribution of (normalized) states as πK(·). Then there must exist a

(normalized) state x̃K such that π(x̃K) ≥ K−n. Take a subsequence {Kr} of {K} such that

limr→∞
1
Kr

logPKr,Uo = lim infK→∞
1
K logPK,Uo . By compactness of Ω, there must exist a further

subsequence of {Kr}, denoted by {Kr′}, and α ∈ Ω such that limr′→∞ x̃Kr′ = α.

For any 0 < ε1 <
1
2

(
minj:αj>0 αj

)
, define α̃ ∈ relint(Ω) such that

0 < α̃j < ε1/2 for j such that αj = 0 ,

|α̃j − αj | < ε1/2 for j such that αj > 0 .

Since α is the limit point of x̃Kr′ , there exists r′0(ε) > 0 such that ∀r′ ≥ r′0(ε),

0 ≤ x̃Kr′j < α̃j for j such that αj = 0 , (26)

|x̃Kr′j − αj | < ε1/2 for j such that αj > 0 , (27)

and (27) implies that

|x̃Kr′j − α̃j | < |x̃
Kr′
j − αj |+ |α̃j − αj | < ε1, for j such that αj > 0 .

Step 2: Lower bound the demand-drop probability. Denote the average number of demands going

from j′ to k arrived per time unit during the first s time slots as fj′k[s]. For stationary policy

U , denote the average fraction of demand arriving at j′ that is served by supply at i during
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this period as dUij′ [s] (we omit the superscript U in the following for notational simplicity). For

t = 0, 1
Kr′

, 2
Kr′

, · · · , if X̄Kr′ ,U [0] = x̃Kr′ and no demand is dropped prior to Kr′t we have

X̄
Kr′ ,U
i [t]− x̃Kr′i =

Kr′t

Kr′

 ∑
j′∈VD

fj′i[Kr′t]−
∑
j′∈∂(i)

dij′ [Kr′t]

∑
k∈VS

fj′k[Kr′t]


 .

Since α̃j > 0, ∀j ∈ VS , the Lyapunov function Lα̃(·) is well-defined. Evaluate the Lyapunov

function at
(
X̄Kr′ ,U [t]− x̃Kr′ + α̃

)
, we have:

Lα̃

(
X̄Kr′ ,U [t]− x̃Kr′ + α̃

)
(28)

= Lα̃

t
 ∑
j′∈VD

fj′i[Kr′t]−
∑
j′∈∂(i)

dij′ [Kr′t]

∑
k∈VS

fj′k[Kr′t]



i∈VS

+ α̃


(a)
= tLα̃


 ∑
j′∈VD

fj′i[Kr′t]−
∑
j′∈∂(i)

dij′ [Kr′t]

∑
k∈VS

fj′k[Kr′t]



i∈VS

+ α̃


≥ t min

∆x∈Xf

Lα̃(α̃+ ∆x). (29)

Equality (a) holds because the Lyapunov function is scale-invariant with respect to α̃. Here ∆x

is the change of (normalized) state in Kr′ time slots given average demand arrival rate during

this period f , and Xf is defined in (14).

Define vα̃(f) , min∆x∈Xf
Lα̃(α̃ + ∆x), which is the minimum rate the Lyapunov function

increases under any policy, given current demand arrival rate f . Now we construct a set of

demand sample paths that must lead to demand drop before returning to the starting state.

First note that {f : vα̃(f) > 0} is non-empty. To see this, let f ′j′k equal to 1 for some j′ and

k /∈ ∂(j′), and 0 otherwise (such a pair (j′, k) exists by Assumption 1). This f ′ results in a

strictly positive vα̃(f ′). Therefore for any ε2 > 0 there exists demand arrival rate f̃ such that

vα̃(f̃) > 0 and
Λ∗(f̃)

vα̃(f̃)
≤ inf

f :vα̃(f)>0

Λ∗(f)

vα̃(f)
+ ε2.

It is not hard to show that vα̃(f) is continuous in f , hence there exists ε3 > 0 such that for any

f̂ : ||f̂ − f̃ ||∞ < ε3, we have

vα̃(f̂) > 0 and vα̃(f̂) > (1− ε2)vα̃(f̃).

Denote T ,
1+

ε1
minj:αj>0 αj

(1−ε2)vα̃(f̃)
, define

Bα̃ ,

{
Ā[t] ∈ C [0, T ]

∣∣∣∣∣ sup
t∈[0,T ]

||Ā[t]− tf̃ ||∞ ≤ ε3

}
.

For any fluid scale demand arrival sample path Ā[·] ∈ Bα̃, we will show that for t = 1, 2, · · · , bKr′T c,
the followings are true: (i)normalized state X̄Kr′ ,U [t] does not hit x̃Kr′ before any demand is

dropped; (ii)at least one demand is dropped.
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To prove (i), note that function L̃α̃(x) , Lα̃

(
x + α̃− x̃Kr′

)
> 0 for any state in Ω except

x̃Kr′ . By inequality (29), if no demand is dropped during the first bKr′tc time slots we have:

L̃α̃

(
X̄Kr′ ,U [t]

)
≥ tv

(
1

t
Ā[t]

)
≥ t min

Ā[·]∈B
v

(
1

t
Ā[t]

)
> t(1− ε2)vα̃(f̃) > 0.

We prove (ii) by contradiction. Suppose no demand is dropped given (fluid scale) demand

arrival sample path Ā[·] ∈ B, then

L̃α̃

(
X̄Kr′ ,U [T ]

)
≥ T min

Ā[·]∈B
v

(
1

T
Ā[T ]

)
>

1 + ε1
minj:αj>0 αj

(1− ε2)vα̃(f̃)
(1− ε2)vα̃(f̃) = 1 +

ε1
minj:αj>0 αj

.

Expand the expression of L̃α̃

(
X̄Kr′ ,U [T ]

)
, we have

1−min
j

X̄
Kr′ ,U
j [T ] +

(
α̃j − x̃

Kr′
j

)
α̃j

> 1 +
ε1

minj:αj>0 αj
,

min

 min
j:αj=0

X̄
Kr′ ,U
j [T ]

α̃j
, min
j:αj>0

X̄
Kr′ ,U
j [T ]− ε1/2

α̃j

 ≤min
j

X̄
Kr′ ,U
j [T ] +

(
α̃j − x̃

Kr′
j

)
α̃j

<− ε1
minj:αj>0 αj

. (30)

Note that the first inequality in (30) holds because of (26) and (27). Inequality (30) implies that

minj X̄
Kr′ ,U
j [T ] < 0, which is impossible as queue lengths must be non-negative.

