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A Marginal Approach to Reduced-Rank Penalized
Spline Smoothing With Application to Multilevel

Functional Data
Huaihou CHEN, Yuanjia WANG, Myunghee Cho PAIK, and H. Alex CHOI

Multilevel functional data are collected in many biomedical studies. For example, in a study of the effect of Nimodipine on patients with
subarachnoid hemorrhage (SAH), patients underwent multiple 4-hr treatment cycles. Within each treatment cycle, subjects’ vital signs were
reported every 10 min. These data have a natural multilevel structure with treatment cycles nested within subjects and measurements nested
within cycles. Most literature on nonparametric analysis of such multilevel functional data focuses on conditional approaches using functional
mixed effects models. However, parameters obtained from the conditional models do not have direct interpretations as population average
effects. When population effects are of interest, we may employ marginal regression models. In this work, we propose marginal approaches
to fit multilevel functional data through penalized spline generalized estimating equation (penalized spline GEE). The procedure is effective
for modeling multilevel correlated generalized outcomes as well as continuous outcomes without suffering from numerical difficulties. We
provide a variance estimator robust to misspecification of correlation structure. We investigate the large sample properties of the penalized
spline GEE estimator with multilevel continuous data and show that the asymptotics falls into two categories. In the small knots scenario,
the estimated mean function is asymptotically efficient when the true correlation function is used and the asymptotic bias does not depend
on the working correlation matrix. In the large knots scenario, both the asymptotic bias and variance depend on the working correlation. We
propose a new method to select the smoothing parameter for penalized spline GEE based on an estimate of the asymptotic mean squared
error (MSE). We conduct extensive simulation studies to examine property of the proposed estimator under different correlation structures
and sensitivity of the variance estimation to the choice of smoothing parameter. Finally, we apply the methods to the SAH study to evaluate
a recent debate on discontinuing the use of Nimodipine in the clinical community. Supplementary materials for this article are available
online.

KEY WORDS: Asymptotics; Functional regression; GEE; Longitudinal data; Semiparametric models; Smoothing parameter selection.

1. INTRODUCTION

Multilevel functional data are often collected in many
biomedical studies. For example, in a study of the effect of Ni-
modipine on patients diagnosed with subarachnoid hemorrhage
(SAH) introduced in Section 1.1, each patient was administered
one of the two doses of Nimodipine during multiple 4-hr treat-
ment cycles, and their clinical outcomes were recorded every
5 sec and the averages in each 10-min interval were reported
(Choi et al. 2012). The data have a multilevel structure with
treatment cycles nested within subjects and repeated outcome
measurements nested within cycles.

Modeling multilevel functional data has recently received
extensive attention. Brumback and Rice (1998) used smoothing
splines to analyze nested samples of functional data. Guo (2002)
proposed a functional mixed effects model with functional ran-
dom effects fitted by Kalman filtering. Zhou, Huang, and Carroll
(2008) proposed jointly modeling of paired sparse functional
data with reduced rank principal components. Baladandayutha-
pani et al. (2008) and Staicu, Crainiceanu, and Carroll (2010)
developed a functional mixed effects model-based Bayesian
approach for correlated multilevel spatial data. Crainiceanu,
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Staicu, and Di (2009) proposed methods for functional regres-
sion with multilevel functional predictors under a mixed effects
model framework. Apanasovich et al. (2008) proposed a com-
posite likelihood-based approach for correlated binary data. Di
et al. (2009) developed a functional multivariate analysis of vari-
ance that used a few functional principal components to reduce
dimensionality.

The above methods on multilevel functional data in the lit-
erature focus on conditional approaches through a functional
mixed effects model or functional principal components analy-
sis. In some clinical trials, such as the SAH study described in
Section 1.1 (Choi et al. 2012), the goal is to estimate the pop-
ulation average effect, or the group difference. To achieve this
goal, marginal approaches are more suitable than conditional
approaches. There is a wealth of literature on nonparametric
marginal regression models through local polynomial or kernel-
based methods (see, e.g., Lin and Carroll 2000; Welsh, Lin,
and Carroll 2002; Lin et al. 2004). In particular, Welsh, Lin,
and Carroll (2002) compared the efficiency of the local kernel-
based methods with spline-based methods for marginal models
with single-level functional data. However, it is not straightfor-
ward to apply kernel smoothing to accommodate the multilevel
data structure. A few other works that propose marginal mod-
els fitted by smoothing splines include those by Ibrahim and
Suliadi (2010a, 2010b). In a variable selection setting, Fu (2003)
proposed penalized generalized estimating equation to handle
collinearity among variables.
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The pros and cons of marginal versus conditional models for
longitudinal data have been debated extensively in the literature
(see, e.g., Diggle, Liang, and Zeger 2002). Marginal models pro-
vide a direct estimation of the population average effect. For con-
tinuous outcomes, parameters in the marginal and conditional
models have the same interpretation as the population average
effect. In contrast, for generalized outcomes, conditional models
do not directly give estimators of population averaged marginal
effects due to a nonidentity link function. Therefore, when
marginal effects are of interest, subject-specific random effects
need to be integrated out, usually through numerical integration.
In addition, a potential computational advantage of the marginal
regression is that since the procedure only requires the speci-
fication of the first two moments of the marginal distribution,
it is particularly effective for modeling correlated generalized
outcomes. Numerical algorithms for conditional approaches for
multilevel functional data with generalized outcomes may not
always converge. In the SAH study, the functional mixed effects
model with a two-level random effects did not converge for the
primary binary outcome. Furthermore, a widely known advan-
tage of using a robust sandwich variance estimator in marginal
models is that it remains consistent under a misspecified work-
ing correlation structure. For a parametric model, the estimated
mean parameters are asymptotically efficient when the true cor-
relation is used. However, for nonparametric models fitted by
local polynomials, such property does not hold (Lin and Carroll
2000). To take into account the within-cluster correlation to im-
prove efficiency, seemingly unrelated kernel estimator should
be used (Wang 2003; Lin et al. 2004). It may not be straight-
forward to adapt local kernel-based approaches to effectively
account for more complicated multilevel functional data.

There is scant literature on marginal approaches for mul-
tilevel functional data through reduced-rank penalized spline
smoothing (P-spline; Eilers and Marx 1996; Ruppert, Wand, and
Carroll 2003). In this work, we study semiparametric marginal
regression models with multilevel continuous or generalized
functional data. The developed penalized spline GEE and ro-
bust variance estimator provide tools to evaluate the population
average effect without requiring integrating over the distribu-
tion of the random effects. The rest of the article is organized as
follows. In Section 1.1, we provide an overview of the clinical
study that motivated this research. In Section 2, we present the
penalized spline GEE for marginal models along with a robust
variance estimator. In Section 3, we investigate large sample
properties of the proposed estimator and show that, similar to
independent data, the asymptotics fall into two scenarios. For
the small knots scenario, the estimated population mean func-
tion is asymptotically efficient when the true correlation func-
tion is used and the asymptotic bias does not depend on the
working correlation matrix. For the large knots scenario, both
the asymptotic bias and variance depend on the working correla-
tion. In Section 4, we use the asymptotic results to develop a new
method to select the smoothing parameter for marginal regres-
sions based on an estimated asymptotic average mean squared
error (MSE). In Section 5, we carry out extensive simulation
studies to examine the performance of the approaches under
various models. In Section 6, we apply the proposed methods to
the SAH study to evaluate a debatable recommendation in the
clinical community to discontinue the use of Nimodipine among

SAH patients. Finally, in Section 7 we conclude with some
remarks.

