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In this section, we prove Theorems 1 and 2 in “Outcome-Weighted Learning for Personalized

Medicine with Multiple Treatment Options” by Zhou, Wang, and Zeng.

A.1 Proof of Theorem 1

We start from treatment category k following the order in SOM. First, we show D∗(x) = k if and

only if E(R|X = x,A = k) = maxkl=1E(R|X = x,A = l). For any x with D∗(x) = k, by the

definition of D∗, there exists a permutation (j1, ..., jk−1) of {1, ..., k − 1} such that D∗(k)l (x) = −1

for l = j1, ..., jk−1. That is,

f∗j1(x) < 0, f∗j2(x) < 0, . . . , f∗jk−1
(x) < 0,

where f∗jl is the counterpart of f̂j1 when n =∞.

On the other hand, from the estimation of f̂j1 , it is clear that f∗j1 is the minimizer of the

expectation of a weighted hinge loss corresponding to Vn,j1, which is
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where R+ = RI(R > 0), R− = −RI(R ≤ 0), and R = R+ −R−.
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We first consider the case when f(x) ∈ (−∞,−1], the equation above can be reduced to
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It is clear that we cannot find a minimizer for (A.1). Similarly, the minimizer cannot be in the

interval f(x) ∈ [1,∞). Therefore, we only consider f(x) ∈ (−1, 1). Then the expectation of a

weighted hinge loss corresponding to Vn,j1 above is:

E

(
k − 1

k
R+

∣∣∣∣X = x,A = j1

)
{1− f(x)}+ +

k∑
l=2

E

(
R−

k

∣∣∣∣X = x,A = jl

)
{1− f(x)}+

+

k∑
l=2

E

(
R+

k

∣∣∣∣X = x,A = jl

)
{1 + f(x)}+ + E

(
k − 1

k
R−
∣∣∣∣X = x,A = j1

)
{1 + f(x)}+

=

{
k∑
l=2

E

(
R

k

∣∣∣∣X = x,A = jl

)
− E

(
k − 1

k
R

∣∣∣∣X = x,A = j1

)}
f(x) + constant

That is, f∗j1(X) < 0 is equivalent to
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which is equivalent to

E (R|X = x,A = j1) <
1

k − 1

k∑
l=2

E (R|X = x,A = jl) .

2



Next, when restricting data to those with A 6= j1 and f∗j1(X) < 0, it is clear that f∗j2 minimizes
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Thus, we conclude that

sign{f∗j2(x)} =sign[E{(k − 2)R|X = x,A = j2} −
k∑
l=3

E{R|X = x,A = jl}]I{f∗j1(x) < 0}.

That is, f∗j2(x) < 0 if and only if

E(R|X = x,A = j2) <
1

k − 2

k∑
l=3

E(R|X = x,A = jl)

Continue the same arguments so we establish the relationship between f∗jl and E(R|X = x,A =

jl) as

sign{f∗jl(x)} = sign

{
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In other words, we obtain that for this subject with f∗j1(x) < 0, ..., f∗jk−1
(x) < 0, it holds

E(R|X = x,A = j1) <
1

k − 1

k∑
l=2

E(R|X = x,A = jl),

E(R|X = x,A = j2) <
1

k − 2

k∑
l=3

E(R|X = x,A = jl),

...

E(R|X = x,A = jk−2) < 1/2{E(R|X = x,A = jk−1) + E(R|X = x,A = k)},

E(R|X = x,A = jk−1) < E(R|X = x,A = k).

Starting from the last inequality in the above, in turn, we have

E(R|X = x,A = jk−1) < E(R|X = x,A = k)

E(R|X = x,A = jk−2) < 1/2{E(R|X = x,A = jk−1) + E(R|X = x,A = k)}

< E(R|X = x,A = k),

...

E(R|X = x,A = j1) <
1

k − 1

k∑
l=2

E(R|X = x,A = j1) < E(R|X = x,A = k).

Therefore,

E(R|X = x,A = k) =
k

max
l=1

E(R|X = x,A = l).

For the other direction, we suppose that

E(R|X = x,A = k) =
k

max
l=1

E(R|X = x,A = l).