Step 3: Obtain the asymptotic lower bound. We use renewal-reward theorem (Ross 1996) to lower

bound the demand-drop probability. Recall that for the Kr′-th system, we have πKr′ (x̃Kr′ ) ≥
K−nr′ . Consider the regenerative process that restarts each time X̄Kr′ ,U [t] = x̃Kr′ . Without loss

of generality, let X̄Kr′ ,U [0] = x̃Kr′ . Define τ , inft≥1/Kr′

{
X̄Kr′ ,U [t] = x̃Kr′

}
. Using the result

from step 2, we have:

PKr′ ,Uo =
E
[
#{demand drop during [0, τ ]}

]
E[τ ]

= πKr′
(
x̃Kr′

)
E
[
#{demand drop during [0, τ ]}

]
≥ K−nr′ P

(
#{demand drop during [0, τ ]} ≥ 1

)
≥ K−nr′ P

(
ĀKr′ [·] ∈ Bα̃

)
.

Take asymptotic limit on both sides, we have:

lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≥ lim inf

r′→∞

1

Kr′
logP

(
ĀKr′ [·] ∈ Bα̃

)
(a)

≥ − inf
Ā[·]∈Boα̃∩AC[0,T ]

∫ T

0
Λ∗
(
d

dt
Ā(t)

)
dt

(b)

≥ −TΛ∗(f̃)

= −
1 + ε1

minj:αj>0 αj

(1− ε2)vα̃(f̃)
Λ∗(f̃)
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≥ −
1 + ε1

minj:αj>0 αj

1− ε2

(
inf

f :vα̃(f)>0

Λ∗(f)

vα̃(f)
+ ε2

)
.

Here (a) holds because of Mogulskii’s Theorem (Fact 1), (b) holds because demand sample path

Ā[t] = tf̃ ∈ AC[0, T ] is a member of Bα̃. For any δ > 0, by choosing small enough ε1(δ), ε2(δ) > 0,

we have

− lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≤ (1 + δ)(γCB(α̃(δ)) + δ).

Here the choice of α̃ depends on δ. To get rid of the multiplicative term (1 + δ), it suffices

to show that supα∈relint(Ω) γCB(α) < ∞. This can be proved by the following construction: let

Ā[t] = tf ′ for t ∈ [0, 1] where fj′k = 1 for some j′ ∈ VD and k /∈ ∂(j′). It is easy to show that

supα∈relint(Ω) γCB(α) ≤ Λ∗(f ′) <∞. Therefore by choosing a small enough δ, we have

− lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≤ γCB(α̃(ε)) + ε.

By the definition of subsequence {K ′r}, we have

− lim inf
K→∞

1

K
logPK,Uo ≤ γCB(α̃(ε)) + ε.

As a result, for any ε > 0 there exists α ∈ Ω such that − lim infK→∞
1
K logPK,Uo ≤

supα∈relint(Ω) γCB(α) + ε, therefore − lim infK→∞
1
K logPK,Uo ≤ supα∈relint(Ω) γCB(α).

D Sufficient Conditions for Exponent Optimality: Proof of Propo-

sition 3

The proof of Proposition 3 consists of two parts. We first derive an achievability bound for

policies that satisfy the negative drift property in Proposition 3; we then show it matches the

converse bound in Lemma 2 if the steepest descent property in Proposition 3 is also satisfied.

D.1 An achievability bound

The following lemma is an adaptation of Theorem 5 and Proposition 7 in Venkataramanan and

Lin (2013) to our setting. It gives the achievability bound of the exponent of the steady state

demand-drop probability, for any policy such that the negative drift condition in Proposition

3 is met for Lα(·) where α ∈ relint(Ω). The main technical difficulty comes from the fact that

it characterizes the steady state of the system. The analysis uses Freidlin-Wentzell theory and

follows from Stolyar (2003), Venkataramanan and Lin (2013).

Lemma 7 (Achievability bound). For the system being considered, if policy U satisfies the

negative drift condition in Proposition 3 for Lα(·) where α ∈ relint(Ω), we have (the subscript

“AB” stands for achievability bound)

− lim sup
K→∞

1

K
logPK,Up ≥ γAB(α) . (31)
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Here for fixed 12 T > 0,

γAB(α) , inf
v>0,f ,Ā,X̄U

Λ∗(f)

v
,

where (Ā, X̄U ) is a FSP on [0, T ] under U such that for some regular t ∈ [0, T ]
d

dt
Ā[t] = f , Lα(X̄U [t]) < 1 ,

d

dt
Lα(X̄U [t]) = v .

Before proving Lemma 7, we first prove two technical lemmas that give an upper bound of

first time the Lyapunov function is close to 0.

Lemma 8. Fix α ∈ relint(Ω). Suppose that for policy U ∈ U and any fluid limit under this

policy (Ā[·], X̄U [·]), there exists η > 0 such that d
dtLα(X̄U [t]) < −η for any X̄U [t] 6= α and any

regular t. Then we have, for any fluid limit at any t ≥ 1/η,

lim
K→∞

E
(
Lα

(
X̄K,U [t]

))
= 0 . (32)

Proof of Lemma 8. Let {Kr} be any subsequence of {K}, then by definition of fluid limits (Dai

1995) and using the Arzela-Ascoli theorem, almost surely there is a further subsequence {Kr′}
such that, X̄Kr′ ,U [·] converges uniformly on compact sets to a fluid limit X̄U [·]. We know that

any fluid limit X̄U [·] is absolutely continuous, and it satisfies d
dtLα(X̄U [t]) ≤ −η for X̄U [t] 6= α

at any regular t. Since Lα(x) ≤ 1 for any x ∈ Ω, we have X̄U [t] = 0 for t ≥ 1/η, hence

limr′→∞ Lα

(
X̄Kr′ ,U [t]

)
= 0 a.s. for t ≥ 1/η. Because of the boundedness of Lα

(
X̄Kr′ ,U [t]

)
,

the sequence is uniformly integrable hence we have limr′→∞ E
(
Lα

(
X̄Kr′ ,U [t]

))
= 0 , for any

t ≥ 1/η.

We have shown that for any subsequence {Kr} of {K}, there is a further subsequence {Kr′}
such that (32) holds, then (32) must hold for {K}.

We have the following lemma which bounds the expected time for Lα(X̄K,U [t]) to reach the

level set {x : Lα(x) ≤ ε} for any ε ∈ (0, 1).

Lemma 9. Fix any ε > 0. Under the same negative drift condition on policy U as in Lemma

8, define

βK,Uε , inf
{
t ≥ 0 : Lα(X̄K,U [t]) ≤ ε

}
,

then there exists K0(ε) <∞ such that for any K > K0(ε) and any X̄K,U [0] ∈ Ω, we have

E
(
βK,Uε |X̄K,U [0]

)
≤ 2

εη
(1 + ε) .