1.1 Motivating Example: Nimodipine and the SAH Study

Subarachnoid hemorrhage is an acute cerebrovascular event
caused by rupture of a cerebral aneurysm. It can have devas-
tating consequences, causing serious morbidity and mortality.
Nimodipine is the only medication shown in Phase III trials
to improve clinical outcomes after SAH (Dorhout et al. 2007).
Although initial clinical studies did not document low blood
pressure as a side effect, a decrease in the blood pressure and
even a decrease in brain oxygen delivery has been observed dur-
ing routine clinical usage (Stiefel et al. 2004). In light of these
clinical findings, the effectiveness of Nimodipine has been chal-
lenged. In fact, recent clinical guidelines have suggested discon-
tinuing the use of Nimodipine when administration is associated
with significant decreases in blood pressure. Although this is a
strong recommendation, the committee admits to little clinical
data supporting their recommendation (Diringer et al. 2011). In
this work, we aim to quantify the effect of Nimodipine on vari-
ous physiologic outcomes from an observational study of SAH
patients admitted to a neurological intensive care unit (Choi
et al. 2012).

Nimodipine is administered to patients with SAH at one of
the two doses every 4 hr, creating multiple 4-hr treatment cycles.
Within each treatment cycle, subjects’ vital signs such as mean
arterial blood pressure (MAP) and brain tissue oxygenation are
recorded continuously and averaged over 10-min intervals to
reduce noise. Every 4 hr a patient receives a high dose or a low
dose of Nimodipine depending on his or her clinical profile.
This scenario creates a multilevel data structure with treatment
cycles nested within subjects and repeated outcome measure-
ments nested within cycles. Our primary research interest is to
estimate mean physiologic outcomes averaged across treatment
cycles and across subjects to evaluate the acute effects of Ni-
modipine on systemic and brain physiology. Specific research
questions include whether Nimodipine increases or reduces the
MAP and its effect on the risk of cerebral autoregulation loss.

2. MARGINAL NONPARAMETRIC OR
SEMIPARAMETRIC MODELS AND REDUCED

RANK SMOOTHING

2.1 Single-Level Continuous Functional Data

Let i = 1, . . . , n index subject and let j = 1, . . . , ni index
observations within a subject. Let Yi = (Yi1, . . . , Yini

)T denote
a vector of outcomes on the ith subject, let Xij denote a vector
of covariates, and let Xi = (Xi1, . . . , Xini

)T . For simplicity in
illustration, we present methods for a nonparametric model. It
is straightforward to extend it to semiparametric models such as
a partially linear model. Consider the marginal regression,

E(Yij |Xij ) = f (Xij ), cov(Yi |Xi) = !i ,

where f (·) is an unspecified smooth function. Let B(x) de-
note an l-dimensional vector of spline basis functions such as
B-splines or truncated polynomials. For the pth order trun-
cated polynomial with K knots, B(x) = [1, x, . . . , xp, (x −
τ1)p+, . . . , (x − τK )p+]T , where τ1, . . . , τK is a sequence of knots.
Let Bi = [B(Xi1), . . . , B(Xini

)]T denote the ni × l matrix of
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basis functions. Given the covariance matrix !i , the usual pe-
nalized spline estimator with the qth order penalty minimizes a
weighted least-square,

n∑

i=1

(Yi − Biθ )T !−1
i (Yi − Biθ ) + λ

∫ b

a

{
[BT (x)θ ](q)}2

dx,

where θ is a vector of basis coefficients and λ is a smoothing
parameter. Using a difference-based penalty matrix, the above
can be expressed as

n∑

i=1

(Yi − Biθ )T !−1
i (Yi − Biθ ) + λθT Dqθ,

where Dq is an appropriate penalty matrix depending on the
chosen basis. For example, for the pth-order truncated polyno-
mial basis, we have q = p + 1 and Dq = diag(0p+1, 1K ). The
fitted value at a fixed point is f̂ (x) = BT (x)θ̂ and its standard
error is estimated from

BT (x)

(
n∑

i=1

BT
i !−1

i Bi + λDq

)−1 n∑

i=1

BT
i !−1

i Bi

×
(

n∑

i=1

BT
i !−1

i Bi + λDq

)−1

B(x). (1)

In practice, !i is often unknown and will be estimated under a
parametric model. A misspecified parametric model would lead
to an inconsistent estimate of the standard error of f̂ (x).

Next, consider the GEE for a parametric mean model with a
design matrix Zi that solves the estimating equation

n∑

i=1

ZT
i V −1

i (Yi − Ziη) = 0,

where Vi is a working covariance matrix of Yi not necessarily
equal to the true covariance !i . Although no likelihood is as-
sumed for the GEE-based approaches, the estimating equation
can be treated as the score equation for mean parameters from
a partly exponential model (Zhao, Prentice, and Self 1992). For
a model with a nonparametric mean function, adding a rough-
ness penalty to a partly exponential model and taking the partial
derivative with respect to the basis coefficients for the mean
function motivates the penalized spline GEE,

n∑

i=1

BT
i V −1

i (Yi − Biθ ) − λDqθ = 0,

where again Vi is a working covariance matrix. When ignoring
the penalty term, the penalized spline GEE reduces to a regular
parametric GEE. The solution is

θ̂λ =
(

n∑

i=1

BT
i V −1

i Bi + λDq

)−1 n∑

i=1

BT
i V −1

i Yi, (2)

and the sandwich covariance formula for θ̂λ is

cov(θ̂λ) = H−1
n,λMnH

−1
n,λ, (3)

where Hn,λ =
∑n

i=1 BT
i V −1

i Bi + λDq , and Mn =
∑n

i=1
BT

i V −1
i (Yi − Biθ )(Yi − Biθ )T V −1

i Bi . The sandwich variance
for f̂ (x) is

var[f̂ (x)] = BT (x)cov(θ̂λ)B(x).

Let τ index a finite-dimensional parameter vector for Vi

and let V̂i = Vi (̂τ ). The variance is then estimated by
Ĥn,λ =

∑n
i=1 BT

i V̂ −1
i Bi + λDq and M̂n =

∑n
i=1 BT

i V̂ −1
i (Yi −

Bi θ̂0)(Yi − Bi θ̂0)T V̂ −1
i Bi in (3), where θ̂0 is an initial regression

spline estimator.
Note that this new variance estimator (3) differs from the usual

model-based estimator in (1). It shares the robustness property
as the sandwich variance estimator for the parametric marginal
regressions: it remains consistent even if the correlation structure
is misspecified.