We order the expectations to obtain

E(R|X = x,A = j1) ≤ E(R|X = x,A = j2) ≤ ... ≤ E(R|X = x,A = k)

Thus all the inequalities in (2)-(7) hold, from equivalence between f∗jl and E(R|X = x,A = jl)’s,
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it is straightforward to see that

f∗j1(x) < 0, ..., f∗jk−1
(x) < 0.

In other words, D∗(x) = k. Hence, we have proved that SOM learning correctly assigns subjects

whose conditional mean outcomes are maximal in treatment k into the optimal treatment k.

To prove the consistency of the remaining classes, obtains the rule for class (k − 1) conditional

on A 6= k and D∗(x) 6= k. Using the same proof as above, we conclude

D∗(x) = (k − 1) if and only if (k − 1) = argmaxk−1l=1 Ẽ(R|X = x,A = l),

where Ẽ(R|X = x,A = jl) is the conditional expectation of R given X = x, A 6= k and D∗(x) 6= k.

Moreover, D∗(x) 6= k implies that E(R|X = x,A = k) cannot be the maximum. Therefore,

(k − 1) = argmaxk−1l=1 E(R|X = x,A = l) = argmaxkl=1E(R|X = x,A = l).

That is,

D∗(x) = (k − 1) if and only if (k − 1) = argmaxkl=1E(R|X = x,A = l).

We continue this proof for the remaining classes and finally obtain Fisher consistency.

A.2 Proof of Theorem 2

We first note

R(D̂)−R(D∗)

=
k∑
l=1

[
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R
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}
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}]

=
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E
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R
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}
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{
R
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}]
.
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Therefore,

R(D̂)−R(D∗)

=
k∑
l=1

[
E

{
R

πl(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

}
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R

πA(X)
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.

≤
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[
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.

We let ∆l to denote each term on the right-hand side of the above equation. That is,

∆l = E

{
R+

πA(X)
I(A = l, D̂(X) 6= l,D∗(X) = l)

}
+ E

{
R−

πA(X)
I(A 6= l, D̂(X) 6= l,D∗(X) = l)
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{
|R|

πA(X)
I(Zlsign(R) = 1, D̂(X) 6= l,D∗(X) = l)

}
,

where we recall Zl = 2I(A = l)− 1.

We first examine ∆k. For any x in the domain of X, we let j1, j2, ..., jk−1 be the permutation

of {1, ..., k − 1} such that

E(R|A = j1, X = x) < ... < E(R|A = jk−1, X = x).

Then according to SOM learning, D∗(x) = k implies that f∗jl(x)(x) < 0 for any l = 1, .., k− 1, while

D̂(X) 6= k implies that for this particular permutation, there exists some l = 1, ..., k − 1 such that

f̂jl(x) > 0 so f̂jl(x)f∗jl(x) < 0. Recall that f∗jl(x) = ηjl,S with S = {jl+1, ..., k} and it is the limit of

f̂jl from Theorem 3.1. Therefore, we obtain

∆k ≤ E

 |R|
πA(X)

 ∑
(j1,...,jk−1)

I(Zksign(R) = 1, there exists l ≤ k − 1 s.t. f̂jl(X)f∗jl(X) < 0)




≤
∑

(j1,...,jk−1)

E

[
|R|

πA(X)
I
{
Zj1sign(R) = −1, ..., Zjl−1

sign(R) = −1, f̂jl(X)f∗jl(X) < 0
}]

≤
∑

(j1,...,jk−1)

E

[
|R|

πA(X)
{I(A = jl)(k − l + 1) + I(A 6= jl)}

×I
{
Zj1sign(R) = −1, ..., Zjl−1

sign(R) = −1, f̂jl(X)f∗jl(X) < 0
}]

.

Hence, it suffices to bound each term on the right-hand side of the above inequality.
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When l = 1, under conditions 1-3, we use the same proof of Theorem 3.2 in Zhao et al. (2012),

which extends the result in Stienwart and Christmann (2008) to a weighted support vector machine.