Proof of Lemma 9. We will first show that the K-th system satisfy a certain negative drift

property for large enough K, then we apply Theorem 2.1(ii) in Meyn and Tweedie (1994) to

obtain the result.

12The definition of quantity γAB(α) is based on the local behavior of Ā and X̄U for times close to t. In
particular, the value of T plays no role.
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It follows from Lemma 8 that for each t ≥ 1/η, ε1 > 0, ∃K1(ε1) < ∞ such that for any

K > K1(ε1):

E
(
Lα

(
X̄K,U [t]

))
≤ ε1 .

Define the “petite set” B as in Meyn and Tweedie (1994):

B , {x ∈ Ω : Lα(x) ≤ ε}, (33)

then for K > K1(ε/2),

E
(
Lα

(
X̄K,U

[
1/η
]) ∣∣∣X̄K,U [0]

)
≤ ε

2
≤ Lα

(
X̄K,U [0]

)
− ε

2
+ εI

{
X̄K,U [0] ∈ B

}
.

Which can be interpreted as: except for the case where the initial Lyapunov function is almost

0, i.e. X̄K,U [0] ∈ B, the expectation of Lyapunov function is guaranteed to decrease by at least

ε/2 after 1/η scaled time.

Apply Theorem 2.1(ii) of Meyn and Tweedie (1994), for each K > K1(ε/2) and X̄K,U [0] ∈ Ω

we have

E
(
βK,Uε

∣∣∣X̄K,U [0]
)
≤ 2

εη

(
Lα

(
X̄K,U [0]

)
+ ε

)
≤ 2

εη
(1 + ε) .

Proof of Lemma 7. Step 1. Define stopping times and consider the sampling chain. In this

step, we mostly follow the approach in Venkataramanan and Lin (2013) (Freidlin-Wentzell the-

ory) and decompose the expression for the likelihood of the Lyapunov function taking on a large

value. There are minor differences between our proof and proof of Theorem 4 in Venkatara-

manan and Lin (2013) because of our closed queueing network setting, so we will write down

each step for completeness.

In the following, let X̄K,U
z be a random vector distributed as the stationary distribution of

recurrent class associated with initial (normalized) state z ∈ Ω. We want to upper bound:

lim sup
K→∞

1

K
log

(
max
z∈Ω

P
(
Lα(X̄K,U

z ) ≥ 1
))

.

Choose positive constants δ, ε such that 0 < δ < ε < 1. Consider the following stopping

times defined on a sample path X̄K,U
z [·]:

βK,U1 , inf{t ≥ 0 : Lα(X̄K,U
z [t]) ≤ δ},

ηK,Ui , inf{t ≥ βK,Ui : Lα(X̄K,U
z [t]) ≥ ε}, i = 1, 2, · · ·

βK,Ui , inf{t ≥ ηK,Ui−1 : Lα(X̄K,U
z [t]) ≤ δ}, i = 2, 3, · · ·

Let the Markov chain X̂K,U
z [i] be obtained by sampling X̄K,U

z [t] at the stopping times ηK,Ui .

Since X̄K,U
z is stationary, there must also exist a stationary distribution for Markov chain

X̂K,U
z [i]. Let ΘK,U

z denote the state space of the sampled chain X̂K,U
z [i], π̂K,Uz is the chain’s
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stationary distribution.

The above construction was based on the following idea: first divide time into cycles, where

the i-th cycle is the interval of time between consecutive ηi’s, i.e., a cycle is completed each

time the value of Lα(X̄K,U
z ) goes down below δ and then rises above ε. Then the fraction of

time the Lyapunov function spent above 1 is equal to the ratio E[time for which Lα(X̄K,U
z ) ≥

1 during a cycle]/(E[length of cycle]) in steady state. Since we sample the initial state as x ∼
π̂K,Uz , the first cycle itself characterizes the steady state ratio. Therefore, the stationary likeli-

hood of event {Lα(X̄K,U
z ) ≥ 1} can be expressed as (see Lemma 10.1 in Stolyar 2003):

P
(
Lα(X̄K,U

z ) ≥ 1
)

=

∫
ΘK,Uz

π̂K,Uz (dx)E
(∫ ηK,U1

0 I
{
Lα(X̄K,U [t]) ≥ 1

}
dt
∣∣∣X̄K,U [0] = x

)
∫

ΘK,Uz
π̂K,Uz (dx)E(ηK,U1 |X̄K,U [0] = x)

. (34)

Step 2. Bounding the RHS of (34). To upper bound P
(
Lα(X̄K,U

z ) ≥ 1
)

, we lower bound the

denominator in the RHS of (34) and upper bound the numerator.

• Step 2a. Bounding the Denominator.

Since exactly one demand arrives per time period, we have

||X̄K,U
z [t+ 1]− X̄K,U

z [t]||∞ ≤ 1 . (35)

Using property 2 of Lα(x) in Lemma 6, we further have

Lα(X̄K,U
z [ηK,U1 ])− Lα(X̄K,U

z [βK,U1 ]) ≤ 1

mini αi
(ηK,U1 − βK,U1 ) ,

Lα(X̄K,U
z [ηK,U1 ]) ≥ ε− 1

mini αi

1

K
, Lα(X̄K,U

z [βK,U1 ]) ≤ δ +
1

mini αi

1

K
. (36)

Hence there exists K1 = K1(ε, δ) > 0 such that for any K > K1, the denominator of (34)

satisfies

ηK,U1 ≥ mini αi
2

(ε− δ) . (37)

• Step 2b. Bounding the Numerator. This part is more complex, and we first decompose the

numerator into several terms. Let ρ ∈ (ε, 1). Since ε < ρ, by inequality (35) and Lipschitz

continuity of Lα(x) there exists K2 = K2(ε, ρ) > 0, such that L(X̄K,U [ηK,Ui ]) ≤ ρ for all

K ≥ K2.

We define another stopping time:

ηK,U,↑ , inf{t ≥ 0 : Lα(X̄K,U [t]) ≥ 1} .

Then for any x ∈ ΘK,U
z , we must have:

E

∫ ηK,U1

0
I{Lα(X̄K,U [t]) ≥ 1}dt

∣∣∣X̄K,U [0] = x


≤ E

(
I{ηK,U,↑ ≤ βK,U1 }(βK,U1 − ηK,U,↑)

∣∣∣X̄K,U [0] = x
)
.
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The above inequality holds because:

• if βK,U1 ≤ ηK,U,↑, then both sides are zero (because the Lyapunov function will hit ε

before 1);

• if βK,U1 > ηK,U,↑, then Lα(X̄K,U [t]) ≥ 1 can occur only for t ∈ [ηK,U,↑, βK,U1 ], and this

time interval has length βK,U1 − ηK,U,↑.