2.2 Single-Level Generalized Functional Data

Again, first consider a nonparametric model

E(Yij |Xij ) = µij , g(µij ) = f (Xij ),

where g(·) is a known link function and f (·) is an unspec-
ified smooth function. Let µ(·) = g−1(·) denote the inverse
of the link function, and with a little abuse of notation, let
µ(Biθ ) = [µ(BT

i1θ ), . . . , µ(BT
ini

θ )]T . The penalized spline GEE
for generalized outcomes is then

n∑

i=1

DT
i (θ )[Vi(θ )]−1[Yi − µ(Biθ )] − λDqθ = 0, (4)

where Di(θ ) = ∂µ(Biθ)
∂θ

, Vi(θ ) = A
1/2
i (θ )Ri(τ )A1/2

i (θ ), Ai(θ ) =
diag[var(Yi1), . . . , var(Yini

)], and Ri(τ ) is a working correlation
matrix. Similar to the continuous outcome model, the sandwich
covariance estimator for θ̂λ takes the same form as (3) with

Hn,λ(θ ) =
n∑

i=1

BT
i Ai(θ )[Vi(θ )]−1Ai(θ )Bi + λDq

and

Mn(θ ) =
n∑

i=1

BT
i Ai(θ )[Vi(θ )]−1[Yi − µ(Biθ )][Yi − µ(Biθ )]T

× [Vi(θ )]−1Ai(θ )Bi,

which can be estimated by replacing θ with θ̂λ in the above
expressions.

The estimating equation in (4) and the variance estimator are
different from the likelihood-based conditional approaches. The
resulting fitted function and parameters also have different in-
terpretations (population average effects) than the ones obtained
from the conditional models (subject-specific effects).

2.3 Multilevel Functional Data

For multilevel functional data, let Yij (tijk) denote the mea-
surement on the ith subject during the jth cycle at the kth time
point, where i = 1, . . . , n, j = 1, . . . , ni and k = 1, . . . , nij .
The marginal methods presented in previous sections can be
applied under the working assumption that all measurements
on the ith subject are independent. However, a good choice of
working covariance matrix may improve estimation efficiency.
To obtain a reasonable working covariance, we present a two-
way functional analysis of variance (ANOVA) working model
as

Yij (tijk) = µ(tijk) + ηj (tijk) + ξi(tijk) + γij (tijk) + εijk, (5)

where µ(t) is the grand mean function, ηj (t) is the deviation
of the jth cycle from the grand mean, or the cycle effect, ξi(t)
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is the subject-specific deviation from the cycle-specific mean
function (or the subject effect), γij (t) is the interaction effect,
and εijk ∼ N (0, σ 2

ε ) are the residual measurement errors.
Using the spline basis expansion, we have

µ(t) ≈ BT (t)µ, ηj (t) ≈ BT (t)ηj , ξi(t) ≈ BT (t)αi ,

γij (t) ≈ BT (t)γij ,

where µ, ηj , αi , and γij are basis coefficients. Let Yij =
[Yij (tij1), . . . , Yij (tijnij

)]T and Bij = [Bij (tij1), . . . , Bij (tijnij
)]T .

Then a working model using regression splines can be expressed
as

Yij = Bijµ + Bijηj + Bijαi + Bijγij + εij ,

ηj ∼ N (0,,), αi ∼ N (0,-), γij ∼ N (0,.),
εij ∼ N (0, σ 2

ε Inij
). (6)

Under the model (6), a working covariance matrix is computed
to improve estimation efficiency. Other working covariance can
also be used. The parameters are obtained by restricted maxi-
mum likelihood estimation under the working regression spline
model (6) (see, e.g., Rice and Wu 2001; Wu and Zhang 2006,
chap. 5.4). We do not assume the covariance structure to be
correctly specified and will use the robust sandwich formula
to compute the standard error of the mean function. For gen-
eralized outcomes, a similar functional ANOVA model can be
defined.

3. ASYMPTOTIC PROPERTIES

In the online supplementary materials, we examine the
asymptotics of the penalized spline estimator in a marginal
model for correlated continuous data. We show that similar to
independent data case (e.g., Claeskens et al. 2009), the asymp-
totics for correlated data falls under a small knots and a large
knots scenario depending on the rate of increase of the num-
ber of knots. The small knots scenario is close to regression
spline, that is, the optimal rate of MSE attained by the penal-
ized spline estimator is similar to a regression spline estimator
shown by Zhu, Fung, and He (2008). In this case, the shrinkage
bias becomes negligible when smoothing parameter λ = O(nγ )
is small, that is, when γ ≤ (p + 2 − q)/(2p + 3). Therefore,
the asymptotic MSE is dominated by the squared approxima-
tion bias and asymptotic variance. The large knots is close to
smoothing spline, that is, the optimal rate of MSE attained by the
penalized spline estimator is similar to a smoothing spline esti-
mator shown by Lin et al. (2004). In this case, the approximation
bias becomes negligible when the number of knots K = O(nν)
is large, that is, when ν ≥ q

(2q+1)(p+1) . Therefore, the asymptotic
MSE is dominated by the squared shrinkage bias and asymp-
totic variance. This property is useful for developing methods
to choose smoothing parameter.

We show the rate of convergence of the asymptotic bias, vari-
ance, and MSE in the online supplementary materials. In the
small knots scenario, since the shrinkage bias is negligible, the
asymptotic bias does not depend on the choice of working co-
variance matrix or the design density. The asymptotic variance
is minimized when the true covariance is used, and therefore the
asymptotic MSE is minimized when the working covariance is
chosen as the true covariance. In the large knots scenario, the
shrinkage bias is not negligible and the asymptotic bias depends

on the working covariance matrix, the true covariance matrix,
and the design density. Therefore, the penalized spline estima-
tor is not “design-adaptive” in the sense of Fan (1992). When
the smoothing parameter λ converges to infinity (or when λ/n

converges to zero) at a certain rate, we show in the online sup-
plementary materials that the asymptotic variance is minimized
when the true covariance is used, which is similar to that reported
by Welsh, Lin, and Carroll (2002). Finally, we prove a corollary
on the asymptotic normality of the fitted mean function.

4. SELECTION OF THE SMOOTHING PARAMETER

For penalized spline smoothing, there are two tuning parame-
ters to be determined: the number of knots of the spline basis and
the smoothing parameter. Both empirical and theoretical work
have suggested that when the number of knots is sufficiently
large, increasing it further does not guarantee improvement in
the quality of fit (Ruppert 2002; Li and Ruppert 2008). With
a sufficiently large number of knots, the choice of smoothing
parameter is critical for satisfactory performance. Popular meth-
ods to choose smoothing parameter include information crite-
rion based approaches such as AIC and BIC, cross-validation
(CV), generalized cross-validation (GCV; Craven and Wahba
1979), generalized maximum likelihood (GML; Wahba 1985),
and restricted maximum likelihood (REML; Wand 2003) where
the smoothing parameter is estimated as a ratio of two variance
components. Opsomer, Wang, and Yang (2001) compared vari-
ous methods for choosing smoothing parameter with correlated
data and found that GCV may tend to under-smooth data. For
marginal models, no likelihood is specified; thus, an AIC-, BIC-,
or REML-based smoothing parameter is not available.