Particularly, in their proof, we let the weight for subject i be

|Ri|/πAi(Xi) {(k − 1)I(Ai = j1) + I(Ai 6= j1)}

and the class label be Zj1sign(Ri). Furthermore, from the proof of Theorem 3.1, f∗j1(x) has the

same sign as ηj1,{j2,...,jk}(x). Thus, from condition (C.1), we conclude that there exists at least

probability 1− 3e−ε and a constant C1 such that it holds

E

[
|R|

πA(X)
{(k − 1)I(A = j1) + I(A 6= j1)} I(Zj1sign(R)f̂j1(X) < 0)

]

−E
[
|R|

πA(X)
{(k − 1)I(A = j1) + I(A 6= j1)} I(Zj1sign(R)f∗j1(X) < 0)

]
≤ C1Qn(ε),

where

Qn(ε) =

{
λ

τ
2+τ
n σ

− dτ
d+τ

n + σβn + ε

(
nλpnσ

1−p
1+ε0d
n

)− q+1
q+2−p

}
with any constant ε0 > 0 and d/(d + τ) < p < 2. Then according to the proof of Lemma 5 in

Bartlett et al. (2006) and conditions 1 and 2, this gives

Pr{f̂j1(X)f∗j1(X) < 0} ≤ {C ′1Qn(ε)}α,

where α = q/(1 + q) and C ′1 is a constant.

When l = 2, the step at j2 in SOM is to minimize

n−1
n∑
i=1

I{Zij1 = −1, Zij1sign(Ri)f̂j1(Xi) < 0}wi{1− Zij2sign(Ri)f(Xi)}+ + λn,j2‖f‖2,

where wi = |Ri|/πAi(Xi) {(k − 2)I(Ai = j2) + I(Ai 6= j2)} . Thus, we can proceed the same proof

of Theorem 3.2 in Zhao et al. (2012) except that only subjects in the random set

{
i : Zij1 = −1, Zij1sign(Ri)f̂j1(Xi) < 0

}
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are used in the derivation. We obtain that

E

[
|R|

πA(X)
{(k − 2)I(A = j2) + I(A 6= j2)} I{Zj1 = −1, Zj2sign(R)f̂j2(X) < 0}

]
−E

[
|R|

πA(X)
{(k − 2)I{A = j2) + I(A 6= j2)} I{Zj1 = −1, Zj2sign(R)f∗j2(X) < 0}

]
≤ C2

{
Qn(ε) + |Pr(Zj1sign(R)f̂j1(X) > 0)− Pr(Zj1sign(R)f∗j1(X) > 0)|

}
≤ C2 {Qn(ε) +Qn(ε)α}

with a probability at least 1−3e−ε for a constant C2. Note that the second term on the right-hand

side is due to the estimated random set in this step. Again, the proof of Lemma 5 in Bartlett et al.

(2006) gives

Pr{Zj1 = −1, f̂j2(X)f∗j2(X) < 0} ≤ {C ′2Qn(ε)}α.

We continue the same arguments for l = 3, ..., k − 1 to obtain

E

[
|R|

πA(X)
{(k − l + 1)I(A = jl) + I(A 6= jl)} I

{
Zjlsign(R)f̂jl(X) < 0, Zjl−1

= −1, ..., Zj1 = −1
}]

− E

[
|R|

πA(X)
{(k − l + 1)I(A = jl) + I(A 6= jl)} I

{
Zjlf

∗
jl

(X) < 0, Zjl−1
= −1, ..., Zj1 = −1

}]
≤ Cl {Qn(ε) +Qn(ε)α}

with a probability at least 1− 3le−ε for some constant Cl, and

Pr{Zj1 = −1, ..., Zjl−1
= −1, f̂jl(X)f∗jl(X) < 0} ≤ {C ′lQn(ε)}α

for a constant C ′l . Hence, with a probability 1 − {3k(k − 1)/2}e−ε, ∆k ≤ CQn(ε)α for a constant

C.

Similarly, we can examine the difference for ∆k−1. We follow exactly the same arguments as

before by considering all possible permutations from {1, ..., k − 2} and l = 1, ..., k − 2. The only

difference in the argument is that the random set is restricted to subjects with A 6= k and D̂(k)(X) =

−1. However, the probability of the latter differs from the probability A 6= k and D∗(k)(X) = −1

by CQn(ε)α from the previous conclusion. Therefore, we obtain that with probability at least

1− {3k(k − 1)/2 + 3(k − 1)(k − 2)/2}e−ε, ∆k−1 ≤ CQn(ε)α for another constant C. Continue the
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same arguments for ∆l, l = k − 2, ..., 1 so we finally conclude

R(D̂)−R∗ ≤ CQn(ε)α

with probability at least 1−C ′e−ε where C ′ is a constant depending on k. Thus Theorem 3.2 holds.
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