Hence

E

∫ ηK,U1

0
I
{
Lα(X̄K,U [t]) ≥ 1

}
dt
∣∣∣X̄K,U [0] = x


≤ E

(
βK,U1 − ηK,U,↑

∣∣∣ηK,U,↑ ≤ βK,U1 , X̄K,U [0] = x
)
P
(
ηK,U,↑ ≤ βK,U1

∣∣∣X̄K,U [0] = x
)
.

Define

βK,U (x) , inf
{
t ≥ 0 : Lα(X̄K,U

z [t]) ≤ δ
∣∣∣X̄K,U

z [0] = x
}
.

Using the properties of Markov chains and conditional expectation, we have:

E
(
βK,U1 − ηK,U,↑

∣∣∣ηK,U,↑ ≤ βK,U1 , X̄K,U [0] = x
)

= E

(
E
(
βK,U

(
X̄K,U (ηK,U,↑)

)) ∣∣∣ηK,U,↑ ≤ βK,U1 , X̄K,U [0] = x

)
≤ sup

x∈Ω
E
(
βK,U1

∣∣∣X̄K,U [0] = x
)
.

Let T be a positive number which will be chosen later. Recall that Lα(x) ≤ ρ for all x ∈ ΘK,U
z

when K ≥ K2. Hence, for any such x ∈ ΘK,U
z , we have,

E

∫ ηK,U1

0
I
{
Lα(X̄K,U [t]) ≥ 1

}
dt
∣∣∣X̄K,U [0] = x


≤ E

(
βK,U1 − ηK,U,↑

∣∣∣ηK,U,↑ ≤ βK,U1 , X̄K,U [0] = x
)
P
(
ηK,U,↑ ≤ βK,U1

∣∣∣X̄K,U [0] = x
)

≤

(
sup
x∈Ω

E
(
βK,U1

∣∣∣X̄K,U [0] = x
))[

P
(
ηK,U,↑ ≤ T

∣∣∣X̄K,U [0] = x
)

+P
(
βK,U1 ≥ T

∣∣∣X̄K,U [0] = x
)] (

using ηK,U,↑ ≤ βK,U1 ⇒ ηK,U,↑ ≤ T or T ≤ βK,U1

)

≤

(
sup
x∈Ω

E
(
βK,U1

∣∣∣X̄K,U [0] = x
))

︸ ︷︷ ︸
(a)

 sup
x:Lα(x)≤ρ

P
(
ηK,U,↑ ≤ T

∣∣∣X̄K,U [0] = x
)

︸ ︷︷ ︸
(b)

+ sup
x:Lα(x)≤ρ

P
(
βK,U1 ≥ T

∣∣∣X̄K,U [0] = x
)

︸ ︷︷ ︸
(c)

 . (38)

Note that all the terms are independent of z.
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— Step 2b(i). Bounding term (a). Apply Lemma 9, there exists K3 = K3(δ) such that for

K ≥ K3, we have (a) ≤ 2(1 + δ)/(ηδ).

— Step 2b(ii). Asymptotics for (b). For K → ∞, apply Proposition 2 in Venkataramanan

and Lin (2013) to X̄K,U [·], which doesn’t require X̄K,U [·] to be irreducible. We have:

lim sup
K→∞

1

K
log

(
sup

x:Lα(x)≤ρ
P
(
ηK,U,↑ ≤ T

∣∣∣X̄K,U [0] = x
))

≤ − inf
Ā,X̄U

∫ T

0
Λ∗
(
d

dt
Ā[t]

)
dt, where (Ā, X̄U ) is an FSP

such that Lα(X̄U [0]) ≤ ρ, Lα(X̄U [t]) ≥ 1 for some t ∈ [0, T ] .

— Step 2b(iii). Asymptotics for (c). Intuitively, term (c) is the tail probability of the duration

of a cycle that terminates when the Lyapunov function hit ρ. It remains to be shown that

this term is negligible comparing to (b) as T →∞.

Proceed exactly the same as in proof of Theorem 4, part b(3) in Venkataramanan and Lin

(2013), which only uses the condition (2) in Proposition 3. We obtain:

lim sup
K→∞

1

K
log

(
sup

x:Lα(x)≤ρ
P
(
βK,U1 ≥ T

∣∣∣X̄K,U [0] = x
))
≤ −Tη + 2(δ − ρ)

2/mini αi + η
Jmin ,

where Jmin = minf /∈B(φ,ε′) Λ∗(f) > 0 and ε′ is the ε specified in condition (2) of Proposition

3. It is not hard to see that as T →∞, RHS can be made arbitrarily small.

Now combine all the terms. For fixed ε, δ, ρ, note that the denominator of (34) and (a) in

(38) are bounded by a constant term, so they have no contribution to the exponent of (34).

Since as T →∞, (c) in (38) have an arbitrarily small exponent, we have

lim sup
K→∞

1

K
logPK,Up

≤ lim sup
K→∞

1

K
log

(
max
z∈Ω

P
(
Lα(X̄K,U

z ) ≥ 1
))

(39)

≤ − inf
T>0

inf
Ā,X̄U

∫ T

0
Λ∗
(
d

dt
Ā[t]

)
dt

where Ā, X̄U is an FSP such that Lα(X̄[0]) = ρ, Lα(X̄[T ]) ≥ 1 . (40)

Finally, let δ, ε, ρ→ 0, we have

lim sup
K→∞

1

K
logPK,Up

≤ − inf
T>0

inf
Ā,X̄U

∫ T

0
Λ∗
(
d

dt
Ā[t]

)
dt

where Ā, X̄U is an FSP such that Lα(X̄[0]) = 0, Lα(X̄[T ]) ≥ 1 .

We briefly summarize Step 2 and provide some intuition. The goal is to upper bound the

stationary likelihood that the Lyapunov function equals 1. To study the stationary behavior,

we first divide time into cycles, where a cycle is completed each time the Lyapunov function

goes down below δ then rises above ε, where δ < ε � 1. Then using a variant of renewal-

reward theorem (equation (34)), we only need to lower bound the expected cycle duration, and
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upper bound the expected time the Lyapunov function stays at 1 during a cycle. The Lipschitz

property of demand sample paths and the Lyapunov function ensures that the cycle duration

is bounded away from 0 hence has no contribution to the exponent of the desired likelihood

(Lemma 6). Meanwhile, Lemma 9 upper bounds the expected time until the Lyapunov function

returns to δ after hitting 1. This leaves the exponent of the desired likelihood to be solely

dependent on the probability that the Lyapunov function ever hit 1 during a cycle. Finally we

apply the sample path large deviation principle (Fact 1) to bound this quantity.