Here we assume a sufficient number of knots is used and
propose a new method to select the smoothing parameter by
minimizing an estimate of the asymptotic average MSE. The
asymptotic analysis in Section 3 reveals that the bias is decom-
posed as the sum of the approximation bias and the shrinkage
bias. Since the approximation bias does not depend on λ, we
propose to select the smoothing parameter by minimizing an
estimate of the asymptotic MSE as the sum of the squared
shrinkage bias and the asymptotic variance. To be specific, we
choose the smoothing parameter by

min
λ

{M̂SE(λ)},

where

M̂SE(λ) =

⎛

⎝ 1
M

M∑

j=1

{
b̂2

λ(xj , V̂ ) + v̂ar[f̂ (xj )]
}
⎞

⎠ , (7)

and xj , j = 1, . . . , M, belong to a grid set covering the range
of Xi . Note that the shrinkage bias is the difference between
the bias of the penalized spline estimator and the approximation
bias, or the bias due to the shrinkage effect. It can be estimated
by the difference between a regression spline estimator and
a penalized spline estimator through nonparametric bootstrap.
Specifically, with a given λ and a given x, for each bootstrap copy
of data we obtain a penalized spline estimator, f̂

(b)
λ (x), and a

regression spline estimator f̂ (b)
reg (x). We repeat this procedure B
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1220 Journal of the American Statistical Association, December 2013

Table 1. Mean average MSE of f̂ (x) using various smoothing
techniques and smoothing parameter selectors, continuous outcome,

n = 200, m = 3, 500 simulations

Error P-spline P-spline
f (x) dist. (MSE) (GCV) R-spline

log(x) N(0,1) 0.015 0.023 0.018
log(x) U(−3,3) 0.044 0.055 0.052
2 exp(x) N(0,1) 0.007 0.007 0.014
2 exp(x) Laplace(0,1) 0.021 0.021 0.041
2 sin(2πx) N(0,1) 0.011 0.065 0.013
2 sin(2πx) Laplace(0,1) 0.021 0.106 0.027

times, where B is large, and estimate the squared shrinkage bias
by

b̂2
λ(x, V̂ ) = 1

B

B∑

b=1

[
f̂

(b)
λ (x) − f̂ (b)

reg (x)
]2

.

We compare the proposed MSE-based choice of smoothing pa-
rameter with other existing alternatives, such as CV or GCV, in
simulation studies.

5. SIMULATION STUDIES

To study the performance of the proposed approaches, we
conduct five simulation studies. The first two studies investigate
the proposed methods for single-level functional data and the
next two studies assess methods for multilevel data. The last
study investigates the sensitivity of the sandwich variance to
the choice of tuning parameters. In each case, we carried out
500 simulation runs. For penalized spline estimators, we used a
truncated quadratic polynomial base with 20 knots.

5.1 Scenario I: Single-Level Functional Data

5.1.1 Study I: Continuous Outcome. The continuous out-
comes are generated from the model

Yij = f (Xij ) + ϵij , i = 1, . . . , n, j = 1, . . . , m, (8)

with n = 200 and m = 3. The covariates Xij are independently
generated from a uniform distribution, U (0, 1). The random
errors are generated from a multivariate normal, uniform, or
Laplace distribution with compound symmetry correlation and
ρ = 0.2. The true underlying function f (x) is log(x), 2 exp(x),
or 2 sin(2πx).

We compare the proposed P-spline approach with a regression
spline approach (R-spline) where the number of knots is chosen
by leave-10-subjects-out cross-validation. For the P-spline es-
timator, we compare two methods for choosing the smoothing
parameter: the proposed MSE-based and the GCV. The GCV
for correlated continuous data minimizes

GCV(λ) =
∑

ij

(
Ỹij − B̃T

ij β̂λ

)2

{
1 − 1

N
trace

[
H−1

n (β̂λ)Gn

]}2 ,

where Ỹi = !̂
−1/2
0 Yi , B̃i = !̂

−1/2
0 Bi , Gn =

∑
i B̃

T
i B̃i , and !̂0

is estimated based on an initial regression spline estimator.
Table 1 summarizes the mean of average MSE, that is,

1
N

∑
ij [f̂ (Xij ) − f (Xij )]2, over 500 simulation repetitions for

all estimators. We see that in all scenarios, the P-spline with
MSE-based smoothing parameter is more efficient than the
other two approaches. The efficiency gain can be up to 18%.
In several scenarios with nonnormal random errors, the MSE-
based P-spline estimator has 50% lower mean average MSE
than the R-spline estimator. When the true underlying function
is 2 sin(2πx), the P-spline with GCV to choose smoothing pa-
rameter is the least efficient, where its mean average MSE is
about five times as large as the other approaches. A close in-
spection of our simulations suggests that in some cases, GCV
tends to under-smooth correlated data, which is consistent with
results reported in literature (Opsomer, Wang, and Yang 2001;
Welsh, Lin, and Carroll 2002).

In Table 2, we show the mean estimated pointwise standard
error using the sandwich estimator under a compound symmetry
or a working independent covariance structure. We compare the
sandwich estimator with the empirical standard deviation and
the model-based standard error estimators. When the under-
lying covariance structure is correctly specified as compound
symmetry, both the sandwich estimator and the model-based
estimator are close to the empirical standard deviation of f̂ (x).
However, when assuming an incorrectly specified working in-
dependent covariance structure, the model-based standard error
underestimates variability of f̂ (x), while the sandwich estimator
is still close to the empirical standard deviation. The f̂ (x) fitted
with a correctly specified compound symmetry covariance has
a lower empirical variance than f̂ (x) fitted with an incorrectly
specified working independent covariance, indicating some ef-
ficiency gain in choosing an appropriate correlation structure.
Similar results are obtained for other functions of f (x), which
are not shown here.

Table 2. Pointwise standard deviation, continuous outcome, f (x) = 2 sin(2πx), compound symmetry correlation (ρ = 0.2), normal random
error, n = 200, m = 3, 500 simulations

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CS Empirical 0.110 0.100 0.100 0.100 0.096 0.099 0.100 0.100 0.110
Model-based∗ 0.110 0.100 0.100 0.100 0.097 0.097 0.099 0.110 0.100
Sandwich 0.110 0.100 0.100 0.100 0.097 0.097 0.099 0.110 0.110

WI Empirical 0.120 0.120 0.120 0.120 0.100 0.120 0.120 0.110 0.120
Model-based∗∗ 0.099 0.096 0.093 0.093 0.092 0.091 0.093 0.094 0.098
Sandwich 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.120

∗Under correctly specified compound symmetry correlation. ∗∗Under incorrectly specified working independence correlation.
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Table 3. Mean average MSE of f̂ (x) using various smoothing
techniques and smoothing parameter selection, binary outcome, 500

simulations

P-spline P-spline
f (x) (MSE) (CV) R-spline

n = 100, m = 5 sin(2πx) 0.059 0.064 0.063
n = 100, m = 5 2 − 16x+ 0.060 0.066 0.065