Step 3. Reduce (39) to an one-dimensional variational problem. This rest of the proof is exactly

the same as the proof of Theorem 5 and Proposition 7 in Venkataramanan and Lin (2013); we

provide the intuition and omit the details.

The proof up until this point dealt with the steady state of the system. Recall the link

between the exponent and value of a differential game described in Section 5.3. We now lower

bound the exponent of the steady state demand drop probability by a variational problem

(differential game), namely, (40). Since we are trying to lower bound the adversary’s cost, we

consider an “ideal adversary” who can increase Lα(x) at the minimum cost at each level set.

Mathematically,

The quantity in (40) ≤ − inf
T>0

θT , (41)

where

θT , inf
L[·]

∫ T

0
lα,T

(
L[t],

d

dt
L[t]

)
dt

s.t. L[·] is absolutely continuous and L[0] = 0, L[T ] ≥ 1 .

lα,T (y, v) , inf
Ā,X̄U

Λ∗(f)

s.t. (Ā, X̄U ) is an FSP on [0, T ] such that for some regular t ∈ [0, T ]
d

dt
Ā[t] = f , Lα(X̄U [t]) = y,

d

dt
Lα(X̄U [t]) = v .

Using the scale-invariance property of Lα(x) (Lemma 1), we can show that lα,T (y, v) is

independent of y (Proposition 7 in Venkataramanan and Lin 2013). As a result, the above

variational problem reduces to an one-dimensional problem where the “ideal adversary” chooses

a single rate (i.e., v in the statement of Lemma 7) at which Lα(x) increases. This problem is

exactly the one in the statement of Lemma 7.

D.2 Converse Bound Matches Achievability Bound

In Lemma 2 we obtain the converse bound of any state-dependent policy. However, for a given

policy U it’s not obvious which α to plug in on the RHS of (15). In the following Lemma, we

show that for policies that satisfy the negative drift property in Proposition 3 for Lyapunov

function Lα(·) where α ∈ relint(Ω), the converse bound is given by γCB(α).
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Lemma 10. For policies U ∈ U that satisfy the negative drift condition in the statement of

Proposition 3 for α ∈ relint(Ω), we have

− lim inf
K→∞

1

K
logPK,Uo ≤ γCB(α) .

Proof. The following proof is very similar to the proof of Lemma 2. We will emphasize the parts

that are different and skip the repetitive arguments.

Step 1: Show that α is the ‘resting point’ of U . Using Lemma 8, for ε1 > 0, there exists

K0 = K0(ε1) > 0 such that

E
(
Lα

(
X̄K,U

[
1/η + T

]) ∣∣∣X̄K,U [T ]

)
≤ ε1 , ∀K > K0 and T ≥ 0 .

By Markov inequality, we have for K > K0, P
(
Lα

(
X̄K,U

[
1/η + T

])
≥ 2ε1

∣∣∣X̄K,U [T ]

)
≤ 1

2 ,

∀K > K0 and T ≥ 0. In other words, starting from any time, with probability at least 1/2 the

system state will be close to α after K/η periods.

Step 2: Lower bound the demand-drop probability. Proceed exactly as Step 2 and Step 3 in the

proof of Lemma 2, we explicitly construct a demand sample path that guarantees a demand drop

within any consecutive Θ(K) periods given the starting state satisfies Lα

(
X̄K,U

[
1/η + T

])
<

2ε1. Then we obtain the desired result.

Now we combine Lemma 7 and Lemma 10 to prove Proposition 3. Note that Lemma 1 and

the steepest descent property in Proposition 3 are crucial in showing γAB(α) ≥ γCB(α) (the other

direction is obvious).

Proof of Proposition 3.

Proof of Proposition 3. Let U ∈ U satisfy the conditions in Proposition 3. Then for regular t

we have

d

dt
Lα(X̄U [t]) ≤ inf

U ′∈U

{
d

dt
Lα(X̄U ′ [t])

∣∣∣∣ ddtĀ′[t] = f

}
(steepest descent)

= min
∆x∈Xf

lim
∆t→0

Lα(X̄U ′ [t] + ∆x∆t)− Lα(X̄U ′ [t])

∆t

≤ min
∆x∈Xf

lim
∆t→0

Lα(α+ ∆x∆t)

∆t
(sub-additivity, Lemma 1)

= min
∆x∈Xf

Lα(α+ ∆x) = vα(f) . (scale-invariance, Lemma 1)

Let v = d
dtLα(X̄U [t]), from v ≤ vα(f) we have {v > 0} ⊂ {vα(f) > 0}, hence using Lemma 7 we

have

γAB(α) = inf
v>0,f ,Ā,X̄U

Λ∗(f)

v
≥ inf

f :vα(f)>0

Λ∗(f)

vα(f)
= γCB(α) .

But since by Lemma 10 we know γCB is a converse bound for policy U , hence γAB(α) ≤ γCB(α).

Therefore γAB(α) = γCB(α).
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E SMW Policies and Explicit Exponent

E.1 Lyapunov Drift of FSPs under SMW: Proof of Lemma 3

Proof. For notation simplicity, we will write S1(X̄U [t]) as S1, S2

(
X̄U [t], ddtX̄

U [t]
)

as S2, and

mink∈S1
d
dt

X̄U
k [t]
αk

as c in the following. Let (Ā, X̄U ) be an FSP under policy U ∈ U .

• Proof of (17). Using the definition of derivatives, ∀δ > 0, ∃ε0 > 0 such that ∀ε ∈ (0, ε0),

X̄U
k (t+ ε)

αk
−

X̄U
k (t)

αk
≥ (c− δ)ε , ∀k ∈ S1 .

Hence

d

dt
Lα(X̄U [t]) = − lim

ε→0

mink∈S1

X̄U
k (t+ε)
αk

−mink∈S1

X̄U
k (t)
αk

ε
≤ − lim

ε→0

(c− δ)ε
ε

= −c+ δ .

Since δ > 0 can be chosen arbitrarily, we have d
dtLα(X̄U [t]) ≤ −c. Similarly, we can show that

d
dtLα(X̄U [t]) ≥ −c, hence d

dtLα(X̄U [t]) = −c.
• Proof of (18). Define c′ , argmink∈S1\S2

d
dt

X̄U
k [t]
αk

, then c′ > c. Using the definition of deriva-

tives, there exists ε0 > 0 such that ∀ε ∈ [0, ε0],

X̄U
k (t+ ε)

αk
−

X̄U
k (t)

αk
≥
(
c′ − c′ − c

3

)
ε, ∀k ∈ S1\S2 (42)

X̄U
k (t+ ε)

αk
−

X̄U
k (t)

αk
≤
(
c+

c′ − c
3

)
ε, ∀k ∈ S2 . (43)

Since (Ā, X̄U ) is an FSP, by definition there exists an increasing positive integer sequence

{Kr} such that (ĀKr [·], X̄Kr,U [0],ΨKr,U (ĀKr [·], X̄Kr,U [0])) converges uniformly to (Ā, X̄U ).

Using the definition of uniform convergence, for any M > 1 there exists r0 such that for any

r > r0 and t ∈ [0, T ], we have ∀k ∈ VS ,∣∣∣∣∣X̄Kr,U
k [t]

αk
−

X̄U
k [t]

αk

∣∣∣∣∣ < c′ − c
6

ε0
M

. (44)

As a result, for any ε ∈
(
ε0
M , ε0

)
and r ≥ r0, let k ∈ S1\S2, l ∈ S2, we have

X̄Kr,U
k (t+ ε)

αk
≥

X̄U
k (t+ ε)

αk
− c′ − c

6

ε0
M

(plug in (44))

>
X̄U
k (t)

αk
+

(
c′ − c′ − c

3

)
ε− c′ − c

6
ε (plug in (42))

≥
X̄U
l (t+ ε)

αl
+
c′ − c

6
ε (plug in (43))

≥
X̄Kr,U
l (t+ ε)

αl
(plug in (44)).

In other words, for any of the Kr-th system such that r > r0, any queue in set S2 has smaller

scaled queue length than any queue in VS\S2 during (t+ ε0
M , t+ ε0). As a result, queues in S2

alone determine the value of the Lyapunov function.

By definition of SMW(α), the Kr-th system (r > r0) will use the supplies within VS\S2 to

serve all demands arriving at ∂(VS\S2) during (scaled) time (t+ ε0
M , t+ ε0). Moreover, queue
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lengths in VS\S2 remain strictly positive during this period. Using the uniform convergence

to FSP and the non-idling property of SMW policies, there exists r1 > 0 such that for r > r1,∑
k∈VS\S2

(
X̄
Kr,SMW(α)
k [t+ ε0]− X̄

Kr,SMW(α)
k

[
t+

ε0
M

])

=
∑

j′∈VD,k∈VS\S2

(
ĀKr
j′k[t+ ε0]− ĀKr

j′k

[
t+

ε0
M

])
−

∑
j′∈∂(VS\S2),k∈VS

(
ĀKr
j′k[t+ ε0]− ĀKr

j′k

[
t+

ε0
M

])
.

Recall the Lipschitz property of X̄Kr,SMW(α)[·], we have∣∣∣∣∣∣
∑

k∈VS\S2

(
X̄
Kr,SMW(α)
k

[
t+

ε0
M

]
− X̄

Kr,SMW(α)
k [t]

)∣∣∣∣∣∣ ≤ ε0
M
.

Combined, we have: ∑
k∈VS\S2

(
X̄
Kr,SMW(α)
k [t+ ε0]− X̄

Kr,SMW(α)
k [t]

)
≤

∑
j′∈VD,k∈VS\S2

(
ĀKr
j′k[t+ ε0]− ĀKr

j′k

[
t+

ε0
M

])

−
∑

j′∈∂(VS\S2),k∈VS

(
ĀKr
j′k[t+ ε0]− ĀKr

j′k

[
t+

ε0
M

])
+
ε0
M
.

First let r →∞, then let M →∞. We have∑
k∈VS\S2

(
X̄

SMW(α)
k [t+ ε0]− X̄

SMW(α)
k [t]

)
≤

∑
j′∈VD,k∈VS\S2

(
Āj′k[t+ ε0]− Āj′k[t]

)
−

∑
j′∈∂(VS\S2),k∈VS

(
Āj′k[t+ ε0]− Āj′k[t]

)
.

Since it is a closed system, we have:∑
k∈S2

(
X̄

SMW(α)
k [t+ ε0]− X̄

SMW(α)
k [t]

)
= −

∑
k∈VS\S2

(
X̄

SMW(α)
k [t+ ε0]− X̄

SMW(α)
k [t]

)
≥

∑
j′∈∂(VS\S2),k∈VS

(
Āj′k[t+ ε0]− Āj′k[t]

)
−

∑
j′∈VD,k∈VS\S2

(
Āj′k[t+ ε0]− Āj′k[t]

)
.

Divide both sides by ε0 and let ε0 → 0. Since t is regular, we have:

∑
k∈S2

d

dt
X̄

SMW(α)
k [t] ≥

 ∑
j′∈∂(VS\S2),k∈VS

d

dt
Āj′k[t]−

∑
j′∈VD,k∈VS\S2

d

dt
Āj′k[t]

 . (45)

But notice that for any non-idling policy U ′, it cannot use the supplies in VS\S2 to serve the

demand arising out of ∂(VS\S2). Using the same analysis as above, for any non-idling policy
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U ′ we have∑
k∈S2

d

dt
X̄

SMW(α)
k [t] ≤

 ∑
j′∈∂(VS\S2),k∈VS

d

dt
Āj′k[t]−

∑
j′∈VD,k∈VS\S2

d

dt
Āj′k[t]

 . (46)

Note that ∑
j′∈∂(VS\S2),k∈VS

d

dt
Āj′k[t]−

∑
j′∈VD,k∈VS\S2

d

dt
Āj′k[t]

=

 ∑
j′∈VD,k∈VS

d

dt
Āj′k[t]−

∑
j′:∂(j′)⊂S2,k∈VS

d

dt
Āj′k[t]


−

 ∑
j′∈VD,k∈VS

d

dt
Āj′k[t]−

∑
j′∈VD,k∈S2

d

dt
Āj′k[t]


=

∑
j′∈VD,k∈S2

d

dt
Āj′k[t]−

∑
j′:∂(j′)⊂S2,k∈VS

d

dt
Āj′k[t] .

Finally, observe that for any k ∈ S2

d

dt
Lα(X̄U [t]) = − d

dt

X̄U
k [t]

αk
= − 1

1T
S2
α

∑
k∈S2

αk
d

dt

X̄U
k [t]

αk
= − 1

1T
S2
α

∑
k∈S2

d

dt
X̄U
k [t] . (47)

Plug (45) and (46) into (47), we know that inequality (17) holds, and it becomes equality for

SMW(α) policy.