30x2 − 15x3

n = 100, m = 5 exp(x) − 2 0.047 0.057 0.058
n = 100, m = 20 exp(x) − 2 0.026 0.028 0.028
n = 30, m = 80 exp(x) − 2 0.074 0.075 0.076

5.1.2 Study II: Binary Outcome. The binary outcomes are
generated from the marginal model,

logit[Pr(Yij = 1)] = f (Xij ), i = 1, . . . , n, j = 1, . . . , m,

(9)

where n = 100 or 30, m = 5, 20, or 80, and the within subject
correlation is compound symmetry with ρ = 0.2. For m = 5, the
data for each subject is sparse, while for m = 20 or 80, the data
for each subject is dense. The covariates Xij are independently
generated from U (0, 1). We examined three different functions
f (x) = sin(2πx), exp(x) − 2, and 2 − 16x + 30x2 − 15x3.
Since the standard GCV does not apply to correlated binary
data, we compare the MSE-based smoothing parameter selec-
tion with leave-10-subjects-out cross-validation. Tables 3 and 4
summarize the mean average MSE of f̂ (x) and pointwise stan-
dard deviation. In all the cases, the P-spline with MSE-based
smoothing parameter selection is more efficient than the other
two approaches. The efficiency gain of P-spline (MSE) over
P-spline (CV) or R-spline is up to 20%.

We assess performance of the standard error estimation with
f (x) = sin(2πx) under a compound symmetry and a working
independent covariance structure. The pointwise sandwich stan-
dard error estimator is close to the empirical standard deviation
of f̂ (x) under both correlation structures. The results for the

other two functions are similar and thus are not shown here.
Again, when working independence is assumed, the model-
based standard error is much smaller than the empirical standard
deviation of f̂ (x). Similar to Study I, using a correctly specified
covariance structure improves estimation efficiency of f̂ (x).

5.2 Scenario II: Multilevel Functional Data

5.2.1 Study I′: Continuous Outcome. We generated the out-
comes from a three-level partially linear model,

Yijk = f (Xijk) + Ziβ + αi + ηij + ϵijk, (10)
i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , m,

where n = 30, J = 5, m = 10, 20, or 80, and αi ∼ N (0, 1)
are subject-level random effects, and ηij ∼ N (0, 1) are subject-
specific and cycle-level random effects. Here for m = 10, the
data in each cycle is sparse, while for m = 20 or 80, the
data in each cycle is dense. Note that for continuous data,
f (·) and β in model (10) are marginal means and the ran-
dom effects are merely used to simulate correlation among
outcomes. The covariates Xijk are independently generated
from U (0, 1), and the measurement errors ϵijk are indepen-
dently generated from N (0, 1). The subject-level covariates
Zi are iid and follow N (0, 1) and the coefficient β = 0.4.
We examined two different functions, f (x) = 2 sin(2πx) and
f (x) = 2 − 16x + 30x2 − 15x3, and three working correlation
structures: assuming all observations are independent, assuming
observations from different cycles are independent (between-
cycle independence), and the true correlation structure (ac-
counting for both between- and within-cycle correlation of the
observations on the same subject). For the P-spline estimator,
the proposed MSE method was used to select the smoothing
parameter.

Tables 5 and 6 summarize the simulation results. In Table
5, we show the mean average MSE of the fitted nonparamet-
ric function and the standard error of the parametric estimate.
In terms of the mean average MSE, using a correctly spec-
ified correlation structure yields the most efficient estimator,

Table 4. Pointwise standard deviation with binary outcome, exchangeable correlation (ρ = 0.2), f (x) = sin(2πx), n = 100 or 200, m = 5,
500 simulations

n = 100 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CS Empirical 0.27 0.25 0.24 0.24 0.23 0.22 0.22 0.24 0.24
Model-based∗ 0.25 0.24 0.23 0.22 0.21 0.21 0.22 0.23 0.23
Sandwich 0.25 0.23 0.23 0.22 0.21 0.21 0.22 0.23 0.24

WI Empirical 0.28 0.26 0.25 0.25 0.23 0.23 0.23 0.24 0.24
Model-based∗∗ 0.23 0.21 0.20 0.19 0.18 0.18 0.20 0.21 0.21
Sandwich 0.26 0.24 0.23 0.22 0.21 0.21 0.23 0.24 0.24

n = 200 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CS Empirical 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.17
Model-based∗ 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.17 0.17
Sandwich 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.17 0.17

WI Empirical 0.17 0.16 0.17 0.17 0.16 0.16 0.17 0.17 0.17
Model-based∗∗ 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.15 0.16
Sandwich 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.17 0.18

∗Under correctly specified compound symmetry correlation. ∗∗Under incorrectly specified working independence correlation.
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Table 5. Mean average MSE of f̂ (x) and SE of β̂ using different correlation structures, continuous outcome, multilevel model, n = 30, J = 5,

m = 10, 20, or 80, 500 simulations

R-spline P-spline (WI) P-spline (Ind cycles) P-spline (True)

n = 30, J = 5, m = 10 f (x) = 2 − 16x + 30x2 − 15x3

AMSE[f̂ (·)] 0.044 0.042 0.041 0.040
Mean β̂ 0.401 0.401 0.401 0.401
Mean ŜE(β̂) 0.243 0.243 0.243 0.242

n = 30, J = 5, m = 10 f (x) = 2 sin(2πx)
AMSE[f̂ (·)] 0.045 0.047 0.044 0.043
Mean β̂ 0.395 0.394 0.394 0.395
Mean ŜE(β̂) 0.221 0.221 0.221 0.221

n = 30, J = 5, m = 20 f (x) = 2 sin(2πx)
AMSE[f̂ (·)] 0.044 0.046 0.044 0.043
Mean β̂ 0.400 0.400 0.400 0.400
Mean ŜE(β̂) 0.216 0.216 0.216 0.216

n = 30, J = 5, m = 80 f (x) = 2 sin(2πx)
AMSE[f̂ (·)] 0.041 0.041 0.040 0.040
Mean β̂ 0.390 0.390 0.390 0.390
Mean ŜE(β̂) 0.220 0.220 0.220 0.220

while accounting for the within-cycle correlation but ignoring
the between-cycle correlation ranks the second. Using working
independent covariance for all observations on a subject pro-
vides the least efficient estimator. Compared to the R-spline, the
P-spline estimator has a smaller mean average MSE. For the
estimation of the parametric part, all the approaches lead to
estimators with small biases and similar variances. Table 6
shows the pointwise mean estimated standard error of f̂ (x)
under the sparse data cases (the results for the dense cases are
similar, which are not shown here). For all the three correlation
structures, the sandwich estimates are close to the corresponding
empirical variances. However, properly accounting for correla-
tion increases the efficiency of the estimator. When the correct
correlation structure is used, the model-based pointwise stan-
dard error estimate is close to the empirical estimate as well. We
see that the pointwise empirical standard deviation is slightly
higher when using working independence covariance than using
independent cycle or correctly specified correlation.