E.2 Lyapunov Drift of Fluid Limits under SMW: Proof of Lemma 4

Proof of Lemma 4. Negative drift. Let (Ā, X̄) be a fluid limit of the system under SMW(α),

and t be its regular point. Simply plug in Lemma 3, and replace d
dtĀj′k[t] with φj′k, we have

(S2 is defined in Lemma 3)

d

dt
Lα(X̄[t]) = − 1

1TS2
α

 ∑
j′∈VD,k∈S2

d

dt
Āj′k[t]−

∑
j′∈VD:∂(j′)⊆S2,k∈VS

d

dt
Āj′k[t]


≤ − min

S2(VS

1

1TS2
α

 ∑
j′∈VD,k∈S2

φj′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φj′k


≤ − min

S2(VS

 ∑
j′∈VD,k∈S2

φj′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φj′k


≤ −min{ξ, λmin} .

Here λmin , mini∈VS 1Tφ(i) > 0 is the minimum supply arrival rate at any location (that has

positive arrival rate), and ξ , minJ(VD,J 6=∅

(∑
i∈∂(J) 1Tφ(i) −

∑
j′∈J 1Tφj′

)
> 0 is the Hall’s

gap of the system.
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Robustness of drift. Define

G(f) , min
S(VS

 ∑
j′∈VD,k∈A

fj′k −
∑

j′:∂(j′)⊆S,k∈VS

fj′k

 .

Note that G(f) is continuous in f . Since G(φ) ≤ −min{ξ, λmin} < 0, by continuity there exists

ε such that for any d
dtĀ[t] ∈ B(φ, ε),

d

dt
Lα(X̄[t]) = G

(
d

dt
Ā[t]

)
≤ −1

2
min{ξ, λmin} .

E.3 Explicit Exponent and Most Likely Sample Path: Proof of Lemma 5

Proof of Lemma 5. Explicit exponent. Let (A[·],X[·]) be a fluid sample path under SMW(α).

For a regular point t of this FSP, denote f , d
dtĀ[t]. Since exactly one demand arrives per period,

we have f ∈ F , {f ∈ Rn×n : fj′k ≥ 0 ∀j′ ∈ VD, k ∈ VS ;
∑

j′∈VD
∑

k∈VS fj′k = 1}.
For notation simplicity, for S ⊂ VS denote

gapS(f) ,
∑

j′:∂(j′)⊆S,k∈VS

fj′k −
∑

j′∈VD,k∈S
fj′k .

In words, gapS(f) is the minimum net rate at which supply in S is drained given current demand

arrival rate f , assuming no demand is dropped. Using the result of Lemma 3, we have:

d

dt
Lα(X̄[t]) = v̄(f) , max

S⊆VS

gapS(f)

1TSα
. (48)

Recall the definition of γAB(α) in Lemma 7. We have

γAB(α) = min
f∈F :v̄(f)>0

Λ∗(f)

v̄(f)

= min
f∈F :maxS⊆VS gapS(f)>0

Λ∗(f)

maxS⊆VS
gapS(f)

1TSα

= min
f∈F :maxS⊆VS gapS(f)>0

{
min

S⊆VS :gapS(f)>0

(
1TSα

) Λ∗(f)

gapS(f)

}
(49)

(a)
= min

S⊆VS

{
min

f∈F :gapS(f)>0

(
1TSα

) Λ∗(f)

gapS(f)

}
. (50)

For completeness, define the minimum over the empty set as +∞. Here (a) holds because: For

a minimizer f∗ ∈ F of the outer problem of (49) and a minimizer S∗ ⊆ VS of the inner problem

of (49), S∗ ⊆ VS is feasible for the inner problem of (50) while f∗ ∈ F is feasible for the outer

problem of (50), hence (49) ≥ (50). Similarly we can show (49) ≤ (50).

We claim that

(50) = min
J∈J

{
min

f∈F :gap∂(J)(f)>0

(
1T∂(J)α

) Λ∗(f)

gap∂(J)(f)

}
. (51)

To see this, first note that for S ⊆ VS where {j′ ∈ VD : ∂(j′) ⊂ S} is empty, gapS(f) is
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non-positive regardless of f ∈ F , hence such S can never be the minimizer. For other S, let

J , {j′ ∈ VD : ∂(j′) ⊂ S}, then ∂(J) ⊂ S. Note that

gap∂(J)(f) =
∑

j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k

=
∑

j′:∂(j′)⊂S,k∈VS

fj′k −
∑

j′∈VD,k∈S
fj′k +

∑
j′∈VD,k∈S\∂(J)

fj′k

= gapS(f) +
∑

j′∈VD,k∈S\∂(J)

fj′k

≥ gapS(f) .

As a result, for f such that gapS(f) > 0, we have(
1TSα

) Λ∗(f)

gapS(f)
≥
(
1T∂(J)α

) Λ∗(f)

gap∂(J)(f)
.

Hence only those S ⊆ VS where S = ∂(J) for J ⊆ VD can be the minimizer. If J /∈ J , then

gap∂(J)(f) ≤ 0 regardless of f ∈ F , so these sets are also ruled out. Therefore (51) holds.

Denote the optimal value of the inner minimization problem of (51) as g(φ, J) > 0, then we

have:

min
f∈F :gap∂(J)(f)>0

Λ∗(f)− g(φ, J)

 ∑
j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k

 = 0 . (52)

We can get rid of the constraint on f because for f where gap∂(J)(f) ≤ 0, the argument of

minimization in (52) is negative; and for f /∈ F , Λ∗(f) = ∞ by definition (6). Using Legendre

transform, we have:

min
f

Λ∗(f)− g(φ, J)

 ∑
j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k


= min

f
Λ∗(f)− fT

g(φ, J)
∑

j′∈J,k∈VS

ej′k − g(φ, J)
∑

j′∈VD,k∈∂(J)

ej′k


= − Λ

g(φ, J)
∑

j′∈J,k∈VS

ej′k − g(φ, J)
∑

j′∈VD,k∈∂(J)

ej′k


(b)
= − log

 ∑
j′∈VD,k∈VS

φj′ke
g(φ,J)I{j′∈J}−g(φ,J)I{k∈∂(J)}

 .

In (b) we use the fact that the dual function of Λ∗(f) is Λ(x) = log
(∑

j′∈VD,k∈VS φj′ke
xj′k
)

where x ∈ Rn×n. Hence, using
∑

j′∈VD,k∈VS φj′k = 1, Eq. (52) reduces to the nonlinear equation ∑
j′ /∈J,k∈∂(J)

φj′k

 e−g(φ,J) +

 ∑
j′∈J,k/∈∂(J)

φj′k

 eg(φ,J) =
∑

j′ /∈J,k∈∂(J)

φj′k +
∑

j′∈J,k/∈∂(J)

φj′k .
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Let y , eg(φ,J), this becomes a quadratic equation: ∑
j′∈J,k/∈∂(J)

φj′k

 y2 −

 ∑
j′ /∈J,k∈∂(J)

φj′k +
∑

j′∈J,k/∈∂(J)

φj′k

 y +

 ∑
j′ /∈J,k∈∂(J)

φj′k

 = 0 .

Hence

y =

∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

or 1 .

Since g(φ, J) > 0, we have

g(φ, J) = log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
.

Plugging into (51), we have:

γAB(α) = min
J∈J

(
1T∂(J)α

)
log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
.

Most likely demand sample path leading to demand drop. Denote

c , g(φ, J)

 ∑
j′∈J,k∈VS

ej′k −
∑

j′∈VD,k∈∂(J)

ej′k

 ,

denote fJ as the minimizer of the LHS of (51):

fJ = argminf∈F
∑
j′∈VD

∑
k∈VS

(
fj′k log

fj′k
φj′k
− cj′kfj′k

)
.

First order condition implies: (fJ)j′k = φj′k
e
cj′k∑

j′,k φj′ke
cj′k . Recall the definition of λJ , µJ in (11),

we have∑
j′,k

φj′ke
cj′k =

∑
j′∈J,k/∈∂(J)

φj′k
λJ
µJ

+
∑

j′ /∈J,k∈∂(J)

φj′k
µJ
λJ

+

1−
∑

j′∈J,k/∈∂(J)

φj′k −
∑

j′ /∈J,k∈∂(J)

φj′k


= µJ

λJ
µJ

+ λJ
µJ
λJ

+ (1− λJ − µJ)

= 1 .

Hence

(fJ)j′k =


φj′k(λJ/µJ), for j′ ∈ J, k /∈ ∂(J)

φj′k(µJ/λJ), for j′ /∈ J, k ∈ ∂(J)

φj′k, otherwise

.

Let J∗ = argminJ∈JBJ log(λJ/µJ), then demand sample path with constant derivative fJ∗ is

the most likely sample path leading to demand drop.
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E.4 Performance of Vanilla MaxWeight: Proof of Proposition 4

Proof of Proposition 4. We have

LHS = min
J∈J

|∂(J)|
n

log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
, (53)

γ∗ = max
α∈Ω

min
J∈J

(1T
∂(J)α) log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
. (54)

Let J∗ ( VD be one of the minimizer of (53), α∗ is the maximizer of (54). Hence

γ∗ = min
J∈J

(1T
∂(J)α

∗) log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)

≤ (1T
∂(J∗)α

∗) log

(∑
j′ /∈J∗,i∈∂(J∗) φj′k∑
j′∈J∗,i/∈∂(J∗) φj′k

)

≤ |∂(J∗)| log

(∑
j′ /∈J∗,i∈∂(J∗) φj′k∑
j′∈J∗,i/∈∂(J∗) φj′k

)
= nγ

(
1

n
1

)
.

F Simulation Settings

Model Primitives.

• Demand arrival process (φ). Using the estimation in Buchholz (2015), which is based on

Manhattan’s taxi trip data during August and September in 2012, we obtain the (average)

demand arrival rates for each origin-destination pair during the day (7 a.m. to 4 p.m.)

denoted by φ̃ij (i, j = 1, · · · , 30). However, we find that φ̃ij violates CRP (there are a lot

more rides to Midtown than from Midtown). We consider the following “symmetrization” of

φ̃ , (φ̃ij)30×30 to ensure that CRP holds (ride-hailing platforms may use spatially varying

prices and repositioning to obtain CRP, see Section 1):

φ(η) , ηφ̃+ (1− η)
1

2
(φ̃+ φ̃T), η ∈ (0, 1). (55)

Figure 10 shows how the Hall’s gap of φ(η) varies with η. We pick η = 0.21 such that CRP is

“almost violated”13. The subset of locations with smallest Hall’s gap is then the Upper West

Side (locations 19, 23, 24, 27, 28 in Figure 5).

• Pickup/service times (D/D̃). We extract the pairwise travel time between region centroids

(marked by the dots in Figure 5) using Google Maps, denoted by Dij ’s (i, j = 1, · · · , 30). We

use Dij as service time for customers traveling from i to j. For each customer at i who is

picked up by a supply from k we add a pickup time 14 of D̃ki = max{3
2Dki, 3 minutes}.

13We also ran simulations for η = 0.15 such that Hall’s gap is large. There is no significant difference in the
policies’ relative performances, so we didn’t include it here.

14We use the inflated Dij ’s as pickup times to account for delays in finding or waiting for the customer.
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Figure 10: Hall’s gap of symmetrized matrix φ(η) (see Eq. (55)) versus parameter η, based
on the demand arrival rates φ̃ computed from the Manhattan taxi data. Our simulations use
η = 0.21, which corresponds to a small but non-zero Hall’s gap (< 10).

Benchmark policy: fluid-based policy. We consider the fluid-based randomized policy

(Banerjee et al. 2016, Ozkan and Ward 2016) as a benchmark. Let X be the solution set of the

feasibility problem ∑
j∈∂(i)

xij = λi ∀i,
∑
i∈∂(j)

xij = µj ∀j.

Since CRP holds, X 6= ∅. Let x∗ , argminx∈X
∑

(i,j)∈E D̃ijxij . When demand arrives at location

j, the randomized fluid-based policy dispatches from location i ∈ ∂(j) with probability x∗ij/µj .

Then x∗ij is the rate of dispatching cars from i to serve demand at j. From Banerjee et al.

(2016), we know that x∗ leads to a zero demand-drop as K →∞ with and without pickup times

(assuming demand remains constant). Moreover, with pickup times, Little’s Law gives that the

fluid-based policy minimizes the expected number of cars on-route to pick up customers.

Benchmark fleet-size. In the Service time setting, a fraction of cars are in transit under

the stationary distribution; in the Service+Pickup time setting, there is an additional fraction

of cars on-route to pick up customers. A simple workload conservation argument (using Little’s

Law) gives the benchmark fleet-sizes as follows.

• Service time. Assuming no demand is dropped, the mean number of cars in transit is: Kfl =∑
i,j φijDij . In our setting, we have Kin-transit ≈ 7, 061. Since CRP holds and demand-

drop probability goes to 0 under both fluid-based policy and SMW policies, Kin-transit is

a reasonable benchmark fleet-size Kfl. We will vary the number of cars in the system

denoted by Ktot = Kfl + Kslack and compare the performance of different policies. Here

Kslack is the number of free cars in the system when no demand is dropped.

• Service+Pickup time. Applying Little’s Law, if no demand is dropped, the mean number

of cars picking up customers is at least Kpickup = minx∈X D̃ijxij . In our case, we have

Kpickup ≈ 2, 941. Hence, the benchmark fleet size is Kfl = Kin-transit + Kpickup = 10, 002.
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Note that this number is close to the real-world fleet size: there were approximately 11,500

active medallions when Buchholz (2015) was written.
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