5.2.2 Study II′: Binary Outcome. Here we generate binary
outcomes from the following three-level model:

logit[Pr(Yijk = 1)] = f (Xijk) + Ziβ, (11)
i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , m,

where the between-cycle correlation is 0.07 and within-cycle
correlation is 0.3, n = 50, J = 5, and m = 5. The correlation
at both levels assume exchangeable structure. The covariates
Xijk are independently generated from U (0, 1). The subject-
level covariates Zi are generated from U (0, 1) with the coef-
ficient β = 0.2. We examined two functions, f (x) = sin(2πx)
and exp(x) − 2. We compare the estimator obtained assuming
working independence of all observations on a subject to the
one assuming between-cycle independence. For the P-spline es-
timators, the proposed MSE-based method is used to select the
smoothing parameter.

The simulation results are shown in Tables 7 and 8. Table 7
summarizes the mean average MSE of the nonparametric

Table 6. Pointwise standard deviation, continuous outcome, multilevel model, normal random error, n = 30,J = 5, m = 10, 500 simulations

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f (x) = 2 sin(2πx)
Empirical (WI) 0.22 0.22 0.21 0.21 0.20 0.22 0.23 0.22 0.22
Sandwich (WI) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Empirical (Ind cycles) 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21
Sandwich (Ind cycles) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Empirical (True) 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21
Model-based (True) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Sandwich (True) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

f (x) = 2 − 16x + 30x2 − 15x3

Empirical (WI) 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.21 0.21
Sandwich (WI) 0.21 0.21 0.20 0.20 0.20 0.20 0.21 0.21 0.21
Empirical (Ind cycles) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.20
Sandwich (Ind cycles) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Empirical (True) 0.20 0.20 0.19 0.19 0.20 0.20 0.20 0.20 0.20
Model-based (True) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Sandwich (True) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

D
ow

nl
oa

de
d 

by
 [C

ol
um

bi
a 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

8:
54

 1
1 

Ja
nu

ar
y 

20
18

 



Chen et al.: A Marginal Approach to Reduced-Rank Penalized Spline Smoothing 1223

Table 7. Mean average MSE of f̂ (x) and SE of β̂ using different
correlation structures, binary outcome, multilevel model,

n = 50, J = 5, m = 5, 500 simulations

R-spline P-spline (WI) P-spline (Ind cycles)

f (x) = sin(2πx)
AMSE[f̂ (·)] 0.077 0.075 0.074
mean β̂ 0.205 0.203 0.203
mean ŜE(β̂) 0.428 0.426 0.425

f (x) = exp(x) − 2
AMSE[f̂ (·)] 0.075 0.073 0.071
mean β̂ 0.191 0.191 0.191
mean ŜE(β̂) 0.434 0.436 0.433

component in (11) and the standard error of the parametric
component. The results are analogous to those in Study I′ for
the continuous outcome. In general, properly accounting for the
correlation leads to a smaller mean average MSE estimate. For
the parametric coefficient, all the approaches result in estima-
tors with small biases and similar variances. For the nonpara-
metric function, the P-spline estimators are more efficient than
the R-spline estimator. Table 8 summarizes the mean pointwise
standard error estimate of the fitted nonparametric function. We
observe the sandwich variance estimates to be close to the cor-
responding empirical variance estimates using either correlation
structure.

5.3 Sensitivity Analysis of the Sandwich
Variance Estimator

In this section, we conducted simulation studies to investi-
gate whether the sandwich variance estimator is sensitive to the
choice of the tuning parameter λ. The simulation settings are

similar to those in the Scenario I. We used the mean function
f (x) = 2 exp(x) with n = 200,m = 10 for continuous outcome
and n = 100,m = 10 for binary outcome. We computed the
sandwich variance estimator under 10 equally spaced λ on the
log-scale, that is, log10λ = −5,−4, . . . , 3, 4.

The results based on 500 simulations are summarized in Fig-
ure S1 (see online supplementary materials). The top two panels
show M̂SE(λ) as defined in (7) using different smoothing pa-
rameters for the continuous (left) and binary (right) outcomes,
respectively. From the MSE, we can define a proper range of
smoothing parameter as λ’s such that no significant improve-
ment in the M̂SE(λ) is observed using the 1-standard-deviation
rule. In this case, the proper range of λ is [1, 104] for both types
of outcomes, which is also reflected in the top two subfigures.
The bottom two panels show the estimated sandwich variance
under these values of the smoothing parameter in the proper
and improper range. We observe that the sandwich variance is
nonincreasing in λ at any given time point, which is expected:
the smaller the smoothing parameter, the less penalty is placed
on the roughness and the fitted curve is more wiggly, leading
to a smaller bias but larger variance. If the tuning parameter λ

is in a proper range defined by the MSE, the variation of the
sandwich variance is ignorable or minor. In conclusion, the es-
timated sandwich variance is not sensitive to the choice of λ,
given that the λ is in a proper range defined by the estimated
MSE.

6. DATA ANALYSIS

Per clinical protocol in the SAH study, Nimodipine was ad-
ministered orally every 4 hr (Choi et al. 2012). Each patient
received a dose of 30 mg (low dose) or 60 mg (high dose).
Patients underwent multiple treatment cycles and their physi-
ologic outcomes, such as MAP and brain oxygenation, during

Table 8. Pointwise standard deviation, binary outcome, multilevel model, n = 50 or 100, J = 5, m = 5, 500 simulations

n = 50 f (x) = sin(2πx)

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.27 0.27 0.27 0.26 0.26 0.27 0.27 0.27 0.27
Sandwich (WI) 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.26
Empirical (Ind cycles) 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.27 0.27
Sandwich (Ind cycles) 0.25 0.25 0.25 0.24 0.24 0.24 0.25 0.25 0.25

n = 50 f (x) = exp(x) − 2

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.26 0.26
Sandwich (WI) 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.25
Empirical (Ind cycles) 0.26 0.26 0.24 0.25 0.25 0.25 0.25 0.25 0.25
Sandwich (Ind cycles) 0.25 0.24 0.24 0.24 0.23 0.23 0.23 0.24 0.25

n = 100 f (x) = exp(x) − 2

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (Ind cycles) 0.18 0.17 0.16 0.16 0.16 0.16 0.16 0.17 0.17
Sandwich (Ind cycles) 0.18 0.17 0.16 0.16 0.16 0.16 0.16 0.17 0.17
Empirical (WI) 0.18 0.17 0.16 0.16 0.16 0.16 0.17 0.17 0.17
Sandwich (WI) 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.17 0.17
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Figure 1. Scatterplots of MAP versus continuous time for three subjects (upper and lower left). Dots: observed MAP; Solid line: local
polynomial smoothing using observed MAP. Sample average at each time point in a cycle (lower right) averaged across subjects and cycles.

each treatment cycle were recorded. The dose level does not
change within a treatment cycle of the same patient, but can
change from cycle to cycle depending on the patient’s clini-
cal profile. The oxygen reactivity index (ORX) was calculated
post hoc as the running Pearson correlation coefficient between
the brain tissue oxygenation and cerebral perfusion pressure,
which takes a value between −1 and 1. The ORX is an index
of cerebral autoregulation, a reflection of the cerebral vascu-
lature’s ability to control blood flow to the brain, independent
of the systemic blood pressure. Higher ORX values indicate a
higher risk of poor outcome after acute brain injury (Jaeger et al.
2006).

Physiologic variables were measured continuously every 5
sec from General Electric (GE) Solar 8000i monitors and aver-
ages over each 10-min interval were reported (Choi et al. 2012).
Patients were monitored for 90 min before each dose, making
for nine measurements, and 120 min after the dose, making for
12 measurements. Including the time of administration, each
cycle had a total of 22 equally spaced measurements. We ob-

served 562 treatment cycles, among which 30 mg Nimodipine
was given in 279 cycles and 60 mg Nimodipine was given in
283 cycles in a total of 16 patients. On average, each patient has
around 35 treatment cycles. The total number of observations is
11,482. Among the patients, 62.5% are female and their mean
age is 50.

In Figure 1, we show scatterplots of all observed MAP for
three subjects with 76, 29, and 45 treatment cycles, and we
superimpose a local polynomial smoothing line using data from
each subject. We observe considerable between- and within-
subject variability. While the data on each subject is dense, some
aggregation and modeling is needed to reveal the general trend in
a treatment cycle. In the lower right panel of Figure 1, we show
the sample mean MAP obtained by averaging measurements at
the same time point across subjects and treatment cycles. We
observe a larger effect on mean MAP from high-dose group. In
Figure 2, we show snap shots of a subject’s MAP during several
treatment cycles and superimpose a scatterplot smoothing line
for each individual figure.
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Figure 2. Scatterplot of the MAP versus time measured on a subject during four treatment cycles. Dots: observed MAP; Solid line: local
polynomial smoothing using observed MAP in a cycle. Time is centered at administration of Nimodipine, so that negative values are before
using the medication and positive values are after using the medication.

The primary goal of the study is to estimate the effect of
Nimodipine on various physiologic outcomes in patients with
SAH averaged across treatment cycles and across patients. The
research interest is the outcome trajectory during each treatment
cycle where the cycle-level data contains 22 equally spaced mea-
surements in a natural time order nested within each subject.
Here the three levels of analysis units are: subjects, cycles, and
average physiological outcomes (e.g., MAP) in each 10-min in-
terval. The correlation between measurements taken at different
cycles on a subject and repeated measurements within a cycle
may be difficult to model. Such correlation is not of scientific
interest but needs to be accounted for. Hence, the marginal ap-
proach focusing on average effect with a robust standard error
estimate is the preferred analysis. For the continuous outcome
of interest, MAP, we fitted the marginal model under two work-
ing covariance structures: (1) assuming independence between
cycles and exchangeable correlation within cycles; and (2) the
two-way ANOVA in (5) accounting for both levels of correla-
tion. The marginal mean is specified with a varying coefficient
model,

E(Yijk|Xijk,Wij , Zij ) = f (Xijk) + β(Xijk)Wij + ZT
i γ , (12)

where Xijk is the time in a treatment cycle centered at the
point of administering Nimodipine, Wij is an indicator of be-
ing on the higher dose, Zi is a vector of baseline covariates
including age and gender, f (·) is the MAP for the lower-dose

cycle, and β(·) is the difference in MAP between the two dose
cycles.

In the upper left panel of Figure 3, we show the estimated
mean MAP for each dose cycle obtained from model (12) as-
suming independence between cycles and exchangeable corre-
lation within cycles along with its pointwise 95% confidence
interval (CI). In the upper right panel, we present the estimated
MAP assuming the working two-way ANOVA model in (5)
along with its pointwise 95% CI. The range of the between-
cycle correlation is from 0.21 to 0.46, while the within-cycle
correlation ranges from 0.21 to 0.57. The smoothed estimates
obtained from model (12) reflect a similar trend to the sample
average (lower right panel of Figure 1). Using different working
correlation structures gives similar point estimates. However,
accounting for between-cycle correlation provides an estimator
with a narrower CI than when the between-cycle correlation is
ignored. As expected, Nimodipine has a larger effect on decreas-
ing the MAP in high-dose cycles than on the low-dose cycles:
the mean MAP in a high-dose cycle decreases from 120.7 (95%
CI: [119.1, 122.3]) to 116.4 (95% CI: [114.7, 118.0]), while in
the low-dose cycles it decreases from 106.5 (95% CI: [105.4,
107.6]) to 105.1 (95% CI: [104.0, 106.2]). The analysis also
suggests that the effect of Nimodipine in the high-dose cycles
lasts longer than the low-dose cycles. We also fitted a condi-
tional mixed effects model with both subject- and cycle-specific
random intercepts and obtained similar estimated mean curves
(results omitted).
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Figure 3. Top two panels: Estimated effect of Nimodipine on MAP and its 95% pointwise confidence band. Left: assuming independence
between cycles. Right: using a working two-way ANOVA model-based correlation structure. Bottom two panels: Estimated differences µ̂(t) −
µ̂(0) and f̂ (t) − f̂ (0) for MAP, with µ̂(t) = f̂ (t) + β̂(t), in low-dose group (left) and high-dose group (right). Dark gray shade represents the
95% pointwise confidence bands and light gray shade represents 95% simultaneous band based on bootstrap. The online version of this figure is
in color.

In the bottom panels of Figure 3, we plot the estimated differ-
ence between MAP at a given time point (time t) post-medication
and right before taking the medication (time zero) in both dose
cycles together with the corresponding pointwise 95% CIs (dark
gray) and simultaneous confidence bands (light gray). Con-
structing simultaneous confidence band for functional data is
an important problem. Two key issues to maintain the nomi-
nal confidence level are to correct for bias in the nonparametric
estimation and account for extra variability introduced by select-
ing the smoothing parameter. For single-level normal functional
data, Krivobokova, Kneib, and Claeskens (2010) proposed si-
multaneous confidence band based on Bayesian framework, fre-
quentist framework, and an intermediate mixed model represen-
tation framework. For correlated functional data, Crainiceanu

et al. (2012) proposed bootstrap-based approaches. Here our
simultaneous 95% confidence band was also computed using a
bootstrap-based approach similar to that by Crainiceanu et al.
(2012), where we conditioned on subjects and resampled cy-
cles within a subject. For each bootstrap sample, we applied
the proposed marginal GEE model with an independent cy-
cle working correlation. We compute the maximal standardized
difference across the entire range of t in each bootstrap sam-
ple as db = maxt {|f̂b(t) − f̂b(0) − [f̄ (t) − f̄ (0)]|/s̄d(t)} for the
bth bootstrap sample. The simultaneous CI is obtained as
f̄ (t) − f̄ (0) ± q1−α s̄d(t), where q1−α is the (1 − α)th empirical
quantile of the maximal statistic db (Crainiceanu et al. 2012).

From Figure 3, we see that in the low-dose cycles there is
a slight dip in the mean MAP and it bounces back 50 min
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post-medication (lower left panel of Figure 3). In the high-
dose cycles, the mean MAP continues to decrease until about
90 min after administering the medication (lower right panel of
Figure 3). From the simultaneous confidence bands in Figure 3,
we see that Nimodipine significantly decreases the MAP in the
high-dose cycles over the entire course of a treatment cycle,
while it only slightly decreases the MAP in the low-dose cy-
cles early on: in the low-dose cycles, the pointwise CI shows a
significant decrease during the first 50 min of receiving the med-
ication, while the simultaneous confidence band barely shows a
difference in this period, suggesting no effect after adjusting for
multiple comparisons.

The other goal of the study is to estimate the effect of Ni-
modipine on cerebral autoregulation. Loss of autoregulation is

defined as the ORX greater than 0.2. Patients with a prolonged
loss of cerebral autoregulation are at risk for worse outcomes.
Let Rijk be the at risk indicator for subject i in cycle j at time
point k. Algorithm for fitting multilevel functional mixed effects
model with a logit link and normal random effects failed to con-
verge for this outcome. We fit the following marginal model to
assess the risk of loss of autoregulation,

logit[Pr(Rijk = 1)] = f (Xijk) + β(Xijk)Wij + ZT
i γ , (13)

with a working covariance assuming exchangeable within-cycle
correlation and independent between-cycle correlation on the
same subject. The top two panels of Figure 4 show the estimated
risk of cerebral autoregulation loss in the low- and high-dose cy-
cles. For the low-dose cycles, the probability of autoregulation
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Figure 4. Top two panels: Estimated effect of Nimodipine on at risk of cerebral autoregulation loss in the low-dose group (left) and the
high-dose group (right). Bottom two panels: Estimated odds ratio exp[µ̂(t)]/ exp[µ̂(0)] and exp[f̂ (t)]/ exp[f̂ (0)] of at risk for autoregulation
loss, with µ̂(t) = f̂ (t) + β̂(t), in low-dose group (left) and high-dose group (right). Dark gray shade represents the 95% pointwise confidence
bands and light gray shade represents 95% simultaneous band based on bootstrap.
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loss increases slightly before the medication and continues to
until 33 min post-medication, at which the maximal probability
of 28% (95% CI [0.25, 0.31]) is attained. Then afterward, the
probability decreases to the minimal risk of 20% (95% [0.16,
0.25]) at the end of the treatment cycle. For the high-dose cy-
cles, the risk of cerebral autoregulation loss is always more than
30% and varies between 31% and 35.5%. Analogous to the
MAP outcome, we plot the odds ratio of cerebral autoregula-
tion loss at a time point t post-medication to right before taking
the medication (time zero) in both dose cycles together with
the corresponding pointwise 95% CIs (dark gray) and simul-
taneous confidence bands (light gray). The bottom two panels
of Figure 4 show that the estimated odds ratio is greater than
one until about 65 min after administering Nimodipine in the
low-dose cycles. For the high-dose cycles, the estimated odds
ratio stays above one until about 95 min after the administra-
tion. However, there is no significant difference in the odds ratio
of post-medication risk comparing to right before medication
between the two dosage groups for the entire treatment period.
The simultaneous confidence bands show no significant effect
in either group.

In summary, we found some evidence of Nimodipine reduc-
ing the mean MAP when administered at the 60 mg dose, but
not at the 30 mg dose. Nimodipine does not appear to have
a significant effect on cerebral autoregulation. These findings
can be used to evaluate the safety concerns of Nimodipine and
the recommendation of discontinuing the use of Nimodipine in
SAH patients that is proposed by Diringer et al. (2011).

7. DISCUSSION

The proposed marginal approach provides an effective alter-
native to analyze multilevel functional data when the population
average effects are of interest. The robust sandwich variance es-
timator can be used for both conditional models and marginal
models to protect against misspecification of correlation matrix,
especially when the data has a complicated multilevel struc-
ture. Our investigation of the asymptotic properties reveals that
for the small knots scenario, the asymptotic bias does not de-
pend on the working correlation matrix and the estimated mean
function is asymptotically efficient when the working correla-
tion is correctly specified. For the large knots scenario, both the
asymptotic bias and variance depend on the working correla-
tion. A practical use of the asymptotic properties is to develop
a new method to select the smoothing parameter in marginal
approaches based on minimizing the asymptotic MSE. With-
out a likelihood framework, information criteria such as AIC
or BIC are not applicable to choose the smoothing parameter.
However, for logistic regression with random intercepts, un-
der a bridge distribution (Wang and Louise 2003) the marginal
model takes a logistic form; therefore, the regression parame-
ters in a conditional model also has a marginal interpretation.
Likelihood-based inference can then be obtained under a condi-
tional model and it may be possible to estimate the smoothing
parameter from the likelihood using a bridge distribution for
single level data.

Our methods can be applied to other marginal models such
as an additive model,

g[E(Yijk|Xijk,Wijk)] = f1(Xijk) + f2(Wijk),

where f1(·) and f2(·) are smooth functions. For the multilevel
MAP data in our example, we used a two-way ANOVA to ob-
tain a working covariance function. Other techniques, such as
functional principal components, can also be used to obtain an
efficient working covariance function and the standard error
will be calculated by the robust sandwich formula. Although
consistency is guaranteed by the sandwich variance estimator,
effective choice of covariance structure for multilevel binary
data deserves further research.

Finally, some remarks on computation. The proposed meth-
ods can handle large scale data under a working independent
covariance structure. For more complicated correlation struc-
ture, when the dimension of the cycle-level data increases, the
methods face computational challenges such as matrix inver-
sion. Computational manipulations such as singular value de-
composition would be helpful in these cases. For the proposed
MSE-based tuning parameter selection method, since it is based
on bootstrap, it may not be applicable for large-scale data. In
addition, when there are multiple covariates fitted as smooth
nonparameteric functions (e.g., in an additive model), choosing
smoothing parameters using an iterative cross-validation proce-
dure is computationally intensive. Choosing two smoothing pa-
rameters by cross-validation is still feasible (Wang and Chen, in
press); however, with more than two components the computa-
tion may be more challenging. Wood (2011) proposed methods
to choose multiple smoothing parameters for conditional mod-
els. Finally, to appropriately account for the uncertainty intro-
duced by the data-driven smoothing parameter choice especially
for small to moderate sample size, some alternative approaches
such as Bayesian methods can be used. It has been shown that
Bayesian methods have improved coverage properties and are
insensitive to the exact choice of smoothing parameter (e.g., see
Marra and Wood 2012; Goldsmith, Greven, and Crainiceanu
2013). In practice, how to adjust for the variability and un-
certainty introduced by the data-driven smoothing parameters
is an interesting and important topic that is worthy of further
investigation in the future.

SUPPLEMENTARY MATERIALS

The online supplementary materials contain: (1) some theo-
retical results that include a theorem, its corollary on the asymp-
totic properties summarized in Section 3, and their proofs; and
(2) Figure A1 of the sensitivity analysis in Section 5.3.

[Received January 2012. Revised June 2013.]
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